1
|
Miao R, Wang X, Zhang J, Kang Q, Liu Q, Luo X, Hou J, Gao B. Manipulation of cancer cell pyroptosis for therapeutic approaches: challenges and opportunities. Biomark Res 2025; 13:58. [PMID: 40200299 PMCID: PMC11980353 DOI: 10.1186/s40364-025-00771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/23/2025] [Indexed: 04/10/2025] Open
Abstract
Remarkable advances have been achieved following discoveries that gasdermins are the executioners of pyroptosis. The pyroptotic process consists a subcellular permeabilization phase and a cell lysis phase, the latter of which is irreversible. Besides immune cells, pyroptosis has also been observed in cancer cells, which exhibit distinct mechanisms compared to canonical immune cell pyroptosis. Although chronic cancer cell pyroptosis fuels tumor growth, intense pyroptotic cell death in tumor cells enhances anticancer immunity by promoting killer lymphocytes infiltration. Triggering pyroptosis in cancer cells is emerging as a promising strategy for cancer treatment. In this review, we introduce the process of cancer cell pyroptosis and its role in antitumor immunity, discuss the translation of these insights into therapies, and highlight current challenges and opportunities in the investigation of cancer cell pyroptosis.
Collapse
Affiliation(s)
- Rui Miao
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Jingyv Zhang
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Qinyv Kang
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Qing Liu
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Xianglin Luo
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Junwei Hou
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China.
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China.
| | - Baorong Gao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, Sichuan University, No. 20, Section 3, Renmin Nan Lu, Chengdu, 610041, China.
- Department of Obstetrics and Gynaecology, West China Second University Hospital, No. 20, Section 3, Renmin Nan Lu, Chengdu, 610041, China.
| |
Collapse
|
2
|
Kim C, Li B, Nakamura S, Neely EJ, Rockel JS, Oussenko T, Zhang P, Kapoor M, Nagy A. Engineered mesenchymal stromal cells with interleukin-1beta sticky-trap attenuate osteoarthritis in knee joints. Front Cell Dev Biol 2025; 13:1559155. [PMID: 40264709 PMCID: PMC12011853 DOI: 10.3389/fcell.2025.1559155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
Osteoarthritis (OA) is a common chronic inflammatory joint disease, in which innate immunity plays a pivotal role in pathogenesis. Anti-interleukin-1(IL-1) therapies have shown inconsistent results in clinical trials, potentially due to a mismatch in the spatial and temporal dynamics of interleukin-1beta (IL-1β) production and therapeutic interventions. To address this issue, we developed a novel IL-1β "sticky-trap" utilizing cell and gene-based technologies from our lab and evaluated its efficacy in reducing osteoarthritis progression using a murine destabilization of the medial meniscus (DMM) OA model and a compact bone-derived mesenchymal stromal cell (MSC)-based gene expression system. The extracellular domain of interleukin-1 receptor 2 (IL1R2) was employed to design the sticky IL1R2 trap (stkIL1R2). A murine compact bone-derived MSC line was engineered for gene delivery. Although stkIL1R2 was undetectable in the engineered MSC supernatants by enzyme-linked immunosorbent assay (ELISA) and Western blot, it was localized on the cell surface and extracellular matrix (ECM) and demonstrated specific binding to IL-1β using a fluorescent protein-fused binding assay. Doxycycline (Dox)-induced expression of stkIL1R2 significantly inhibited lipocalin-2 (LCN2) expression which is a biomarker of IL-1β activity. For in vivo experiments, 5 × 104 Dox-inducible stkIL1R2f expressing MSCs were injected into the knee joints of DMM mice. Bioluminescence imaging revealed MSC survival in the knee joints for up to 7 weeks post-injection. Histological analyses at 10 weeks post-injection, including Safranin-O and Masson trichrome staining, showed that stkIL1R2 treated joints exhibited significantly less cartilage degradation and synovitis compared to controls, as assessed by Osteoarthritis Research Society International (OARSI) scoring of the femur, tibia, and synovium. Moreover, stkIL1R2 treatment reduced matrix metalloproteinases-13 (MMP-13) positive cells and collagen type II degradation in the affected joints. In conclusion, we developed a MSC line expressing an inducible IL1 sticky-trap, which localized to the cell surface and ECM and specifically bound IL-1β. These engineered MSCs survived in normal and DMM knee joints for up to 7 weeks and significantly delayed OA progression and inflammation in the murine model. This study introduces a promising therapeutic approach to combat OA progression.
Collapse
Affiliation(s)
- Christopher Kim
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Biao Li
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Sayaka Nakamura
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Eric J. Neely
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Jason S. Rockel
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Tatiana Oussenko
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Puzheng Zhang
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Mohit Kapoor
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Andras Nagy
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Obstetrics and Gynaecology and Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Cai H, Huang J, Wang W, Lin W, Ahmed W, Lu D, Quan J, Chen L. Characteristics of Parthenogenetic Stem Cells and Their Potential Treatment Strategy for Central Nervous System Diseases. Neuropsychiatr Dis Treat 2025; 21:213-227. [PMID: 39926116 PMCID: PMC11804250 DOI: 10.2147/ndt.s497758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/14/2025] [Indexed: 02/11/2025] Open
Abstract
Stem cells hold significant promise in treating neurological illnesses, such as stroke, spinal cord injury and neurodegenerative diseases. The origins and characteristics of human parthenogenetic stem cells might lead to a new research area in treating nervous system diseases. The current clinical studies in the field of traumatic brain injury and neurodegenerative diseases are reviewed. Some variables that influence common stem cells' survival, proliferation, and therapeutic efficacy will be mentioned in this paper because they may play an important role in studying parthenogenetic stem cells.
Collapse
Affiliation(s)
- Hengsen Cai
- Department of Neurosurgery, The second People’s Hospital of Pingnan, Pingnan, Guangxi, People’s Republic of China
| | - Jiajun Huang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, 510310, People’s Republic of China
| | - Wei Wang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, 510310, People’s Republic of China
| | - Wentong Lin
- Department of Orthopaedics, Chaozhou Hospital of Traditional Chinese Medicine, Chaozhou, Guangdong, People’s Republic of China
| | - Waqas Ahmed
- Department of Neurology, Zhongda Hospital Southeast University, Nanjing, People’s Republic of China
| | - Deng Lu
- Department of Neurosurgery, The second People’s Hospital of Pingnan, Pingnan, Guangxi, People’s Republic of China
| | - Jiewei Quan
- Department of Neurosurgery, The second People’s Hospital of Pingnan, Pingnan, Guangxi, People’s Republic of China
| | - Lukui Chen
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, 510310, People’s Republic of China
| |
Collapse
|
4
|
Yang Y, Yuan H, Zhang Y, Luan J, Wang H. Progress in African Swine Fever Vector Vaccine Development. Int J Mol Sci 2025; 26:921. [PMID: 39940691 PMCID: PMC11816837 DOI: 10.3390/ijms26030921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
African swine fever (ASF) is a highly lethal, infectious, hemorrhagic fever disease, characterized by an acute mortality rate approaching 100%. It is highly contagious, and results in significant losses to the global hog industry as it spreads. Despite incremental progress in research on the African swine fever virus (ASFV), a safe and effective commercial vaccine has yet to be developed. Vector vaccines, a promising type of vaccine, offer unique advantages, and are a primary focus in ASFV vaccine research. This paper focuses on the characteristics of viral, bacterial, and yeast vector vaccines; elucidates the immunological mechanisms associated with antigens; lists the types of antigens that have significant potential; discusses the feasibility of using exogenously expressed cytokines to enhance the protective power of vector vaccines; and, finally, discusses the types of vectors that are commonly used and the latest advances in this field.
Collapse
Affiliation(s)
| | | | | | | | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China; yangyue-@mail.sdu.edu.cn (Y.Y.); (H.Y.); (Y.Z.); (J.L.)
| |
Collapse
|
5
|
Terracina S, Caronti B, Lucarelli M, Francati S, Piccioni MG, Tarani L, Ceccanti M, Caserta M, Verdone L, Venditti S, Fiore M, Ferraguti G. Alcohol Consumption and Autoimmune Diseases. Int J Mol Sci 2025; 26:845. [PMID: 39859557 PMCID: PMC11766456 DOI: 10.3390/ijms26020845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Alcohol is the second-most misused substance after tobacco. It has been identified as a causal factor in more than 200 diseases and 5.3% of all deaths and is associated with significant behavioral, social, and economic difficulties. As alcohol consumption may modulate the immune system's regulatory mechanisms to avoid attacking the body's tissues, it has been proven to play a dichotomic role in autoimmune diseases (ADs) based on the quantity of consumption. In this review, we report updated evidence on the role of alcohol in ADs, with a focus on alcohol addiction and the human biological immune system and the relationship between them, with alcohol as a risk or protective factor. Then, in this narrative review, we report the main evidence on the most studied ADs where alcohol represents a key modulator, including autoimmune thyroiditis, multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, diabetes, allergic rhinitis, and primary biliary cholangitis. Alcohol at low-moderate dosages seems mostly to have a protective role in these diseases, while at higher dosages, the collateral risks surpass possible benefits. The specific mechanisms by which low-to-moderate alcohol intake relieves AD symptoms are not yet fully understood; however, emerging studies suggest that alcohol may have a systemic immunomodulatory effect, potentially altering the balance of anti-inflammatory innate and adaptive immune cells, as well as cytokines (via the NF-κB or NLRP3 pathways). It might influence the composition of the gut microbiome (increasing amounts of beneficial gut microbes) and the production of their fatty acid metabolites, such as short-chain fatty acids (SCFAs) and polyunsaturated fatty acids (PUFAs), as well as elevated concentrations of acetate, high-density lipoprotein (HDL), and nitric oxide (NO). Unfortunately, a definite acceptable daily intake (ADI) of ethanol is complicated to establish because of the many mechanisms associated with alcohol consumption such that despite the interesting content of these findings, there is a limit to their applicability and risks should be weighed in cases of alcoholic drinking recommendations. The aim of future studies should be to modulate those beneficial pathways involved in the alcohol-protective role of ADs with various strategies to avoid the risks associated with alcohol intake.
Collapse
Affiliation(s)
- Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.T.); (M.L.); (S.F.)
| | - Brunella Caronti
- Department of Human Neurosciences, Sapienza University Hospital of Rome, 00185 Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.T.); (M.L.); (S.F.)
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00161 Rome, Italy
| | - Silvia Francati
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.T.); (M.L.); (S.F.)
| | - Maria Grazia Piccioni
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.G.P.); (L.T.)
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.G.P.); (L.T.)
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell’Alcolismo e le sue Complicanze, 00185 Rome, Italy;
| | - Micaela Caserta
- Institute of Molecular Biology and Pathology (IBPM-CNR), 00161 Rome, Italy; (M.C.); (L.V.)
| | - Loredana Verdone
- Institute of Molecular Biology and Pathology (IBPM-CNR), 00161 Rome, Italy; (M.C.); (L.V.)
| | - Sabrina Venditti
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00161 Rome, Italy;
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), c/o Department of Sensory Organs, Sapienza University of Rome, 00161 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.T.); (M.L.); (S.F.)
| |
Collapse
|
6
|
Yoon SH, Kim CY, Lee E, Lee C, Lee KS, Lee J, Park H, Choi B, Hwang I, Kim J, Kim TG, Son J, Hyun YM, Hong S, Yu JW. Microglial NLRP3-gasdermin D activation impairs blood-brain barrier integrity through interleukin-1β-independent neutrophil chemotaxis upon peripheral inflammation in mice. Nat Commun 2025; 16:699. [PMID: 39814731 PMCID: PMC11735931 DOI: 10.1038/s41467-025-56097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025] Open
Abstract
Blood-brain barrier (BBB) disintegration is a key contributor to neuroinflammation; however, the biological processes governing BBB permeability under physiological conditions remain unclear. Here, we investigate the role of NLRP3 inflammasome in BBB disruption following peripheral inflammatory challenges. Repeated intraperitoneal lipopolysaccharide administration causes NLRP3-dependent BBB permeabilization and myeloid cell infiltration into the brain. Using a mouse model with cell-specific hyperactivation of NLRP3, we identify microglial NLRP3 activation as essential for peripheral inflammation-induced BBB disruption. Conversely, NLRP3 and microglial gasdermin D (GSDMD) deficiency markedly attenuates lipopolysaccharide-induced BBB breakdown. Notably, IL-1β is not required for NLRP3-GSDMD-mediated BBB disruption. Instead, microglial NLRP3-GSDMD axis upregulates CXCL chemokines and matrix metalloproteinases around BBB via producing GDF-15, promoting the recruitment of CXCR2-containing neutrophils. Inhibition of neutrophil infiltration and matrix metalloproteinase activity significantly reduces NLRP3-mediated BBB impairment. Collectively, these findings reveal the important role of NLRP3-driven chemokine production in BBB disintegration, suggesting potential therapeutic targets to mitigate neuroinflammation.
