1
|
Zhu L, Liang Y, Yang L, Yang Q, Yin J, Wang T, Xu X, Zhang Q. Helicobacter mastomyrinus infection induces autoimmune hepatitis in mice. J Transl Autoimmun 2025; 10:100275. [PMID: 39981114 PMCID: PMC11840492 DOI: 10.1016/j.jtauto.2025.100275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/22/2025] [Indexed: 02/22/2025] Open
Abstract
Background Autoimmune hepatitis (AIH) is a chronic progressive liver disease caused by the immune system mistakenly attacking its own hepatocytes. The role of the gut microbiome in the pathogenesis and progression of AIH is of considerable significance. However, the dearth of suitable animal models has significantly constrained advancements in the pathogenesis and the development of therapeutic strategies for AIH. Helicobacter mastomyrinus (H. mastomyrinus, Hm) is a potentially zoonotic pathogenic microorganism capable of causing diseases of the enterohepatic system in rodent laboratory animals. Nevertheless, research on its role and mechanisms in causing liver disease is severely limited. Methods In this study, male BALB/c mice were infected with Hm isolate Hm-17, and were sacrificed at 4 w, 8 w, 14 w and 22 w after infection, respectively. The serum was collected for detecting a number of AIH indicators, including the aminotransferases level, IgG content and autoantibody level. Additionally, the liver tissue was examined for pathological analysis, fibrosis, bacterial content, and the distribution of immune cells. Results It was observed that the infection initially caused focal necrotizing hepatitis and subsequently progressed to interface hepatitis with lymphocyte/plasma cell infiltration, as well as hypergammaglobulinemia and autoantibody reactions, predominantly to Anti-nuclear and anti-smooth muscle antibodies. Furthermore, as the infection persisted, the mice exhibited a progressive increase in liver fibrosis and mild steatosis. Despite the maintenance of a low level of Hm colonization in the liver, there was a notable infiltrate of macrophages, T and B lymphocytes. In particular, the inflammatory foci in the Hm-infected liver were highly enriched for IL17+ cells. Conclusion The present study provides an animal model of immunological liver injury induced by Hm infection that exhibits main characteristics similar to those observed in AIH-1 patients. This model may serve as a novel animal model for the study of the pathogenesis and potential therapeutic strategies for human AIH.
Collapse
Affiliation(s)
- Liqi Zhu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Yuanyuan Liang
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Linghan Yang
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Qihui Yang
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Jun Yin
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Tao Wang
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Xiangming Xu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Taizhou University, Taizhou, China
| | - Quan Zhang
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Zhou Y, Meyle J, Groeger S. Periodontal pathogens and cancer development. Periodontol 2000 2024; 96:112-149. [PMID: 38965193 PMCID: PMC11579836 DOI: 10.1111/prd.12590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Increasing evidence suggests a significant association between periodontal disease and the occurrence of various cancers. The carcinogenic potential of several periodontal pathogens has been substantiated in vitro and in vivo. This review provides a comprehensive overview of the diverse mechanisms employed by different periodontal pathogens in the development of cancer. These mechanisms induce chronic inflammation, inhibit the host's immune system, activate cell invasion and proliferation, possess anti-apoptotic activity, and produce carcinogenic substances. Elucidating these mechanisms might provide new insights for developing novel approaches for tumor prevention, therapeutic purposes, and survival improvement.
Collapse
Affiliation(s)
- Yuxi Zhou
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
| | - Joerg Meyle
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
| | - Sabine Groeger
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
- Department of OrthodonticsJustus‐Liebig‐University of GiessenGiessenGermany
| |
Collapse
|
3
|
Lin Y, Zhu N, Liu J, Wen S, Xu Y, Xu X, Cai X. The role of cytolethal distending toxin in Glaesserella parasuis JS0135 strain infection: Cytotoxicity, phagocytic resistance and pathogenicity. Vet Microbiol 2024; 295:110168. [PMID: 38964035 DOI: 10.1016/j.vetmic.2024.110168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/11/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
Glaesserella parasuis is an important porcine pathogen that commonly colonizes the upper respiratory tract of pigs and is prone to causing Glässer's disease under complex conditions. As yet, the disease has led to serious economic losses to the swine industry worldwide. Studies so far have found that several virulence factors are associated with the pathogenicity of G. parasuis, but the pathogenic mechanism is still not fully understood. Cytolethal distending toxin (CDT), a potential virulence factor in G. parasuis, is involved in cytotoxicity, serum resistance, adherence to and invasion of host cells in vitro. Here, to further investigate the pathogenic role of CDT during G. parasuis infection in vitro and in vivo, a double cdt1 and cdt2 deletion mutant (Δcdt1Δcdt2) without selectable marker was first generated in G. parasuis JS0135 strain by continuous natural transformations and replica plating. Morphological observation and lactate dehydrogenase assay showed that the Δcdt1Δcdt2 mutant was defective in cytotoxicity. Additionally, the Δcdt1Δcdt2 mutant was more susceptible to phagocytosis caused by 3D4/2 macrophages compared to the wild-type JS0135 strain. Moreover, by focusing on clinical signs, necropsy, bacterial recovery and pathological observation, we found that the deletion of cdt1 and cdt2 genes led to a significant attenuation of virulence in G. parasuis. Taken together, these findings suggest that as an important virulence factor, CDT can significantly affect the pathogenicity of G. parasuis.
Collapse
Affiliation(s)
- Yan Lin
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Nannan Zhu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jia Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Siting Wen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yindi Xu
- Institute of Animal Husbandry Research, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xiaojuan Xu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xuwang Cai
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Kim TJ, Shenker BJ, MacElroy AS, Spradlin S, Walker LP, Boesze-Battaglia K. Aggregatibacter actinomycetemcomitans cytolethal distending toxin modulates host phagocytic function. Front Cell Infect Microbiol 2023; 13:1220089. [PMID: 37719670 PMCID: PMC10500838 DOI: 10.3389/fcimb.2023.1220089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023] Open
Abstract
Cytolethal distending toxins (Cdt) are a family of toxins produced by several human pathogens which infect mucocutaneous tissue and induce inflammatory disease. Human macrophages exposed to Aggregatibacter actinomycetemcomitans (Aa) Cdt respond through canonical and non-canonical inflammasome activation to stimulate cytokine release. The inflammatory response is dependent on PI3K signaling blockade via the toxin's phosphatidylinositol-3,4,5-triphosphate (PIP3) phosphatase activity; converting PIP3 to phosphatidylinsoitol-3,4-diphosphate (PI3,4P2) thereby depleting PIP3 pools. Phosphoinositides, also play a critical role in phagosome trafficking, serving as binding domains for effector proteins during phagosome maturation and subsequent fusion with lysosomes. We now demonstrate that AaCdt manipulates the phosphoinositide (PI) pools of phagosome membranes and alters Rab5 association. Exposure of macrophages to AaCdt slowed phagosome maturation and decreased phago-lysosome formation, thereby compromising macrophage phagocytic function. Moreover, macrophages exposed to Cdt showed decreased bactericidal capacity leading to increase in Aggregatibacter actinomycetemcomitans survival. Thus, Cdt may contribute to increased susceptibility to bacterial infection. These studies uncover an underexplored aspect of Cdt function and provide new insight into the virulence potential of Cdt in mediating the pathogenesis of disease caused by Cdt-producing organisms such as Aa.
Collapse
Affiliation(s)
- Taewan J. Kim
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bruce J. Shenker
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Andrew S. MacElroy
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Samuel Spradlin
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Lisa P. Walker
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Abstract
Bacterial genotoxins are peptide or protein virulence factors produced by several pathogens, which make single-strand breaks (SSBs) and/or double-strand DNA breaks (DSBs) in the target host cells. If host DNA inflictions are not resolved on time, host cell apoptosis, cell senescence, and/or even bacterial pathogen-related cancer may occur. Two multi-protein AB toxins, cytolethal distending toxin (CDT) produced by over 30 bacterial pathogens and typhoid toxin from Salmonella Typhi, as well as small polyketide-peptides named colibactin that causes the DNA interstrand cross-linking and subsequent DSBs is the most well-characterized bacterial genotoxins. Using these three examples, this review discusses the mechanisms by which these toxins deliver themselves into the nucleus of the target host cells and exert their genotoxic functions at the structural and functional levels.
