1
|
Jiang H, Lu J. Neuroimmune suppression and anhedonia in post-traumatic stress disorder: connecting central and peripheral immunity. PSYCHORADIOLOGY 2025; 5:kkaf004. [PMID: 40160805 PMCID: PMC11952891 DOI: 10.1093/psyrad/kkaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/03/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Affiliation(s)
- Hangyuan Jiang
- Zhejiang University–University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh EH89YL, UK
| | - Jing Lu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou 310003, China
| |
Collapse
|
2
|
Arve-Butler S, Moorman CD. A comprehensive overview of tolerogenic vaccine adjuvants and their modes of action. Front Immunol 2024; 15:1494499. [PMID: 39759532 PMCID: PMC11695319 DOI: 10.3389/fimmu.2024.1494499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025] Open
Abstract
Tolerogenic vaccines represent a therapeutic approach to induce antigen-specific immune tolerance to disease-relevant antigens. As general immunosuppression comes with significant side effects, including heightened risk of infections and reduced anti-tumor immunity, antigen-specific tolerance by vaccination would be game changing in the treatment of immunological conditions such as autoimmunity, anti-drug antibody responses, transplantation rejection, and hypersensitivity. Tolerogenic vaccines induce antigen-specific tolerance by promoting tolerogenic antigen presenting cells, regulatory T cells, and regulatory B cells, or by suppressing or depleting antigen-specific pathogenic T and B cells. The design of tolerogenic vaccines vary greatly, but they all deliver a disease-relevant antigen with or without a tolerogenic adjuvant. Tolerogenic adjuvants are molecules which mediate anti-inflammatory or immunoregulatory effects and enhance vaccine efficacy by modulating the immune environment to favor a tolerogenic immune response to the vaccine antigen. Tolerogenic adjuvants act through several mechanisms, including immunosuppression, modulation of cytokine signaling, vitamin signaling, and modulation of immunological synapse signaling. This review seeks to provide a comprehensive examination of tolerogenic adjuvants currently utilized in tolerogenic vaccines, describing their mechanism of action and examples of their use in human clinical trials and animal models of disease.
Collapse
Affiliation(s)
- Sabine Arve-Butler
- Amgen R&D Postdoctoral Fellows Program, Amgen Inc, South San Francisco, CA, United States
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | | |
Collapse
|
3
|
Jafari N, Abediankenari S. Role of microRNAs in immunoregulatory functions of epithelial cells. BMC Immunol 2024; 25:84. [PMID: 39707170 PMCID: PMC11662810 DOI: 10.1186/s12865-024-00675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024] Open
Abstract
Epithelial cells (ECs) provide the first line of defense against microbial threats and environmental challenges. They participate in the host's immune responses via the expression and secretion of various immune-related molecules such as cytokines and chemokines, as well as interaction with immune cells. A growing body of evidence suggests that the dysregulated function of ECs can be involved in the pathophysiology of a broad range of infectious, autoimmune, and inflammatory diseases, including inflammatory bowel disease (IBD), asthma, multiple sclerosis, and rheumatoid arthritis. To maintain a substantial immunoregulatory function of ECs, precise expression of different molecules and their regulatory effects are indispensable. MicroRNAs (miRNAs, miRs) are small non-coding RNAs that regulate gene expression commonly at post-transcriptional level through degradation of target messenger RNAs (mRNAs) or suppression of protein translation. MiRNAs implicate as critical regulators in many cellular processes, including apoptosis, growth, differentiation, and immune response. Due to the crucial roles of miRNAs in such a vast range of biological processes, they have become the spotlight of biological research for more than two decades, but we are still at the beginning stages of the use of miRNA-based therapies in the improvement of human health. Hence, in the present paper, attempts are made to provide a comprehensive overview with regard to the roles of miRNAs in the immunoregulatory functions of ECs. A better understanding of the molecular mechanisms through which immunoregulatory properties of ECs are manifested, could aid the development of efficient strategies to prevent and treat multiple human diseases.
Collapse
Affiliation(s)
- Narjes Jafari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Abediankenari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
4
|
Ackerley CG, Smith SA, Murray PM, Amancha PK, Van Doren VE, Tharp GK, Arthur RA, Amara RR, Hu YJ, Kelley CF. Integrated analysis of rectal mucosal microbiome and transcriptome reveals a distinct microenvironment among young MSM. JCI Insight 2024; 9:e181720. [PMID: 39352750 PMCID: PMC11601568 DOI: 10.1172/jci.insight.181720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
Crosstalk between the microbiome and gut mucosa-resident immune cells plays a pivotal role in modulating immune responses to pathogens, including responses to HIV infection. However, how these interactions may differ between young men who have sex with men (YMSM) disproportionately impacted by HIV, as compared with older adult MSM (AMSM), is not well understood. A broad analysis of associations between the microbiome and rectal transcriptome revealed 10 microbial families/genera correlated with immunologic gene pathways. Specifically, the rectal transcriptome of YMSM was characterized by upregulation of T cell activation/differentiation pathways and signaling from multiple cytokine families compared with AMSM. The microbiome of YMSM was enriched with pathogenic genera, including Peptostreptococcus, shown to be positively correlated with type I IFN pathways important for antiviral immunity. These findings demonstrate that YMSM have a unique immune phenotype and rectal microenvironment and support further evaluation of biological factors that influence rectal HIV transmission.
Collapse
Affiliation(s)
- Cassie G. Ackerley
- The Hope Clinic of the Emory Vaccine Research Center, Division of Infectious Disease, Department of Medicine, and
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - S. Abigail Smith
- The Hope Clinic of the Emory Vaccine Research Center, Division of Infectious Disease, Department of Medicine, and
| | - Phillip M. Murray
- The Hope Clinic of the Emory Vaccine Research Center, Division of Infectious Disease, Department of Medicine, and
| | | | - Vanessa E. Van Doren
- The Hope Clinic of the Emory Vaccine Research Center, Division of Infectious Disease, Department of Medicine, and
| | - Gregory K. Tharp
- Non Human Primate Genomics Core, Emory National Primate Research Center
| | | | - Rama R. Amara
- Emory National Primate Research Center, and
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| | - Yi-Juan Hu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Colleen F. Kelley
- The Hope Clinic of the Emory Vaccine Research Center, Division of Infectious Disease, Department of Medicine, and
| |
Collapse
|
5
|
Klein Y, David E, Pinto N, Khoury Y, Barenholz Y, Chaushu S. Breaking a dogma: orthodontic tooth movement alters systemic immunity. Prog Orthod 2024; 25:38. [PMID: 39370477 PMCID: PMC11456555 DOI: 10.1186/s40510-024-00537-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND The prevailing paradigm posits orthodontic tooth movement (OTM) as primarily a localized inflammatory process. In this study, we endeavor to elucidate the potential ramifications of mechanical force on systemic immunity, employing a time-dependent approach. MATERIALS AND METHODS A previously described mouse orthodontic model was used. Ni-Ti. springs were set to move the upper 1st-molar in C57BL/6 mice and the amount of OTM was. measured by µCT. Mice were allocated randomly into four experimental groups, each. corresponding to clinical phases of OTM, relative to force application. Terminal blood. samples were collected and a comprehensive blood count test for 7 cell types as well as. proteome profiling of 111 pivotal cytokines and chemokines were conducted. Two controls. groups were included: one comprised non-treated mice and the other mice with inactivated springs. RESULTS Serum immuno-profiling unveiled alterations in cellular immunity, manifesting as. changes in percentages of leukocytes, monocytes, macrophages, neutrophils, and. lymphocytes, alongside key signaling factors in comparison to both control groups. The systemic cellular and molecular alterations triggered by OTM mirrored the dynamics previously described in the local immune response. CONCLUSIONS Although the exact interplay between local and systemic immune responses to orthodontic forces require further elucidation, our findings demonstrate a tangible link between the two. Future investigations should aim to correlate these results with human subjects, and strive to delve deeper into the specific mechanisms by which mechanical force modulates the systemic immune response.
Collapse
Affiliation(s)
- Yehuda Klein
- Department of Orthodontics, Faculty of Dental Medicine, Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel
| | - Eilon David
- Department of Orthodontics, Faculty of Dental Medicine, Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel
| | - Noy Pinto
- Department of Orthodontics, Faculty of Dental Medicine, Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel
| | - Yasmin Khoury
- Department of Orthodontics, Faculty of Dental Medicine, Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel
| | - Yechezkel Barenholz
- Department of Biochemistry, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Stella Chaushu
- Department of Orthodontics, Faculty of Dental Medicine, Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel.
| |
Collapse
|
6
|
Kadam S, Ali A, Pospiech M, Onyemaechi S, Meng Y, Dhuri K, MacKay JA, Alachkar H. Enhanced T cell activation and cytotoxicity against AML via targeted anti-CD99 nanoparticle treatment. Biomed Pharmacother 2024; 179:117265. [PMID: 39167846 DOI: 10.1016/j.biopha.2024.117265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
CD99 is a transmembrane protein overexpressed in Acute Myeloid Leukemia (AML), presenting a potential novel therapeutic target. Our group has previously developed anti-CD99-A192 (α-CD99-A192), comprising of single chain variable fragment (scFv) and elastin-like polypeptides (ELPs), and reported promising anti-leukemic activity in AML preclinical models. Treatment with α-CD99-A192 induced apoptosis in AML cell lines and prolonged survival in AML xenograft models. Considering CD99's expression and role in T cell activation, in the current study, we propose that α-CD99-A192 plays a dual function, i.e., targeting leukemic cells and activating T cells. This manuscript reports the effects of α-CD99-A192 on T cells in the context of AML. α-CD99-A192 treatment enhances T cell proliferation and activation and increases the release of pro-inflammatory cytokines along with increased aggregation of T cells, which culminates in heightened cytotoxicity against leukemic cells. Altogether, these findings suggest α-CD99-A192 enhances T cell activation and cytotoxic potential consistent with dual mechanisms of action for α-CD99-A192.
Collapse
Affiliation(s)
- Shephali Kadam
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Atham Ali
- Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Mateusz Pospiech
- Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Sandra Onyemaechi
- Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Yiting Meng
- Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Kanaka Dhuri
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Houda Alachkar
- Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
7
|
Wang K, Xie Y, Chen X, Ouyang X, Zhao L, Chen H, Xu J. The Activation of Muscarinic Acetylcholine Receptors Protects against Neuroinflammation in a Mouse Model through Attenuating Microglial Inflammation. Int J Mol Sci 2024; 25:10432. [PMID: 39408758 PMCID: PMC11476571 DOI: 10.3390/ijms251910432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Neuroinflammation is a critical factor that contributes to neurological impairment and is closely associated with the onset and progression of neurodegenerative diseases. In the central nervous system (CNS), microglia play a pivotal role in the regulation of inflammation through various signaling pathways. Therefore, mitigating microglial inflammation is considered a promising strategy for restraining neuroinflammation. Muscarinic acetylcholine receptors (mAChRs) are widely expressed in the CNS and exhibit clear neuroprotective effects in various disease models. However, whether the activation of mAChRs can harness benefits in neuroinflammation remains largely unexplored. In this study, the anti-inflammatory effects of mAChRs were found in a neuroinflammation mouse model. The expression of various cytokines and chemokines was regulated in the brains and spinal cords after the administration of mAChR agonists. Microglia were the primary target cells through which mAChRs exerted their anti-inflammatory effects. The results showed that the activation of mAChRs decreased the pro-inflammatory phenotypes of microglia, including the expression of inflammatory cytokines, morphological characteristics, and distribution density. Such anti-inflammatory modulation further exerted neuroprotection, which was found to be even more significant by the direct activation of neuronal mAChRs. This study elucidates the dual mechanisms through which mAChRs exert neuroprotective effects in central inflammatory responses, providing evidence for their application in inflammation-related neurological disorders.
Collapse
Affiliation(s)
- Kaichun Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.W.); (Y.X.); (X.C.); (X.O.)
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuanyuan Xie
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.W.); (Y.X.); (X.C.); (X.O.)
| | - Xixiang Chen
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.W.); (Y.X.); (X.C.); (X.O.)
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoyan Ouyang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.W.); (Y.X.); (X.C.); (X.O.)
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lanxue Zhao
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Hongzhuan Chen
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.W.); (Y.X.); (X.C.); (X.O.)
- Shanghai Frontiers Science Center of TCM Chemical Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianrong Xu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.W.); (Y.X.); (X.C.); (X.O.)
- Shanghai Frontiers Science Center of TCM Chemical Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
8
|
Bellini I, Scribano D, Ambrosi C, Chiovoloni C, Rondón S, Pronio A, Palamara AT, Pietrantoni A, Kashkanova A, Sandoghdar V, D'Amelio S, Cavallero S. Anisakis extracellular vesicles elicit immunomodulatory and potentially tumorigenic outcomes on human intestinal organoids. Parasit Vectors 2024; 17:393. [PMID: 39285481 PMCID: PMC11406850 DOI: 10.1186/s13071-024-06471-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Anisakis spp. are zoonotic nematodes causing mild to severe acute and chronic gastrointestinal infections. Chronic anisakiasis can lead to erosive mucosal ulcers, granulomas and inflammation, potential tumorigenic triggers. How Anisakis exerts its pathogenic potential through extracellular vesicles (EVs) and whether third-stage infective larvae may favor a tumorigenic microenvironment remain unclear. METHODS Here, we investigated the parasite's tumorigenic and immunomodulatory capabilities using comparative transcriptomics, qRT-PCR and protein analysis with multiplex ELISA on human intestinal organoids exposed to Anisakis EVs. Moreover, EVs were characterized in terms of shape, size and concentration using classic TEM, SEM and NTA analyses and advanced interferometric NTA. RESULTS Anisakis EVs showed classic shape features and a median average diameter of around 100 nm, according to NTA and iNTA. Moreover, a refractive index of 5-20% of non-water content suggested their effective biological cargo. After treatment of human intestinal organoids with Anisakis EVs, an overall parasitic strategy based on mitigation of the immune and inflammatory response was observed. Anisakis EVs impacted gene expression of main cytokines, cell cycle regulation and protein products. Seven key genes related to cell cycle regulation and apoptosis were differentially expressed in organoids exposed to EVs. In particular, the downregulation of EPHB2 and LEFTY1 and upregulation of NUPR1 genes known to be associated with colorectal cancer were observed, suggesting their involvement in tumorigenic microenvironment. A statistically significant reduction in specific mediators of inflammation and cell-cycle regulation from the polarized epithelium as IL-33R, CD40 and CEACAM1 from the apical chambers and IL-1B, GM-CSF, IL-15 and IL-23 from both chambers were observed. CONCLUSIONS The results here obtained unravel intestinal epithelium response to Anisakis EVs, impacting host's anthelminthic strategies and revealing for the first time to our knowledge the host-parasite interactions in the niche environment of an emerging accidental zoonosis. Use of an innovative EV characterization approach may also be useful for study of other helminth EVs, since the knowledge in this field is very limited.