Collapse
Affiliation(s)
- Sung-Hyun Yoon
- Department of Microbiology and Immunology, Brain Korea 21 Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chae Youn Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Eunju Lee
- Department of Microbiology and Immunology, Brain Korea 21 Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD, USA
| | - Changjun Lee
- Department of Microbiology and Immunology, Brain Korea 21 Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Seo Lee
- Department of Microbiology and Immunology, Brain Korea 21 Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jaeho Lee
- Department of Anatomy, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hana Park
- Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Bokeum Choi
- Department of Microbiology and Immunology, Brain Korea 21 Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Inhwa Hwang
- Department of Microbiology and Immunology, Brain Korea 21 Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junhan Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Tae-Gyun Kim
- Department of Dermatology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junghyun Son
- Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Young-Min Hyun
- Department of Anatomy, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seunghee Hong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| | - Je-Wook Yu
- Department of Microbiology and Immunology, Brain Korea 21 Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Martinez PJ, Song JJ, Castillo JI, DeSisto J, Song KH, Green AL, Borden M. Effect of Microbubble Size, Composition, and Multiple Sonication Points on Sterile Inflammatory Response in Focused Ultrasound-Mediated Blood-Brain Barrier Opening. ACS Biomater Sci Eng 2024; 10:7451-7465. [PMID: 39497639 DOI: 10.1021/acsbiomaterials.4c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Blood-brain barrier opening (BBBO) using focused ultrasound (FUS) and microbubbles (MBs) has emerged as a promising technique for delivering therapeutics to the brain. However, the influence of various FUS and MB parameters on BBBO and subsequent sterile inflammatory response (SIR) remains unclear. In this study, we investigated the effects of MB size and composition, as well as the number of FUS sonication points, on BBBO and SIR in an immunocompetent mouse model. Using MRI-guided MB + FUS, we targeted the striatum and assessed extravasation of an MRI contrast agent to assess BBBO and RNaseq to assess SIR. Our results revealed distinct effects of these parameters on BBBO and SIR. Specifically, at a matched microbubble volume dose (MVD), MB size did not affect the extent of BBBO, but smaller (1 μm diameter) MBs exhibited a lower classification of SIR than larger (3 or 5 μm diameter) MBs. Lipid-shelled microbubbles exhibited greater BBBO and a more pronounced SIR compared to albumin-shelled microbubbles, likely owing to the latter's poor in vivo stability. As expected, increasing the number of sonication points resulted in greater BBBO and SIR. Furthermore, correlation analysis revealed strong associations between passive cavitation detection measurements of harmonic and inertial MB echoes, BBBO, and the expression of SIR gene sets. Our findings highlight the critical role of MB and FUS parameters in modulating BBBO and subsequent SIR in the brain. These insights inform the development of targeted drug delivery strategies and the mitigation of adverse inflammatory reactions in neurological disorders.
Collapse
Affiliation(s)
- Payton J Martinez
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Jane J Song
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Jair I Castillo
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - John DeSisto
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Kang-Ho Song
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Adam L Green
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Mark Borden
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
8
|
Zhang G, Sun N, Li X. Spleen tyrosine kinase inhibition mitigates radiation-induced lung injury through anti-inflammatory effects and downregulation of p38 MAPK and p53. Front Oncol 2024; 14:1406759. [PMID: 39575431 PMCID: PMC11578954 DOI: 10.3389/fonc.2024.1406759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/11/2024] [Indexed: 11/24/2024] Open
Abstract
Background To explore new modulatory intervention targets for radiation-induced lung injury, bioinformatics analysis technology was used to search for the core driving genes in the pathogenesis of radiation pneumonitis, and the results were verified by a radiation-induced murine lung injury model to find possible new targets for the treatment of radiation lung injury. Method Gene Expression Omnibus Database was used to identify differentially expressed genes in radiation pneumonitis. DAVID database was used for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) enrichment analysis. Gene Set Enrichment Analysis was used to analyze abnormal expressions. Protein-protein interaction networks were constructed using STRING and Cytoscape. Discovery Studio 4.5 software was used to find the preferred inhibitor of the specific gene. A radiation-induced lung injury model was induced in female C57BL/6N mice. The specific inhibitors were administered by intraperitoneal injection 24 h before and for 7 consecutive days after radiation. Lungs were harvested for further analysis 14 days and 10 weeks post-irradiation. Results We screened Syk as one of the most important driver genes of radiation pneumonitis by bioinformatics analysis and screened the preferred Syk inhibitor fostamatinib from the drug database. Syk was highly expressed in irradiated lung tissue, and fostamatinib inhibited the level of Syk expression. Syk inhibitor significantly alleviated the radiation-induced lung injury and downregulated the increased expression of p38 MAPK, p53, IL-1β, and IL-6 in lung tissue at 2 weeks after radiation. The levels of TGF-β, COL1A1, and α-SMA and degree of pulmonary fibrosis at 10 weeks after radiation were also decreased by Syk inhibitor. Conclusion Syk inhibitor may have a potential to be used as a targeted drug to mitigate radiation pneumonitis and inhibit radiation-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Guoxing Zhang
- Department of Intensive Care Unit, Jilin Province Tumor Hospital, Changchun, China
| | - Ni Sun
- Department of Intensive Care Unit, Jilin Province Tumor Hospital, Changchun, China
| | - Xiaohua Li
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Zhang SY, Zhang LY, Wen R, Yang N, Zhang TN. Histone deacetylases and their inhibitors in inflammatory diseases. Biomed Pharmacother 2024; 179:117295. [PMID: 39146765 DOI: 10.1016/j.biopha.2024.117295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Despite considerable research efforts, inflammatory diseases remain a heavy burden on human health, causing significant economic losses annually. Histone deacetylases (HDACs) play a significant role in regulating inflammation (via histone and non-histone protein deacetylation) and chromatin structure and gene expression regulation. Herein, we present a detailed description of the different HDACs and their functions and analyze the role of HDACs in inflammatory diseases, including pro-inflammatory cytokine production reduction, immune cell function modulation, and anti-inflammatory cell activity enhancement. Although HDAC inhibitors have shown broad inflammatory disease treatment potentials, their clinical applicability remains limited because of their non-specific effects, adverse effects, and drug resistance. With further research and insight, these inhibitors are expected to become important tools for the treatment of a wide range of inflammatory diseases. This review aims to explore the mechanisms and application prospects of HDACs and their inhibitors in multiple inflammatory diseases.
Collapse
Affiliation(s)
- Sen-Yu Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Li-Ying Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ri Wen
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ni Yang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Tie-Ning Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
10
|
Yang S, Wang Y, Yang J, Tian Z, Wu M, Sun H, Zhang X, Zhao Y, Luo J, Guan G, Yin H, Hao R, Niu Q. African swine fever virus RNA polymerase subunits C315R and H359L inhibition host translation by activating the PKR-eIF2a pathway and suppression inflammatory responses. Front Microbiol 2024; 15:1469166. [PMID: 39380677 PMCID: PMC11458487 DOI: 10.3389/fmicb.2024.1469166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
ASFV C315R is homologous to the transcription factor TFIIB of large unclassified DNA viruses, and H359L is identical to the subunit 3 (RPB3) of eukaryotic RNA polymerase II. The C315R and H359L may play an important role in ASFV replication and transcription. Here, we evaluated the biological function of the C315R and H359L genes during virus replication in vitro and during infection in pigs. Results showed that C315R and H359L are highly conserved among ASFV genotype II strains; quantitative PCR (qPCR) and western blotting analyses revealed that C315R and H359L are early transcribed genes prior to viral DNA replication, but their protein expression is delayed. The immunofluorescence and western blotting analysis revealed that both proteins localized in the cell cytoplasm and nucleus at 24 h post infection, however, pH359L was mainly detected in the cell cytoplasm. Furthermore, overexpression of pH359L in MA104 cells significantly increased viral titer, RNA transcription levels, and viral protein expression levels, while overexpression of pC315R slightly enhanced ASFV replication. In contrast, siRNA targeting ASFV-H359L or C315R reduced replication efficiency in porcine macrophage culture compared to the parent ASFV-CN/SC/2019, demonstrating that C315R and H359L genes are necessary for ASFV replication. Finally, the functional role of C315R or H359L on PKR and eIF2α phosphorylation status and SG formation, as well as cytokine production were evaluated. These studies demonstrated that C315R and H359L are involved in virus replication processes in swine and play important roles in ASFV replication.
Collapse
Affiliation(s)
- Saixia Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Yiwang Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Jifei Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Zhancheng Tian
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Mengli Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Hualin Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Xiaoqiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Yaru Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Jianxun Luo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rongzeng Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Qingli Niu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| |
Collapse
|
11
|
Martinez PJ, Song JJ, Garay FG, Song KH, Mufford T, Steiner J, DeSisto J, Ellens N, Serkova NJ, Green AL, Borden M. Comprehensive assessment of blood-brain barrier opening and sterile inflammatory response: unraveling the therapeutic window. Sci Rep 2024; 14:17036. [PMID: 39043894 PMCID: PMC11266505 DOI: 10.1038/s41598-024-67916-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
Microbubbles (MBs) combined with focused ultrasound (FUS) has emerged as a promising noninvasive technique to permeabilize the blood-brain barrier (BBB) for drug delivery into the brain. However, the safety and biological consequences of BBB opening (BBBO) remain incompletely understood. This study aims to investigate the effects of two parameters mediating BBBO: microbubble volume dose (MVD) and mechanical index (MI). High-resolution MRI-guided FUS was employed in mouse brains to assess BBBO by manipulating these two parameters. Afterward, the sterile inflammatory response (SIR) was studied 6 h post-FUS treatment. Results demonstrated that both MVD and MI significantly influenced the extent of BBBO, with higher MVD and MI leading to increased permeability. Moreover, RNA sequencing revealed upregulation of major inflammatory pathways and immune cell infiltration after BBBO, indicating the presence and extent of SIR. Gene set enrichment analysis identified 12 gene sets associated with inflammatory responses that were significantly upregulated at higher MVD or MI. A therapeutic window was established between therapeutically relevant BBBO and the onset of SIR, providing operating regimes to avoid damage from stimulation of the NFκB pathway via TNFɑ signaling to apoptosis. These results contribute to the optimization and standardization of BBB opening parameters for safe and effective drug delivery to the brain and further elucidate the underlying molecular mechanisms driving sterile inflammation.
Collapse
Affiliation(s)
- Payton J Martinez
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Jane J Song
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Francis G Garay
- Department of Radiology, Cancer Center Animal Imaging Shared Resource, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kang-Ho Song
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Toni Mufford
- Department of Radiology, Cancer Center Animal Imaging Shared Resource, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jenna Steiner
- Department of Radiology, Cancer Center Animal Imaging Shared Resource, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - John DeSisto
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Nicholas Ellens
- Alpheus Medical, Inc., 1266 Park Rd., Chanhassen, MN, 55317, USA
| | - Natalie J Serkova
- Department of Radiology, Cancer Center Animal Imaging Shared Resource, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Adam L Green
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Mark Borden
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA.
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA.
| |
Collapse
|
12
|
Fu GQ, Wang YY, Xu YM, Bian MM, Zhang L, Yan HZ, Gao JX, Li JL, Chen YQ, Zhang N, Ding SQ, Wang R, Li JY, Hu JG, Lü HZ. Exosomes derived from vMIP-II-Lamp2b gene-modified M2 cells provide neuroprotection by targeting the injured spinal cord, inhibiting chemokine signals and modulating microglia/macrophage polarization in mice. Exp Neurol 2024; 377:114784. [PMID: 38642665 DOI: 10.1016/j.expneurol.2024.114784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Inflammation is one of the key injury factors for spinal cord injury (SCI). Exosomes (Exos) derived from M2 macrophages have been shown to inhibit inflammation and be beneficial in SCI animal models. However, lacking targetability restricts their application prospects. Considering that chemokine receptors increase dramatically after SCI, viral macrophage inflammatory protein II (vMIP-II) is a broad-spectrum chemokine receptor binding peptide, and lysosomal associated membrane protein 2b (Lamp2b) is the key membrane component of Exos, we speculated that vMIP-II-Lamp2b gene-modified M2 macrophage-derived Exos (vMIP-II-Lamp2b-M2-Exo) not only have anti-inflammatory properties, but also can target the injured area by vMIP-II. In this study, using a murine contusive SCI model, we revealed that vMIP-II-Lamp2b-M2-Exo could target the chemokine receptors which highly expressed in the injured spinal cords, inhibit some key chemokine receptor signaling pathways (such as MAPK and Akt), further inhibit proinflammatory factors (such as IL-1β, IL-6, IL-17, IL-18, TNF-α, and iNOS), and promote anti-inflammatory factors (such as IL-4 and Arg1) productions, and the transformation of microglia/macrophages from M1 into M2. Moreover, the improved histological and functional recoveries were also found. Collectively, our results suggest that vMIP-II-Lamp2b-M2-Exo may provide neuroprotection by targeting the injured spinal cord, inhibiting some chemokine signals, reducing proinflammatory factor production and modulating microglia/macrophage polarization.
Collapse
Affiliation(s)
- Gui-Qiang Fu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical University, Bengbu, Anhui 233030, PR China; Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, Beijing, 100142, PR China
| | - Yang-Yang Wang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Yao-Mei Xu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Ming-Ming Bian
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical University, Bengbu, Anhui 233030, PR China
| | - Lin Zhang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, Anhui 233030, PR China
| | - Hua-Zheng Yan
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Jian-Xiong Gao
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, Anhui 233030, PR China
| | - Jing-Lu Li
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Yu-Qing Chen
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Nan Zhang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Shu-Qin Ding
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Jiang-Yan Li
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Jian-Guo Hu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu Medical University, Bengbu, Anhui 233030, PR China.
| | - He-Zuo Lü
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical University, Bengbu, Anhui 233030, PR China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu Medical University, Bengbu, Anhui 233030, PR China; Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, Anhui 233030, PR China.
| |
Collapse
|
13
|
Martinez PJ, Song JJ, Castillo J, DeSisto J, Song KH, Green AL, Borden M. Effect of Microbubble Size, Composition and Multiple Sonication Points on Sterile Inflammatory Response in Focused Ultrasound-Mediated Blood-Brain Barrier Opening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.28.591538. [PMID: 38746278 PMCID: PMC11092473 DOI: 10.1101/2024.04.28.591538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Blood-brain barrier opening (BBBO) using focused ultrasound (FUS) and microbubbles (MBs) has emerged as a promising technique for delivering therapeutics to the brain. However, the influence of various FUS and MB parameters on BBBO and subsequent sterile inflammatory response (SIR) remains unclear. In this study, we investigated the effects of MB size and composition, as well as the number of FUS sonication points, on BBBO and SIR in an immunocompetent mouse model. Using MRI-guided MB+FUS, we targeted the striatum and assessed extravasation of an MRI contrast agent to assess BBBO and RNAseq to assess SIR. Our results revealed distinct effects of these parameters on BBBO and SIR. Specifically, at a matched microbubble volume dose (MVD), MB size did not affect the extent of BBBO, but smaller (1 μm diameter) MBs exhibited a lower classification of SIR than larger (3 or 5 μm diameter) MBs. Lipid-shelled microbubbles exhibited greater BBBO and a more pronounced SIR compared to albumin-shelled microbubbles, likely owing to the latter's poor in vivo stability. As expected, increasing the number of sonication points resulted in greater BBBO and SIR. Furthermore, correlation analysis revealed strong associations between passive cavitation detection measurements of harmonic and inertial MB echoes, BBBO and the expression of SIR gene sets. Our findings highlight the critical role of MB and FUS parameters in modulating BBBO and subsequent SIR in the brain. These insights inform the development of targeted drug delivery strategies and the mitigation of adverse inflammatory reactions in neurological disorders.