Collapse
Affiliation(s)
- Liaoqi Du
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Jeongmin Song
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Bueno MR, Ishikawa KH, Almeida-Santos G, Ando-Suguimoto ES, Shimabukuro N, Kawamoto D, Mayer MPA. Lactobacilli Attenuate the Effect of Aggregatibacter actinomycetemcomitans Infection in Gingival Epithelial Cells. Front Microbiol 2022; 13:846192. [PMID: 35602018 PMCID: PMC9116499 DOI: 10.3389/fmicb.2022.846192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/29/2022] [Indexed: 01/10/2023] Open
Abstract
Probiotics may be considered as an additional strategy to achieve a balanced microbiome in periodontitis. However, the mechanisms underlying the use of probiotics in the prevention or control of periodontitis are still not fully elucidated. This in vitro study aimed to evaluate the effect of two commercially available strains of lactobacilli on gingival epithelial cells (GECs) challenged by Aggregatibacter actinomycetemcomitans. OBA-9 GECs were infected with A. actinomycetemcomitans strain JP2 at an MOI of 1:100 and/or co-infected with Lactobacillus acidophilus La5 (La5) or Lacticaseibacillus rhamnosus Lr32 (Lr32) at an MOI of 1:10 for 2 and 24 h. The number of adherent/internalized bacteria to GECs was determined by qPCR. Production of inflammatory mediators (CXCL-8, IL-1β, GM-CSF, and IL-10) by GECs was determined by ELISA, and the expression of genes encoding cell receptors and involved in apoptosis was determined by RT-qPCR. Apoptosis was also analyzed by Annexin V staining. There was a slight loss in OBA-9 cell viability after infection with A. actinomycetemcomitans or the tested probiotics after 2 h, which was magnified after 24-h co-infection. Adherence of A. actinomycetemcomitans to GECs was 1.8 × 107 (± 1.2 × 106) cells/well in the mono-infection but reduced to 1.2 × 107 (± 1.5 × 106) in the co-infection with Lr32 and to 6 × 106 (± 1 × 106) in the co-infection with La5 (p < 0.05). GECs mono-infected with A. actinomycetemcomitans produced CXCL-8, GM-CSF, and IL-1β, and the co-infection with both probiotic strains altered this profile. While the co-infection of A. actinomycetemcomitans with La5 resulted in reduced levels of all mediators, the co-infection with Lr32 promoted reduced levels of CXCL-8 and GM-CSF but increased the production of IL-1β. The probiotics upregulated the expression of TLR2 and downregulated TLR4 in cells co-infected with A. actinomycetemcomitans. A. actinomycetemcomitans-induced the upregulation of NRLP3 was attenuated by La5 but increased by Lr32. Furthermore, the transcription of the anti-apoptotic gene BCL-2 was upregulated, whereas the pro-apoptotic BAX was downregulated in cells co-infected with A. actinomycetemcomitans and the probiotics. Infection with A. actinomycetemcomitans induced apoptosis in GECs, whereas the co-infection with lactobacilli attenuated the apoptotic phenotype. Both tested lactobacilli may interfere in A. actinomycetemcomitans colonization of the oral cavity by reducing its ability to interact with gingival epithelial cells and modulating cells response. However, L. acidophilus La5 properties suggest that this strain has a higher potential to control A. actinomycetemcomitans-associated periodontitis than L. rhamnosus Lr32.
Collapse
Affiliation(s)
- Manuela R. Bueno
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Karin H. Ishikawa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gislane Almeida-Santos
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ellen S. Ando-Suguimoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Natali Shimabukuro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcia P. A. Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Varon C, Azzi-Martin L, Khalid S, Seeneevassen L, Ménard A, Spuul P. Helicobacters and cancer, not only gastric cancer? Semin Cancer Biol 2021; 86:1138-1154. [PMID: 34425210 DOI: 10.1016/j.semcancer.2021.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022]
Abstract
The Helicobacter genus actually comprises 46 validly published species divided into two main clades: gastric and enterohepatic Helicobacters. These bacteria colonize alternative sites of the digestive system in animals and humans, and contribute to inflammation and cancers. In humans, Helicobacter infection is mainly related to H. pylori, a gastric pathogen infecting more than half of the world's population, leading to chronic inflammation of the gastric mucosa that can evolve into two types of gastric cancers: gastric adenocarcinomas and gastric MALT lymphoma. In addition, H. pylori but also non-H. pylori Helicobacter infection has been associated with many extra-gastric malignancies. This review focuses on H. pylori and its role in gastric cancers and extra-gastric diseases, as well as malignancies induced by non-H. pylori Helicobacters. Their different virulence factors and their involvement in carcinogenesis is discussed. This review highlights the importance of both gastric and enterohepatic Helicobacters in gastrointestinal and liver cancers.
Collapse
Affiliation(s)
- Christine Varon
- Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Lamia Azzi-Martin
- Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France; Univ. Bordeaux, UFR des Sciences Médicales, Bordeaux, France
| | - Sadia Khalid
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Akadeemia RD 15, 12618, Tallinn, Estonia
| | - Lornella Seeneevassen
- Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Armelle Ménard
- Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Pirjo Spuul
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Akadeemia RD 15, 12618, Tallinn, Estonia.
| |
Collapse
|
8
|
Ng E, Tay JRH, Ong MMA. Minimally Invasive Periodontology: A Treatment Philosophy and Suggested Approach. Int J Dent 2021; 2021:2810264. [PMID: 34257659 PMCID: PMC8245214 DOI: 10.1155/2021/2810264] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 01/20/2023] Open
Abstract
Severe periodontitis is a highly prevalent dental disease. With the advent of implant dentistry, teeth are often extracted and replaced. Periodontal surgery, where indicated, could also result in increased trauma to the patient. This literature review discusses different treatment modalities for periodontitis and proposes a treatment approach emphasizing maximum preservation of teeth while minimizing morbidity to the patient. Scientific articles were retrieved from the MEDLINE/PubMed database up to January 2021 to identify appropriate articles that addressed the objectives of this review. This was supplemented with hand searching using reference lists from relevant articles. As tooth prognostication does not have a high predictive value, a more conservative approach in extracting teeth should be abided by. This may involve repeated rounds of nonsurgical periodontal therapy, and adjuncts such as locally delivered statin gels and subantimicrobial-dose doxycycline appear to be effective. Periodontal surgery should not be carried out at an early phase in therapy as improvements in nonsurgical therapy may be observed up to 12 months from initial treatment. Periodontal surgery, where indicated, should also be minimally invasive, with periodontal regeneration being shown to be effective over 20 years of follow-up. Biomarkers provide an opportunity for early detection of disease activity and personalised treatment. Quality of life is proposed as an alternative end point to the traditional biomedical paradigm focused on the disease state and clinical outcomes. In summary, minimally invasive therapy aims to preserve health and function of the natural dentition, thus improving the quality of life for patients with periodontitis.