Collapse
Affiliation(s)
- Ilaria Bellini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Cecilia Ambrosi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, IRCCS, Rome, Italy
- Laboratory of Microbiology of Chronic-Neurodegenerative Diseases, San Raffaele Open University, IRCCS, Rome, Italy
| | - Claudia Chiovoloni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Silvia Rondón
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Annamaria Pronio
- Digestive Endoscopy Unit, Department of General Surgery and Surgical Specialties "Paride Stefanini", Sapienza University of Rome, Azienda Policlinico Umberto I, Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Anna Kashkanova
- Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Vahid Sandoghdar
- Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Stefano D'Amelio
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Serena Cavallero
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Pasteur Institute, Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
9
|
Jonny J, Sitepu EC, Lister INE, Chiuman L, Putranto TA. The Potential of Anti-Inflammatory DC Immunotherapy in Improving Proteinuria in Type 2 Diabetes Mellitus. Vaccines (Basel) 2024; 12:972. [PMID: 39340004 PMCID: PMC11435532 DOI: 10.3390/vaccines12090972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
A typical consequence of type 2 diabetes mellitus, diabetic kidney disease (DKD) is a significant risk factor for end-stage renal disease. The pathophysiology of diabetic kidney disease (DKD) is mainly associated with the immune system, which involves adhesion molecules and growth factors disruption, excessive expression of inflammatory mediators, decreased levels of anti-inflammatory mediators, and immune cell infiltration in the kidney. Dendritic cells are professional antigen-presenting cells acting as a bridge connecting innate and adaptive immune responses. The anti-inflammatory subset of DCs is also capable of modulating inflammation. Autologous anti-inflammatory dendritic cells can be made by in vitro differentiation of peripheral blood monocytes and utilized as a cell-based therapy. Treatment with anti-inflammatory cytokines, immunosuppressants, and substances derived from pathogens can induce tolerogenic or anti-inflammatory features in ex vivo-generated DCs. It has been established that targeting inflammation can alleviate the progression of DKD. Recent studies have focused on the potential of dendritic cell-based therapies to modulate immune responses favorably. By inducing a tolerogenic phenotype in dendritic cells, it is possible to decrease the inflammatory response and subsequent kidney damage. This article highlights the possibility of using anti-inflammatory DCs as a cell-based therapy for DKD through its role in controlling inflammation.
Collapse
Affiliation(s)
- Jonny Jonny
- Indonesia Army Cellcure Center, Gatot Soebroto Central Army Hospital, Jakarta 10410, Indonesia; (E.C.S.)
- Faculty of Medicine, Dentistry, and Health Sciences, University Prima Indonesia, Medan 20118, Indonesia
- Faculty of Military Medicine, Indonesia Defense University, Jakarta 16810, Indonesia
- Faculty of Medicine, University of Pembangunan Nasional “Veteran” Jakarta, Jakarta 12450, Indonesia
| | - Enda Cindylosa Sitepu
- Indonesia Army Cellcure Center, Gatot Soebroto Central Army Hospital, Jakarta 10410, Indonesia; (E.C.S.)
| | - I Nyoman Ehrich Lister
- Faculty of Medicine, Dentistry, and Health Sciences, University Prima Indonesia, Medan 20118, Indonesia
| | - Linda Chiuman
- Faculty of Medicine, Dentistry, and Health Sciences, University Prima Indonesia, Medan 20118, Indonesia
| | - Terawan Agus Putranto
- Indonesia Army Cellcure Center, Gatot Soebroto Central Army Hospital, Jakarta 10410, Indonesia; (E.C.S.)
| |
Collapse
|
10
|
Guo AJ, Deng QY, Dong P, Zhou L, Shi L. Biomarkers associated with immune-related adverse events induced by immune checkpoint inhibitors. World J Clin Oncol 2024; 15:1002-1020. [PMID: 39193157 PMCID: PMC11346067 DOI: 10.5306/wjco.v15.i8.1002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/13/2024] [Accepted: 06/21/2024] [Indexed: 08/16/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) constitute a pivotal class of immunotherapeutic drugs in cancer treatment. However, their widespread clinical application has led to a notable surge in immune-related adverse events (irAEs), significantly affecting the efficacy and survival rates of patients undergoing ICI therapy. While conventional hematological and imaging tests are adept at detecting organ-specific toxicities, distinguishing adverse reactions from those induced by viruses, bacteria, or immune diseases remains a formidable challenge. Consequently, there exists an urgent imperative for reliable biomarkers capable of accurately predicting or diagnosing irAEs. Thus, a thorough review of existing studies on irAEs biomarkers is indispensable. Our review commences by providing a succinct overview of major irAEs, followed by a comprehensive summary of irAEs biomarkers across various dimensions. Furthermore, we delve into innovative methodologies such as machine learning, single-cell RNA sequencing, multiomics analysis, and gut microbiota profiling to identify novel, robust biomarkers that can facilitate precise irAEs diagnosis or prediction. Lastly, this review furnishes a concise exposition of irAEs mechanisms to augment understanding of irAEs prediction, diagnosis, and treatment strategies.
Collapse
Affiliation(s)
- An-Jie Guo
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Qing-Yuan Deng
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Pan Dong
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Lian Zhou
- Head and Neck Cancer Center, Chongqing University Cancer Hospital, Chongqing 400000, China
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| |
Collapse
|
11
|
Sribnick EA, Warner T, Hall MW. Granulocyte- Macrophage Colony-Stimulating Factor Reverses Immunosuppression Acutely Following a Traumatic Brain Injury and Hemorrhage Polytrauma in a Juvenile Male Rat Model. J Neurotrauma 2024; 41:e1708-e1718. [PMID: 38623766 PMCID: PMC11564832 DOI: 10.1089/neu.2023.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Traumatic brain injury (TBI) is a common cause of morbidity and mortality in children. We have previously shown that TBI with a concurrent extracranial injury reliably leads to post-injury suppression of the innate and adaptive immune systems. In patients with post-injury immune suppression, if immune function could be preserved, this might represent a therapeutic opportunity. As such, we examined, in an animal injury model, whether systemic administration of granulocyte macrophage colony-stimulating factor (GM-CSF) could reverse post-injury immune suppression and whether treatment was associated with neuroinflammation or functional deficit. Prepubescent male rats were injured using a controlled cortical impact model and then subjected to removal of 25% blood volume (TBI/H). Sham animals underwent surgery without injury induction, and the treatment groups were sham and injured animals treated with either saline vehicle or 50 μg/kg GM-CSF. GM-CSF was administered following injury and then daily until sacrifice at post-injury day (PID) 7. Immune function was measured by assessing tumor necrosis factor-α (TNF-α) levels in whole blood and spleen following ex vivo stimulation with pokeweed mitogen (PWM). Brain samples were assessed by multiplex enzyme-linked immunosorbent assay (ELISA) for cytokine levels and by immunohistochemistry for microglia and astrocyte proliferation. Neuronal cell count was examined using cresyl violet staining. Motor coordination was evaluated using the Rotarod performance test. Treatment with GM-CSF was associated with a significantly increased response to PWM in both whole blood and spleen. GM-CSF in injured animals did not lead to increases in levels of pro-inflammatory cytokines in brain samples but was associated with significant increases in counted astrocytes. Finally, while injured animals treated with saline showed a significant impairment on behavioral testing, injured animals treated with GM-CSF performed similarly to uninjured animals. GM-CSF treatment in animals with combined injury led to increased systemic immune cell response in whole blood and spleen in the acute phase following injury. Improved immune response was not associated with elevated pro-inflammatory cytokine levels in the brain or functional impairment.
Collapse
Affiliation(s)
- Eric A. Sribnick
- Address correspondence to: Eric Sribnick, MD, PhD, Department of Surgery, Division of Neurosurgery, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205-2664, USA
| | - Timothy Warner
- Center for Clinical and Translation Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Mark W. Hall
- Center for Clinical and Translation Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, Division of Critical Care, Nationwide Children’s Hospital, Columbus, Ohio, USA
| |
Collapse
|
12
|
Reis M, Teixeira A, Cardoso J, Borges T, Caldas Afonso A, Correia-Costa L. Association between proinflammatory cytokines and arterial stiffness in type 1 diabetic adolescents. J Pediatr Endocrinol Metab 2024; 37:405-412. [PMID: 38592062 DOI: 10.1515/jpem-2023-0530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/03/2024] [Indexed: 04/10/2024]
Abstract
OBJECTIVES Type 1 diabetes mellitus is considered a state of chronic low-grade inflammation and activation of the innate immune system, which is regulated by several proinflammatory cytokines and other acute-phase reactants. Arterial stiffness, a dynamic property of the vessels evaluated by the determination of pulse wave velocity (PWV), is increased in diabetic patients and is associated with microvascular and macrovascular complications of diabetes and higher cardiovascular risk. In the present study, we aimed to compare the proinflammatory state and arterial stiffness in diabetic and non-diabetic adolescents, and to characterize the association between these two parameters. METHODS Twenty-three type 1 diabetic patients, aged 12-16 years, followed at a tertiary center, and 23 adolescents nonoverweighted healthy controls, from a Portuguese birth-cohort, were included in the present analysis. Anthropometry, blood pressure, glycemic control data, and lipid parameters were collected. Arterial stiffness was evaluated by carotid-femoral pulse wave velocity. Proinflammatory cytokines' concentrations (TNF-α, IL-1β, IL-6, IL-10, IFN-γ, and GM-CSF) were quantified by multiplex immunoassays using a Luminex 200 analyzer. RESULTS There were no statistically significant differences between the proinflammatory cytokines' concentrations in the two groups. PWV [6.63 (6.23-7.07) vs. 6.07 (5.15-6.65) m/s, p=0.015] was significantly higher in the diabetic group. PWV was negatively correlated with GM-CSF (ρ=-0.437, p=0.037) in the diabetic group. A linear association was found between diabetes duration and PWV (with PWV increasing by 0.094 m/s (95 % confidence interval, 0.019 to 0.169) per month of disease duration). In the diabetic group, HbA1c was negatively correlated with IL-10 (ρ=-0.473, p=0.026). Negative correlations were also found between IL-10 and total, HDL, and LDL cholesterol only in the diabetic group. CONCLUSIONS Diabetic adolescent patients present higher PWV, when compared to their healthy counterparts, even though we could not find differences in the levels of several proinflammatory cytokines between the two groups. The negative correlation found between IL-10 and HbA1c might translate a protective counterbalance effect of this anti-inflammatory cytokine, which might also explain the negative correlations found with blood lipids. Further studies are needed to better clarify the association between arterial stiffness and the proinflammatory milieu of diabetes.
Collapse
Affiliation(s)
- Mónica Reis
- Instituto de Ciências Biomédicas Abel Salazar, 89239 Universidade do Porto , Porto, Portugal
- 522166 Centro Hospitalar Universitário de Santo António , Porto, Portugal
| | - Ana Teixeira
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Division of Pediatric Nephrology, Centro Materno-Infantil do Norte, 522166 Centro Hospitalar Universitário do Porto , Porto, Portugal
| | - Juliana Cardoso
- Division of Pediatrics, Centro Materno-Infantil do Norte, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Teresa Borges
- Instituto de Ciências Biomédicas Abel Salazar, 89239 Universidade do Porto , Porto, Portugal
- Division of Pediatric Endocrinology, Centro Materno-Infantil do Norte, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Alberto Caldas Afonso
- Instituto de Ciências Biomédicas Abel Salazar, 89239 Universidade do Porto , Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Division of Pediatric Nephrology, Centro Materno-Infantil do Norte, 522166 Centro Hospitalar Universitário do Porto , Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
- CAC ICBAS-CHP - Centro Académico Clínico Instituto de Ciências Biomédicas Abel Salazar - Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Liane Correia-Costa
- Instituto de Ciências Biomédicas Abel Salazar, 89239 Universidade do Porto , Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Division of Pediatric Nephrology, Centro Materno-Infantil do Norte, 522166 Centro Hospitalar Universitário do Porto , Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
- CAC ICBAS-CHP - Centro Académico Clínico Instituto de Ciências Biomédicas Abel Salazar - Centro Hospitalar Universitário de Santo António, Porto, Portugal
| |
Collapse
|
13
|
Kazakov AS, Rastrygina VA, Vologzhannikova AA, Zemskova MY, Bobrova LA, Deryusheva EI, Permyakova ME, Sokolov AS, Litus EA, Shevelyova MP, Uversky VN, Permyakov EA, Permyakov SE. Recognition of granulocyte-macrophage colony-stimulating factor by specific S100 proteins. Cell Calcium 2024; 119:102869. [PMID: 38484433 DOI: 10.1016/j.ceca.2024.102869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 04/05/2024]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic myelopoietic growth factor and proinflammatory cytokine, clinically used for multiple indications and serving as a promising target for treatment of many disorders, including cancer, multiple sclerosis, rheumatoid arthritis, psoriasis, asthma, COVID-19. We have previously shown that dimeric Ca2+-bound forms of S100A6 and S100P proteins, members of the multifunctional S100 protein family, are specific to GM-CSF. To probe selectivity of these interactions, the affinity of recombinant human GM-CSF to dimeric Ca2+-loaded forms of 18 recombinant human S100 proteins was studied by surface plasmon resonance spectroscopy. Of them, only S100A4 protein specifically binds to GM-CSF with equilibrium dissociation constant, Kd, values of 0.3-2 μM, as confirmed by intrinsic fluorescence and chemical crosslinking data. Calcium removal prevents S100A4 binding to GM-CSF, whereas monomerization of S100A4/A6/P proteins disrupts S100A4/A6 interaction with GM-CSF and induces a slight decrease in S100P affinity for GM-CSF. Structural modelling indicates the presence in the GM-CSF molecule of a conserved S100A4/A6/P-binding site, consisting of the residues from its termini, helices I and III, some of which are involved in the interaction with GM-CSF receptors. The predicted involvement of the 'hinge' region and F89 residue of S100P in GM-CSF recognition was confirmed by mutagenesis. Examination of S100A4/A6/P ability to affect GM-CSF signaling showed that S100A4/A6 inhibit GM-CSF-induced suppression of viability of monocytic THP-1 cells. The ability of the S100 proteins to modulate GM-CSF activity is relevant to progression of various neoplasms and other diseases, according to bioinformatics analysis. The direct regulation of GM-CSF signaling by extracellular forms of the S100 proteins should be taken into account in the clinical use of GM-CSF and development of the therapeutic interventions targeting GM-CSF or its receptors.