Collapse
Affiliation(s)
- Payton J. Martinez
- Biomedical Engineering Program, University of Colorado Boulder, Boulder CO 80303, United States
| | - Jane J. Song
- Biomedical Engineering Program, University of Colorado Boulder, Boulder CO 80303, United States
| | - Jair Castillo
- Biomedical Engineering Program, University of Colorado Boulder, Boulder CO 80303, United States
| | - John DeSisto
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora CO 80045, United States
| | - Kang-Ho Song
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder CO 80303, United States
| | - Adam L. Green
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora CO 80045, United States
| | - Mark Borden
- Biomedical Engineering Program, University of Colorado Boulder, Boulder CO 80303, United States
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder CO 80303, United States
| |
Collapse
|
14
|
Lu S, Ge Q, Yang M, Zhuang Y, Xu X, Niu F, Liu B, Tian R. Decoupling the mutual promotion of inflammation and oxidative stress mitigates cognitive decline and depression-like behavior in rmTBI mice by promoting myelin renewal and neuronal survival. Biomed Pharmacother 2024; 173:116419. [PMID: 38479178 DOI: 10.1016/j.biopha.2024.116419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Repetitive mild traumatic brain injury (rmTBI) can lead to somatic, emotional, and cognitive symptoms that persist for years after the initial injury. Although the ability of various treatments to promote recovery after rmTBI has been explored, the optimal time window for early intervention after rmTBI is unclear. Previous research has shown that hydrogen-rich water (HRW) can diffuse through the blood-brain - barrier, attenuate local oxidative stress, and reduce neuronal apoptosis in patients with severe traumatic brain injury. However, research on the effect of HRW on rmTBI is scarce. AIMS The objectives of this study were to explore the following changes after rmTBI and HRW treatment: (i) temporal changes in inflammasome activation and oxidative stress-related protein expression through immunoblotting, (ii) temporal changes in neuron/myelin-related metabolite concentrations in vivo through magnetic resonance spectroscopy, (iii) myelin structural changes in late-stage rmTBI via immunofluorescence, and (iv) postinjury anxiety/depression-like behaviors and spatial learning and memory impairment. RESULTS NLRP-3 expression in the rmTBI group was elevated at 7 and 14 DPI, and inflammasome marker levels returned to normal at 30 DPI. Oxidative stress persisted throughout the first month postinjury. HRW replacement significantly decreased Nrf2 expression in the prefrontal cortex and hippocampal CA2 region at 14 and 30 DPI, respectively. Edema and local gliosis in the hippocampus and restricted diffusion in the thalamus were observed on MR-ADC images. The tCho/tCr ratio in the rmTBI group was elevated, and the tNAA/tCr ratio was decreased at 30 DPI. Compared with the mice in the other groups, the mice in the rmTBI group spent more time exploring the open arms in the elevated plus maze (P < 0.05) and were more active in the maze (longer total distance traveled). In the sucrose preference test, the rmTBI group exhibited anhedonia. In the Morris water maze test, the latency to find the hidden platform in the rmTBI group was longer than that in the sham and HRW groups (P < 0.05). CONCLUSION Early intervention with HRW can attenuate inflammasome assembly and reduce oxidative stress after rmTBI. These changes may restore local oligodendrocyte function, promote myelin repair, prevent axonal damage and neuronal apoptosis, and alleviate depression-like behavior and cognitive impairment.
Collapse
Affiliation(s)
- Shenghua Lu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - QianQian Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - MengShi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yuan Zhuang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaojian Xu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Fei Niu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Baiyun Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Center for Nerve Injury and Repair, Beijing Institute of Brain Disorders, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Runfa Tian
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Center for Nerve Injury and Repair, Beijing Institute of Brain Disorders, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
15
|
Wang H, Wu J, Hu M, Zhang H, Zhou X, Yang S, He K, Yan F, Jin H, Chen S, Zhao A. Effects of dietary supplement of ε-polylysine hydrochloride on laying performance, egg quality, serum parameters, organ index, intestinal morphology, gut microbiota and volatile fatty acids in laying hens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3069-3079. [PMID: 38072654 DOI: 10.1002/jsfa.13198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/05/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND ε-polylysine hydrochloride (ε-PLH) is a naturally occurring antimicrobial peptide extensively utilized in the food and medical industries. However, its impact on animal husbandry remains to be further explored. Therefore, the present study aimed to determine the effect of ε-PLH on laying hens' health and laying performance. RESULTS Dietary supplementation with ε-PLH to the diet significantly increased average egg weight during weeks 1-8. Meanwhile, compared with the control group, supplementation with ε-PLH decreased the feed egg ratio during weeks 9-12 and egg breakage rate during weeks 9-16 ,whereas it increased eggshell strength during weeks 1-4 and 13-16 . The ε-PLH 0.05% group increased yolk percentage during weeks 5-8 and yolk color during weeks 1-4 . Furthermore, ε-PLH supplementation significantly increased the concentrations of total protein, albumin, globulin and reproductive hormones estradiol, as well as decreased interleukin-1 beta and malondialdehyde in the serum. Compared with the control group, supplementation with 0.05% ε-PLH significantly increased the relative abundance of Cyanobacteria and Gastranaerophilales and decreased the abundance of Desulfovibrio and Streptococcus in the cecum microbiota. In addition, ε-PLH 0.1% supplementation also increased acetic acid content in the cecum. CONCLUSION Dietary supplementation with ε-PLH has a positive impact on both productive performance and egg quality in laying hens. Furthermore, ε-PLH can also relieve inflammation by promoting the immunity and reducing oxidative damage during egg production. ε-PLH has been shown to improve intestinal morphology, gut microbial diversity and intestinal health. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Han Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Jianqing Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Moran Hu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Haoxin Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Xiaolong Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Songbai Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Ke He
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Feifei Yan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Hangfeng Jin
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Shaojie Chen
- Zhejiang Silver-Elephant Bio-Engineering Co., Ltd, Taizhou, China
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
16
|
Segbefia SP, Asandem DA, Amoah LE, Kusi KA. Cytokine gene polymorphisms implicated in the pathogenesis of Plasmodium falciparum infection outcome. Front Immunol 2024; 15:1285411. [PMID: 38404582 PMCID: PMC10884311 DOI: 10.3389/fimmu.2024.1285411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Cytokines play a critical role in the immune mechanisms involved in fighting infections including malaria. Polymorphisms in cytokine genes may affect immune responses during an infection with Plasmodium parasites and immunization outcomes during routine administration of malaria vaccines. These polymorphisms can increase or reduce susceptibility to this deadly infection, and this may affect the physiologically needed balance between anti-inflammatory and pro-inflammatory cytokines. The purpose of this review is to present an overview of the effect of selected cytokine gene polymorphisms on immune responses against malaria.
Collapse
Affiliation(s)
- Selorm Philip Segbefia
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- Department of Molecular Medicine, School of Medicine and Dentistry, College of Science, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Diana Asema Asandem
- Department of Virology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Linda Eva Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
17
|
Yang Q, Li M, Hou Y, He H, Sun S. High-mobility group box 1 emerges as a therapeutic target for asthma. Immun Inflamm Dis 2023; 11:e1124. [PMID: 38156383 PMCID: PMC10739362 DOI: 10.1002/iid3.1124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/30/2023] Open
Abstract
High-mobility group box 1 (HMGB1) is a highly conserved nonhistone nuclear protein found in the calf thymus and participates in a variety of intracellular processes such as DNA transcription, replication and repair. In the cytoplasm, HMGB1 promotes mitochondrial autophagy and is involved in in cellular stress response. Once released into the extracellular, HMGB1 becomes an inflammatory factor that triggers inflammatory responses and a variety of immune responses. In addition, HMGB1 binding with the corresponding receptor can activate the downstream substrate to carry out several biological effects. Meanwhile, HMGB1 is involved in various signaling pathways, such as the HMGB1/RAGE pathway, HMGB1/NF-κB pathway, and HMGB1/JAK/STAT pathway, which ultimately promote inflammation. Moreover, HMGB1 may be involved in the pathogenesis of asthma by regulating downstream signaling pathways through corresponding receptors and mediates a number of signaling pathways in asthma, such as HMGB1/TLR4/NF-κB, HMGB1/RAGE, HMGB1/TGF-β, and so forth. Accordingly, HMGB1 emerges as a therapeutic target for asthma.
Collapse
Affiliation(s)
- Qianni Yang
- Department of Pulmonary and Critical Care MedicineFirst Affiliated Hospital, Kunming Medical UniversityKunmingChina
- 2021 Class 2 of AnesthesiologyKunming Medical UniversityKunmingChina
| | - Min Li
- Department of Pulmonary and Critical Care MedicineFirst Affiliated Hospital, Kunming Medical UniversityKunmingChina
| | - Yunjiao Hou
- Department of Pulmonary and Critical Care MedicineFirst Affiliated Hospital, Kunming Medical UniversityKunmingChina
| | - Huilin He
- Department of Pulmonary and Critical Care MedicineFirst Affiliated Hospital, Kunming Medical UniversityKunmingChina
| | - Shibo Sun
- Department of Pulmonary and Critical Care MedicineFirst Affiliated Hospital, Kunming Medical UniversityKunmingChina
| |
Collapse
|
18
|
Hussain MS, Gupta G, Goyal A, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Fuloria S, Meenakshi DU, Jakhmola V, Pandey M, Singh SK, Dua K. From nature to therapy: Luteolin's potential as an immune system modulator in inflammatory disorders. J Biochem Mol Toxicol 2023; 37:e23482. [PMID: 37530602 DOI: 10.1002/jbt.23482] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
Inflammation is an essential immune response that helps fight infections and heal tissues. However, chronic inflammation has been linked to several diseases, including cancer, autoimmune disorders, cardiovascular diseases, and neurological disorders. This has increased interest in finding natural substances that can modulate the immune system inflammatory signaling pathways to prevent or treat these diseases. Luteolin is a flavonoid found in many fruits, vegetables, and herbs. It has been shown to have anti-inflammatory effects by altering signaling pathways in immune cells. This review article discusses the current research on luteolin's role as a natural immune system modulator of inflammatory signaling mechanisms, such as its effects on nuclear factor-kappa B, mitogen-activated protein kinases, Janus kinase/signal transducer and activator of transcription, and inflammasome signaling processes. The safety profile of luteolin and its potential therapeutic uses in conditions linked to inflammation are also discussed. Overall, the data point to Luteolin's intriguing potential as a natural regulator of immune system inflammatory signaling processes. More research is needed to fully understand its mechanisms of action and possible therapeutic applications.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
- Center for Global Health research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
| | | | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | | | | | - Vikas Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
Martinez P, Song JJ, Garay FG, Song KH, Mufford T, Steiner J, DeSisto J, Ellens N, Serkova NJ, Green AL, Borden M. Comprehensive Assessment of Blood-Brain Barrier Opening and Sterile Inflammatory Response: Unraveling the Therapeutic Window. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563613. [PMID: 37961395 PMCID: PMC10634745 DOI: 10.1101/2023.10.23.563613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Microbubbles (MBs) combined with focused ultrasound (FUS) have emerged as a promising noninvasive technique to permeabilize the blood-brain barrier (BBB) for drug delivery to the brain. However, the safety and biological consequences of BBB opening remain incompletely understood. This study investigates the effects of varying microbubble volume doses (MVD) and ultrasound mechanical indices (MI) on BBB opening and the sterile inflammatory response (SIR) using high-resolution ultra-high field MRI-guided FUS in mouse brains. The results demonstrate that both MVD and MI significantly influence the extent of BBB opening, with higher doses and mechanical indices leading to increased permeability. Moreover, RNA sequencing reveals upregulated inflammatory pathways and immune cell infiltration after BBB opening, suggesting the presence and extent of SIR. Gene set enrichment analysis identifies 12 gene sets associated with inflammatory responses that are upregulated at higher doses of MVD or MI. A therapeutic window is established between significant BBB opening and the onset of SIR, providing operating regimes for avoiding each three classes of increasing damage from stimulation of the NFκB pathway via TNFL signaling to apoptosis. This study contributes to the optimization and standardization of BBB opening parameters for safe and effective drug delivery to the brain and sheds light on the underlying molecular mechanisms of the sterile inflammatory response. Significance Statement The significance of this study lies in its comprehensive investigation of microbubble-facilitated focused ultrasound for blood-brain barrier (BBB) opening. By systematically exploring various combinations of microbubble volume doses and ultrasound mechanical indices, the study reveals their direct impact on the extent of BBB permeability and the induction of sterile inflammatory response (SIR). The establishment of a therapeutic window between significant BBB opening and the onset of SIR provides critical insights for safe and targeted drug delivery to the brain. These findings advance our understanding of the biological consequences of BBB opening and contribute to optimizing parameters for clinical applications, thus minimizing potential health risks, and maximizing the therapeutic potential of this technique.