Collapse
Affiliation(s)
- Ethan Ng
- Department of Restorative Dentistry, National Dental Centre Singapore, Singapore 168938, Singapore
| | - John Rong Hao Tay
- Department of Restorative Dentistry, National Dental Centre Singapore, Singapore 168938, Singapore
| | - Marianne Meng Ann Ong
- Department of Restorative Dentistry, National Dental Centre Singapore, Singapore 168938, Singapore
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
9
|
Lopez Chiloeches M, Bergonzini A, Frisan T. Bacterial Toxins Are a Never-Ending Source of Surprises: From Natural Born Killers to Negotiators. Toxins (Basel) 2021; 13:426. [PMID: 34204481 PMCID: PMC8235270 DOI: 10.3390/toxins13060426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The idea that bacterial toxins are not only killers but also execute more sophisticated roles during bacteria-host interactions by acting as negotiators has been highlighted in the past decades. Depending on the toxin, its cellular target and mode of action, the final regulatory outcome can be different. In this review, we have focused on two families of bacterial toxins: genotoxins and pore-forming toxins, which have different modes of action but share the ability to modulate the host's immune responses, independently of their capacity to directly kill immune cells. We have addressed their immuno-suppressive effects with the perspective that these may help bacteria to avoid clearance by the host's immune response and, concomitantly, limit detrimental immunopathology. These are optimal conditions for the establishment of a persistent infection, eventually promoting asymptomatic carriers. This immunomodulatory effect can be achieved with different strategies such as suppression of pro-inflammatory cytokines, re-polarization of the immune response from a pro-inflammatory to a tolerogenic state, and bacterial fitness modulation to favour tissue colonization while preventing bacteraemia. An imbalance in each of those effects can lead to disease due to either uncontrolled bacterial proliferation/invasion, immunopathology, or both.
Collapse
Affiliation(s)
| | | | - Teresa Frisan
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden; (M.L.C.); (A.B.)
| |
Collapse
|
10
|
Ishikawa KH, Bueno MR, Kawamoto D, Simionato MRL, Mayer MPA. Lactobacilli postbiotics reduce biofilm formation and alter transcription of virulence genes of Aggregatibacter actinomycetemcomitans. Mol Oral Microbiol 2021; 36:92-102. [PMID: 33372378 DOI: 10.1111/omi.12330] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022]
Abstract
Periodontitis is characterized by a dysbiotic microbial community and treatment strategies include the reestablishment of symbiosis by reducing pathogens abundance. Aggregatibacter actinomycetemcomitans (Aa) is frequently associated with rapidly progressing periodontitis. Since the oral ecosystem may be affected by metabolic end-products of bacteria, we evaluated the effect of soluble compounds released by probiotic lactobacilli, known as postbiotics, on Aa biofilm and expression of virulence-associated genes. Cell-free pH-neutralized supernatants (CFS) of Lactobacillus rhamnosus Lr32, L. rhamnosus HN001, Lactobacillus acidophilus LA5, and L. acidophilus NCFM were tested against a fimbriated clinical isolate of Aa JP2 genotype (1 × 107 CFU/well) on biofilm formation for 24 hr, and early and mature preformed biofilms (2 and 24 hr). Lactobacilli CFS partially reduced Aa viable counts and biofilms biomass, but did not affect the number of viable non-adherent bacteria, except for LA5 CFS. Furthermore, LA5 CFS and, in a lesser extent HN001 CFS, influenced Aa preformed biofilms. Lactobacilli postbiotics altered expression profile of Aa in a strain-specific fashion. Transcription of cytolethal distending toxin (cdtB) and leukotoxin (ltxA) was downregulated by CFS of LA5 and LR32 CFS. Although all probiotics produced detectable peroxide, transcription of katA was downregulated by lactobacilli CFS. Transcription of dspB was abrogated by LR32 and NCFM CFS, but increased by HN001, whereas expression of pgA was not affected by any postbiotic. Our data indicated the potential of postbiotics from lactobacilli, especially LA5, to reduce colonization levels of Aa and to modulate the expression of virulence factors implicated in evasion of host defenses.
Collapse
Affiliation(s)
- Karin H Ishikawa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Manuela R Bueno
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria R L Simionato
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcia P A Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Rab5a Promotes Cytolethal Distending Toxin B-Induced Cytotoxicity and Inflammation. Infect Immun 2020; 88:IAI.00132-20. [PMID: 32747601 DOI: 10.1128/iai.00132-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/25/2020] [Indexed: 12/27/2022] Open
Abstract
The cytolethal distending toxin B subunit (CdtB) induces significant cytotoxicity and inflammation in many cell types that are involved in the pathogenesis of postinfectious irritable bowel syndrome (PI-IBS). However, the underlying mechanisms remain unclear. This study tested the potential role of Rab small GTPase 5a (Rab5a) in the process. We tested mRNA and protein expression of proinflammatory cytokines (interleukin-1β [IL-1β] and IL-6) in THP-1 macrophages by quantitative PCR (qPCR) and enzyme-linked immunosorbent assays (ELISAs), respectively. In the primary colonic epithelial cells, Cdt treatment induced a CdtB-Rab5a-cellugyrin association. Rab5a silencing, by target small hairpin RNAs (shRNAs), largely inhibited CdtB-induced cytotoxicity and apoptosis in colon epithelial cells. CRISPR/Cas9-mediated Rab5a knockout also attenuated CdtB-induced colon epithelial cell death. Conversely, forced overexpression of Rab5a intensified CdtB-induced cytotoxicity. In THP-1 human macrophages, Rab5a shRNA or knockout significantly inhibited CdtB-induced mRNA expression and production of proinflammatory cytokines (IL-1β and IL-6). Rab5a depletion inhibited activation of nuclear factor-κB (NF-κB) and Jun N-terminal protein kinase (JNK) signaling in CdtB-treated THP-1 macrophages. Rab5a appears essential for CdtB-induced cytotoxicity in colonic epithelial cells and proinflammatory responses in THP-1 macrophages.
Collapse
|
12
|
Gut Microbiota and Colon Cancer: A Role for Bacterial Protein Toxins? Int J Mol Sci 2020; 21:ijms21176201. [PMID: 32867331 PMCID: PMC7504354 DOI: 10.3390/ijms21176201] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence indicates that the human intestinal microbiota can contribute to the etiology of colorectal cancer. Triggering factors, including inflammation and bacterial infections, may favor the shift of the gut microbiota from a mutualistic to a pro-carcinogenic configuration. In this context, certain bacterial pathogens can exert a pro-tumoral activity by producing enzymatically-active protein toxins that either directly induce host cell DNA damage or interfere with essential host cell signaling pathways involved in cell proliferation, apoptosis, and inflammation. This review is focused on those toxins that, by mimicking carcinogens and cancer promoters, could represent a paradigm for bacterially induced carcinogenesis.
Collapse
|
13
|
Silbergleit M, Vasquez AA, Miller CJ, Sun J, Kato I. Oral and intestinal bacterial exotoxins: Potential linked to carcinogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:131-193. [PMID: 32475520 DOI: 10.1016/bs.pmbts.2020.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Growing evidence suggests that imbalances in resident microbes (dysbiosis) can promote chronic inflammation, immune-subversion, and production of carcinogenic metabolites, thus leading to neoplasia. Yet, evidence to support a direct link of individual bacteria species to human sporadic cancer is still limited. This chapter focuses on several emerging bacterial toxins that have recently been characterized for their potential oncogenic properties toward human orodigestive cancer and the presence of which in human tissue samples has been documented. These include cytolethal distending toxins produced by various members of gamma and epsilon Proteobacteria, Dentilisin from mammalian oral Treponema, Pasteurella multocida toxin, two Fusobacterial toxins, FadA and Fap2, Bacteroides fragilis toxin, colibactin, cytotoxic necrotizing factors and α-hemolysin from Escherichia coli, and Salmonella enterica AvrA. It was clear that these bacterial toxins have biological activities to induce several hallmarks of cancer. Some toxins directly interact with DNA or chromosomes leading to their breakdowns, causing mutations and genome instability, and others modulate cell proliferation, replication and death and facilitate immune evasion and tumor invasion, prying specific oncogene and tumor suppressor pathways, such as p53 and β-catenin/Wnt. In addition, most bacterial toxins control tumor-promoting inflammation in complex and diverse mechanisms. Despite growing laboratory evidence to support oncogenic potential of selected bacterial toxins, we need more direct evidence from human studies and mechanistic data from physiologically relevant experimental animal models, which can reflect chronic infection in vivo, as well as take bacterial-bacterial interactions among microbiome into consideration.