Collapse
Affiliation(s)
- Alexey S Kazakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia.
| | - Victoria A Rastrygina
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia
| | - Alisa A Vologzhannikova
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia
| | - Marina Y Zemskova
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, pr. Nauki, 5, Pushchino, Moscow Region 142290, Russia
| | - Lolita A Bobrova
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia
| | - Evgenia I Deryusheva
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia.
| | - Maria E Permyakova
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia
| | - Andrey S Sokolov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia
| | - Ekaterina A Litus
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia
| | - Marina P Shevelyova
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Eugene A Permyakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia
| | - Sergei E Permyakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia.
| |
Collapse
|
14
|
Casanova JL, Peel J, Donadieu J, Neehus AL, Puel A, Bastard P. The ouroboros of autoimmunity. Nat Immunol 2024; 25:743-754. [PMID: 38698239 DOI: 10.1038/s41590-024-01815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/13/2024] [Indexed: 05/05/2024]
Abstract
Human autoimmunity against elements conferring protective immunity can be symbolized by the 'ouroboros', a snake eating its own tail. Underlying infection is autoimmunity against three immunological targets: neutrophils, complement and cytokines. Autoantibodies against neutrophils can cause peripheral neutropenia underlying mild pyogenic bacterial infections. The pathogenic contribution of autoantibodies against molecules of the complement system is often unclear, but autoantibodies specific for C3 convertase can enhance its activity, lowering complement levels and underlying severe bacterial infections. Autoantibodies neutralizing granulocyte-macrophage colony-stimulating factor impair alveolar macrophages, thereby underlying pulmonary proteinosis and airborne infections, type I interferon viral diseases, type II interferon intra-macrophagic infections, interleukin-6 pyogenic bacterial diseases and interleukin-17A/F mucocutaneous candidiasis. Each of these five cytokine autoantibodies underlies a specific range of infectious diseases, phenocopying infections that occur in patients with the corresponding inborn errors. In this Review, we analyze this ouroboros of immunity against immunity and posit that it should be considered as a factor in patients with unexplained infection.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France.
- Paris Cité University, Imagine Institute, Paris, France.
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| | - Jessica Peel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA
| | - Jean Donadieu
- Trousseau Hospital for Sick Children, Centre de référence des neutropénies chroniques, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| |
Collapse
|
15
|
Cao X, Fu YX, Peng H. Promising Cytokine Adjuvants for Enhancing Tuberculosis Vaccine Immunity. Vaccines (Basel) 2024; 12:477. [PMID: 38793728 PMCID: PMC11126114 DOI: 10.3390/vaccines12050477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (M. tuberculosis), remains a formidable global health challenge, affecting a substantial portion of the world's population. The current tuberculosis vaccine, bacille Calmette-Guérin (BCG), offers limited protection against pulmonary tuberculosis in adults, underscoring the critical need for innovative vaccination strategies. Cytokines are pivotal in modulating immune responses and have been explored as potential adjuvants to enhance vaccine efficacy. The strategic inclusion of cytokines as adjuvants in tuberculosis vaccines holds significant promise for augmenting vaccine-induced immune responses and strengthening protection against M. tuberculosis. This review delves into promising cytokines, such as Type I interferons (IFNs), Type II IFN, interleukins such as IL-2, IL-7, IL-15, IL-12, and IL-21, alongside the use of a granulocyte-macrophage colony-stimulating factor (GM-CSF) as an adjuvant, which has shown effectiveness in boosting immune responses and enhancing vaccine efficacy in tuberculosis models.
Collapse
Affiliation(s)
- Xuezhi Cao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China;
- Guangzhou National Laboratory, Bio-Island, Guangzhou 510005, China
| | - Yang-Xin Fu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hua Peng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China;
- Guangzhou National Laboratory, Bio-Island, Guangzhou 510005, China
| |
Collapse
|
16
|
Mora J, Modak S, Kinsey J, Ragsdale CE, Lazarus HM. GM-CSF, G-CSF or no cytokine therapy with anti-GD2 immunotherapy for high-risk neuroblastoma. Int J Cancer 2024; 154:1340-1364. [PMID: 38108214 DOI: 10.1002/ijc.34815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Colony-stimulating factors have been shown to improve anti-disialoganglioside 2 (anti-GD2) monoclonal antibody response in high-risk neuroblastoma by enhancing antibody-dependent cell-mediated cytotoxicity (ADCC). A substantial amount of research has focused on recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF) as an adjuvant to anti-GD2 monoclonal antibodies. There may be a disparity in care among patients as access to GM-CSF therapy and anti-GD2 monoclonal antibodies is not uniform. Only select countries have approved these agents for use, and even with regulatory approvals, access to these agents can be complex and cost prohibitive. This comprehensive review summarizes clinical data regarding efficacy and safety of GM-CSF, recombinant human granulocyte colony-stimulating factor (G-CSF) or no cytokine in combination with anti-GD2 monoclonal antibodies (ie, dinutuximab, dinutuximab beta or naxitamab) for immunotherapy of patients with high-risk neuroblastoma. A substantial body of clinical data support the immunotherapy combination of anti-GD2 monoclonal antibodies and GM-CSF. In contrast, clinical data supporting the use of G-CSF are limited. No formal comparison between GM-CSF, G-CSF and no cytokine has been identified. The treatment of high-risk neuroblastoma with anti-GD2 therapy plus GM-CSF is well established. Suboptimal efficacy outcomes with G-CSF raise concerns about its suitability as an alternative to GM-CSF as an adjuvant in immunotherapy for patients with high-risk neuroblastoma. While programs exist to facilitate obtaining GM-CSF and anti-GD2 monoclonal antibodies in regions where they are not commercially available, continued work is needed to ensure equitable therapeutic options are available globally.
Collapse
Affiliation(s)
- Jaume Mora
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Shakeel Modak
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Joyce Kinsey
- Partner Therapeutics, Inc, Lexington, Massachusetts, USA
| | | | | |
Collapse
|
17
|
Onyeukwu C, Williams A, Seyboth B, Muñoz L, Scaria G, Kent P. Partial Response to Naxitamab for Brain Metastasis in Neuroblastoma. J Pediatr Hematol Oncol 2024; 46:e188-e190. [PMID: 38189408 DOI: 10.1097/mph.0000000000002807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024]
Abstract
Neuroblastoma (NBL) is a common pediatric tumor arising from sympathetic ganglion cells. High-risk NBL is based on age, stage, histology, and MYCN amplification, and is associated with a high mortality rate. The combination of naxitamab (NAX) and granulocyte-macrophage (cerebrospinal fluid) is a new treatment for high-risk and relapsed NBL approved for bone or bone marrow disease. NAX is a monoclonal antibody directed against anti-disialoganglioside, which is overexpressed in neuroblastoma. Under normal circumstances, monoclonal antibodies, such as NAX, cannot cross the blood-brain barrier due to size. We present the case of a patient with high-risk NBL treated with NAX for multiple bony relapses. Unexpectedly, her brain metastasis responded clinically, histologically, and by imaging to the treatment. We believe this is the first documented case of NBL of the brain responding to NAX.
Collapse
Affiliation(s)
| | | | | | | | | | - Paul Kent
- Medical Director, FibroFighters Foundation, Temecula, CA
| |
Collapse
|
18
|
Duggal S, Rawat S, Siddqui G, Vishwakarma P, Samal S, Banerjee A, Vrati S. Dengue virus infection in mice induces bone marrow myeloid cell differentiation and generates Ly6Glow immature neutrophils with modulated functions. J Leukoc Biol 2024; 115:130-148. [PMID: 37648666 DOI: 10.1093/jleuko/qiad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/13/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023] Open
Abstract
While neutrophil activation during dengue virus infection is known, the effect of dengue virus infection on neutrophil biogenesis has not been studied. We demonstrate that dengue virus serotype 2 induces the differentiation of mice progenitor cells ex vivo toward the CD11b+Ly6C+Ly6G+ granulocyte population. We further observed an expansion of CD11b+Ly6CintLy6Glow myeloid cells in the bone marrow of dengue virus serotype 2-infected AG129 mice with low CXCR2 expression, implying an immature population. Additionally, dengue virus serotype 2 alone could induce the differentiation of promyelocyte cell line HL-60 into neutrophil-like cells, as evidenced by increased expression of CD10, CD66b, CD16, CD11b, and CD62L, corroborating the preferential shift toward neutrophil differentiation by dengue virus serotype 2 in the mouse model of dengue infection. The functional analysis showed that dengue virus serotype 2-induced neutrophil-like cells exhibited reduced phagocytic activity and enhanced NETosis, as evidenced by the increased production of myeloperoxidase, citrullinated histones, extracellular DNA, and superoxide. These neutrophil-like cells lose their ability to proliferate irreversibly and undergo arrest in the G0 to G1 phase of the cell cycle. Further studies show that myeloperoxidase-mediated signaling operating through the reactive oxygen species axis may be involved in dengue virus serotype 2-induced proliferation and differentiation of bone marrow cells as ABAH, a myeloperoxidase inhibitor, limits cell proliferation in vitro and ex vivo, affects the cell cycle, and reduces reactive oxygen species production. Additionally, myeloperoxidase inhibitor reduced NETosis and vascular leakage in dengue virus serotype 2-infected AG129 mice. Our study thus provides evidence that dengue virus serotype 2 can accelerate the differentiation of bone marrow progenitor cells into neutrophils through myeloperoxidase and modulate their functions.
Collapse
Affiliation(s)
- Shweta Duggal
- Laboratory of Virology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Surender Rawat
- Laboratory of Virology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Gazala Siddqui
- Influenza and Respiratory Virus Laboratory, Centre for Virus Research, Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Preeti Vishwakarma
- Influenza and Respiratory Virus Laboratory, Centre for Virus Research, Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Sweety Samal
- Influenza and Respiratory Virus Laboratory, Centre for Virus Research, Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Arup Banerjee
- Laboratory of Virology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Sudhanshu Vrati
- Laboratory of Virology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad Gurgaon Expressway, Faridabad-121001, Haryana, India
| |
Collapse
|
19
|
Sarker R, Qusar MMAS, Islam SMA, Bhuiyan MA, Islam MR. Association of granulocyte macrophage colony-stimulating factor and interleukin-17 levels with obsessive-compulsive disorder: a case-control study findings. Sci Rep 2023; 13:18976. [PMID: 37923827 PMCID: PMC10624891 DOI: 10.1038/s41598-023-46401-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a mental condition that affects many people and is characterized by recurring obsessions and compulsions. It significantly impacts individuals' ability to function ordinarily daily, affecting people of all ages. This study aimed to investigate whether or not the cytokines granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin-17 (IL-17) are involved in the pathophysiology of OCD. A case-control study with 50 OCD patients and 38 healthy volunteers served as the controls for this investigation. The levels of GM-CSF and IL-17 in the serum of both groups were measured with enzyme-linked immunosorbent assay (ELISA) kits. In addition, the sociodemographic characteristics of the population under study were studied. Based on the findings of this study, OCD patients had significantly elevated levels of IL-17 than the controls, it appears that there may be a function for IL-17 in the pathophysiology of OCD. It was also discovered that the severity of OCD and IL-17 levels had a significant positive correlation. On the other hand, when comparing the levels of GM-CSF, there was no significant difference between the patients and the controls. This study provides evidence supporting the involvement of cytokine IL-17 in the pathophysiology of OCD. This study suggests IL-17 as a diagnostic biomarker for OCD and adds to our knowledge of the function that the immune system plays in this condition.