Collapse
|
20
|
Korhonen E, Piippo N, Hytti M, Kaarniranta K, Kauppinen A. Cis-urocanic acid improves cell viability and suppresses inflammasome activation in human retinal pigment epithelial cells. Biochem Pharmacol 2023; 216:115790. [PMID: 37683842 DOI: 10.1016/j.bcp.2023.115790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Age-related macular degeneration (AMD) is a common eye disease among the elderly, which can result in impaired vision and irreversible loss of vision. The majority of patients suffer from the dry (also known as the atrophic) form of the disease, which is completely lacking an effective treatment. In the present study, we evaluated the potential of cis-urocanic acid (cis-UCA) to protect human ARPE-19 cells from cell damage and inflammasome activation induced by UVB light. Urocanic acid is a molecule normally present in human epidermis. Its cis-form has recently been found to alleviate UVB-induced inflammasome activation in human corneal epithelial cells. Here, we observed that cis-UCA is well-tolerated also by human retinal pigment epithelial (RPE) cells at a concentration of 100 μg/ml. Moreover, cis-UCA was cytoprotective and efficiently diminished the levels of mature IL-1β, IL-18, and cleaved caspase-1 in UVB-irradiated ARPE-19 cells. Interestingly, cis-UCA also reduced DNA damage, whereas its effect against ROS production was negligible. Collectively, cis-UCA protected ARPE-19 cells from UVB-induced phototoxicity and inflammasome activation. This study indicates that due to its beneficial properties of preserving cell viability and preventing inflammation, cis-UCA has potential in drug development of chronic ocular diseases, such as AMD.
Collapse
Affiliation(s)
- Eveliina Korhonen
- Immuno-Ophthalmology, School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.Box 1627, FI-70211 Kuopio, Finland.
| | - Niina Piippo
- Immuno-Ophthalmology, School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.Box 1627, FI-70211 Kuopio, Finland
| | - Maria Hytti
- Immuno-Ophthalmology, School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.Box 1627, FI-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O.Box 100, FI-70029 Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O.Box 1627, FI-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O.Box 100, FI-70029 Kuopio, Finland
| | - Anu Kauppinen
- Immuno-Ophthalmology, School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
21
|
De Ciucis CG, Fruscione F, De Paolis L, Mecocci S, Zinellu S, Guardone L, Franzoni G, Cappelli K, Razzuoli E. Toll-like Receptors and Cytokine Modulation by Goat Milk Extracellular Vesicles in a Model of Intestinal Inflammation. Int J Mol Sci 2023; 24:11096. [PMID: 37446274 DOI: 10.3390/ijms241311096] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Extracellular vesicles (EVs) are nanometric spherical structures, enclosed in a lipid bilayer membrane and secreted by multiple cell types under specific physiologic and pathologic conditions. Their complex cargo modulates immune cells within an inflammatory microenvironment. Milk is one of the most promising sources of EVs in terms of massive recovery, and milk extracellular vesicles (mEVs) have immunomodulatory and anti-inflammatory effects. The aim of this study was to characterize goat mEVs' immunomodulating activities on Toll-like receptors (TLRs) and related immune genes, including cytokines, using a porcine intestinal epithelial cell line (IPEC-J2) after the establishment of a pro-inflammatory environment. IPEC-J2 was exposed for 2 h to pro-inflammatory stimuli as a model of inflammatory bowel disease (IBD), namely LPS for Crohn's disease (CD) and H2O2 for ulcerative colitis (UC); then, cells were treated with goat mEVs for 48 h. RT-qPCR and ELISA data showed that cell exposure to LPS or H2O2 caused a pro-inflammatory response, with increased gene expression of CXCL8, TNFA, NOS2 and the release of pro-inflammatory cytokines. In the LPS model, the treatment with mEVs after LPS determined the down-regulation of NOS2, MMP9, TLR5, TGFB1, IFNB, IL18 and IL12A gene expressions, as well as lower release of IL-18 in culture supernatants. At the same time, we observed the increased expression of TLR1, TLR2, TLR8 and EBI3. On the contrary, the treatment with mEVs after H2O2 exposure, the model of UC, determined the increased expression of MMP9 alongside the decrease in TGFB1, TLR8 and DEFB1, with a lower release of IL-1Ra in culture supernatants. Overall, our data showed that a 48 h treatment with mEVs after a pro-inflammatory stimulus significantly modulated the expression of several TLRs and cytokines in swine intestinal cells, in association with a decreased inflammation. These results further highlight the immunomodulatory potential of these nanosized structures and suggest their potential application in vivo.
Collapse
Affiliation(s)
- Chiara Grazia De Ciucis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| | - Floriana Fruscione
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| | - Livia De Paolis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| | - Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy
| | - Susanna Zinellu
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Lisa Guardone
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| | - Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy
| | - Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| |
Collapse
|
22
|
Franzoni G, Mecocci S, De Ciucis CG, Mura L, Dell’Anno F, Zinellu S, Fruscione F, De Paolis L, Carta T, Anfossi AG, Dei Guidici S, Chiaradia E, Pascucci L, Oggiano A, Cappelli K, Razzuoli E. Goat milk extracellular vesicles: immuno-modulation effects on porcine monocyte-derived macrophages in vitro. Front Immunol 2023; 14:1209898. [PMID: 37469517 PMCID: PMC10352104 DOI: 10.3389/fimmu.2023.1209898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/26/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Extracellular vesicles (EVs) are nanometric-membrane-bound sub-cellular structures, which can be recovered from milk. Milk EVs have drawn increasing interest due to their potential biomedical applications, therefore it is important to investigate their impact on key immune cells, such as macrophages. Methods In this work, the immunomodulatory effects of goat milk EVs on untreated (moMФ) and classically activated (moM1) porcine monocyte-derived macrophages were investigated using flow cytometry, ELISA, and gene expression assays. Results These particles were efficiently internalized by macrophages and high doses (60 mg protein weight) triggered the upregulation of MHC I and MHC II DR on moMФ, but not on moM1. In moMФ, exposure to low doses (0.6 mg) of mEVs enhanced the gene expression of IL10, EBI3, and IFNB, whereas high doses up-regulated several pro-inflammatory cytokines. These nanosized structures slightly modulated cytokine gene expression on moM1. Accordingly, the cytokine (protein) contents in culture supernatants of moMФ were mildly affected by exposure to low doses of mEVs, whereas high doses promoted the increased release of TNF, IL-8, IL-1a, IL-1b, IL-1Ra, IL-6, IL-10, and IL-12. The cytokines content in moM1 supernatants was not critically affected. Discussion Overall, our data support a clinical application of these molecules: they polarized macrophages toward an M1-like phenotype, but this activation seemed to be controlled, to prevent potentially pathological over-reaction to stressors.
Collapse
Affiliation(s)
- Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Chiara Grazia De Ciucis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Genova, Italy
| | - Lorena Mura
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
- Department of Biomedical Sciences, School of Medicine, University of Sassari, Sassari, Italy
| | - Filippo Dell’Anno
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Genova, Italy
| | - Susanna Zinellu
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Floriana Fruscione
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Genova, Italy
| | - Livia De Paolis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Genova, Italy
| | - Tania Carta
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Antonio G. Anfossi
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Silvia Dei Guidici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | | | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Annalisa Oggiano
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Genova, Italy
| |
Collapse
|
23
|
Neira-Goulart M, de Sá NBR, Ribeiro-Alves M, Perazzo H, Geraldo KM, Ribeiro MPD, Cardoso SW, Grinsztejn B, Veloso VG, Rodrigues Gomes L, Cazote ADS, de Almeida DV, Giacoia-Gripp CBW, Côrtes FH, Morgado MG. Inflammasome genes polymorphisms are associated with progression to mechanical ventilation and death in a cohort of hospitalized COVID-19 patients in a reference hospital in Rio de Janeiro, Brazil. Gene 2023; 865:147325. [PMID: 36870425 PMCID: PMC9979696 DOI: 10.1016/j.gene.2023.147325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/23/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
COVID-19 has a broad spectrum of clinical manifestations. We assessed the impact of single nucleotide polymorphisms (SNPs) of inflammasome genesas risk factors for progression toCOVID-19 critical outcomes, such as mechanical ventilation support (MVS) or death.The study included 451 hospitalized individuals followed up at the INI/FIOCRUZ, Rio de Janeiro, Brazil, from 06/2020 to 03/2021. SNPs genotyping was determined by Real-Time PCR. We analyzed risk factors for progression to MVS (n = 174[38.6 %]) or death (n = 175[38.8 %])as a result of COVID-19 by Cox proportional hazardmodels.Slower progression toMVSwas associated with allele G (aHR = 0.66;P = 0.005) or the genotype G/G (aHR = 0.391;P = 0.006) in the NLRP3 rs10754558 or the allele G (aHR = 0.309;P = 0.004) in the IL1βrs1143634, while C allele in the NLRP3 rs4612666 (aHR = 2.342;P = 0.006) or in the rs10754558 (aHR = 2.957;P = 0.005) were associated with faster progression to death. Slower progression to death was associated to allele G (aHR = 0.563;P = 0.006) or the genotype A/G (aHR = 0.537;P = 0.005) in the CARD8 rs6509365; the genotype A/C in the IFI16 rs1101996 (aHR = 0.569;P = 0.011); the genotype T/T (aHR = 0.394;P = 0.004) or allele T (aHR = 0.68;P = 0.006) in the NLRP3 rs4612666, and the genotype G/G (aHR = 0.326;P = 0.005) or allele G (aHR = 0,68;P = 0.014) in the NLRP3 rs10754558. Our results suggest that inflammasome genetic variations might influence the critical clinical course of COVID-19.
Collapse
Affiliation(s)
- Milena Neira-Goulart
- Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil.
| | | | - Marcelo Ribeiro-Alves
- Laboratory of Clinical Research on STD/AIDS, National Institute of Infectology Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil.
| | - Hugo Perazzo
- Laboratory of Clinical Research on STD/AIDS, National Institute of Infectology Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil.
| | - Kim Mattos Geraldo
- Laboratory of Clinical Research on STD/AIDS, National Institute of Infectology Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil.
| | - Maria Pia Diniz Ribeiro
- Laboratory of Clinical Research on STD/AIDS, National Institute of Infectology Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil.
| | - Sandra Wagner Cardoso
- Laboratory of Clinical Research on STD/AIDS, National Institute of Infectology Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil.
| | - Beatriz Grinsztejn
- Laboratory of Clinical Research on STD/AIDS, National Institute of Infectology Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil.
| | - Valdiléa G Veloso
- Laboratory of Clinical Research on STD/AIDS, National Institute of Infectology Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil.
| | - Larissa Rodrigues Gomes
- Center of Technological Development in Health (CDTS)/National Institute of Science and Technological for Innovation on Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro, Brazil.
| | - Andressa da Silva Cazote
- Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil.
| | | | | | - Fernanda Heloise Côrtes
- Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil.
| | - Mariza Gonçalves Morgado
- Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil.
| |
Collapse
|
24
|
Scott IL, Dominguez MJ, Snow A, Harsini FM, Williams J, Fuson KL, Thapa R, Bhattacharjee P, Cornwall GA, Keyel PA, Sutton RB. Pathogenic Mutations in the C2A Domain of Dysferlin form Amyloid that Activates the Inflammasome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538129. [PMID: 37163031 PMCID: PMC10168229 DOI: 10.1101/2023.04.24.538129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Limb-Girdle Muscular Dystrophy Type-2B/2R is caused by mutations in the dysferlin gene ( DYSF ). This disease has two known pathogenic missense mutations that occur within dysferlin's C2A domain, namely C2A W52R and C2A V67D . Yet, the etiological rationale to explain the disease linkage for these two mutations is still unclear. In this study, we have presented evidence from biophysical, computational, and immunological experiments which suggest that these missense mutations interfere with dysferlin's ability to repair cells. The failure of C2A W52R and C2A V67D to initiate membrane repair arises from their propensity to form stable amyloid. The misfolding of the C2A domain caused by either mutation exposes β-strands, which are predicted to nucleate classical amyloid structures. When dysferlin C2A amyloid is formed, it triggers the NLRP3 inflammasome, leading to the secretion of inflammatory cytokines, including IL-1β. The present study suggests that the muscle dysfunction and inflammation evident in Limb-Girdle Muscular Dystrophy types-2B/2R, specifically in cases involving C2A W52R and C2A V67D , as well as other C2 domain mutations with considerable hydrophobic core involvement, may be attributed to this mechanism.