Collapse
Affiliation(s)
| | - Adrian A Vasquez
- Department of Civil and Environmental Engineering, Wayne State University, Healthy Urban Waters, Detroit, MI, United States
| | - Carol J Miller
- Department of Civil and Environmental Engineering, Wayne State University, Healthy Urban Waters, Detroit, MI, United States
| | - Jun Sun
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Ikuko Kato
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, United States.
| |
Collapse
|
14
|
Distinct Signaling Pathways Between Human Macrophages and Primary Gingival Epithelial Cells by Aggregatibacter actinomycetemcomitans. Pathogens 2020; 9:pathogens9040248. [PMID: 32230992 PMCID: PMC7238148 DOI: 10.3390/pathogens9040248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
In aggressive periodontitis, the dysbiotic microbial community in the subgingival crevice, which is abundant in Aggregatibacter actinomycetemcomitans, interacts with extra- and intracellular receptors of host cells, leading to exacerbated inflammation and subsequent tissue destruction. Our goal was to understand the innate immune interactions of A. actinomycetemcomitans with macrophages and human gingival epithelial cells (HGECs) on the signaling cascade involved in inflammasome and inflammatory responses. U937 macrophages and HGECs were co-cultured with A. actinomycetemcomitans strain Y4 and key signaling pathways were analyzed using real-time PCR, Western blotting and cytokine production by ELISA. A. actinomycetemcomitans infection upregulated the transcription of TLR2, TLR4, NOD2 and NLRP3 in U937 macrophages, but not in HGECs. Transcription of IL-1β and IL-18 was upregulated in macrophages and HGECs after 1 h interaction with A. actinomycetemcomitans, but positive regulation persisted only in macrophages, resulting in the presence of IL-1β in macrophage supernatant. Immunoblot data revealed that A. actinomycetemcomitans induced the phosphorylation of AKT and ERK1/2, possibly leading to activation of the NF-κB pathway in macrophages. On the other hand, HGEC signaling induced by A. actinomycetemcomitans was distinct, since AKT and 4EBP1 were phosphorylated after stimulation with A. actinomycetemcomitans, whereas ERK1/2 was not. Furthermore, A. actinomycetemcomitans was able to induce the cleavage of caspase-1 in U937 macrophages in an NRLP3-dependent pathway. Differences in host cell responses, such as those seen between HGECs and macrophages, suggested that survival of A. actinomycetemcomitans in periodontal tissues may be favored by its ability to differentially activate host cells.
Collapse
|
15
|
Martin OC, Frisan T. Bacterial Genotoxin-Induced DNA Damage and Modulation of the Host Immune Microenvironment. Toxins (Basel) 2020; 12:E63. [PMID: 31973033 PMCID: PMC7076804 DOI: 10.3390/toxins12020063] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 01/10/2023] Open
Abstract
: Bacterial genotoxins (BTGX) induce DNA damage, which results in senescence or apoptosis of the target cells if not properly repaired. Three BTGXs have been identified: the cytolethal distending toxin (CDT) family produced by several Gram-negative bacteria, the typhoid toxin produced by several Salmonella enterica serovars, and colibactin, a peptide-polyketide, produced mainly by the phylogenetic group B2 Escherichia coli. The cellular responses induced by BTGXs resemble those of well-characterized carcinogenic agents, and several lines of evidence indicate that bacteria carrying genotoxin genes can contribute to tumor development under specific circumstances. Given their unusual mode of action, it is still enigmatic why these effectors have been acquired by microbes and what is their role in the context of the biology of the producing bacterium, since it is unlikely that their primary purpose is to induce/promote cancer in the mammalian host. In this review, we will discuss the possibility that the DNA damage induced by BTGX modulates the host immune response, acting as immunomodulator, leading to the establishment of a suitable niche for the producing bacterium. We will further highlight open questions that remain to be solved regarding the biology of this unusual family of bacterial toxins.
Collapse
Affiliation(s)
- Océane C.B. Martin
- Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, 33320 Bordeaux, France;
| | - Teresa Frisan
- Department of Cell and Molecular Biology Karolinska Institutet, 17177 Stockholm, Sweden
- Umeå Center for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
16
|
Khairi Amsyah U, Hatta M, Tahir H, Alam G, Asmawati A. Expression of IL-10 in A.actinomycetemcomitans Induced Rat Treated by Purple Miana Leaves. BIOMEDICAL AND PHARMACOLOGY JOURNAL 2019; 12:2099-2104. [DOI: 10.13005/bpj/1845] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Periodontitis therapy originating from local natural resources is still lacking so it needs to be researched and developed, one of the natural resources from Soppeng Regency in South Sulawesi, Indonesia is the purple miana leaf. It has not been reported before about the effect of purple miana leaf extract on periodontitis related to IL-10 mRNA expression. This study aims to determine the effect of purple miana leaf extract on IL-10 mRNA expression in rat induced by Aggregatibacter actinomycetemcomitans. Rats were divided into three groups, purple miana leaf extract (PMLE), negative control (aquades), antibiotic (levofloxacin nine mg/kg body weight) as positive control. Rat blood was drawn before (H1) and after induction of 3x108 cfu/ml Aggregatibacter actinomycetemcomitans in the gingival sulcus of the mandibular anterior teeth/after periodontitis (H8) and seven days after intervention (H15). IL 10 mRNA expression was measured by Real-time PCR. The results obtained are processed using SPSS. There were no significant differences in H1-H8 in all groups. IL-10 mRNA expression on H8-H15 has a different pattern between PMLE, negative control and positive control. In the negative control, there was a decrease in IL-10 mRNA expression in H8-H15. In PMLE and positive control, an increase in IL-10 mRNA expression. The treatment of purple miana leaf extract in rat induced with Aggregatibacter actinomycetemcomitans significantly had the same effect as levofloxacin on IL-10 mRNA expression.
Collapse
Affiliation(s)
- Ummul Khairi Amsyah
- Gradute School, Faculty of Medicine, University of Hasanuddin, Makassar, Indonesia
| | - Mochammad Hatta
- Molecular Biology and Immunology Laboratory, Faculty of Medicine, University of Hasanuddin, Makassar, Indonesia
| | - Hasanuddin Tahir
- Departement of Periodontology, Faculty of Dentistry, University of Hasanuddin, Makassar, Indonesia
| | - Gemini Alam
- Phytochemical Laboratory, Faculty of Pharmacy, University of Hasanuddin, Makassar, Indonesia
| | - Asmawati Asmawati
- Departement of Periodontology, Faculty of Dentistry, University of Hasanuddin, Makassar, Indonesia
| |
Collapse
|
17
|
Cytolethal Distending Toxin Subunit B: A Review of Structure-Function Relationship. Toxins (Basel) 2019; 11:toxins11100595. [PMID: 31614800 PMCID: PMC6832162 DOI: 10.3390/toxins11100595] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 01/27/2023] Open
Abstract
The Cytolethal Distending Toxin (CDT) is a bacterial virulence factor produced by several Gram-negative pathogenic bacteria. These bacteria, found in distinct niches, cause diverse infectious diseases and produce CDTs differing in sequence and structure. CDTs have been involved in the pathogenicity of the associated bacteria by promoting persistent infection. At the host-cell level, CDTs cause cell distension, cell cycle block and DNA damage, eventually leading to cell death. All these effects are attributable to the catalytic CdtB subunit, but its exact mode of action is only beginning to be unraveled. Sequence and 3D structure analyses revealed similarities with better characterized proteins, such as nucleases or phosphatases, and it has been hypothesized that CdtB exerts a biochemical activity close to those enzymes. Here, we review the relationships that have been established between CdtB structure and function, particularly by mutation experiments on predicted key residues in different experimental systems. We discuss the relevance of these approaches and underline the importance of further study in the molecular mechanisms of CDT toxicity, particularly in the context of different pathological conditions.