Collapse
Affiliation(s)
- Rapty Sarker
- Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka, 1205, Bangladesh
| | - M M A Shalahuddin Qusar
- Department of Psychiatry, Bangabandhu Sheikh Mujib Medical University, Shahabagh, Dhaka, 1000, Bangladesh
| | | | - Mohiuddin Ahmed Bhuiyan
- Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka, 1205, Bangladesh
| | - Md Rabiul Islam
- School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh.
| |
Collapse
|
20
|
Alattar H, Xu H, Zenke M, Lutz MB. Fully functional monocytic MDSC generation from the murine HoxB8 cell line. Eur J Immunol 2023; 53:e2350466. [PMID: 37367431 DOI: 10.1002/eji.202350466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/10/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
Myeloid-derived suppressor cells (MDSC) play a crucial role in controlling T-cell responses, but their development and suppressor mechanisms are not fully understood. To study the molecular functions of MDSC, a large number of standardized cells are required. Traditionally, bone marrow (BM) has been used to generate myeloid cell types, including MDSC. In this study, we demonstrate that a previously described protocol for generating monocytic MDSC (M-MDSC) from murine BM with GM-CSF can be fully transferred to BM cells that are conditionally transformed with HoxB8 gene (HoxB8 cells). HoxB8 cells have an extended lifespan and efficiently differentiate into MDSC that are quantitatively and qualitatively comparable to M-MDSC from BM cells. Flow cytometric analyses of LPS/IFN-γ activated cultures revealed the same iNOS+ and/or Arg1+ PD-L1high M-MDSC subsets in similar frequencies from BM or HoxB8 cells. In vitro suppression of CD4+ and CD8+ T-cell proliferations was also largely comparable in their efficacy and its iNOS- or Arg1-dependent suppressor mechanisms, which was confirmed by the similar amounts of nitric oxide (NO) secretion measured from the suppressor assay. Therefore, our data suggest that murine M-MDSC generation from HoxB8 cells with GM-CSF can be used to substitute BM cultures.
Collapse
Affiliation(s)
- Haisam Alattar
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Huaming Xu
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Martin Zenke
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Manfred B Lutz
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
21
|
Scarpellini F, Sbracia M. Modification of peripheric Treg and CD56 brightNK levels in RIF women after egg donation, treated with GM-CSF or placebo. J Reprod Immunol 2023; 158:103983. [PMID: 37419075 DOI: 10.1016/j.jri.2023.103983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023]
Abstract
Recurrent implantation failure (RIF) is defined as when implantation repeatedly failed to reach a stage recognizable by pelvic ultrasound in IVF cycle and it may be due to several causes. The GM-CSF is a cytokine promoting leukocyte growth and trophoblast development: we tested it to treat these patients in a pilot-controlled trial evaluating the modification of peripheric Treg and CD56brightNK levels after the treatment with this cytokine and in control patients affected by RIF after egg donation cycles. This study was performed on 24 RIF women after egg donation cycles. Single good quality blastocyst transfer was performed in the cycle object of this study. Patients were randomly assigned to two groups: 12 women treated with subcutaneous GM-CSF 0.3 mg/kg/daily from the day before embryo transfer to the β-hCG day, and 12 women treated with subcutaneous saline solution infusion as control. All patients were tested for Treg and CD56brightNK cell levels in blood circulation before and after treatment using flow-cytometry with specific antibodies. The two groups of patients were similar for epidemiologic characteristics, the ongoing pregnancy rate in the GM-CSF group was 83.3% whereas in the control group was 25.0% (P = 0.0123). In the study group there was a significative increase of Treg cells (P < 0.001) with respect to the levels before treatment and to control group. Instead, the levels of CD56brightNK did not show any significative variation. Our study showed that the treatment with GM-CSF increases the Treg cells in the peripheric blood.
Collapse
|
22
|
Hildebrandt F, Mohammed M, Dziedziech A, Bhandage AK, Divne AM, Barrenäs F, Barragan A, Henriksson J, Ankarklev J. scDual-Seq of Toxoplasma gondii-infected mouse BMDCs reveals heterogeneity and differential infection dynamics. Front Immunol 2023; 14:1224591. [PMID: 37575232 PMCID: PMC10415529 DOI: 10.3389/fimmu.2023.1224591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
Dendritic cells and macrophages are integral parts of the innate immune system and gatekeepers against infection. The protozoan pathogen, Toxoplasma gondii, is known to hijack host immune cells and modulate their immune response, making it a compelling model to study host-pathogen interactions. Here we utilize single cell Dual RNA-seq to parse out heterogeneous transcription of mouse bone marrow-derived dendritic cells (BMDCs) infected with two distinct genotypes of T. gondii parasites, over multiple time points post infection. We show that the BMDCs elicit differential responses towards T. gondii infection and that the two parasite lineages distinctly manipulate subpopulations of infected BMDCs. Co-expression networks define host and parasite genes, with implications for modulation of host immunity. Integrative analysis validates previously established immune pathways and additionally, suggests novel candidate genes involved in host-pathogen interactions. Altogether, this study provides a comprehensive resource for characterizing host-pathogen interplay at high-resolution.
Collapse
Affiliation(s)
- Franziska Hildebrandt
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Mubasher Mohammed
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Alexis Dziedziech
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
- Department of Global Health, Institut Pasteur, Paris, France
| | - Amol K. Bhandage
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Anna-Maria Divne
- Microbial Single Cell Genomics Facility, SciLifeLab, Biomedical Center (BMC) Uppsala University, Uppsala, Sweden
| | - Fredrik Barrenäs
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Johan Henriksson
- Laboratory of Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research, Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Johan Ankarklev
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
- Microbial Single Cell Genomics Facility, SciLifeLab, Biomedical Center (BMC) Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Sun S, Fulati W, Shen L, Wu M, Huang Z, Qian W, Chen P, Hu Y, Chen M, Xu Y, Zhang H, Ma J, Xie Y. Maintenance regimen of GM-CSF with rituximab and lenalidomide improves survival in high-risk B-cell lymphoma by modulating natural killer cells. Cancer Med 2023. [PMID: 37081754 DOI: 10.1002/cam4.5969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND The treatment of high-risk B-cell lymphoma (BCL) remains a challenge, especially in the elderly. METHODS A total of 83 patients (median age 65 years), who have achieved a complete response after induction therapy, were divided into two groups: R2 + GM-CSF regimen (lenalidomide, rituximab, granulocyte-macrophage colony-stimulating factor [GM-CSF]) as maintenance therapy (n = 39) and observation (n = 44). The efficacy of the R2 + GM-CSF regimen as maintenance in patient with high-risk BCL was analyzed and compared with observation. RESULTS The number of natural killer cells in patients increased after R2 + GM-CSF regimen administration (0.131 × 109 /L vs. 0.061 × 109 /L, p = 0.0244). Patients receiving the R2 + GM-CSF regimen as maintenance therapy had longer remission (duration of response: 18.9 vs. 11.3 months, p = 0.001), and longer progression-free survival (not reached (NR) vs. 31.7 months, p = 0.037), and overall survival (OS) (NR vs. NR, p = 0.015). The R2 + GM-CSF regimen was safe and well tolerated. High international prognostic index score (p = 0.012), and high tumor burden (p = 0.005) appeared to be independent prognostic factors for worse PFS. CONCLUSIONS The maintenance therapy of R2 + GM-CSF regimen may improve survival in high-risk BCL patients, which might be modulated by amplification of natural killer cells. The efficacy of the R2 + GM-CSF maintenance regimen has to be further validated in prospective random clinical trials.
Collapse
Affiliation(s)
- Shunrong Sun
- Department of Hematology, Huadong Hospital Affiliated with Fudan University, Shanghai, China
| | - Wulipan Fulati
- Department of Hematology, Huadong Hospital Affiliated with Fudan University, Shanghai, China
| | - Lin Shen
- Department of Hematology, Huadong Hospital Affiliated with Fudan University, Shanghai, China
| | - Min Wu
- Department of Hematology, Huadong Hospital Affiliated with Fudan University, Shanghai, China
| | - Zilan Huang
- Department of Hematology, Huadong Hospital Affiliated with Fudan University, Shanghai, China
| | - Wensi Qian
- Department of Hematology, Huadong Hospital Affiliated with Fudan University, Shanghai, China
| | - Pingping Chen
- Department of Hematology, Huadong Hospital Affiliated with Fudan University, Shanghai, China
| | - Yingwei Hu
- Department of Hematology, Huadong Hospital Affiliated with Fudan University, Shanghai, China
| | - Mingyue Chen
- Department of Hematology, Huadong Hospital Affiliated with Fudan University, Shanghai, China
| | - Yu Xu
- Department of Hematology, Huadong Hospital Affiliated with Fudan University, Shanghai, China
| | - Hongdi Zhang
- Department of Hematology, Huadong Hospital Affiliated with Fudan University, Shanghai, China
| | - Jiexian Ma
- Department of Hematology, Huadong Hospital Affiliated with Fudan University, Shanghai, China
| | - Yanhui Xie
- Department of Hematology, Huadong Hospital Affiliated with Fudan University, Shanghai, China
| |
Collapse
|
24
|
Diaz-Ramón JL, Gardeazabal J, Izu RM, Garrote E, Rasero J, Apraiz A, Penas C, Seijo S, Lopez-Saratxaga C, De la Peña PM, Sanchez-Diaz A, Cancho-Galan G, Velasco V, Sevilla A, Fernandez D, Cuenca I, Cortes JM, Alonso S, Asumendi A, Boyano MD. Melanoma Clinical Decision Support System: An Artificial Intelligence-Based Tool to Diagnose and Predict Disease Outcome in Early-Stage Melanoma Patients. Cancers (Basel) 2023; 15:2174. [PMID: 37046835 PMCID: PMC10093614 DOI: 10.3390/cancers15072174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
This study set out to assess the performance of an artificial intelligence (AI) algorithm based on clinical data and dermatoscopic imaging for the early diagnosis of melanoma, and its capacity to define the metastatic progression of melanoma through serological and histopathological biomarkers, enabling dermatologists to make more informed decisions about patient management. Integrated analysis of demographic data, images of the skin lesions, and serum and histopathological markers were analyzed in a group of 196 patients with melanoma. The interleukins (ILs) IL-4, IL-6, IL-10, and IL-17A as well as IFNγ (interferon), GM-CSF (granulocyte and macrophage colony-stimulating factor), TGFβ (transforming growth factor), and the protein DCD (dermcidin) were quantified in the serum of melanoma patients at the time of diagnosis, and the expression of the RKIP, PIRIN, BCL2, BCL3, MITF, and ANXA5 proteins was detected by immunohistochemistry (IHC) in melanoma biopsies. An AI algorithm was used to improve the early diagnosis of melanoma and to predict the risk of metastasis and of disease-free survival. Two models were obtained to predict metastasis (including "all patients" or only patients "at early stages of melanoma"), and a series of attributes were seen to predict the progression of metastasis: Breslow thickness, infiltrating BCL-2 expressing lymphocytes, and IL-4 and IL-6 serum levels. Importantly, a decrease in serum GM-CSF seems to be a marker of poor prognosis in patients with early-stage melanomas.
Collapse
Affiliation(s)
- Jose Luis Diaz-Ramón
- Dermatology Service, Cruces University Hospital, 48903 Barakaldo, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Jesus Gardeazabal
- Dermatology Service, Cruces University Hospital, 48903 Barakaldo, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Rosa Maria Izu
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Dermatology Service, Basurto University Hospital, 48013 Bilbao, Spain
| | - Estibaliz Garrote
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20850 Gipuzkoa, Spain
- Department of Cell Biology and Histology, University of the Basque Country/EHU, 48940 Leioa, Spain
| | - Javier Rasero
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Aintzane Apraiz
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Department of Cell Biology and Histology, University of the Basque Country/EHU, 48940 Leioa, Spain
| | - Cristina Penas
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Department of Cell Biology and Histology, University of the Basque Country/EHU, 48940 Leioa, Spain
| | - Sandra Seijo
- Ibermática Innovation Institute, 48170 Zamudio, Spain
| | | | | | - Ana Sanchez-Diaz
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Dermatology Service, Basurto University Hospital, 48013 Bilbao, Spain
| | - Goikoane Cancho-Galan
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Pathology Service, Basurto University Hospital, 48013 Bilbao, Spain
| | - Veronica Velasco
- Dermatology Service, Cruces University Hospital, 48903 Barakaldo, Spain
- Pathology Service, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Arrate Sevilla
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country/EHU, 48940 Leioa, Spain
| | | | - Iciar Cuenca
- Ibermática Innovation Institute, 48170 Zamudio, Spain
| | - Jesus María Cortes
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Department of Cell Biology and Histology, University of the Basque Country/EHU, 48940 Leioa, Spain
- IKERBASQUE, The Basque Foundation for Science, 48009 Bilbao, Spain
| | - Santos Alonso
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country/EHU, 48940 Leioa, Spain
| | - Aintzane Asumendi
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Department of Cell Biology and Histology, University of the Basque Country/EHU, 48940 Leioa, Spain
| | - María Dolores Boyano
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Department of Cell Biology and Histology, University of the Basque Country/EHU, 48940 Leioa, Spain
| |
Collapse
|
25
|
Lin Z. More than a key-the pathological roles of SARS-CoV-2 spike protein in COVID-19 related cardiac injury. SPORTS MEDICINE AND HEALTH SCIENCE 2023:S2666-3376(23)00024-0. [PMID: 37361919 PMCID: PMC10062797 DOI: 10.1016/j.smhs.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 06/28/2023] Open
Abstract
Cardiac injury is common in hospitalized coronavirus disease 2019 (COVID-19) patients and cardiac abnormalities have been observed in a significant number of recovered COVID-19 patients, portending long-term health issues for millions of infected individuals. To better understand how Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, CoV-2 for short) damages the heart, it is critical to fully comprehend the biology of CoV-2 encoded proteins, each of which may play multiple pathological roles. For example, CoV-2 spike glycoprotein (CoV-2-S) not only engages angiotensin converting enzyme II (ACE2) to mediate virus infection but also directly activates immune responses. In this work, the goal is to review the known pathological roles of CoV-2-S in the cardiovascular system, thereby shedding lights on the pathogenesis of COVID-19 related cardiac injury.