Collapse
|
25
|
Heterogeneity of Phenotypic and Functional Changes to Porcine Monocyte-Derived Macrophages Triggered by Diverse Polarizing Factors In Vitro. Int J Mol Sci 2023; 24:ijms24054671. [PMID: 36902099 PMCID: PMC10003195 DOI: 10.3390/ijms24054671] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Swine are attracting increasing attention as a biomedical model, due to many immunological similarities with humans. However, porcine macrophage polarization has not been extensively analyzed. Therefore, we investigated porcine monocyte-derived macrophages (moMΦ) triggered by either IFN-γ + LPS (classical activation) or by diverse "M2-related" polarizing factors: IL-4, IL-10, TGF-β, and dexamethasone. IFN-γ and LPS polarized moMΦ toward a proinflammatory phenotype, although a significant IL-1Ra response was observed. Exposure to IL-4, IL-10, TGF-β, and dexamethasone gave rise to four distinct phenotypes, all antithetic to IFN-γ and LPS. Some peculiarities were observed: IL-4 and IL-10 both enhanced expression of IL-18, and none of the "M2-related" stimuli induced IL-10 expression. Exposures to TGF-β and dexamethasone were characterized by enhanced levels of TGF-β2, whereas stimulation with dexamethasone, but not TGF-β2, triggered CD163 upregulation and induction of CCL23. Macrophages stimulated with IL-10, TGF-β, or dexamethasone presented decreased abilities to release proinflammatory cytokines in response to TLR2 or TLR3 ligands: IL-10 showed a powerful inhibitory activity for CXCL8 and TNF release, whereas TGF-β provided a strong inhibitory signal for IL-6 production. While our results emphasized porcine macrophage plasticity broadly comparable to human and murine macrophages, they also highlighted some peculiarities in this species.
Collapse
|
26
|
Franzoni G, Pedrera M, Sánchez-Cordón PJ. African Swine Fever Virus Infection and Cytokine Response In Vivo: An Update. Viruses 2023; 15:233. [PMID: 36680273 PMCID: PMC9864779 DOI: 10.3390/v15010233] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
African swine fever (ASF) is a hemorrhagic viral disease of domestic pigs and wild suids (all Sus scrofa) caused by the ASF virus (ASFV). The disease is spreading worldwide without control, threatening pig production due to the absence of licensed vaccine or commercially available treatments. A thorough understanding of the immunopathogenic mechanisms behind ASFV infection is required to better fight the disease. Cytokines are small, non-structural proteins, which play a crucial role in many aspects of the immune responses to viruses, including ASFV. Infection with virulent ASFV isolates often results in exacerbated immune responses, with increased levels of serum pro-inflammatory interleukins (IL-1α, IL-1β, IL-6), TNF and chemokines (CCL2, CCL5, CXCL10). Increased levels of IL-1, IL-6 and TNF are often detected in several tissues during acute ASFV infections and associated with lymphoid depletion, hemorrhages and oedemas. IL-1Ra is frequently released during ASFV infection to block further IL-1 activity, with its implication in ASFV immunopathology having been suggested. Increased levels of IFN-α and of the anti-inflammatory IL-10 seem to be negatively correlated with animal survival, whereas some correlation between virus-specific IFN-γ-producing cells and protection has been suggested in different studies where different vaccine candidates were tested, although future works should elucidate whether IFN-γ release by specific cell types is related to protection or disease development.
Collapse
Affiliation(s)
- Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Miriam Pedrera
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Pedro J. Sánchez-Cordón
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain
| |
Collapse
|
27
|
Qiang R, Li Y, Dai X, Lv W. NLRP3 inflammasome in digestive diseases: From mechanism to therapy. Front Immunol 2022; 13:978190. [PMID: 36389791 PMCID: PMC9644028 DOI: 10.3389/fimmu.2022.978190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/12/2022] [Indexed: 09/05/2023] Open
Abstract
Digestive system diseases remain a formidable challenge to human health. NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the most characteristic multimeric protein complex and is involved in a wide range of digestive diseases as intracellular innate immune sensors. It has emerged as a research hotspot in recent years. In this context, we provide a comprehensive review of NLRP3 inflammasome priming and activation in the pathogenesis of digestive diseases, including clinical and preclinical studies. Moreover, the scientific evidence of small-molecule chemical drugs, biologics, and phytochemicals, which acts on different steps of the NLRP3 inflammasome, is reviewed. Above all, deep interrogation of the NLRP3 inflammasome is a better insight of the pathomechanism of digestive diseases. We believe that the NLRP3 inflammasome will hold promise as a novel valuable target and research direction for treating digestive disorders.
Collapse
Affiliation(s)
- Rui Qiang
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| | - Yanbo Li
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| | | | - Wenliang Lv
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| |
Collapse
|
28
|
Cheng H, Chen L, Huang M, Hou J, Chen Z, Yang X. Hunting down NLRP3 inflammasome: An executioner of radiation-induced injury. Front Immunol 2022; 13:967989. [PMID: 36353625 PMCID: PMC9637992 DOI: 10.3389/fimmu.2022.967989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy is one of the mainstream treatment modalities for several malignancies. However, radiation-induced injury to surrounding normal tissues limits its efficacy. The NLRP3 inflammasome is an essential mechanism of innate immunity that reacts to challenges from endogenous danger signals and pathological microbes. A growing body of evidence has demonstrated a key role of NLRP3 inflammasome in the pathogenesis of radiation-induced tissue injury. Despite accumulating evidence, the potential value of the NLRP3 inflammasome in the management of radiation-induced tissue injury is not adequately recognized. We conducted a literature review to characterize the relationship between NLRP3 inflammasome and radiation injury. By analyzing recent evidence, we identify NLRP3 inflammasome as one of the executioners of radiation-induced injury, since it responds to the challenges of radiation, induces cell pyroptosis and tissue dysfunction, and initiates non-resolving inflammation and fibrosis. Based on these concepts, we propose early intervention/prevention strategies targeting NLRP3 inflammasome in a radiation context, which may help resolve imperative clinical problems.
Collapse
Affiliation(s)
- Han Cheng
- First School of Clinical Medicine, Southern Medical University, Guangzhou, China,Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lingling Chen
- First School of Clinical Medicine, Southern Medical University, Guangzhou, China,Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Minchun Huang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Hou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhifeng Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Xiaojun Yang, ; Zhifeng Chen,
| | - Xiaojun Yang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Xiaojun Yang, ; Zhifeng Chen,
| |
Collapse
|
29
|
An C, Wu Y, Wu J, Liu H, Zhou S, Ge D, Dong R, You L, Hao Y. Berberine ameliorates pulmonary inflammation in mice with influenza viral pneumonia by inhibiting NLRP3 inflammasome activation and gasdermin D‐mediated pyroptosis. Drug Dev Res 2022; 83:1707-1721. [DOI: 10.1002/ddr.21995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/10/2022] [Accepted: 08/23/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Chen An
- Department of Immunology and Microbiology, School of Life Science Beijing University of Chinese Medicine Beijing China
| | - Yanmin Wu
- Department of Immunology, School of Medical Technology Qiqihar Medical University Qiqihar China
| | - Jun Wu
- Department of Immunology and Microbiology, School of Life Science Beijing University of Chinese Medicine Beijing China
| | - Huanwei Liu
- Department of Immunology and Microbiology, School of Life Science Beijing University of Chinese Medicine Beijing China
| | - Siyao Zhou
- Department of Immunology and Microbiology, School of Life Science Beijing University of Chinese Medicine Beijing China
| | - Dongyu Ge
- Research and Test Center, School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Ruijuan Dong
- Research and Test Center, School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Leiming You
- Department of Immunology and Microbiology, School of Life Science Beijing University of Chinese Medicine Beijing China
| | - Yu Hao
- Department of Immunology and Microbiology, School of Life Science Beijing University of Chinese Medicine Beijing China
| |
Collapse
|
30
|
Inflammasome Genetic Variants Are Associated with Protection to Clinical Severity of COVID-19 among Patients from Rio de Janeiro, Brazil. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9082455. [PMID: 36105941 PMCID: PMC9467712 DOI: 10.1155/2022/9082455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022]
Abstract
COVID-19 has a broad spectrum of clinical manifestations, from asymptomatic or mild/moderate symptoms to severe symptoms and death. The mechanisms underlying its clinical evolution are still unclear. Upon SARS-CoV-2 infection, host factors, such as the inflammasome system, are activated by the presence of the virus inside host cells. The search for COVID-19 risk factors is of relevance for clinical management. In this study, we investigated the impact of inflammasome single-nucleotide polymorphisms (SNPs) in SARS-CoV-2-infected individuals with distinct severity profiles at clinical presentation. Patients were divided into two groups according to disease severity at clinical presentation based on the WHO Clinical Progression Scale. Group 1 included patients with mild/moderate disease (WHO < 6; n = 76), and group 2 included patients with severe/critical COVID-19 (WHO ≥ 6; n = 357). Inpatients with moderate to severe/critical profiles were recruited and followed-up at Hospital Center for COVID-19 Pandemic – National Institute of Infectology (INI)/FIOCRUZ, RJ, Brazil, from June 2020 to March 2021. Patients with mild disease were recruited at Oswaldo Cruz Institute (IOC)/FIOCRUZ, RJ, Brazil, in August 2020. Genotyping of 11 inflammasome SNPs was determined by real-time PCR. Protection and risk estimation were performed using unconditional logistic regression models. Significant differences in NLRP3 rs1539019 and CARD8 rs2043211 were observed between the two groups. Protection against disease severity was associated with the A/A genotype (ORadj = 0.36; P = 0.032), allele A (ORadj = 0.93; P = 0.010), or carrier-A (ORadj = 0.45; P = 0.027) in the NLRP3 rs1539019 polymorphism; A/T genotype (ORadj = 0.5; P = 0.045), allele T (ORadj = 0.93; P = 0.018), or carrier-T (ORadj = 0.48; P = 0.029) in the CARD8 rs2043211 polymorphism; and the A-C-G-C-C (ORadj = 0.11; P = 0.018), A-C-G-C-G (ORadj = 0.23; P = 0.003), C-C-G-C-C (ORadj = 0.37; P = 0.021), and C-T-G-A-C (ORadj = 0.04; P = 0.0473) in NLRP3 genetic haplotype variants. No significant associations were observed for the other polymorphisms. To the best of our knowledge, this is the first study demonstrating an association between CARD8 and NLRP3 inflammasome genetic variants and protection against COVID-19 severity, contributing to the discussion of the impact of inflammasomes on COVID-19 outcomes.
Collapse
|
31
|
Haftcheshmeh SM, Abedi M, Mashayekhi K, Mousavi MJ, Navashenaq JG, Mohammadi A, Momtazi-Borojeni AA. Berberine as a natural modulator of inflammatory signaling pathways in the immune system: Focus on NF-κB, JAK/STAT, and MAPK signaling pathways. Phytother Res 2022; 36:1216-1230. [PMID: 35142403 DOI: 10.1002/ptr.7407] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 12/14/2022]
Abstract
Three main inflammatory signaling pathways include nuclear factor-κB (NF-κB), Janus kinases/Signal transducer and activator of transcriptions (JAKs/STATs), and mitogen-activated protein kinases (MAPKs) play crucial roles in inducing, promoting, and regulating inflammatory responses in the immune system. Importantly, the breakdown of mechanisms that tightly regulate inflammatory signaling pathways can be the underlying cause of uncontrolled inflammatory responses and be associated with the generation and development of several inflammatory diseases. Hence, therapeutic strategies targeting inflammatory signaling pathways and their downstream components may promise to treat inflammatory diseases. Studies over the past two decades have provided important information on the polytrophic pharmacological and biochemical properties of berberine (BBR) as a naturally occurring compound, such as antioxidant, antitumor, antimicrobial, and antiinflammatory activates. Interestingly, the modulatory effects of BBR on inflammatory signaling cascades, which lead to the inhibition of inflammation, have been widely investigated in several in vitro and in vivo studies. For the first time, herein, this comprehensive review attempts to put together these studies and provide important insight into the modulatory effects of BBR on NF-κB, JAKs/STATs, and MAPKs signaling pathways in vitro in various types of immune cells and in vivo in several experimental inflammatory diseases. As the second achievement of this review, we also explore the therapeutic efficacy and antiinflammatory effects of BBR regarding its modulatory action.
Collapse
Affiliation(s)
- Saeed Mohammadian Haftcheshmeh
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.,Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Maliheh Abedi
- Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, Iran
| | - Kazem Mashayekhi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Javad Mousavi
- Department of Immunology and Allergy, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
32
|
Amekyeh H, Alkhader E, Sabra R, Billa N. Prospects of Curcumin Nanoformulations in Cancer Management. Molecules 2022; 27:361. [PMID: 35056675 PMCID: PMC8777756 DOI: 10.3390/molecules27020361] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
There is increasing interest in the use of natural compounds with beneficial pharmacological effects for managing diseases. Curcumin (CUR) is a phytochemical that is reportedly effective against some cancers through its ability to regulate signaling pathways and protein expression in cancer development and progression. Unfortunately, its use is limited due to its hydrophobicity, low bioavailability, chemical instability, photodegradation, and fast metabolism. Nanoparticles (NPs) are drug delivery systems that can increase the bioavailability of hydrophobic drugs and improve drug targeting to cancer cells via different mechanisms and formulation techniques. In this review, we have discussed various CUR-NPs that have been evaluated for their potential use in treating cancers. Formulations reviewed include lipid, gold, zinc oxide, magnetic, polymeric, and silica NPs, as well as micelles, dendrimers, nanogels, cyclodextrin complexes, and liposomes, with an emphasis on their formulation and characteristics. CUR incorporation into the NPs enhanced its pharmaceutical and therapeutic significance with respect to solubility, absorption, bioavailability, stability, plasma half-life, targeted delivery, and anticancer effect. Our review shows that several CUR-NPs have promising anticancer activity; however, clinical reports on them are limited. We believe that clinical trials must be conducted on CUR-NPs to ensure their effective translation into clinical applications.