Collapse
|
18
|
Han EC, Choi SY, Lee Y, Park JW, Hong SH, Lee HJ. Extracellular RNAs in periodontopathogenic outer membrane vesicles promote TNF-α production in human macrophages and cross the blood-brain barrier in mice. FASEB J 2019; 33:13412-13422. [PMID: 31545910 DOI: 10.1096/fj.201901575r] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Among the main bacteria implicated in the pathology of periodontal disease, Aggregatibacter actinomycetemcomitans (Aa) is well known for causing loss of periodontal attachment and systemic disease. Recent studies have suggested that secreted extracellular RNAs (exRNAs) from several bacteria may be important in periodontitis, although their role is unclear. Emerging evidence indicates that exRNAs circulate in nanosized bilayered and membranous extracellular vesicles (EVs) known as outer membrane vesicles (OMVs) in gram-negative bacteria. In this study, we analyzed the small RNA expression profiles in activated human macrophage-like cells (U937) infected with OMVs from Aa and investigated whether these cells can harbor exRNAs of bacterial origin that have been loaded into the host RNA-induced silencing complex, thus regulating host target transcripts. Our results provide evidence for the cytoplasmic delivery and activity of microbial EV-derived small exRNAs in host gene regulation. The production of TNF-α was promoted by exRNAs via the TLR-8 and NF-κB signaling pathways. Numerous studies have linked periodontal disease to neuroinflammatory diseases but without elucidating specific mechanisms for the connection. We show here that intracardiac injection of Aa OMVs in mice showed successful delivery to the brain after crossing the blood-brain barrier, the exRNA cargos increasing expression of TNF-α in the mouse brain. The current study indicates that host gene regulation by microRNAs originating from OMVs of the periodontal pathogen Aa is a novel mechanism for host gene regulation and that the transfer of OMV exRNAs to the brain may cause neuroinflammatory diseases like Alzheimer's.-Han, E.-C., Choi, S.-Y., Lee, Y., Park, J.-W., Hong, S.-H., Lee, H.-J. Extracellular RNAs in periodontopathogenic outer membrane vesicles promote TNF-α production in human macrophages and cross the blood-brain barrier in mice.
Collapse
Affiliation(s)
- Eun-Chong Han
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Song-Yi Choi
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Jin-Woo Park
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Su-Hyung Hong
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Heon-Jin Lee
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
19
|
Pigossi SC, Anovazzi G, Finoti LS, de Medeiros MC, Mayer MP, Rossa Junior C, Scarel-Caminaga RM. Functionality of the Interleukin 8 haplotypes in lymphocytes and macrophages in response to gram-negative periodontopathogens. Gene 2019; 689:152-160. [DOI: 10.1016/j.gene.2018.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/01/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
|
20
|
Novel Assay To Characterize Neutrophil Responses to Oral Biofilms. Infect Immun 2019; 87:IAI.00790-18. [PMID: 30455195 DOI: 10.1128/iai.00790-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/12/2018] [Indexed: 12/25/2022] Open
Abstract
Neutrophils, the most numerous leukocytes, play an important role in maintaining oral health through interactions with oral microbial biofilms. Both neutrophil hyperactivity and the bacterial subversion of neutrophil responses can cause inflammation-mediated tissue damage like that seen in periodontal disease. We describe here an assay that assesses neutrophil activation responses to monospecies biofilm bacteria in vitro based on the surface expression of cluster of differentiation (CD) markers associated with various neutrophil functions. Most of what we know about neutrophil responses to bacteria is based on in vitro assays that use planktonic bacteria and isolated/preactivated neutrophils, which makes interpretation of the neutrophil responses to bacteria a challenge. An understanding of how neutrophils differentially interact with and respond to commensal and pathogenic oral bacteria is necessary in order to further understand the neutrophil's role in maintaining oral health and the pathogenesis of periodontal disease. In this study, a flow cytometry-based in vitro assay was developed to characterize neutrophil activation states based on CD marker expressions in response to oral monospecies bacterial biofilms. Using this approach, changes in CD marker expressions in response to specific prominent oral commensal and pathogenic bacteria were assayed. Several functional assays, including assays for phagocytosis, production of reactive oxygen species, activation of the transcription factor Nrf2, neutrophil extracellular trap formation, and myeloperoxidase release, were also performed to correlate neutrophil function with CD marker expression. Our results demonstrate that neutrophils display bacterial species-specific responses. This assay can be used to characterize how specific biofilms alter specific neutrophil pathways associated with their activation.
Collapse
|
21
|
Lv K, Wang G, Shen C, Zhang X, Yao H. Role and mechanism of the nod-like receptor family pyrin domain-containing 3 inflammasome in oral disease. Arch Oral Biol 2018; 97:1-11. [PMID: 30315987 DOI: 10.1016/j.archoralbio.2018.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To summarize evidence and data from experimental studies regarding the role and mechanism of the Nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome in the pathogenesis of several representative oral diseases. MATERIALS AND METHODS A literature search of PubMed and EBSCO was performed. The literature was searched using a combination of keywords, e.g., NLRP3 inflammasome, inflammation, microorganisms, oral inflammatory diseases, and oral immunological diseases. RESULTS The initiation and activation of the NLRP3 inflammasome are associated with the pathogenesis and progression of several representative oral diseases, including periodontitis, oral lichen planus, dental pulp disease, and oral cavity squamous cell carcinoma. CONCLUSIONS The NLRP3 inflammasome plays a crucial role in the progression of inflammatory and adaptive immune responses. The possible role of the NLRP3 inflammasome in several oral diseases, including not only periodontitis and pulpitis but also mucosal diseases and oral cavity squamous cell carcinoma, may involve the aberrant regulation of inflammatory and immune responses. Understanding the cellular and molecular biology of the NLRP3 inflammasome is necessary because the NLRP3 inflammasome may be a potential therapeutic target for the treatment and prevention of oral inflammatory and immunological diseases.
Collapse
Affiliation(s)
- Kejia Lv
- Department of Stomatology, First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Guohua Wang
- Department of Stomatology, First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Chenlu Shen
- Department of Stomatology, First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Xia Zhang
- Department of Stomatology, Affiliated Yinzhou People Hospital, College of Medicine, Ningbo University, China
| | - Hua Yao
- Department of Stomatology, First Affiliated Hospital, College of Medicine, Zhejiang University, China.