Collapse
Affiliation(s)
- Zhiqiang Lin
- Masonic Medical Research Institute, 2150 Bleecker Street, Utica, NY, 13501, USA
| |
Collapse
|
26
|
Chouljenko DV, Murad YM, Lee IF, Delwar Z, Ding J, Liu G, Liu X, Bu X, Sun Y, Samudio I, Jia WWG. Targeting carcinoembryonic antigen-expressing tumors using a novel transcriptional and translational dual-regulated oncolytic herpes simplex virus type 1. Mol Ther Oncolytics 2023; 28:334-348. [PMID: 36938544 PMCID: PMC10018392 DOI: 10.1016/j.omto.2023.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
VG2025 is a recombinant oncolytic herpes simplex virus type 1 (HSV-1) that uses transcriptional and translational dual regulation (TTDR) of critical viral genes to enhance virus safety and promote tumor-specific virus replication without reducing virulence. The TTDR platform is based on transcriptional control of the essential HSV-1 immediate-early protein ICP27 using a tumor-specific carcinoembryonic antigen (CEA) promoter, coupled with translational control of the neurovirulence factor ICP34.5 using multiple microRNA (miR)-binding sites. VG2025 further incorporates IL-12 and the IL-15/IL-15 receptor alpha subunit complex to enhance the antitumor and immune stimulatory properties of oncolytic HSVs. The TTDR strategy was verified in vitro and shown to be highly selective. Strong in vivo antitumor efficacy was observed following both intratumoral and intravenous administration. Clear abscopal and immune memory effects were also evident, indicating a robust antitumor immune response. Gene expression profiling of treated tumors revealed increased immune cell infiltration and activation of multiple immune-signaling pathways when compared with the backbone virus. Absence of neurotoxicity was verified in mice and in rhesus monkeys. Taken together, the enhanced tumor clearance, excellent safety profile, and positive correlation between CEA levels and viral replication efficiency may provide an opportunity for using biomarker-based precision medicine in oncolytic virotherapy.
Collapse
Affiliation(s)
- Dmitry V. Chouljenko
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
- Corresponding author: Dmitry V. Chouljenko, Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada.
| | - Yanal M. Murad
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - I-Fang Lee
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Zahid Delwar
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Jun Ding
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Guoyu Liu
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Xiaohu Liu
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Xuexian Bu
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Yi Sun
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Ismael Samudio
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - William Wei-Guo Jia
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| |
Collapse
|
27
|
Desai N, Hasan U, K J, Mani R, Chauhan M, Basu SM, Giri J. Biomaterial-based platforms for modulating immune components against cancer and cancer stem cells. Acta Biomater 2023; 161:1-36. [PMID: 36907233 DOI: 10.1016/j.actbio.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Immunotherapy involves the therapeutic alteration of the patient's immune system to identify, target, and eliminate cancer cells. Dendritic cells, macrophages, myeloid-derived suppressor cells, and regulatory T cells make up the tumor microenvironment. In cancer, these immune components (in association with some non-immune cell populations like cancer-associated fibroblasts) are directly altered at a cellular level. By dominating immune cells with molecular cross-talk, cancer cells can proliferate unchecked. Current clinical immunotherapy strategies are limited to conventional adoptive cell therapy or immune checkpoint blockade. Targeting and modulating key immune components presents an effective opportunity. Immunostimulatory drugs are a research hotspot, but their poor pharmacokinetics, low tumor accumulation, and non-specific systemic toxicity limit their use. This review describes the cutting-edge research undertaken in the field of nanotechnology and material science to develop biomaterials-based platforms as effective immunotherapeutics. Various biomaterial types (polymer-based, lipid-based, carbon-based, cell-derived, etc.) and functionalization methodologies for modulating tumor-associated immune/non-immune cells are explored. Additionally, emphasis has been laid on discussing how these platforms can be used against cancer stem cells, a fundamental contributor to chemoresistance, tumor relapse/metastasis, and failure of immunotherapy. Overall, this comprehensive review strives to provide up-to-date information to an audience working at the juncture of biomaterials and cancer immunotherapy. STATEMENT OF SIGNIFICANCE: Cancer immunotherapy possesses incredible potential and has successfully transitioned into a clinically lucrative alternative to conventional anti-cancer therapies. With new immunotherapeutics getting rapid clinical approval, fundamental problems associated with the dynamic nature of the immune system (like limited clinical response rates and autoimmunity-related adverse effects) have remained unanswered. In this context, treatment approaches that focus on modulating the compromised immune components within the tumor microenvironment have garnered significant attention amongst the scientific community. This review aims to provide a critical discussion on how various biomaterials (polymer-based, lipid-based, carbon-based, cell-derived, etc.) can be employed along with immunostimulatory agents to design innovative platforms for selective immunotherapy directed against cancer and cancer stem cells.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Uzma Hasan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India; Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Jeyashree K
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Rajesh Mani
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Meenakshi Chauhan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Suparna Mercy Basu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
28
|
Joshi I, Carney WP, Rock EP. Utility of monocyte HLA-DR and rationale for therapeutic GM-CSF in sepsis immunoparalysis. Front Immunol 2023; 14:1130214. [PMID: 36825018 PMCID: PMC9942705 DOI: 10.3389/fimmu.2023.1130214] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Sepsis, a heterogeneous clinical syndrome, features a systemic inflammatory response to tissue injury or infection, followed by a state of reduced immune responsiveness. Measurable alterations occur in both the innate and adaptive immune systems. Immunoparalysis, an immunosuppressed state, associates with worsened outcomes, including multiple organ dysfunction syndrome, secondary infections, and increased mortality. Multiple immune markers to identify sepsis immunoparalysis have been proposed, and some might offer clinical utility. Sepsis immunoparalysis is characterized by reduced lymphocyte numbers and downregulation of class II human leukocyte antigens (HLA) on innate immune monocytes. Class II HLA proteins present peptide antigens for recognition by and activation of antigen-specific T lymphocytes. One monocyte class II protein, mHLA-DR, can be measured by flow cytometry. Downregulated mHLA-DR indicates reduced monocyte responsiveness, as measured by ex-vivo cytokine production in response to endotoxin stimulation. Our literature survey reveals low mHLA-DR expression on peripheral blood monocytes correlates with increased risks for infection and death. For mHLA-DR, 15,000 antibodies/cell appears clinically acceptable as the lower limit of immunocompetence. Values less than 15,000 antibodies/cell are correlated with sepsis severity; and values at or less than 8000 antibodies/cell are identified as severe immunoparalysis. Several experimental immunotherapies have been evaluated for reversal of sepsis immunoparalysis. In particular, sargramostim, a recombinant human granulocyte-macrophage colony-stimulating factor (rhu GM-CSF), has demonstrated clinical benefit by reducing hospitalization duration and lowering secondary infection risk. Lowered infection risk correlates with increased mHLA-DR expression on peripheral blood monocytes in these patients. Although mHLA-DR has shown promising utility for identifying sepsis immunoparalysis, absence of a standardized, analytically validated method has thus far prevented widespread adoption. A clinically useful approach for patient inclusion and identification of clinically correlated output parameters could address the persistent high unmet medical need for effective targeted therapies in sepsis.
Collapse
Affiliation(s)
- Ila Joshi
- Development and Regulatory Department, Partner Therapeutics, Inc., Lexington, MA, United States,*Correspondence: Ila Joshi,
| | - Walter P. Carney
- Walt Carney Biomarkers Consulting, LLC., North Andover, MA, United States
| | - Edwin P. Rock
- Development and Regulatory Department, Partner Therapeutics, Inc., Lexington, MA, United States
| |
Collapse
|
29
|
Ahmad SF, Patra MK, Mahendran K, Paul BR, Khanna S, Singh AK, De UK, Agrawal RK, Gaur GK, Dutt T. Hematological and serum biochemical parameters and profiling of cytokine genes in lumpy skin disease in Vrindavani cattle. 3 Biotech 2023; 13:66. [PMID: 36721645 PMCID: PMC9884329 DOI: 10.1007/s13205-023-03477-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/11/2023] [Indexed: 01/30/2023] Open
Abstract
Lumpy skin disease (LSD) is a notifiable re-emerging transboundary viral disease of bovines that inflicts heavy losses in affected livestock farms. Genetic variations contribute substantially to the inter-individual differences in the immune response against disease agents. The present study aimed to evaluate the genetic basis of differential immune response in Vrindavani cattle by comparing the hematological, biochemical and cytokine genes' expression profiles of LSD-affected and unaffected animals. After 21 days of the outbreak at the farm, the animals were grouped as affected (those who developed symptoms) and unaffected/healthy (those who did not). Standard hematological and biochemical parameters were evaluated in both the groups. Expression profiling of important Th1 (IL2, INFG and GMCSF) and Th2 (IL4, IL6 and IL10) cytokines was also performed via a relative quantification approach using real-time PCR. Erythrogram and leucogram analyses revealed significant differences in total leucocyte count (TLC: 14.18 ± 0.74 versus 11.38 ± 0.68 x103/µL), hemoglobin (Hb: 8.66 ± 0.42 versus 10.84 ± 0.17 g%) and percentage of neutrophils (46.40 ± 1.98 versus 35.40 ± 2.11%), lymphocytes (49.40 ± 1.99 versus 62.40 ± 1.86) and monocytes (4.20 ± 0.37 versus 2.40 ± 0.40) between the affected and healthy animals, respectively. The production of liver enzymes (SGOT and SGPT) was significantly higher in affected animals (74.18 ± 4.76 and 59.51 ± 2.75) when compared to the healthy counterparts (65.95 ± 9.18 and 39.21 ± 3.31). The expression profiling of Th1 and Th2 cytokines revealed significant differences between the two groups, except IL10. The expression of IL2, GMCSF and IL6 were upregulated in healthy animals while that of INFG, IL4 and IL10 were upregulated in LSD-affected animals. The highest abundance was observed for IL2 transcripts in healthy animals among all assessed cytokines with log2fold change of 1.61 as compared to affected counterparts. Overall, the immune response in healthy animals (after exposure to LSD virus) was predominated by the expression of Th1 cell proliferation and there was an increased production of pro-inflammatory cytokines as compared to the affected counterparts. The results revealed that the effective immune response to LSD in cattle consists of changes in hematological and biochemical parameters and altered expression profile of cytokines with enhanced phagocytosis and lymphocyte recruitment. Furthermore, optimal expression of Th1 cytokines is required for maintaining optimal health against infectious insult with LSD virus in cattle.
Collapse
Affiliation(s)
- Sheikh Firdous Ahmad
- grid.417990.20000 0000 9070 5290ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Manas Kumar Patra
- grid.417990.20000 0000 9070 5290ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - K. Mahendran
- grid.417990.20000 0000 9070 5290ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Babul Rudra Paul
- grid.417990.20000 0000 9070 5290ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Shivani Khanna
- grid.417990.20000 0000 9070 5290ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Amit Kumar Singh
- grid.417990.20000 0000 9070 5290ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Ujjwal Kumar De
- grid.417990.20000 0000 9070 5290ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Ravi Kant Agrawal
- grid.417990.20000 0000 9070 5290ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Gyanendra Kumar Gaur
- grid.417990.20000 0000 9070 5290ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Triveni Dutt
- grid.417990.20000 0000 9070 5290ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| |
Collapse
|
30
|
Kalkal M, Das J. Current understanding of the immune potential of B-cell subsets in malarial pathogenesis. Front Microbiol 2023; 14:1046002. [PMID: 36778886 PMCID: PMC9909418 DOI: 10.3389/fmicb.2023.1046002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/02/2023] [Indexed: 01/28/2023] Open
Abstract
In the past several decades, our understanding of how B cells are generated and what function they perform has continued to advance. It is widely accepted that B-cell subsets play a critical role in mediating immune response. Surprisingly, human and murine malarial infections cause major alterations in the composition of B-cell subsets in both the spleen and periphery. Multiple B-cell subsets are well characterized in murine models following primary and secondary infection, although in human malarial infection, these subsets are not well defined. Furthermore, a rare known function of B cells includes the potential role of regulating the activities of other cells in the body as regulatory cells. Plasmodium infection strongly alters the frequency of these regulatory B cells indicating the immunoregulatory function of B cells in malarial. It is important to note that these subsets, taken together, form the cellular basis of humoral immune responses, allowing protection against a wide array of Plasmodium antigens to be achieved. However, it remains a challenge and an important area of investigation to understand how these B-cell subsets work together to provide protection against Plasmodium infection.
Collapse
|
31
|
Gopinath A, Mackie PM, Phan LT, Mirabel R, Smith AR, Miller E, Franks S, Syed O, Riaz T, Law BK, Urs N, Khoshbouei H. Who Knew? Dopamine Transporter Activity Is Critical in Innate and Adaptive Immune Responses. Cells 2023; 12:cells12020269. [PMID: 36672204 PMCID: PMC9857305 DOI: 10.3390/cells12020269] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
The dopamine transporter (DAT) regulates the dimension and duration of dopamine transmission. DAT expression, its trafficking, protein-protein interactions, and its activity are conventionally studied in the CNS and within the context of neurological diseases such as Parkinson's Diseases and neuropsychiatric diseases such as drug addiction, attention deficit hyperactivity and autism. However, DAT is also expressed at the plasma membrane of peripheral immune cells such as monocytes, macrophages, T-cells, and B-cells. DAT activity via an autocrine/paracrine signaling loop regulates macrophage responses to immune stimulation. In a recent study, we identified an immunosuppressive function for DAT, where blockade of DAT activity enhanced LPS-mediated production of IL-6, TNF-α, and mitochondrial superoxide levels, demonstrating that DAT activity regulates macrophage immune responses. In the current study, we tested the hypothesis that in the DAT knockout mice, innate and adaptive immunity are perturbed. We found that genetic deletion of DAT (DAT-/-) results in an exaggerated baseline inflammatory phenotype in peripheral circulating myeloid cells. In peritoneal macrophages obtained from DAT-/- mice, we identified increased MHC-II expression and exaggerated phagocytic response to LPS-induced immune stimulation, suppressed T-cell populations at baseline and following systemic endotoxemia and exaggerated memory B cell expansion. In DAT-/- mice, norepinephrine and dopamine levels are increased in spleen and thymus, but not in circulating serum. These findings in conjunction with spleen hypoplasia, increased splenic myeloid cells, and elevated MHC-II expression, in DAT-/- mice further support a critical role for DAT activity in peripheral immunity. While the current study is only focused on identifying the role of DAT in peripheral immunity, our data point to a much broader implication of DAT activity than previously thought. This study is dedicated to the memory of Dr. Marc Caron who has left an indelible mark in the dopamine transporter field.