Collapse
Affiliation(s)
- Hilda Amekyeh
- Department of Pharmaceutics, School of Pharmacy, University of Health and Allied Sciences, Ho PMB 31, Ghana;
| | - Enas Alkhader
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan;
| | - Rayan Sabra
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Nashiru Billa
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
33
|
Nunes PR, Romao-Veiga M, Ribeiro VR, de Oliveira LRC, Zupelli TG, Abbade JF, Peracoli JC, Peracoli MTS. Vitamin D decreases cell death and inflammation in human umbilical vein endothelial cells and placental explants from pregnant women with preeclampsia cultured with TNF-α. Immunol Invest 2021; 51:1630-1646. [PMID: 34937520 DOI: 10.1080/08820139.2021.2017452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study evaluated the impact of vitamin D on Human Umbilical Vein Endothelial Cells (HUVEC) and inflammation in placental explants from women with preeclampsia (PE). HUVEC and explants from 10 late-onset PE (LOPE), 10 early-onset (EOPE), and 10 normotensive (NT) pregnant women were cultured with/without tumor necrosis factor (TNF-α) and VD. Interleukin-1β (IL-1β), 18 (IL-18), TNF-α, and TNF-related apoptosis-inducing ligand (TRAIL) were detected by ELISA. High mobility group box 1 (HMGB1) was determined by qPCR/Western blotting, and cell death by flow cytometry. Statistical significance was accepted at p < .05. Compared to the NT group, the endogenous levels of IL-1β, TNF-α, and IL-18 were higher in the PE group. The stimulus with TNF-α increased cytokines in NT, TNF-α in EOPE/LOPE, IL-18 in LOPE, and all cytokines in HUVEC. TNF-α+VD treatment decreased cytokines in explant and HUVEC supernatants. TRAIL was higher in EOPE versus NT, while TNF-α increased this receptor in NT versus control. In HUVEC, TNF-α increased TRAIL versus control, and TNF-α+VD decreased levels compared to only TNF-α stimulus. Protein expression of HMGB1 was higher in explant cultures treated with TNF-α and decreased after TNF-α+VD treatment in all groups, and gene/protein expression in HUVEC. Gene expression was elevated in EOPE versus NT and LOPE, and TNF-α increased HMGB1 in NT versus control, while TNF-α+VD decreased mRNA levels in EOPE. TNF-α stimulus increased late apoptosis in HUVEC, while VD increased viability. These in vitro observations suggest that VD administration to women with preeclampsia may be beneficial in reducing placental inflammation and cell death.
Collapse
Affiliation(s)
| | - Mariana Romao-Veiga
- Botucatu Medical School, Sao Paulo State University (Unesp), Sao Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
34
|
Zuo R, Ye LF, Huang Y, Song ZQ, Wang L, Zhi H, Zhang MY, Li JY, Zhu L, Xiao WJ, Shang HC, Zhang Y, He RR, Chen Y. Hepatic small extracellular vesicles promote microvascular endothelial hyperpermeability during NAFLD via novel-miRNA-7. J Nanobiotechnology 2021; 19:396. [PMID: 34838052 PMCID: PMC8626954 DOI: 10.1186/s12951-021-01137-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/14/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND A recent study has reported that patients with nonalcoholic fatty liver disease (NAFLD) are more susceptible to coronary microvascular dysfunction (CMD), which may predict major adverse cardiac events. However, little is known regarding the causes of CMD during NAFLD. In this study, we aimed to explore the role of hepatic small extracellular vesicles (sEVs) in regulating the endothelial dysfunction of coronary microvessels during NAFLD. RESULTS We established two murine NAFLD models by feeding mice a methionine-choline-deficient (MCD) diet for 4 weeks or a high-fat diet (HFD) for 16 weeks. We found that the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome-dependent endothelial hyperpermeability occurred in coronary microvessels during both MCD diet and HFD-induced NAFLD. The in vivo and in vitro experiments proved that novel-microRNA(miR)-7-abundant hepatic sEVs were responsible for NLRP3 inflammasome-dependent endothelial barrier dysfunction. Mechanistically, novel-miR-7 directly targeted lysosomal associated membrane protein 1 (LAMP1) and promotes lysosomal membrane permeability (LMP), which in turn induced Cathepsin B-dependent NLRP3 inflammasome activation and microvascular endothelial hyperpermeability. Conversely, a specific novel-miR-7 inhibitor markedly improved endothelial barrier integrity. Finally, we proved that steatotic hepatocyte was a significant source of novel-miR-7-contained hepatic sEVs, and steatotic hepatocyte-derived sEVs were able to promote NLRP3 inflammasome-dependent microvascular endothelial hyperpermeability through novel-miR-7. CONCLUSIONS Hepatic sEVs contribute to endothelial hyperpermeability in coronary microvessels by delivering novel-miR-7 and targeting the LAMP1/Cathepsin B/NLRP3 inflammasome axis during NAFLD. Our study brings new insights into the liver-to-microvessel cross-talk and may provide a new diagnostic biomarker and treatment target for microvascular complications of NAFLD.
Collapse
Affiliation(s)
- Rui Zuo
- Department of Pharmacology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510000, China
| | - Li-Feng Ye
- Department of Pharmacology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510000, China
| | - Yi Huang
- Department of Stomatology, The First Affiliated Hospital, The School of Dental Medicine, Jinan University, Guangzhou, China
| | - Zi-Qing Song
- Department of Pharmacology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510000, China
| | - Lei Wang
- Department of Pharmacology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510000, China
| | - Hui Zhi
- Department of Pharmacology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510000, China
| | - Min-Yi Zhang
- Department of Pharmacology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510000, China
| | - Jie-Yi Li
- Department of Pharmacology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510000, China
| | - Li Zhu
- Department of Pharmacology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510000, China
| | - Wen-Jing Xiao
- Department of Pharmacology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510000, China
| | - Hong-Cai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, 5 Hai Yun Cang, Dongcheng District, Beijing, 100700, China.
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4849 Calhoun Road, Houston, TX, 77204-5037, USA.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility, Jinan University, 601, West Huangpu Road, Guangzhou, 510632, China.
| | - Yang Chen
- Department of Pharmacology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232, Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510000, China.
| |
Collapse
|
35
|
Saiki O, Uda H. Ratio of serum amyloid A to C-reactive protein is constant in the same patients but differs greatly between patients with inflammatory diseases. Scand J Immunol 2021; 95:e13121. [PMID: 34796986 DOI: 10.1111/sji.13121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 11/28/2022]
Abstract
C-reactive protein (CRP) is commonly monitored to track the activity of inflammation and has become the gold standard in the management of all inflammatory diseases. Indeed, serum amyloid A (SAA) have seemed to correlate moderately with CRP, but the discrepancy of CRP and SAA levels has often been reported, especially in rheumatoid arthritis. Then, we examined CRP reflects a real magnitude of inflammation in patients with rheumatic and infectious inflammatory diseases. A total of 414 patients with infectious and non-infectious inflammatory diseases were enrolled. At initial visit, each patient underwent a clinical assessment and had also laboratory tests such as SAA and CRP. In each patient, we carried out a longitudinal analysis of CRP and SAA levels. We determined the inter-individual correlation between SAA and CRP and also clarified intra-individual changes of SAA/CRP ratio. SAA and CRP levels changed approximately linearly over time within individuals irrespective of rheumatic and infectious inflammatory diseases. However, SAA/CRP ratios differed dramatically between patients (from 0.117 to 50.8, median 5.71). In patients with high SAA/CRP ratio (>8.44), SAA is a better predictor of inflammation than CRP. In contrast, CRP is a better predictor in patients with low ratio (<3.52). Our results suggest that the SAA/CRP ratio differed greatly between individuals but was constant in intra-individuals. Low CRP levels could be accompanied by SAA levels predicting any degree of inflammation, implying that CRP is not reflecting a real magnitude of inflammation. To evaluate the real magnitude of inflammation, to access the SAA/CRP ratio in advance is essential.
Collapse
Affiliation(s)
- Osamu Saiki
- Department of Rheumatology, Higashiosaka City Medical Center, Higashiosaka City, Japan
| | - Hiroshi Uda
- Department of Rheumatology, Higashiosaka City Medical Center, Higashiosaka City, Japan
| |
Collapse
|
36
|
Expression of ORAI1 and STIM1 genes in blood of patients with pulmonary tuberculosis. Cent Eur J Immunol 2021; 46:275-282. [PMID: 34764799 PMCID: PMC8568024 DOI: 10.5114/ceji.2021.106998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/17/2020] [Indexed: 12/04/2022] Open
Abstract
This study aimed to detect the expression level of ORAI1 and STIM1 genes in blood of patients with bilateral pulmonary tuberculosis (TB) in comparison with the control group. Both genes encode proteins providing store-operated Ca2+ entry (SOCE) into the cells, including immune cells, to activate transcriptional factors for producing cytokines and inflammation-restricting proteins. The study included 45 patients with confirmed TB, aged 20 to 86, and 35 volunteers, aged from 21 to 73, without active TB infection. The expression of ORAI1 and STIM1 genes in blood was performed by real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as the referent gene. Inflammation was assessed by levels of interferon γ (IFN-γ) and interleukin 18 (IL-18) in serum (ELISA method). The results showed lower expression of ORAI1 in blood and higher levels of IFN-γ and IL-18 in serum of TB patients than that of the control group and no differences in expression of the STIM1 gene. It indicates some impairment in the SOCE mechanism of immune cells, which is associated with TB.
Collapse
|
37
|
Nunes PR, Mattioli SV, Sandrim VC. NLRP3 Activation and Its Relationship to Endothelial Dysfunction and Oxidative Stress: Implications for Preeclampsia and Pharmacological Interventions. Cells 2021; 10:cells10112828. [PMID: 34831052 PMCID: PMC8616099 DOI: 10.3390/cells10112828] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/12/2023] Open
Abstract
Preeclampsia (PE) is a specific syndrome of human pregnancy, being one of the main causes of maternal death. Persistent inflammation in the endothelium stimulates the secretion of several inflammatory mediators, activating different signaling patterns. One of these mechanisms is related to NLRP3 activation, initiated by high levels of danger signals such as cholesterol, urate, and glucose, producing IL-1, IL-18, and cell death by pyroptosis. Furthermore, reactive oxygen species (ROS), act as an intermediate to activate NLRP3, contributing to subsequent inflammatory cascades and cell damage. Moreover, increased production of ROS may elevate nitric oxide (NO) catabolism and consequently decrease NO bioavailability. NO has many roles in immune responses, including the regulation of signaling cascades. At the site of inflammation, vascular endothelium is crucial in the regulation of systemic inflammation with important implications for homeostasis. In this review, we present the important role of NLRP3 activation in exacerbating oxidative stress and endothelial dysfunction. Considering that the causes related to these processes and inflammation in PE remain a challenge for clinical practice, the use of drugs related to inhibition of the NLRP3 may be a good option for future solutions for this disease.
Collapse
|
38
|
Namba T, Tsuge M, Yashiro M, Saito Y, Liu K, Nishibori M, Morishima T, Tsukahara H. Anti-high mobility group box 1 monoclonal antibody suppressed hyper-permeability and cytokine production in human pulmonary endothelial cells infected with influenza A virus. Inflamm Res 2021; 70:1101-1111. [PMID: 34455489 PMCID: PMC8403468 DOI: 10.1007/s00011-021-01496-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/18/2021] [Accepted: 08/20/2021] [Indexed: 11/24/2022] Open
Abstract
Objective High mobility group box-1 (HMGB1) has been reported to be involved in influenza A virus-induced acute respiratory distress syndrome (ARDS). We studied the efficacy of an anti-HMGB1 mAb using an in vitro model of TNF-α stimulation or influenza A virus infection in human pulmonary microvascular endothelial cells (HMVECs). Methods Vascular permeability of HMVECs was quantified using the Boyden chamber assay under tumor necrosis factor-α (TNF-α) stimulation or influenza A virus infection in the presence of anti-HMGB1 mAb or control mAb. The intracellular localization of HMGB1 was assessed by immunostaining. Extracellular cytokine concentrations and intracellular viral mRNA expression were quantified by the enzyme-linked immunosorbent assay and quantitative reverse transcription PCR, respectively. Results Vascular permeability was increased by TNF-α stimulation or influenza A infection; HMVECs became elongated and the intercellular gaps were extended. Anti-HMGB1 mAb suppressed both the increase in permeability and the cell morphology changes. Translocation of HMGB1 to the cytoplasm was observed in the non-infected cells. Although anti-HMGB1 mAb did not suppress viral replication, it did suppress cytokine production in HMVECs. Conclusion Anti-HMGB1 mAb might be an effective therapy for severe influenza ARDS.
Collapse
Affiliation(s)
- Takahiro Namba
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Mitsuru Tsuge
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Masato Yashiro
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yukie Saito
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Keyue Liu
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tsuneo Morishima
- Department of Pediatrics, Aichi Medical University, Nagakute, Japan
| | - Hirokazu Tsukahara
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
39
|
Das B, Sarkar C, Rawat VS, Kalita D, Deka S, Agnihotri A. Promise of the NLRP3 Inflammasome Inhibitors in In Vivo Disease Models. Molecules 2021; 26:4996. [PMID: 34443594 PMCID: PMC8399941 DOI: 10.3390/molecules26164996] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/28/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
Nucleotide-binding oligomerization domain NOD-like receptors (NLRs) are conserved cytosolic pattern recognition receptors (PRRs) that track the intracellular milieu for the existence of infection, disease-causing microbes, as well as metabolic distresses. The NLRP3 inflammasome agglomerates are consequent to sensing a wide spectrum of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs). Certain members of the NLR family have been documented to lump into multimolecular conglomerates called inflammasomes, which are inherently linked to stimulation of the cysteine protease caspase-1. Following activation, caspase-1 severs the proinflammatory cytokines interleukin (IL)-1β and IL-18 to their biologically active forms, with consequent commencement of caspase-1-associated pyroptosis. This type of cell death by pyroptosis epitomizes a leading pathway of inflammation. Accumulating scientific documentation has recorded overstimulation of NLRP3 (NOD-like receptor protein 3) inflammasome involvement in a wide array of inflammatory conditions. IL-1β is an archetypic inflammatory cytokine implicated in multiple types of inflammatory maladies. Approaches to impede IL-1β's actions are possible, and their therapeutic effects have been clinically demonstrated; nevertheless, such strategies are associated with certain constraints. For instance, treatments that focus on systemically negating IL-1β (i.e., anakinra, rilonacept, and canakinumab) have been reported to result in an escalated peril of infections. Therefore, given the therapeutic promise of an NLRP3 inhibitor, the concerted escalated venture of the scientific sorority in the advancement of small molecules focusing on direct NLRP3 inflammasome inhibition is quite predictable.