| |
Collapse
|
22
|
Jaffar N, Okinaga T, Nishihara T, Maeda T. Enhanced phagocytosis of Aggregatibacter actinomycetemcomitans cells by macrophages activated by a probiotic Lactobacillus strain. J Dairy Sci 2018; 101:5789-5798. [DOI: 10.3168/jds.2017-14355] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/23/2018] [Indexed: 12/22/2022]
|
23
|
Sun HL, Wu YR, Song FF, Gan J, Huang LY, Zhang L, Huang C. Role of PCSK9 in the Development of Mouse Periodontitis Before and After Treatment: A Double-Edged Sword. J Infect Dis 2017; 217:667-680. [DOI: 10.1093/infdis/jix574] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 12/01/2017] [Indexed: 01/30/2023] Open
Affiliation(s)
- Hua Ling Sun
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Hubei, People’s Republic of China
| | - Yan Ru Wu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Hubei, People’s Republic of China
| | - Fang Fang Song
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Hubei, People’s Republic of China
| | - Jing Gan
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Hubei, People’s Republic of China
| | - Li Yuan Huang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Hubei, People’s Republic of China
| | - Lu Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Hubei, People’s Republic of China
| | - Cui Huang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Hubei, People’s Republic of China
| |
Collapse
|
24
|
Oral pathogenesis of Aggregatibacter actinomycetemcomitans. Microb Pathog 2017; 113:303-311. [DOI: 10.1016/j.micpath.2017.11.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 12/30/2022]
|
25
|
Anti-inflammatory mechanisms of neovestitol from Brazilian red propolis in LPS-activated macrophages. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
26
|
Cirelli T, Finoti LS, Corbi SCT, Anovazzi G, Nepomuceno R, Orrico SRP, Cirelli JA, Mayer MPA, Scarel-Caminaga RM. Absolute quantification of Aggregatibacter actinomycetemcomitans in patients carrying haplotypes associated with susceptibility to chronic periodontitis: multifaceted evaluation with periodontitis covariants. Pathog Dis 2017; 75:4056145. [DOI: 10.1093/femspd/ftx092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/27/2017] [Indexed: 11/14/2022] Open
Affiliation(s)
- Thamiris Cirelli
- Department of Morphology, São Paulo State University (UNESP), School of Dentistry, 14801903 Araraquara, SP, Brazil
- Department of Oral Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, 14801903 Araraquara, SP, Brazil
| | - Livia S. Finoti
- Department of Morphology, São Paulo State University (UNESP), School of Dentistry, 14801903 Araraquara, SP, Brazil
- Department of Oral Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, 14801903 Araraquara, SP, Brazil
| | - Sâmia C. T. Corbi
- Department of Morphology, São Paulo State University (UNESP), School of Dentistry, 14801903 Araraquara, SP, Brazil
- Department of Oral Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, 14801903 Araraquara, SP, Brazil
| | - Giovana Anovazzi
- Department of Morphology, São Paulo State University (UNESP), School of Dentistry, 14801903 Araraquara, SP, Brazil
- Department of Oral Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, 14801903 Araraquara, SP, Brazil
| | - Rafael Nepomuceno
- Department of Morphology, São Paulo State University (UNESP), School of Dentistry, 14801903 Araraquara, SP, Brazil
- Department of Oral Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, 14801903 Araraquara, SP, Brazil
| | - Silvana R. P. Orrico
- Department of Oral Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, 14801903 Araraquara, SP, Brazil
| | - Joni A. Cirelli
- Department of Oral Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, 14801903 Araraquara, SP, Brazil
| | - Márcia P. A. Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), CEP 05508-900, São Paulo, SP, Brazil
| | - Raquel M. Scarel-Caminaga
- Department of Morphology, São Paulo State University (UNESP), School of Dentistry, 14801903 Araraquara, SP, Brazil
| |
Collapse
|
27
|
Mahabady S, Tjokro N, Aharonian S, Zadeh HH, Chen C, Allayee H, Sedghizadeh PP. The in vivo T helper type 17 and regulatory T cell immune responses to Aggregatibacter actinomycetemcomitans. Mol Oral Microbiol 2017; 32:490-499. [PMID: 28544588 DOI: 10.1111/omi.12187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2017] [Indexed: 12/01/2022]
Abstract
The periodontal pathogen Aggregatibacter actinomycetemcomitans is known to elicit a systemic immune response in the infected host, and occasionally causes non-oral infections. Detailed information on its immunopathological responses and the involvement of bacterial virulence factors remains to be elucidated. The aim of this study was to assess the systemic immune response to A. actinomycetemcomitans oral infection. We used an animal model that simulates systemic dissemination of the bacteria by injecting live wild-type (WT) D7S-1 and a double knockout mutant of leukotoxin and cytolethal distending toxin (ΔltxΔcdt) A. actinomycetemcomitans strains in rat oral mucosa. Draining lymph nodes were examined for regulatory T (Treg) and T helper type 17 (Th17) cell subsets and their associated mediators. An increase in the proportion of Th17 cells and a decrease in Treg cells over the experimental period of 3 weeks were similarly observed for rats challenged with WT and ΔltxΔcdt. Significant upregulation and downregulation of proinflammatory cytokines in the Th17 gene pathway was noted, as well as several qualitative differences between WT and ΔltxΔcdt. Furthermore, we observed differential fold regulation in key genes associated with a proinflammatory response in ΔltxΔcdt-inoculated rats relative to D7S-1 group. This suggests that although the knockout of these two virulence factors (ΔltxΔcdt) may suppress certain proinflammatory genes, it causes similar over-expression of other genes compared with D7S-1, indicating a common factor that still remains in the pathogenicity of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- S Mahabady
- Laboratory for Immunoregulation & Tissue Engineering, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - N Tjokro
- Division of Periodontology, Diagnostic Sciences and Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - S Aharonian
- Laboratory for Immunoregulation & Tissue Engineering, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - H H Zadeh
- Laboratory for Immunoregulation & Tissue Engineering, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - C Chen
- Division of Periodontology, Diagnostic Sciences and Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - H Allayee
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - P P Sedghizadeh
- Division of Periodontology, Diagnostic Sciences and Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
28
|
Meza-Segura M, Zaidi MB, Maldonado-Puga S, Huerta-Cantillo J, Chavez-Dueñas L, Navarro-Garcia F, Estrada-Garcia T. Cytolethal distending toxin-producing Escherichia coli strains causing severe diarrhoea in young Mexican children. JMM Case Rep 2017; 4:e005079. [PMID: 28348804 PMCID: PMC5361634 DOI: 10.1099/jmmcr.0.005079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022] Open
Abstract
Introduction. Cytolethal distending toxins (CDTs), encoded by cdt genes, have DNase activity leading to cellular and nuclear distension, resulting in irreversible cell cycle arrest and apoptosis of target cells. cdt-positive Escherichia coli strains have been isolated from children with diarrhoea. There is, however, scant information on the prevalence and clinical presentation of diarrhoeal disease caused by these strains. Furthermore, toxin production of cdt-positive strains is rarely confirmed. We report five young children with diarrhoea caused by CDT-producing E. coli in whom stools were negative for other bacterial or enteric pathogens. Case presentation. On admission to hospital, all children presented watery diarrhoea with high stool output (range 7–20 stools/24 h); five had fever of 38 °C or more and four presented vomiting. Dehydration was present in four patients, one of whom had hypovolaemic shock; one child also presented hyponatraemia and hypokalaemia. In two children, cdt-positive strains were classified as typical and atypical enteropathogenic E. coli, and the remaining three harboured cdt-positive strains that did not belong to any diarrhoeagenic pathogroup. One cdt-positive strain from each case was characterized by a CDT cytotoxic assay and a cdt type-specific PCR. All strains produced the characteristic cellular intoxication due to CDT. Two strains carried the cdt-I, one cdt-III, one cdt-IV, and one concurrently had cdt-I, cdt-II and cdt-III genes. Conclusion. Our results suggest that CDT-producing E. coli strains are an infrequent, albeit significant, cause of severe diarrhoeal illness in children. Future research should measure the true burden of cdt-positive E. coli diarrhoea among children.
Collapse
Affiliation(s)
- Mario Meza-Segura
- Department of Molecular Biomedicine, CINVESTAV-IPN, Mexico City, Mexico
| | - Mussaret Bano Zaidi
- Infectious Diseases Research Unit, Hospital General O'Horan, Merida, Mexico.,Department of Epidemiology and Biostatistics, Michigan State University, Lansing, MI, USA
| | | | | | | | | | | |
Collapse
|
29
|
Chhibber-Goel J, Singhal V, Bhowmik D, Vivek R, Parakh N, Bhargava B, Sharma A. Linkages between oral commensal bacteria and atherosclerotic plaques in coronary artery disease patients. NPJ Biofilms Microbiomes 2016. [PMID: 28649401 PMCID: PMC5460270 DOI: 10.1038/s41522-016-0009-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Coronary artery disease is an inflammatory disorder characterized by narrowing of coronary arteries due to atherosclerotic plaque formation. To date, the accumulated epidemiological evidence supports an association between oral bacterial diseases and coronary artery disease, but has failed to prove a causal link between the two. Due to the recent surge in microbial identification and analyses techniques, a number of bacteria have been independently found in atherosclerotic plaque samples from coronary artery disease patients. In this study, we present meta-analysis from published studies that have independently investigated the presence of bacteria within atherosclerotic plaque samples in coronary artery disease patients. Data were collated from 63 studies covering 1791 patients spread over a decade. Our analysis confirms the presence of 23 oral commensal bacteria, either individually or in co-existence, within atherosclerotic plaques in patients undergoing carotid endarterectomy, catheter-based atherectomy, or similar procedures. Of these 23 bacteria, 5 (Campylobacter rectus, Porphyromonas gingivalis, Porphyromonas endodontalis, Prevotella intermedia, Prevotella nigrescens) are unique to coronary plaques, while the other 18 are additionally present in non-cardiac organs, and associate with over 30 non-cardiac disorders. We have cataloged the wide spectrum of proteins secreted by above atherosclerotic plaque-associated bacteria, and discuss their possible roles during microbial migration via the bloodstream. We also highlight the prevalence of specific poly-microbial communities within atherosclerotic plaques. This work provides a resource whose immediate implication is the necessity to systematically catalog landscapes of atherosclerotic plaque-associated oral commensal bacteria in human patient populations. A review of bacterial populations in the mouth and in diseased arteries will help research into the role of bacteria in heart disease. Amit Sharma and colleagues at the International Centre for Genetic Engineering and Biotechnology, with co-workers at the All India Institute of Medical Sciences, both in New Delhi, India, analyzed 63 studies covering 1791 patients spread over a decade. They summarize evidence of 23 types of oral bacteria that are also found in atherosclerotic plaques in artery walls. The review also cataloged the proteins secreted by the bacteria and discussed possible involvement of these proteins in the migration of bacteria through the bloodstream. Full genetic details are available for 19 of the 23 bacterial species, which should greatly assist further investigations into the significance of bacteria in the onset of heart disease.