Collapse
Affiliation(s)
- Adithya Gopinath
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
- Correspondence: (A.G.); (H.K.)
| | - Phillip M. Mackie
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Leah T. Phan
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Rosa Mirabel
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32611, USA
| | - Aidan R. Smith
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Emily Miller
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Stephen Franks
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Ohee Syed
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Tabish Riaz
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Brian K. Law
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32611, USA
| | - Nikhil Urs
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32611, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
- Correspondence: (A.G.); (H.K.)
| |
Collapse
|
32
|
Lazarus HM, Pitts K, Wang T, Lee E, Buchbinder E, Dougan M, Armstrong DG, Paine R, Ragsdale CE, Boyd T, Rock EP, Gale RP. Recombinant GM-CSF for diseases of GM-CSF insufficiency: Correcting dysfunctional mononuclear phagocyte disorders. Front Immunol 2023; 13:1069444. [PMID: 36685591 PMCID: PMC9850113 DOI: 10.3389/fimmu.2022.1069444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Endogenous granulocyte-macrophage colony-stimulating factor (GM-CSF), identified by its ability to support differentiation of hematopoietic cells into several types of myeloid cells, is now known to support maturation and maintain the metabolic capacity of mononuclear phagocytes including monocytes, macrophages, and dendritic cells. These cells sense and attack potential pathogens, present antigens to adaptive immune cells, and recruit other immune cells. Recombinant human (rhu) GM-CSF (e.g., sargramostim [glycosylated, yeast-derived rhu GM-CSF]) has immune modulating properties and can restore the normal function of mononuclear phagocytes rendered dysfunctional by deficient or insufficient endogenous GM-CSF. Methods We reviewed the emerging biologic and cellular effects of GM-CSF. Experts in clinical disease areas caused by deficient or insufficient endogenous GM-CSF examined the role of GM-CSF in mononuclear phagocyte disorders including autoimmune pulmonary alveolar proteinosis (aPAP), diverse infections (including COVID-19), wound healing, and anti-cancer immune checkpoint inhibitor therapy. Results We discuss emerging data for GM-CSF biology including the positive effects on mitochondrial function and cell metabolism, augmentation of phagocytosis and efferocytosis, and immune cell modulation. We further address how giving exogenous rhu GM-CSF may control or treat mononuclear phagocyte dysfunction disorders caused or exacerbated by GM-CSF deficiency or insufficiency. We discuss how rhu GM-CSF may augment the anti-cancer effects of immune checkpoint inhibitor immunotherapy as well as ameliorate immune-related adverse events. Discussion We identify research gaps, opportunities, and the concept that rhu GM-CSF, by supporting and restoring the metabolic capacity and function of mononuclear phagocytes, can have significant therapeutic effects. rhu GM-CSF (e.g., sargramostim) might ameliorate multiple diseases of GM-CSF deficiency or insufficiency and address a high unmet medical need.
Collapse
Affiliation(s)
- Hillard M. Lazarus
- Department of Medicine, Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, United States
| | - Katherine Pitts
- Medical Affairs, Partner Therapeutics, Inc., Lexington, MA, United States
| | - Tisha Wang
- Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Elinor Lee
- Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Elizabeth Buchbinder
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Michael Dougan
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - David G. Armstrong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Robert Paine
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, UT, United States
| | | | - Timothy Boyd
- Clinical Development, Partner Therapeutics, Inc., Lexington, MA, United States
| | - Edwin P. Rock
- Clinical Development, Partner Therapeutics, Inc., Lexington, MA, United States
| | - Robert Peter Gale
- Hematology Centre, Department of Immunology and Inflammation, Imperial College, London, United Kingdom
| |
Collapse
|
33
|
Li X, Sun X, Wang B, Li Y, Tong J. Oncolytic virus-based hepatocellular carcinoma treatment: Current status, intravenous delivery strategies, and emerging combination therapeutic solutions. Asian J Pharm Sci 2023; 18:100771. [PMID: 36896445 PMCID: PMC9989663 DOI: 10.1016/j.ajps.2022.100771] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/24/2022] [Accepted: 12/04/2022] [Indexed: 12/30/2022] Open
Abstract
Current treatments for advanced hepatocellular carcinoma (HCC) have limited success in improving patients' quality of life and prolonging life expectancy. The clinical need for more efficient and safe therapies has contributed to the exploration of emerging strategies. Recently, there has been increased interest in oncolytic viruses (OVs) as a therapeutic modality for HCC. OVs undergo selective replication in cancerous tissues and kill tumor cells. Strikingly, pexastimogene devacirepvec (Pexa-Vec) was granted an orphan drug status in HCC by the U.S. Food and Drug Administration (FDA) in 2013. Meanwhile, dozens of OVs are being tested in HCC-directed clinical and preclinical trials. In this review, the pathogenesis and current therapies of HCC are outlined. Next, we summarize multiple OVs as single therapeutic agents for the treatment of HCC, which have demonstrated certain efficacy and low toxicity. Emerging carrier cell-, bioengineered cell mimetic- or nonbiological vehicle-mediated OV intravenous delivery systems in HCC therapy are described. In addition, we highlight the combination treatments between oncolytic virotherapy and other modalities. Finally, the clinical challenges and prospects of OV-based biotherapy are discussed, with the aim of continuing to develop a fascinating approach in HCC patients.
Collapse
Affiliation(s)
- Xinguo Li
- The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaonan Sun
- The 4th People's Hospital of Shenyang, Shenyang 110031, China
| | - Bingyuan Wang
- The First Hospital of China Medical University, Shenyang 110001, China
| | - Yiling Li
- The First Hospital of China Medical University, Shenyang 110001, China
| | - Jing Tong
- The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
34
|
Zhang S, Rautela J, Bediaga NG, Kolesnik TB, You Y, Nie J, Dagley LF, Bedo J, Wang H, Sun L, Sutherland R, Surgenor E, Iannarella N, Allan R, Souza-Fonseca-Guimaraes F, Xie Y, Wang Q, Zhang Y, Xu Y, Nutt SL, Lew AM, Huntington ND, Nicholson SE, Chopin M, Zhan Y. CIS controls the functional polarization of GM-CSF-derived macrophages. Cell Mol Immunol 2023; 20:65-79. [PMID: 36471114 PMCID: PMC9794780 DOI: 10.1038/s41423-022-00957-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
The cytokine granulocyte-macrophage-colony stimulating factor (GM-CSF) possesses the capacity to differentiate monocytes into macrophages (MØs) with opposing functions, namely, proinflammatory M1-like MØs and immunosuppressive M2-like MØs. Despite the importance of these opposing biological outcomes, the intrinsic mechanism that regulates the functional polarization of MØs under GM-CSF signaling remains elusive. Here, we showed that GM-CSF-induced MØ polarization resulted in the expression of cytokine-inducible SH2-containing protein (CIS) and that CIS deficiency skewed the differentiation of monocytes toward immunosuppressive M2-like MØs. CIS deficiency resulted in hyperactivation of the JAK-STAT5 signaling pathway, consequently promoting downregulation of the transcription factor Interferon Regulatory Factor 8 (IRF8). Loss- and gain-of-function approaches highlighted IRF8 as a critical regulator of the M1-like polarization program. In vivo, CIS deficiency induced the differentiation of M2-like macrophages, which promoted strong Th2 immune responses characterized by the development of severe experimental asthma. Collectively, our results reveal a CIS-modulated mechanism that clarifies the opposing actions of GM-CSF in MØ differentiation and uncovers the role of GM-CSF in controlling allergic inflammation.
Collapse
Affiliation(s)
- Shengbo Zhang
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Jai Rautela
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- oNKo-Innate Pty Ltd, Moonee Ponds, VIC, Australia
| | - Naiara G Bediaga
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Tatiana B Kolesnik
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Yue You
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Junli Nie
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Laura F Dagley
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Justin Bedo
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Computing and Information Systems, University of Melbourne, Parkville, VIC, Australia
| | - Hanqing Wang
- Department of Respiratory Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li Sun
- College of Biological Science, Anhui Normal University, Hefei, China
| | - Robyn Sutherland
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Elliot Surgenor
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Nadia Iannarella
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Rhys Allan
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Fernando Souza-Fonseca-Guimaraes
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Yi Xie
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Duke, Singapore
| | - Qike Wang
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Yuxia Zhang
- Department of Respiratory Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuekang Xu
- College of Biological Science, Anhui Normal University, Hefei, China
| | - Stephen L Nutt
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Andrew M Lew
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Nicholas D Huntington
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- oNKo-Innate Pty Ltd, Moonee Ponds, VIC, Australia
| | - Sandra E Nicholson
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Michaël Chopin
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| | - Yifan Zhan
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
- Drug Discovery, Shanghai Huaota Biopharm, Shanghai, China.
| |
Collapse
|
35
|
Shouib R, Eitzen G. Cdc42 regulates cytokine expression and trafficking in bronchial epithelial cells. Front Immunol 2022; 13:1069499. [PMID: 36618374 PMCID: PMC9816864 DOI: 10.3389/fimmu.2022.1069499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/30/2022] [Indexed: 12/25/2022] Open
Abstract
Airway epithelial cells can respond to incoming pathogens, allergens and stimulants through the secretion of cytokines and chemokines. These pro-inflammatory mediators activate inflammatory signaling cascades that allow a robust immune response to be mounted. However, uncontrolled production and release of cytokines and chemokines can result in chronic inflammation and appears to be an underlying mechanism for the pathogenesis of pulmonary disorders such as asthma and COPD. The Rho GTPase, Cdc42, is an important signaling molecule that we hypothesize can regulate cytokine production and release from epithelial cells. We treated BEAS-2B lung epithelial cells with a set of stimulants to activate inflammatory pathways and cytokine release. The production, trafficking and secretion of cytokines were assessed when Cdc42 was pharmacologically inhibited with ML141 drug or silenced with lentiviral-mediated shRNA knockdown. We found that Cdc42 inhibition with ML141 differentially affected gene expression of a subset of cytokines; transcription of IL-6 and IL-8 were increased while MCP-1 was decreased. However, Cdc42 inhibition or depletion disrupted IL-8 trafficking and reduced its secretion even though transcription was increased. Cytokines transiting through the Golgi were particularly affected by Cdc42 disruption. Our results define a role for Cdc42 in the regulation of cytokine production and release in airway epithelial cells. This underscores the role of Cdc42 in coupling receptor activation to downstream gene expression and also as a regulator of cytokine secretory pathways.
Collapse
|
36
|
Liu Q, Liu H, Griveau A, Li X, Eyer J, Arib C, Spadavecchia J. NFL-TBS.40-63 Peptide Gold Complex Nanovector: A Novel Therapeutic Approach to Increase Anticancer Activity by Breakdown of Microtubules in Pancreatic Adenocarcinoma (PDAC). ACS Pharmacol Transl Sci 2022; 5:1267-1278. [PMID: 36524008 PMCID: PMC9745895 DOI: 10.1021/acsptsci.2c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Indexed: 11/28/2022]
Abstract
The role of the NFL-TBS.40-63 peptide is to destroy the microtubule network of target glioma cancer cells. Recently, we have conceived a gold-complex biotinylated NFL-TBS.40-63 (BIOT-NFL) to form a hybrid gold nanovector (BIOT-NFL-PEG-AuNPs). This methodology showed, for the first time, the ability of the BIOT-NFL-PEG-AuNPs to target the destruction of pancreatic cancer cells (PDAC) under experimental conditions, as well as detoxification and preclinical therapeutic efficacy regulated by the steric and chemical configuration of the peptide. For this aim, a mouse transplantation tumor model induced by MIA-PACA-2 cells was applied to estimate the therapeutic efficacy of BIOT-NFL-PEG-AuNPs as a nanoformulation. Our relevant results display that BIOT-NFL-PEG-AuNPs slowed the tumor growth and decreased the tumor index without effects on the body weight of mice with an excellent antiangiogenic effect, mediated by the ability of BIOT-NFL-PEG-AuNPs to alter the metabolic profiles of these MIA-PACA-2 cells. The cytokine levels were detected to evaluate the behavior of serum inflammatory factors and the power of BIOT-NFL-PEG-AuNPs to boost the immune system.