Collapse
Affiliation(s)
- Biswadeep Das
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Virbhadra Road, Rishikesh 249203, Uttarakhand, India;
| | - Chayna Sarkar
- Department of Clinical Pharmacology & Therapeutics, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences (NEIGRIHMS), Mawdiangdiang, Shillong 793018, Meghalaya, India;
| | - Vikram Singh Rawat
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), Virbhadra Road, Rishikesh 249203, Uttarakhand, India;
| | - Deepjyoti Kalita
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Virbhadra Road, Rishikesh 249203, Uttarakhand, India; (D.K.); (S.D.)
| | - Sangeeta Deka
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Virbhadra Road, Rishikesh 249203, Uttarakhand, India; (D.K.); (S.D.)
| | - Akash Agnihotri
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Virbhadra Road, Rishikesh 249203, Uttarakhand, India;
| |
Collapse
|
40
|
Gao S, Quick C, Guasch-Ferre M, Zhuo Z, Hutchinson JM, Su L, Hu F, Lin X, Christiani D. The Association Between Inflammatory and Oxidative Stress Biomarkers and Plasma Metabolites in a Longitudinal Study of Healthy Male Welders. J Inflamm Res 2021; 14:2825-2839. [PMID: 34234508 PMCID: PMC8254568 DOI: 10.2147/jir.s316262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/02/2021] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Human metabolism and inflammation are closely related modulators of homeostasis and immunity. Metabolic profiling is a useful tool to understand the association between metabolism and inflammation at a systemic level. OBJECTIVE To investigate the longitudinal associations between the concentration of plasma metabolites and biomarkers related to inflammation and oxidative stress. METHODS We conducted a repeated cross-sectional analysis consisting of 8 short-term panels that included 88 healthy adult male welders in Massachusetts, USA. In each panel, we collected 1-6 repeated measurements of blood and urine. We used a human vascular injury panel assay and custom cytokine/chemokine assay to quantify inflammatory biomarker plasma levels, liquid chromatography-mass spectrometry to quantify the concentrations of 665 plasma metabolites, and a competitive enzyme-linked immunoassay to quantify urinary 8-OHdG and 8-isoprostane levels. We used linear mixed effects models to estimate the longitudinal association between each inflammatory and oxidative stress biomarker and each metabolite. RESULTS At a 5% FDR threshold, we detected ≥1metabolite association for 8 unique inflammatory and oxidative stress biomarkers: urinary 8-isoprostane, plasma C-reactive protein (CRP), serum amyloid A (SAA), intercellular adhesion molecule 1, circulating vascular cell adhesion molecule-1, interleukin 8 (IL-8), interleukin 10 (IL-10) and vascular endothelial growth factor. Specifically, 3 metabolites in the androgenic steroids pathway were negatively associated with SAA; 3 dihydrosphingomyelins metabolites were positively associated with 1 or more of CRP, SAA, IL-8 and IL-10; 4 metabolites in acyl choline metabolism pathways were negatively associated with IL-8; 7 lysophospholipid metabolites were negatively associated with 1 or more of CRP, SAA and IL-8; 4 sphingomyelins were positively associated with CRP and/or SAA; and 10 metabolites in the xanthine pathway were positively associated with urinary 8-isoprostane. CONCLUSION We found that metabolites in phospholipid groups had strong associations with multiple inflammatory biomarkers, especially CRP, SAA and IL-8. The mechanism of these associations warrants further investigation.
Collapse
Affiliation(s)
- Shangzhi Gao
- Environmental Health, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - Corbin Quick
- Biostatistics, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - Marta Guasch-Ferre
- Nutrition, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - Zhu Zhuo
- Biostatistics, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - John M Hutchinson
- Biostatistics, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - Li Su
- Environmental Health, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - Frank Hu
- Nutrition, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - Xihong Lin
- Biostatistics, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - David Christiani
- Environmental Health, Harvard University T H Chan School of Public Health, Boston, MA, USA
- Pulmonary and Critical Care Division, Department of Medicine, MA General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Machin A, Susilo I, Purwanto DA. Green tea and its active compound epigallocathechin-3-gallate (EGCG) inhibit neuronal apoptosis in a middle cerebral artery occlusion (MCAO) model. J Basic Clin Physiol Pharmacol 2021; 32:319-325. [PMID: 34214383 DOI: 10.1515/jbcpp-2020-0454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/20/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVES To determine the effect of green tea with the active ingredient epigallocathechin-3-gallate (EGCG) on the inhibition of apoptosis in the middle cerebral artery occlusion (MCAO) model. METHODS Four month old male Rattus norvegicus rats with a body weight of 200-275 g was used for the MCAO model and divided into five groups, and the treatment was carried out for 7 days. Before being sacrificed, the subject had 1 cc of blood drawn for high mobility group box 1 (HMGB-1) examination using enzyme-linked immunosorbent assay (ELISA), and after being sacrificed, the brain tissue specimen was taken to examine caspase-3 and B-cell lymphoma 3 (BCL-3) using immunohistochemistry methods. RESULTS There was no significant difference in HMGB-1 results for the treatment group compared to the control group (P1: 384.20 ± 231.72 [p = 0.553]; P2: 379.11 ± 268.4 [p = 0.526]; P3: 284, 87 ± 276.19 [p = 0.140]; P4: 435.32 ± 279.95 [p = 0.912]). There is a significant increase in BCL-2 expression between the treatment group compared to the control group (P1: 2.58 ± 0.51 [p = 0.04]; P2: 3.36 ± 0.50 [p<0.001]; P3: 4.00 ± 0.42 [p<0.001]; P4: 3.60 ± 0.52 [p<0.001]). There was a significant difference in caspase-3 expression compared to the control group in the P3 group (P1: 4.33 ± 0.49 [p = 0.652]; P2: 4.09 ± 0.30 [p = 0.136]; P3: 3.58 ± 0.51 [p = 0.01]; P4: 3.89 ± 0.42 [p = 0.063]). There is no correlation between HMGB-1 and caspase-3 (r = -0.063; p = 0.613) or BCL-2 (r = -0.106; p = 0.396). There is significant negative correlation between caspase-3 and BCL-2 (r = -0.459; p = 0.000). CONCLUSIONS Green tea with the active ingredient EGCG can inhibit neuronal cell death through the apoptotic pathway and not through the activation of HMGB-1.
Collapse
Affiliation(s)
- Abdulloh Machin
- Department Neurology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Imam Susilo
- Department Clinical Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Djoko A Purwanto
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
42
|
Al-Musawi AK, Al-Rubae’i SHN, Mahdi MF. Role of Caspase-3, IL-1β and oxidative stress in Iraqi women with breast cancer. JOURNAL OF PHYSICS: CONFERENCE SERIES 2021; 1853:012050. [DOI: 10.1088/1742-6596/1853/1/012050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Abstract
Breast Cancer is caused by malignant tissue cells and has become one of the world’s biggest medical problems. The goal of this research was to determine the serum concentration of markers of oxidative stress that play an important role in the multiple factors involved in breast cancer development, growth, and invasion. Serum of 90 women patients (45 breast cancer and 45 benign breast tumors) and 42 healthy individuals as control group were used in this study. Serum level of MDA, PC, 8-OHdG, IL-1β and Caspase-3 were measured by ELISA. Highly significantly increased levels (p<0.01) of MDA, PC, 8-OHdG, IL-1β and Caspase-3 were found in breast cancer and benign breast tumor when compared to healthy controls. The MDA and Caspase-3 level are considered strong parameters to diagnose and detection for breast cancer using the ROC curve. High lipid peroxidation is a significant risk factor for breast cancer and the activation of apoptosis and pro-inflammatory activity may be due to elevated levels of IL-1β & Caspase-3 in breast cancer cells. Nonetheless, lipid peroxidation and Caspase-3 are major factors in breast cancer growth and progression.
Collapse
|
43
|
Wang S, Zhang J, Zhang Y, Yang J, Wang L, Qi Y, Han X, Zhou X, Miao F, Chen T, Wang Y, Zhang F, Zhang S, Hu R. Cytokine Storm in Domestic Pigs Induced by Infection of Virulent African Swine Fever Virus. Front Vet Sci 2021; 7:601641. [PMID: 33553280 PMCID: PMC7862125 DOI: 10.3389/fvets.2020.601641] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/10/2020] [Indexed: 01/03/2023] Open
Abstract
African swine fever, caused by African swine fever virus (ASFV), is a highly contagious hemorrhagic disease of domestic pigs. The current continent-wide pandemic has persisted for over 10 years, and its economy-devastating effect was highlighted after spreading to China, which possesses half of the world pig industry. So far, development of an effective and safe vaccine has not been finished largely due to the knowledge gaps in pathogenesis and immunology, particularly the role of cytokines in the host's immune response. Therefore, we performed experiments in domestic pigs to analyze the kinetics of representative circulating interferons (IFNs), interleukins (ILs), growth factors, tumor necrosis factors (TNFs), and chemokines induced by infection of type II virulent ASFV SY18. Pigs infected with this Chinese prototypical isolate developed severe clinical manifestations mostly from 3 days post inoculation (dpi) and died from 7 to 8 dpi. Serum analysis revealed a trend of robust and sustained elevation of pro-inflammatory cytokines including TNF-α, IFN-α, IL-1β, IL-6, IL-8, IL-12, IL-18, RANTES (regulated upon activation, normal T cell expressed and secreted), and IFN-γ-induced protein 10 (IP-10) from 3 dpi, but not the anti-inflammatory cytokines IL-10 and transforming growth factor-β (TGF-β). Moreover, secondary drastic increase of the levels of TNF-α, IL-1β, IL-6, and IL-8, as well as elevated IL-10, was observed at the terminal phase of infection. This pattern of cytokine secretion clearly drew an image of a typical cytokine storm characterized by delayed and dysregulated initiation of the secretion of pro-inflammatory cytokine and imbalanced pro- and anti-inflammatory response, which paved a way for further understanding of the molecular basis of ASFV pathogenesis.
Collapse
Affiliation(s)
- Shuchao Wang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Jingyuan Zhang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China.,College of Life Sciences, University of Ningxia, Yinchuan, China
| | - Yanyan Zhang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Jinjin Yang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Lidong Wang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Yu Qi
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Xun Han
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Xintao Zhou
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China.,College of Life Sciences, University of Ningxia, Yinchuan, China
| | - Faming Miao
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Teng Chen
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Ying Wang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Fei Zhang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Shoufeng Zhang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Rongliang Hu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| |
Collapse
|
44
|
de Alcântara BGV, Oliveira FPD, Katchborian-Neto A, Casoti R, Domingos ODS, Santos MFC, Oliveira RBD, Paula ACCD, Dias DF, Soares MG, Chagas-Paula DA. Confirmation of ethnopharmacological anti-inflammatory properties of Ocotea odorifera and determination of its main active compounds. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113378. [PMID: 32918995 DOI: 10.1016/j.jep.2020.113378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ocotea odorifera (Vell.) Rohwer has been used in traditional medicine in the south of Brazil for the treatment of inflammatory-related conditions, such as rheumatism. However, there is not any scientific evidence for popular use. AIMS OF THE STUDY To investigate the O. odorifera anti-inflammatory potential and identification of the main active compounds through metabolomic approaches. MATERIALS AND METHODS In order to in vivo evaluate the inhibition of the main inflammatory pathways, the leaf decoction, leaf extract, its fractions and the essential oils from leaves and branches were submitted to the ear oedema and the neutrophils recruitment assays. The samples were chemically investigated by UHPLC-HRMS or GC-MS. The multivariate statistical analysis (PLS-DA) was used to determine the substances correlated with the anti-inflammatory properties. RESULTS The in vivo studies indicated a promissory anti-inflammatory effect on both oedema and neutrophil recruitment for some samples including the decoction; hydroethanolic, ethyl acetate, and chloroform fractions; and the essential oils. According to the PLS-DA, the S-(+)-reticuline was evidenced as one of the three compounds of the plant most correlated with both anti-inflammatory mechanisms. Thus, S-(+)-reticuline was isolated and the anti-inflammatory activity was confirmed. Moreover, for the first time, the dual inhibition of oedema and neutrophil recruitment was uncovered and reported. Another compound positively correlated with the anti-inflammatory activity is likely to be a new compound since zero hit on the comprehensive mass database were encountered. The compounds found in the essential oils also showed significant anti-inflammatory activity, and thus indeed the plant has different classes of active substances. CONCLUSIONS The decoction of O. odorifera and different fractions from its ethanolic extract demonstrated anti-inflammatory activity through dual inhibition of oedema and neutrophil recruitment. Thus, corroborating the popular medicinal use of the decoction of leaves from O. odorifera as an anti-inflammatory medicine. Besides, reticuline, one of the main active compounds, was isolated and proved to display the dual mechanism of action, indicating the O. odorifera as a promising source of active compounds for the treatment of inflammatory conditions.