Collapse
Affiliation(s)
- Jyoti Chhibber-Goel
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Varsha Singhal
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Debaleena Bhowmik
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rahul Vivek
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Neeraj Parakh
- Cardiothoracic Sciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Balram Bhargava
- Cardiothoracic Sciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Amit Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
30
|
Scuron MD, Boesze-Battaglia K, Dlakić M, Shenker BJ. The Cytolethal Distending Toxin Contributes to Microbial Virulence and Disease Pathogenesis by Acting As a Tri-Perditious Toxin. Front Cell Infect Microbiol 2016; 6:168. [PMID: 27995094 PMCID: PMC5136569 DOI: 10.3389/fcimb.2016.00168] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022] Open
Abstract
This review summarizes the current status and recent advances in our understanding of the role that the cytolethal distending toxin (Cdt) plays as a virulence factor in promoting disease by toxin-producing pathogens. A major focus of this review is on the relationship between structure and function of the individual subunits that comprise the AB2 Cdt holotoxin. In particular, we concentrate on the molecular mechanisms that characterize this toxin and which account for the ability of Cdt to intoxicate multiple cell types by utilizing a ubiquitous binding partner on the cell membrane. Furthermore, we propose a paradigm shift for the molecular mode of action by which the active Cdt subunit, CdtB, is able to block a key signaling cascade and thereby lead to outcomes based upon programming and the role of the phosphatidylinositol 3-kinase (PI-3K) in a variety of cells. Based upon the collective Cdt literature, we now propose that Cdt is a unique and potent virulence factor capable of acting as a tri-perditious toxin that impairs host defenses by: (1) disrupting epithelial barriers; (2) suppressing acquired immunity; (3) promoting pro-inflammatory responses. Thus, Cdt plays a key role in facilitating the early stages of infection and the later stages of disease progression by contributing to persistence and impairing host elimination.
Collapse
Affiliation(s)
- Monika D Scuron
- Department of Pathology, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Mensur Dlakić
- Department of Microbiology and Immunology, Montana State University Bozeman, MT, USA
| | - Bruce J Shenker
- Department of Pathology, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
31
|
Boesze-Battaglia K, Alexander D, Dlakić M, Shenker BJ. A Journey of Cytolethal Distending Toxins through Cell Membranes. Front Cell Infect Microbiol 2016; 6:81. [PMID: 27559534 PMCID: PMC4978709 DOI: 10.3389/fcimb.2016.00081] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/26/2016] [Indexed: 02/06/2023] Open
Abstract
The multifunctional role of lipids as structural components of membranes, signaling molecules, and metabolic substrates makes them an ideal partner for pathogens to hijack host cell processes for their own survival. The properties and composition of unique membrane micro-domains such as membrane rafts make these regions a natural target for pathogens as it affords them an opportunity to hijack cell signaling and intracellular trafficking pathways. Cytolethal distending toxins (Cdts), members of the AB2 family of toxins are comprised of three subunits, the active, CdtB unit, and the binding, CdtA-CdtC unit. Cdts are cyclomodulins leading to cell cycle arrest and apoptosis in a wide variety of cell types. Cdts from several species share a requirement for membrane rafts, and often cholesterol specifically for cell binding and CdtB mediated cytotoxicity. In this review we focus on how host–cell membrane bilayer organization contributes to the cell surface association, internalization, and action of bacteria derived cytolethal distending toxins (Cdts), with an emphasis on Aggregatibacter actinomycetemcomitans Cdt.
Collapse
Affiliation(s)
| | - Desiree Alexander
- Department of Biochemistry, SDM, University of Pennsylvania Philadelphia, PA, USA
| | - Mensur Dlakić
- Department of Microbiology and Immunology, Montana State University Bozeman, MT, USA
| | - Bruce J Shenker
- Department of Pathology, SDM, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
32
|
Impact of CDT Toxin on Human Diseases. Toxins (Basel) 2016; 8:toxins8070220. [PMID: 27429000 PMCID: PMC4963852 DOI: 10.3390/toxins8070220] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 12/18/2022] Open
Abstract
Cytolethal distending toxin (CDT) is found in Gram-negative bacteria, especially in certain Proteobacteria such as the Pasteurellaceae family, including Haemophilus ducreyi and Aggregatibacter (Actinobacillus) actinomycetemcomitans, in the Enterobacteriaceae family and the Campylobacterales order, including the Campylobacter and Helicobacter species. In vitro and in vivo studies have clearly shown that this toxin has a strong effect on cellular physiology (inflammation, immune response modulation, tissue damage). Some works even suggest a potential involvement of CDT in cancers. In this review, we will discuss these different aspects.
Collapse
|
33
|
Kawamoto D, Ando-Suguimoto ES, Bueno-Silva B, DiRienzo JM, Mayer MPA. Alteration of Homeostasis in Pre-osteoclasts Induced by Aggregatibacter actinomycetemcomitans CDT. Front Cell Infect Microbiol 2016; 6:33. [PMID: 27064424 PMCID: PMC4815040 DOI: 10.3389/fcimb.2016.00033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/07/2016] [Indexed: 01/28/2023] Open
Abstract
The dysbiotic microbiota associated with aggressive periodontitis includes Aggregatibacter actinomycetemcomitans, the only oral species known to produce a cytolethal distending toxin (AaCDT). Give that CDT alters the cytokine profile in monocytic cells, we aimed to test the hypothesis that CDT plays a role in bone homeostasis by affecting the differentiation of precursor cells into osteoclasts. Recombinant AaCDT was added to murine bone marrow monocytes (BMMC) in the presence or absence of RANKL and the cell viability and cytokine profile of osteoclast precursor cells were determined. Multinucleated TRAP(+) cell numbers, and relative transcription of genes related to osteoclastogenesis were also evaluated. The addition of AaCDT did not lead to loss in cell viability but promoted an increase in the average number of TRAP(+) cells with 1-2 nuclei in the absence or presence of RANKL (Tukey, p < 0.05). This increase was also observed for TRAP(+) cells with ≥3nuclei, although this difference was not significant. Levels of TGF-β, TNF-α, and IL-6, in the supernatant fraction of cells, were higher when in AaCDT exposed cells, whereas levels of IL-1β and IL-10 were lower than controls under the same conditions. After interaction with AaCDT, transcription of the rank (encoding the receptor RANK), nfatc1 (transcription factor), and ctpK (encoding cathepsin K) genes was downregulated in pre-osteoclastic cells. The data indicated that despite the presence of RANKL and M-CSF, AaCDT may inhibit osteoclast differentiation by altering cytokine profiles and repressing transcription of genes involved in osteoclastogenesis. Therefore, the CDT may impair host defense mechanisms in periodontitis.