Collapse
Affiliation(s)
- Qiqian Liu
- CNRS,
UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et
d′Agents Thérapeutiques Université Paris 13, Sorbonne Paris Nord, Bobigny93000, France
| | - Hui Liu
- Department
of Hepatobiliary Surgery, Guangdong Provincial Key Laboratory of Regional
Immunity and Diseases & Carson International Cancer Center, Shenzhen
University General Hospital & Shenzhen University Clinical Medical
Academy Center, Shenzhen University, Shenzhen518083China
| | - Audrey Griveau
- Laboratoire
Micro et Nanomedecines Translationnelles, Inserm 1066, CNRS 6021,
Institut de Recherche en Ingénierie de la Sante, Bâtiment
IBS Institut de Biologie de la Sante, Université′
Angers, Centre Hospitalier Universitaire, Angers49100France
| | - Xiaowu Li
- Department
of Hepatobiliary Surgery, Guangdong Provincial Key Laboratory of Regional
Immunity and Diseases & Carson International Cancer Center, Shenzhen
University General Hospital & Shenzhen University Clinical Medical
Academy Center, Shenzhen University, Shenzhen518083China
| | - Joel Eyer
- Laboratoire
Micro et Nanomedecines Translationnelles, Inserm 1066, CNRS 6021,
Institut de Recherche en Ingénierie de la Sante, Bâtiment
IBS Institut de Biologie de la Sante, Université′
Angers, Centre Hospitalier Universitaire, Angers49100France
| | - Celia Arib
- CNRS,
UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et
d′Agents Thérapeutiques Université Paris 13, Sorbonne Paris Nord, Bobigny93000, France
| | - Jolanda Spadavecchia
- CNRS,
UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et
d′Agents Thérapeutiques Université Paris 13, Sorbonne Paris Nord, Bobigny93000, France
| |
Collapse
|
37
|
Muacevic A, Adler JR, Jalal Y, Ghobrial Y, Ahmed B. Low-Dose Methotrexate Toxicity Presenting as Pancytopenia. Cureus 2022; 14:e32494. [PMID: 36654616 PMCID: PMC9840410 DOI: 10.7759/cureus.32494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2022] [Indexed: 12/16/2022] Open
Abstract
High-dose methotrexate (MTX, 5 g/week) is typically used for the treatment of different malignancies and may be associated with serious side effects, such as acute kidney injury, myelosuppression, and hepatotoxicity. On the other hand, low-dose MTX (10-25 mg/week) is considered to be a safe and effective treatment for autoimmune arthropathies. Toxicity due to low-dose MTX is rare but can present with serious complications, such as pancytopenia. In this report, we present the case of an 82-year-old woman who presented with low-dose, MTX-induced severe pancytopenia and was treated with leucovorin rescue therapy with granulocyte colony-stimulating factor (G-CSF) therapy.
Collapse
|
38
|
Ji Q, Qu G, Liu B, Bai Y, Wang G, Chen R, Zheng X, Zhang Z, Yang Y, Wu C. Evaluation of porcine GM-CSF during PRRSV infection in vitro and in vivo indicating a protective role of GM-CSF related with M1 biased activation in alveolar macrophage during PRRSV infection. Front Immunol 2022; 13:967338. [PMID: 36341451 PMCID: PMC9627285 DOI: 10.3389/fimmu.2022.967338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Granulocyte-macrophage colony stimulating factor (GM-CSF), participates in diverse biological processes associated with innate and adaptive immunity, has unknown effects during PRRSV infection. Here, a double-antibody sandwich ELISA for pGM-CSF was developed in-house for evaluation of pGM-CSF level during PRRSV infection both in vitro and in vivo. In in vitro assay, it was notable that PRRSV-infected porcine alveolar macrophages (PAMs) yielded inconsistent pGM-CSF protein- and mRNA-level, suggesting a post-transcriptional inhibition of pGM-CSF mRNA was employed by PRRSV. Meanwhile, concurrent analysis of pGM-CSF levels in serum samples from PRRSV-infected piglets suggested that effect of PRRSV infection demonstrated minimum effect on pGM-CSF levels regardless of PRRSV virulence phenotypes. Moreover, in vitro treatment of PAMs with pGM-CSF prior PRRSV inoculation did not inhibit PRRSV replication in PAMs although genes downstream of pGM-CSF in PAMs could be upregulated by pGM-CSF treatment. Meanwhile, knockdown of pGM-CSF using siRNA did not enhance PRRSV replication as well. Intriguingly, therapeutic antibody treatment of HP-PRRSV-infected piglets led to significantly increased serum pGM-CSF levels, thus aligning with low pneumonia incidence and low intracellular PRRSV-RNA levels in PAMs of therapeutic antibody treated piglets. Furthermore, transcriptome analysis of PAMs from infected piglets revealed increased serum pGM-CSF levels correlated with activation of downstream signal of pGM-CSF in PAMs as evidenced by a M1-like phenotypes of gene expression pattern, implying a potential host-protective role played by pGM-CSF for PRRSV infection in vivo. In conclusion, our results demonstrated developments of a highly sensitive and specific ELISA for pGM-CSF and revealed a potential protective role conferred by pGM-CSF during PRRSV infection.
Collapse
Affiliation(s)
- Qi Ji
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture & Forestry (A&F) University, Yangling, China
| | - Guanggang Qu
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Bing Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture & Forestry (A&F) University, Yangling, China
| | - Yang Bai
- College of Life Science, Northwest Agriculture & Forestry (A&F) University, Yangling, China
| | - Guihua Wang
- Weinan Animal Disease Prevention and Control Center, Weinan, China
| | - Rui Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture & Forestry (A&F) University, Yangling, China
- Shaanxi Innolever Biotechnology Co., Ltd., Yangling, China
| | - Xu Zheng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture & Forestry (A&F) University, Yangling, China
| | - Zhigang Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture & Forestry (A&F) University, Yangling, China
| | - Yonglin Yang
- Department of Infectious Diseases, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
- *Correspondence: Yonglin Yang, ; Chunyan Wu,
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture & Forestry (A&F) University, Yangling, China
- *Correspondence: Yonglin Yang, ; Chunyan Wu,
| |
Collapse
|
39
|
Ramírez-Chacón A, Betriu-Méndez S, Bartoló-Ibars A, González A, Martí M, Juan M. Ligand-based CAR-T cell: Different strategies to drive T cells in future new treatments. Front Immunol 2022; 13:932559. [PMID: 36172370 PMCID: PMC9511026 DOI: 10.3389/fimmu.2022.932559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Chimeric antigen receptor (CAR)-based therapies are presented as innovative treatments for multiple malignancies. Despite their clinical success, there is scientific evidence of the limitations of these therapies mainly due to immunogenicity issues, toxicities associated with the infusion of the product, and relapses of the tumor. As a result, novel approaches are appearing aiming to solve and/or mitigate the harmful effects of CAR-T therapies. These include strategies based on the use of ligands as binding moieties or ligand-based CAR-T cells. Several proposals are currently under development, with some undergoing clinical trials to assess their potential benefits. In addition to these, therapies such as chimeric autoantibody receptor (CAAR), B-cell receptor antigen for reverse targeting (BAR), and even chimeric human leukocyte antigen (HLA) antibody receptor (CHAR) have emerged, benefiting from the advantages of antigenic ligands as antibody-binding motifs. This review focuses on the potential role that ligands can play in current and future antitumor treatments and in other types of diseases, such as autoimmune diseases or problems associated with transplantation.
Collapse
Affiliation(s)
- Alejandro Ramírez-Chacón
- Immunology Unit, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Laboratory of Cellular Immunology, Institute of Biotechnology and Biomedicine (IBB), Cerdanyola del Vallès, Spain
| | - Sergi Betriu-Méndez
- Immunology Department, Hospital Clínic de Barcelona, Centre de Diagnòstic Biomèdic (CDB), Barcelona, Spain
- Immunology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) – Fundació Clínic per a la Recerca Biomèdica (FCRB) Universitat de Barcelona (UB), Barcelona, Spain
| | - Ariadna Bartoló-Ibars
- Immunology Department, Hospital Clínic de Barcelona, Centre de Diagnòstic Biomèdic (CDB), Barcelona, Spain
- Immunology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) – Fundació Clínic per a la Recerca Biomèdica (FCRB) Universitat de Barcelona (UB), Barcelona, Spain
| | - Azucena González
- Immunology Department, Hospital Clínic de Barcelona, Centre de Diagnòstic Biomèdic (CDB), Barcelona, Spain
- Immunology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) – Fundació Clínic per a la Recerca Biomèdica (FCRB) Universitat de Barcelona (UB), Barcelona, Spain
- Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Mercè Martí
- Immunology Unit, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Laboratory of Cellular Immunology, Institute of Biotechnology and Biomedicine (IBB), Cerdanyola del Vallès, Spain
| | - Manel Juan
- Immunology Department, Hospital Clínic de Barcelona, Centre de Diagnòstic Biomèdic (CDB), Barcelona, Spain
- Immunology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) – Fundació Clínic per a la Recerca Biomèdica (FCRB) Universitat de Barcelona (UB), Barcelona, Spain
- Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- *Correspondence: Manel Juan,
| |
Collapse
|
40
|
Hsieh CC, Hsieh MJ, Wang YH, Liao ZX. Macrophage Distribution Affected by Virus-Encoded Granulocyte Macrophage Colony Stimulating Factor Combined with Lactate Oxidase. ACS OMEGA 2022; 7:24020-24026. [PMID: 35847295 PMCID: PMC9281315 DOI: 10.1021/acsomega.2c03213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Oncolytic virotherapy was approved as a localized treatment for advanced melanoma by the US Food and Drug Administration (FDA) in 2015. Granulocyte macrophage colony stimulating factor (GM-CSF) encoded by clinical virus-infected tumor cells, acting as a pro-inflammatory cytokine or growth factor, increases tumor antigen presentation, leading to the activation of macrophages and T cells. Notably, tumor-secreted lactate can promote the suppressive functions of M2-polarized tumor-associated macrophages and subsequently promote tumor growth. Furthermore, the consumption of tumor-secreted lactate has been implicated in the beneficial polarization of macrophages. Here, we report that GM-CSF-encoded recombinant adeno-associated virus (AAV2-GM-CSF) infection in B16-F10 mouse melanoma cells combined with lactate oxidase (LOX) leads to the recruitment of M1 macrophages for the inhibition of cancer cell growth. This study suggests that GM-CSF combined with LOX has potential as cancer virotherapy.
Collapse
|
41
|
Kumar A, Taghi Khani A, Sanchez Ortiz A, Swaminathan S. GM-CSF: A Double-Edged Sword in Cancer Immunotherapy. Front Immunol 2022; 13:901277. [PMID: 35865534 PMCID: PMC9294178 DOI: 10.3389/fimmu.2022.901277] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/06/2022] [Indexed: 12/23/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine that drives the generation of myeloid cell subsets including neutrophils, monocytes, macrophages, and dendritic cells in response to stress, infections, and cancers. By modulating the functions of innate immune cells that serve as a bridge to activate adaptive immune responses, GM-CSF globally impacts host immune surveillance under pathologic conditions. As with other soluble mediators of immunity, too much or too little GM-CSF has been found to promote cancer aggressiveness. While too little GM-CSF prevents the appropriate production of innate immune cells and subsequent activation of adaptive anti-cancer immune responses, too much of GM-CSF can exhaust immune cells and promote cancer growth. The consequences of GM-CSF signaling in cancer progression are a function of the levels of GM-CSF, the cancer type, and the tumor microenvironment. In this review, we first discuss the secretion of GM-CSF, signaling downstream of the GM-CSF receptor, and GM-CSF’s role in modulating myeloid cell homeostasis. We then outline GM-CSF’s anti-tumorigenic and pro-tumorigenic effects both on the malignant cells and on the non-malignant immune and other cells in the tumor microenvironment. We provide examples of current clinical and preclinical strategies that harness GM-CSF’s anti-cancer potential while minimizing its deleterious effects. We describe the challenges in achieving the Goldilocks effect during administration of GM-CSF-based therapies to patients with cancer. Finally, we provide insights into how technologies that map the immune microenvironment spatially and temporally may be leveraged to intelligently harness GM-CSF for treatment of malignancies.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, United States
| | - Adeleh Taghi Khani
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, United States
| | - Ashly Sanchez Ortiz
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, United States
| | - Srividya Swaminathan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, United States
- Department of Hematological Malignancies, Beckman Research Institute of City of Hope, Monrovia, CA, United States
- *Correspondence: Srividya Swaminathan,
| |
Collapse
|
42
|
Plantone D, Pardini M, Locci S, Nobili F, De Stefano N. B Lymphocytes in Alzheimer's Disease-A Comprehensive Review. J Alzheimers Dis 2022; 88:1241-1262. [PMID: 35754274 DOI: 10.3233/jad-220261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) represents the most common type of neurodegenerative dementia and is characterized by extracellular amyloid-β (Aβ) deposition, pathologic intracellular tau protein tangles, and neuronal loss. Increasing evidence has been accumulating over the past years, supporting a pivotal role of inflammation in the pathogenesis of AD. Microglia, monocytes, astrocytes, and neurons have been shown to play a major role in AD-associated inflammation. However recent studies showed that the role of both T and B lymphocytes may be important. In particular, B lymphocytes are the cornerstone of humoral immunity, they constitute a heterogenous population of immune cells, being their mature subsets significantly impacted by the inflammatory milieu. The role of B lymphocytes on AD pathogenesis is gaining interest for several reasons. Indeed, the majority of elderly people develop the process of "inflammaging", which is characterized by increased blood levels of proinflammatory molecules associated with an elevated susceptibility to chronic diseases. Epitope-specific alteration pattern of naturally occurring antibodies targeting the amino-terminus and the mid-domain of Aβ in both plasma and cerebrospinal fluid has been described in AD patients. Moreover, a possible therapeutic role of B lymphocytes depletion was recently demonstrated in murine AD models. Interestingly, active immunization against Aβ and tau, one of the main therapeutic strategies under investigation, depend on B lymphocytes. Finally. several molecules being tested in AD clinical trials can modify the homeostasis of B cells. This review summarizes the evidence supporting the role of B lymphocytes in AD from the pathogenesis to the possible therapeutic implications.