Collapse
Affiliation(s)
- Bianca Gonçalves Vasconcelos de Alcântara
- Laboratory of Phytochemistry and Medicinal Chemistry, Chemistry Institute, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700, 37130-001, Alfenas, Minas Gerais, Brazil
| | - Felipe Policarpo de Oliveira
- Laboratory of Phytochemistry and Medicinal Chemistry, Chemistry Institute, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700, 37130-001, Alfenas, Minas Gerais, Brazil
| | - Albert Katchborian-Neto
- Laboratory of Phytochemistry and Medicinal Chemistry, Chemistry Institute, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700, 37130-001, Alfenas, Minas Gerais, Brazil
| | - Rosana Casoti
- AsterBioChem, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. Do Café S/nº, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Olívia da Silva Domingos
- Laboratory of Phytochemistry and Medicinal Chemistry, Chemistry Institute, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700, 37130-001, Alfenas, Minas Gerais, Brazil
| | - Mário Ferreira Conceição Santos
- Laboratory of Phytochemistry and Medicinal Chemistry, Chemistry Institute, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700, 37130-001, Alfenas, Minas Gerais, Brazil
| | - Rejane Barbosa de Oliveira
- Federal University of Technology - Parana (UTFPR), Rua Cerejeira, S/n°, 85892-000, Santa Helena, Paraná, Brazil
| | - Ana Cláudia Chagas de Paula
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora (UFJF), Rua José Lourenço Kelmer, S/n, 36036-900, Juiz de Fora, Minas Gerais, Brazil
| | - Danielle Ferreira Dias
- Laboratory of Phytochemistry and Medicinal Chemistry, Chemistry Institute, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700, 37130-001, Alfenas, Minas Gerais, Brazil
| | - Marisi Gomes Soares
- Laboratory of Phytochemistry and Medicinal Chemistry, Chemistry Institute, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700, 37130-001, Alfenas, Minas Gerais, Brazil
| | - Daniela Aparecida Chagas-Paula
- Laboratory of Phytochemistry and Medicinal Chemistry, Chemistry Institute, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700, 37130-001, Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
45
|
Zhang H, Zahid A, Ismail H, Tang Y, Jin T, Tao J. An overview of disease models for NLRP3 inflammasome over-activation. Expert Opin Drug Discov 2020; 16:429-446. [PMID: 33131335 DOI: 10.1080/17460441.2021.1844179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Inflammatory reactions, including those mediated by the NLRP3 inflammasome, maintain the body's homeostasis by removing pathogens, repairing damaged tissues, and adapting to stressed environments. However, uncontrolled activation of the NLRP3 inflammasome tends to cause various diseases using different mechanisms. Recently, many inhibitors of the NLRP3 inflammasome have been reported and many are being developed. In order to assess their efficacy, specificity, and mechanism of action, the screening process of inhibitors requires various types of cell and animal models of NLRP3-associated diseases.Areas covered: In the following review, the authors give an overview of the cell and animal models that have been used during the research and development of various inhibitors of the NLRP3 inflammasome.Expert opinion: There are many NLRP3 inflammasome inhibitors, but most of the inhibitors have poor specificity and often influence other inflammatory pathways. The potential risk for cross-reaction is high; therefore, the development of highly specific inhibitors is essential. The selection of appropriate cell and animal models, and combined use of different models for the evaluation of these inhibitors can help to clarify the target specificity and therapeutic effects, which is beneficial for the development and application of drugs targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Hongliang Zhang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ayesha Zahid
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hazrat Ismail
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science. Hefei National Science Center for Physical Sciences at Microscale. University of Science and Technology of China, Hefei, China
| | - Yujie Tang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tengchuan Jin
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
46
|
Baghbani T, Nikzad H, Azadbakht J, Izadpanah F, Haddad Kashani H. Dual and mutual interaction between microbiota and viral infections: a possible treat for COVID-19. Microb Cell Fact 2020; 19:217. [PMID: 33243230 PMCID: PMC7689646 DOI: 10.1186/s12934-020-01483-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
All of humans and other mammalian species are colonized by some types of microorganisms such as bacteria, archaea, unicellular eukaryotes like fungi and protozoa, multicellular eukaryotes like helminths, and viruses, which in whole are called microbiota. These microorganisms have multiple different types of interaction with each other. A plethora of evidence suggests that they can regulate immune and digestive systems and also play roles in various diseases, such as mental, cardiovascular, metabolic and some skin diseases. In addition, they take-part in some current health problems like diabetes mellitus, obesity, cancers and infections. Viral infection is one of the most common and problematic health care issues, particularly in recent years that pandemics like SARS and COVID-19 caused a lot of financial and physical damage to the world. There are plenty of articles investigating the interaction between microbiota and infectious diseases. We focused on stimulatory to suppressive effects of microbiota on viral infections, hoping to find a solution to overcome this current pandemic. Then we reviewed mechanistically the effects of both microbiota and probiotics on most of the viruses. But unlike previous studies which concentrated on intestinal microbiota and infection, our focus is on respiratory system's microbiota and respiratory viral infection, bearing in mind that respiratory system is a proper entry site and residence for viruses, and whereby infection, can lead to asymptomatic, mild, self-limiting, severe or even fatal infection. Finally, we overgeneralize the effects of microbiota on COVID-19 infection. In addition, we reviewed the articles about effects of the microbiota on coronaviruses and suggest some new therapeutic measures.
Collapse
Affiliation(s)
- Taha Baghbani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Nikzad
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Javid Azadbakht
- Department of Radiology, Faculty of Medicin, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Izadpanah
- Food and Drug Laboratory Research Center and Food and Drug Reference Control Laboratories Center, Food & Drug Administration of Iran, MOH & ME, Tehran, Iran
| | - Hamed Haddad Kashani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
47
|
Wyczanska M, Lange-Sperandio B. DAMPs in Unilateral Ureteral Obstruction. Front Immunol 2020; 11:581300. [PMID: 33117389 PMCID: PMC7575708 DOI: 10.3389/fimmu.2020.581300] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) are released from tubular and interstitial cells in the kidney after unilateral ureteral obstruction (UUO). DAMPs are recognized by pattern recognition receptors (PRRs), which mediate the initiation of an immune response and the release of inflammatory cytokines. The animal model of UUO is used for various purposes. UUO in adult mice serves as a model for accelerated renal fibrosis, which is a hallmark of progressive renal disease. UUO in adult mice enables to study cell death, inflammation, and extracellular matrix deposition in the kidney. Neonatal UUO is a model for congenital obstructive nephropathies. It studies inflammation, apoptosis, and interstitial fibrosis in the neonatal kidney, when nephrogenesis is still ongoing. Following UUO, several DAMPs as well as DAMP receptors are upregulated. In adult UUO, soluble uric acid is upregulated and activates the NOD-like receptor family, pyrin domain containing-3 (NLRP3) inflammasome, which promotes fibrosis, apoptosis, and reactive oxygen species (ROS) injury. Further DAMPs associated with UUO are uromodulin, members of the IL-1 family, and necrotic cell DNA, all of which promote sterile inflammation. In neonatal UUO, the receptor for advanced glycation endproducts (RAGE) is highly upregulated. RAGE is a ligand for several DAMPs, including high mobility group box 1 (HMGB1) and S100 proteins, which play an important role in renal fibrosis. Additionally, necroptosis is an important mechanism of cell death, besides apoptosis, in neonatal UUO. It is highly inflammatory due to release of cytokines and specific DAMPs. The release and recognition of DAMPs initiate sterile inflammation, which makes them good candidates to develop and improve diagnostic and therapeutic strategies in renal fibrosis and congenital obstructive nephropathies.
Collapse
Affiliation(s)
- Maja Wyczanska
- Department of Pediatrics, Dr. v. Hauner Children's Hospital, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Bärbel Lange-Sperandio
- Department of Pediatrics, Dr. v. Hauner Children's Hospital, University Hospital, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
48
|
Bai B, Yang Y, Wang Q, Li M, Tian C, Liu Y, Aung LHH, Li PF, Yu T, Chu XM. NLRP3 inflammasome in endothelial dysfunction. Cell Death Dis 2020; 11:776. [PMID: 32948742 PMCID: PMC7501262 DOI: 10.1038/s41419-020-02985-x] [Citation(s) in RCA: 298] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/24/2022]
Abstract
Inflammasomes are a class of cytosolic protein complexes. They act as cytosolic innate immune signal receptors to sense pathogens and initiate inflammatory responses under physiological and pathological conditions. The NLR-family pyrin domain-containing protein 3 (NLRP3) inflammasome is the most characteristic multimeric protein complex. Its activation triggers the cleavage of pro-interleukin (IL)-1β and pro-IL-18, which are mediated by caspase-1, and secretes mature forms of these mediators from cells to promote the further inflammatory process and oxidative stress. Simultaneously, cells undergo pro-inflammatory programmed cell death, termed pyroptosis. The danger signals for activating NLRP3 inflammasome are very extensive, especially reactive oxygen species (ROS), which act as an intermediate trigger to activate NLRP3 inflammasome, exacerbating subsequent inflammatory cascades and cell damage. Vascular endothelium at the site of inflammation is actively involved in the regulation of inflammation progression with important implications for cardiovascular homeostasis as a dynamically adaptable interface. Endothelial dysfunction is a hallmark and predictor for cardiovascular ailments or adverse cardiovascular events, such as coronary artery disease, diabetes mellitus, hypertension, and hypercholesterolemia. The loss of proper endothelial function may lead to tissue swelling, chronic inflammation, and the formation of thrombi. As such, elimination of endothelial cell inflammation or activation is of clinical relevance. In this review, we provided a comprehensive perspective on the pivotal role of NLRP3 inflammasome activation in aggravating oxidative stress and endothelial dysfunction and the possible underlying mechanisms. Furthermore, we highlighted the contribution of noncoding RNAs to NLRP3 inflammasome activation-associated endothelial dysfunction, and outlined potential clinical drugs targeting NLRP3 inflammasome involved in endothelial dysfunction. Collectively, this summary provides recent developments and perspectives on how NLRP3 inflammasome interferes with endothelial dysfunction and the potential research value of NLRP3 inflammasome as a potential mediator of endothelial dysfunction.
Collapse
Affiliation(s)
- Baochen Bai
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yanyan Yang
- Department of lmmunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Qi Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China
| | - Chao Tian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yan Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China
| | - Lynn Htet Htet Aung
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China.
- Department of Cardiac Ultrasound, The Affiliated hospital of Qingdao University, Qingdao, 266000, China.
| | - Xian-Ming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, 266032, China.
| |
Collapse
|
49
|
Korhonen E, Bisevac J, Hyttinen JMT, Piippo N, Hytti M, Kaarniranta K, Petrovski G, Kauppinen A. UV-B-Induced Inflammasome Activation Can Be Prevented by Cis-Urocanic Acid in Human Corneal Epithelial Cells. Invest Ophthalmol Vis Sci 2020; 61:7. [PMID: 32271889 PMCID: PMC7401861 DOI: 10.1167/iovs.61.4.7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose The cornea is continually exposed to highly energetic solar UV-B (280-320 nm). Our aim was to investigate whether UV-B triggers the activation of NLRP3 inflammasomes and the production of IL-1β and/or IL-18 in human corneal epithelial (HCE) cells. Additionally, we studied the capability of cis-urocanic acid (cis-UCA) to prevent inflammasome activation or alleviate inflammation through other signaling pathways. Methods HCE-2 cell line and primary HCE cells were primed using lipopolysaccharide or TNF-α. Thereafter, cells were exposed to UV-B before or after the addition of cis-UCA or caspase-1 inhibitor. Caspase-1 activity was measured from cell lysates by an enzymatic assay. IL-1β, IL-18, IL-6, IL-8, and NLRP3 levels were detected using the ELISA method from cell culture media. Additionally, intracellular NLRP3 levels were determined by the Western blot technique, and cytotoxicity was measured by the LDH assay. Results UV-B exposure significantly increased caspase-1 activity in TNF-α-primed HCE cells. This result was consistent with the concurrently induced IL-1β secretion. Both caspase-1 activity and release of IL-1β were reduced by cis-UCA. Additionally, UV-B stimulated the caspase-1-independent production of IL-18, an effect also reduced by cis-UCA. Cis-UCA decreased the release of IL-6, IL-8, and LDH in a time-dependent manner when administered to HCE-2 cells after UV-B exposure. Conclusions Our findings demonstrate that UV-B activates inflammasomes in HCE cells. Cis-UCA can prevent the secretion of IL-1β and IL-18 and therapeutically reduces the levels of IL-6, IL-8, and LDH in UV-B-stressed HCE cells.
Collapse
|
50
|
Interaction of Macrophages and Cholesterol-Dependent Cytolysins: The Impact on Immune Response and Cellular Survival. Toxins (Basel) 2020; 12:toxins12090531. [PMID: 32825096 PMCID: PMC7551085 DOI: 10.3390/toxins12090531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cholesterol-dependent cytolysins (CDCs) are key virulence factors involved in many lethal bacterial infections, including pneumonia, necrotizing soft tissue infections, bacterial meningitis, and miscarriage. Host responses to these diseases involve myeloid cells, especially macrophages. Macrophages use several systems to detect and respond to cholesterol-dependent cytolysins, including membrane repair, mitogen-activated protein (MAP) kinase signaling, phagocytosis, cytokine production, and activation of the adaptive immune system. However, CDCs also promote immune evasion by silencing and/or destroying myeloid cells. While there are many common themes between the various CDCs, each CDC also possesses specific features to optimally benefit the pathogen producing it. This review highlights host responses to CDC pathogenesis with a focus on macrophages. Due to their robust plasticity, macrophages play key roles in the outcome of bacterial infections. Understanding the unique features and differences within the common theme of CDCs bolsters new tools for research and therapy.
Collapse
|