Collapse
Affiliation(s)
- Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Ellen S Ando-Suguimoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Bruno Bueno-Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Joseph M DiRienzo
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania PA, USA
| | - Marcia P A Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| |
Collapse
|
34
|
Bueno-Silva B, Kawamoto D, Ando-Suguimoto ES, Alencar SM, Rosalen PL, Mayer MPA. Brazilian Red Propolis Attenuates Inflammatory Signaling Cascade in LPS-Activated Macrophages. PLoS One 2015; 10:e0144954. [PMID: 26660901 PMCID: PMC4684384 DOI: 10.1371/journal.pone.0144954] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/27/2015] [Indexed: 12/16/2022] Open
Abstract
Although previous studies suggested an anti-inflammatory property of Brazilian red propolis (BRP), the mechanisms involved in the anti-inflammatory effects of BRP and its activity on macrophages were still not elucidated. This study aimed to evaluate whether BRP attenuates the inflammatory effect of LPS on macrophages and to investigate its underlying mechanisms. BRP was added to RAW 264.7 murine macrophages after activation with LPS. NO production, cell viability, cytokines profile were evaluated. Activation of inflammatory signaling pathways and macrophage polarization were determined by RT-qPCR and Western blot. BRP at 50 μg/ml inhibited NO production by 78% without affecting cell viability. Cd80 and Cd86 were upregulated whereas mrc1 was down regulated by BRP indicating macrophage polarization at M1. BRP attenuated the production of pro-inflammatory mediators IL-12, GM-CSF, IFN-Ɣ, IL-1β in cell supernatants although levels of TNF- α and IL-6 were slightly increased after BRP treatment. Levels of IL-4, IL-10 and TGF-β were also reduced by BRP. BRP significantly reduced the up-regulation promoted by LPS of transcription of genes in inflammatory signaling (Pdk1, Pak1, Nfkb1, Mtcp1, Gsk3b, Fos and Elk1) and of Il1β and Il1f9 (fold-change rate > 5), which were further confirmed by the inhibition of NF-κB and MAPK signaling pathways. Furthermore, the upstream adaptor MyD88 adaptor-like (Mal), also known as TIRAP, involved in TLR2 and TLR4 signaling, was down- regulated in BRP treated LPS-activated macrophages. Given that BRP inhibited multiple signaling pathways in macrophages involved in the inflammatory process activated by LPS, our data indicated that BRP is a noteworthy food-source for the discovery of new bioactive compounds and a potential candidate to attenuate exhacerbated inflammatory diseases.
Collapse
Affiliation(s)
- Bruno Bueno-Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ellen S. Ando-Suguimoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Severino M. Alencar
- College of Agriculture “Luiz de Queiroz” (ESALQ/USP), Piracicaba, SP, Brazil
| | - Pedro L. Rosalen
- Piracicaba Dental School, University of Campinas–UNICAMP, Department of Physiologic Sciences, Piracicaba, SP, Brazil
| | - Marcia P. A. Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
35
|
Blasi I, Korostoff J, Dhingra A, Reyes-Reveles J, Shenker BJ, Shahabuddin N, Alexander D, Lally ET, Bragin A, Boesze-Battaglia K. Variants of Porphyromonas gingivalis lipopolysaccharide alter lipidation of autophagic protein, microtubule-associated protein 1 light chain 3, LC3. Mol Oral Microbiol 2015; 31:486-500. [PMID: 26452236 DOI: 10.1111/omi.12141] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2015] [Indexed: 01/13/2023]
Abstract
Porphyromonas gingivalis often subverts host cell autophagic processes for its own survival. Our previous studies document the association of the cargo sorting protein, melanoregulin (MREG), with its binding partner, the autophagic protein, microtubule-associated protein 1 light chain 3 (LC3) in macrophages incubated with P. gingivalis (strain 33277). Differences in the lipid A moiety of lipopolysaccharide (LPS) affect the virulence of P. gingivalis; penta-acylated LPS1690 is a weak Toll-like receptor 4 agonist compared with Escherichia coli LPS, whereas tetra-acylated LPS1435/1449 acts as an LPS1690 antagonist. To determine how P. gingivalis LPS1690 affects autophagy we assessed LC3-dependent and MREG-dependent processes in green fluorescent protein (GFP)-LC3-expressing Saos-2 cells. LPS1690 stimulated the formation of very large LC3-positive vacuoles and MREG puncta. This LPS1690 -mediated LC3 lipidation decreased in the presence of LPS1435/1449 . When Saos-2 cells were incubated with P. gingivalis the bacteria internalized but did not traffic to GFP-LC3-positive structures. Nevertheless, increases in LC3 lipidation and MREG puncta were observed. Collectively, these results suggest that P. gingivalis internalization is not necessary for LC3 lipidation. Primary human gingival epithelial cells isolated from patients with periodontitis showed both LC3II and MREG puncta whereas cells from disease-free individuals exhibited little co-localization of these two proteins. These results suggest that the prevalence of a particular LPS moiety may modulate the degradative capacity of host cells, so influencing bacterial survival.
Collapse
Affiliation(s)
- I Blasi
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthodontics, School of Dentistry, International University of Catalonia, Barcelona, Spain
| | - J Korostoff
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A Dhingra
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J Reyes-Reveles
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - B J Shenker
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - N Shahabuddin
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - D Alexander
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E T Lally
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A Bragin
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - K Boesze-Battaglia
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
36
|
RETRACTED ARTICLE: Distinctive pathways characterize A. actinomycetemcomitans and P. gingivalis. Mol Biol Rep 2014; 42:441-9. [DOI: 10.1007/s11033-014-3785-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/30/2014] [Indexed: 10/24/2022]
|
37
|
Abstract
Some of the most potent toxins produced by plants and bacteria are members of a large family known as the AB toxins. AB toxins are generally characterized by a heterogenous complex consisting of two protein chains arranged in various monomeric or polymeric configurations. The newest class within this superfamily is the cytolethal distending toxin (Cdt). The Cdt is represented by a subfamily of toxins produced by a group of taxonomically distinct Gram negative bacteria. Members of this subfamily have a related AB-type chain or subunit configuration and properties distinctive to the AB paradigm. In this review, the unique structural and cytotoxic properties of the Cdt subfamily, target cell specificities, intoxication pathway, modes of action, and relationship to the AB toxin superfamily are compared and contrasted.
Collapse
|
38
|
Breaking the Gingival Epithelial Barrier: Role of the Aggregatibacter actinomycetemcomitans Cytolethal Distending Toxin in Oral Infectious Disease. Cells 2014; 3:476-99. [PMID: 24861975 PMCID: PMC4092858 DOI: 10.3390/cells3020476] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/08/2014] [Accepted: 05/15/2014] [Indexed: 12/17/2022] Open
Abstract
The Gram-negative bacterium Aggregatibacter actinomycetemcomitans is part of the HACEK group that causes infective endocarditis, a constituent of the oral flora that promotes some forms of periodontal disease and a member of the family of species that secrete a cytolethal distending toxin (Cdt). The family of bacteria that express the cdt genes participate in diseases that involve the disruption of a mucosal or epithelial layer. In vitro studies have shown that human gingival epithelial cells (HGEC) are native targets of the Cdt that typically induces DNA damage that signals growth arrest at the G2/M interphase of the cell cycle. The gingival epithelium is an early line of defense in the oral cavity against microbial assault. When damaged, bacteria collectively gain entry into the underlying connective tissue where microbial products can affect processes and pathways in infiltrating inflammatory cells culminating in the destruction of the attachment apparatus of the tooth. One approach has been the use of an ex vivo gingival explant model to assess the effects of the Cdt on the morphology and integrity of the tissue. The goal of this review is to provide an overview of these studies and to critically examine the potential contribution of the Cdt to the breakdown of the protective gingival barrier.
Collapse
|