Collapse
Affiliation(s)
- Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy.,Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Sara Locci
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Flavio Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy.,Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
43
|
Ahmed MM, Wang ACJ, Elos M, Chial HJ, Sillau S, Solano DA, Coughlan C, Aghili L, Anton P, Markham N, Adame V, Gardiner KJ, Boyd TD, Potter H. The innate immune system stimulating cytokine GM-CSF improves learning/memory and interneuron and astrocyte brain pathology in Dp16 Down syndrome mice and improves learning/memory in wild-type mice. Neurobiol Dis 2022; 168:105694. [PMID: 35307513 PMCID: PMC9045510 DOI: 10.1016/j.nbd.2022.105694] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/05/2022] [Accepted: 03/13/2022] [Indexed: 12/26/2022] Open
Abstract
Down syndrome (DS) is characterized by chronic neuroinflammation, peripheral inflammation, astrogliosis, imbalanced excitatory/inhibitory neuronal function, and cognitive deficits in both humans and mouse models. Suppression of inflammation has been proposed as a therapeutic approach to treating DS co-morbidities, including intellectual disability (DS/ID). Conversely, we discovered previously that treatment with the innate immune system stimulating cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF), which has both pro- and anti-inflammatory activities, improved cognition and reduced brain pathology in a mouse model of Alzheimer's disease (AD), another inflammatory disorder, and improved cognition and reduced biomarkers of brain pathology in a phase II trial of humans with mild-to-moderate AD. To investigate the effects of GM-CSF treatment on DS/ID in the absence of AD, we assessed behavior and brain pathology in 12-14 month-old DS mice (Dp[16]1Yey) and their wild-type (WT) littermates, neither of which develop amyloid, and found that subcutaneous GM-CSF treatment (5 μg/day, five days/week, for five weeks) improved performance in the radial arm water maze in both Dp16 and WT mice compared to placebo. Dp16 mice also showed abnormal astrocyte morphology, increased percent area of GFAP staining in the hippocampus, clustering of astrocytes in the hippocampus, and reduced numbers of calretinin-positive interneurons in the entorhinal cortex and subiculum, and all of these brain pathologies were improved by GM-CSF treatment. These findings suggest that stimulating and/or modulating inflammation and the innate immune system with GM-CSF treatment may enhance cognition in both people with DS/ID and in the typical aging population.
Collapse
Affiliation(s)
- Md Mahiuddin Ahmed
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Athena Ching-Jung Wang
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mihret Elos
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Heidi J Chial
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stefan Sillau
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA
| | - D Adriana Solano
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christina Coughlan
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Leila Aghili
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Paige Anton
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Neil Markham
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vanesa Adame
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Katheleen J Gardiner
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Timothy D Boyd
- University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA
| | - Huntington Potter
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
44
|
Suliman S, Mieszkowska A, Folkert J, Rana N, Mohamed-Ahmed S, Fuoco T, Finne-Wistrand A, Dirscherl K, Jørgensen B, Mustafa K, Gurzawska-Comis K. Immune-instructive copolymer scaffolds using plant-derived nanoparticles to promote bone regeneration. Inflamm Regen 2022; 42:12. [PMID: 35366945 PMCID: PMC8977008 DOI: 10.1186/s41232-022-00196-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/13/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Age-driven immune signals cause a state of chronic low-grade inflammation and in consequence affect bone healing and cause challenges for clinicians when repairing critical-sized bone defects in elderly patients.
Methods
Poly(l-lactide-co-ɛ-caprolactone) (PLCA) scaffolds are functionalized with plant-derived nanoparticles from potato, rhamnogalacturonan-I (RG-I), to investigate their ability to modulate inflammation in vitro in neutrophils and macrophages at gene and protein levels. The scaffolds’ early and late host response at gene, protein and histological levels is tested in vivo in a subcutaneous rat model and their potential to promote bone regeneration in an aged rodent was tested in a critical-sized calvaria bone defect. Significant differences were tested using one-way ANOVA, followed by a multiple-comparison Tukey’s test with a p value ≤ 0.05 considered significant.
Results
Gene expressions revealed PLCA scaffold functionalized with plant-derived RG-I with a relatively higher amount of galactose than arabinose (potato dearabinated (PA)) to reduce the inflammatory state stimulated by bacterial LPS in neutrophils and macrophages in vitro. LPS-stimulated neutrophils show a significantly decreased intracellular accumulation of galectin-3 in the presence of PA functionalization compared to Control (unmodified PLCA scaffolds). The in vivo gene and protein expressions revealed comparable results to in vitro. The host response is modulated towards anti-inflammatory/ healing at early and late time points at gene and protein levels. A reduced foreign body reaction and fibrous capsule formation is observed when PLCA scaffolds functionalized with PA were implanted in vivo subcutaneously. PLCA scaffolds functionalized with PA modulated the cytokine and chemokine expressions in vivo during early and late inflammatory phases. PLCA scaffolds functionalized with PA implanted in calvaria defects of aged rats downregulating pro-inflammatory gene markers while promoting osteogenic markers after 2 weeks in vivo.
Conclusion
We have shown that PLCA scaffolds functionalized with plant-derived RG-I with a relatively higher amount of galactose play a role in the modulation of inflammatory responses both in vitro and in vivo subcutaneously and promote the initiation of bone formation in a critical-sized bone defect of an aged rodent. Our study addresses the increasing demand in bone tissue engineering for immunomodulatory 3D scaffolds that promote osteogenesis and modulate immune responses.
Collapse
|
45
|
Farooq RK, Alamoudi W, Alhibshi A, Rehman S, Sharma AR, Abdulla FA. Varied Composition and Underlying Mechanisms of Gut Microbiome in Neuroinflammation. Microorganisms 2022; 10:705. [PMID: 35456757 PMCID: PMC9032006 DOI: 10.3390/microorganisms10040705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/21/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
The human gut microbiome has been implicated in a host of bodily functions and their regulation, including brain development and cognition. Neuroinflammation is a relatively newer piece of the puzzle and is implicated in the pathogenesis of many neurological disorders. The microbiome of the gut may alter the inflammatory signaling inside the brain through the secretion of short-chain fatty acids, controlling the availability of amino acid tryptophan and altering vagal activation. Studies in Korea and elsewhere highlight a strong link between microbiome dynamics and neurocognitive states, including personality. For these reasons, re-establishing microbial flora of the gut looks critical for keeping neuroinflammation from putting the whole system aflame through probiotics and allotransplantation of the fecal microbiome. However, the numerosity of the microbiome remains a challenge. For this purpose, it is suggested that wherever possible, a fecal microbial auto-transplant may prove more effective. This review summarizes the current knowledge about the role of the microbiome in neuroinflammation and the various mechanism involved in this process. As an example, we have also discussed the autism spectrum disorder and the implication of neuroinflammation and microbiome in its pathogenesis.
Collapse
Affiliation(s)
- Rai Khalid Farooq
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Widyan Alamoudi
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Amani Alhibshi
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Suriya Rehman
- Department of Epidemic Diseases Research, Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Korea;
| | - Fuad A. Abdulla
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
- Department of Physical Therapy, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, P.O. Box 2435, Dammam 31441, Saudi Arabia
| |
Collapse
|
46
|
Chen LF, Yang CD, Cheng XB. Anti-Interferon Autoantibodies in Adult-Onset Immunodeficiency Syndrome and Severe COVID-19 Infection. Front Immunol 2022; 12:788368. [PMID: 35003106 PMCID: PMC8727472 DOI: 10.3389/fimmu.2021.788368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/22/2021] [Indexed: 01/08/2023] Open
Abstract
Adult-onset immunodeficiency syndrome due to anti-interferon (IFN)-γ autoantibodies has attracted much attention in recent years. It usually occurs in previously healthy people and usually presents as chronic, recurrent, and hard-to-control infections that can be effectively treated with aggressive antibiotic therapy. Adult-onset immunodeficiency syndrome is also referred to as AIDS-like syndrome. Anti-type I IFN (IFN-I) autoantibodies have been reported to play a significant role in the pathogenesis of coronavirus disease 2019 (COVID-19) and preexisting anti-IFN-I autoantibodies are associated with an increased risk of severe COVID-19. This review summarizes the effects of anti-IFN autoantibodies on the susceptibility and severity of various infectious diseases, including SARS-CoV-2 infection. In addition, we discuss the role of anti-IFN autoantibodies in the pathogenesis of autoimmune diseases that are characterized by recurrent infections.
Collapse
Affiliation(s)
- Long-Fang Chen
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng-De Yang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Bing Cheng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
47
|
Macrophages as a Therapeutic Target in Metastatic Prostate Cancer: A Way to Overcome Immunotherapy Resistance? Cancers (Basel) 2022; 14:cancers14020440. [PMID: 35053602 PMCID: PMC8773572 DOI: 10.3390/cancers14020440] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PC) is the most common malignancy and the fifth cause of cancer death in men. The treatment for localized or locally advanced stages offers a high probability of cure. Even though the therapeutic landscape has significantly improved over the last decade, metastatic PC (mPC) still has a poor prognosis mainly due to the development of therapy resistance. In this context, the use of immunotherapy alone or in combination with other drugs has been explored in recent years. However, T-cell directed immune checkpoint inhibitors (ICIs) have shown limited activity with inconclusive results in mPC patients, most likely due to the highly immunosuppressive PC tumor microenvironment (TME). In this scenario, targeting macrophages, a highly abundant immunosuppressive cell type in the TME, could offer a new therapeutic strategy to improve immunotherapy efficacy. In this review, we summarize the growing field of macrophage-directed immunotherapies and discuss how these could be applied in the treatment of mPC, focusing on their combination with ICIs.
Collapse
|
48
|
Wu L, Xu Y, Zhao H, Zhou Y, Chen Y, Yang S, Lei J, Zhang J, Wang J, Wu Y, Li Y. FcγRIIB potentiates differentiation of myeloid-derived suppressor cells to mediate tumor immunoescape. Am J Cancer Res 2022; 12:842-858. [PMID: 34976216 PMCID: PMC8692894 DOI: 10.7150/thno.66575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/22/2021] [Indexed: 11/05/2022] Open
Abstract
Background: FcγRIIB, the sole inhibitory receptor of the Fc gamma receptor family, plays pivotal roles in innate and adaptive immune responses. However, the expression and function of FcγRIIB in myeloid-derived suppressor cells (MDSCs) remains unknown. This study aimed to investigate whether and how FcγRIIB regulates the immunosuppressive activity of MDSCs during cancer development. Methods: The MC38 and B16-F10 tumor-bearing mouse models were established to investigate the role of FcγRIIB during tumor progression. FcγRIIB-deficient mice, adoptive cell transfer, mRNA-sequencing and flow cytometry analysis were used to assess the role of FcγRIIB on immunosuppressive activity and differentiation of MDSCs. Results: Here we show that FcγRIIB was upregulated in tumor-infiltrated MDSCs. FcγRIIB-deficient mice showed decreased accumulation of MDSCs in the tumor microenvironment (TME) compared with wild-type mice. FcγRIIB was required for the differentiation and immunosuppressive activity of MDSCs. Mechanistically, tumor cell-derived granulocyte-macrophage colony stimulating factor (GM-CSF) increased the expression of FcγRIIB on hematopoietic progenitor cells (HPCs) by activating specificity protein 1 (Sp1), subsequently FcγRIIB promoted the generation of MDSCs from HPCs via Stat3 signaling. Furthermore, blockade of Sp1 dampened MDSC differentiation and infiltration in the TME and enhanced the anti-tumor therapeutic efficacy of gemcitabine. Conclusion: These results uncover an unrecognized regulatory role of the FcγRIIB in abnormal differentiation of MDSCs during cancer development and suggest a potential therapeutic target for anti-tumor therapy.
Collapse
|
49
|
Iseghohi F, Yahemba AP, Rowaiye AB, Oli AN. Dendritic cells as vaccine targets. VACCINOLOGY AND METHODS IN VACCINE RESEARCH 2022:57-94. [DOI: 10.1016/b978-0-323-91146-7.00010-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
50
|
Mai ZM, Byrne SN, Little MP, Sargen MR, Cahoon EK. Solar UVR and Variations in Systemic Immune and Inflammation Markers. JID INNOVATIONS 2021; 1:100055. [PMID: 34909751 PMCID: PMC8659735 DOI: 10.1016/j.xjidi.2021.100055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/23/2022] Open
Abstract
The characterization of the effects of solar UVR on a broad set of circulating markers in systemic immunity and inflammation may provide insight into the mechanisms responsible for the UVR associations observed for several benign and malignant diseases. We examined the associations between exposure to solar UVR and circulating levels of 78 markers among 1,819 individuals aged 55–74 years who participated in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial using multiplex assays. Solar UVR was derived by linking the geocoded locations of 10 screening centers across the continental United States and the date of blood draw to the National Solar Radiation Database from 1993 to 2005. We assessed associations between ambient solar UVR and dichotomized marker levels using adjusted weighted logistic regression models and applied a 5% false discovery rate criterion to P-values. UVR exposure was associated (P < 0.05) with 9 of the 78 markers. CCL27, CCL4, FGF2, GM-CSF, IFN-γ, soluble IL4R, IL-7, and IL-11 levels were lower with increasing UVR tertile, with adjusted ORs ranging from 0.66 to 0.80, and the significant association for CCL27 withstood multiple comparison correction. In contrast, CRP levels were elevated with increasing UVR. Solar UVR was associated with alterations in systemic immune and inflammation marker levels.
Collapse
Affiliation(s)
- Zhi-Ming Mai
- Radiation Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
| | - Scott N Byrne
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Westmead, Australia
| | - Mark P Little
- Radiation Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
| | - Michael R Sargen
- Clinical Genetics Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
| | - Elizabeth K Cahoon
- Radiation Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
| |
Collapse
|