1
|
Qiu X, Li S, Fan T, Zhang Y, Wang B, Zhang B, Zhang M, Zhang L. Advances and prospects in tumor infiltrating lymphocyte therapy. Discov Oncol 2024; 15:630. [PMID: 39514075 PMCID: PMC11549075 DOI: 10.1007/s12672-024-01410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
Tumor-infiltrating lymphocyte (TIL) therapy in adoptive T-cell therapy (ACT) has already caused durable regression in a variety of cancer types due to T-cell persistence, clinical activity, and duration of objective response and safety. TILs are composed of polyclonal effector T-cells specific to heterogenetic tumor antigens, reasonably providing a promising means for tumor therapy. In addition, their expansion in vitro can release them from the suppressive tumor microenvironment. Even though significant advances have been made in the procedure of TIL therapy, from TIL isolation, modification, expansion, and infusion back to the patient to target the tumor, strategy optimization is always ongoing to overcome drawbacks such as a complex process, options for the lineage differentiation status of TILs, and sufficient trafficking of TILs to the tumor. In this review, we summarize the current advances of TIL therapy, raise problem-based optimization strategies, and provide future perspectives on next-generation TIL therapy as a potential avenue for enhancing cell-based immunotherapy.
Collapse
Affiliation(s)
- Xu Qiu
- The Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Shengjun Li
- Clinical Laboratory, Qingdao Women and Children's Hospital, Qingdao, Shandong, China
| | - Tianyu Fan
- The Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Taian City Central Hospital, Taian, Shandong, China
| | - Yue Zhang
- The Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Bin Wang
- The Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Bei Zhang
- The Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Mingzhe Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Zhang
- The Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
2
|
Mastrogiovanni M, Donnadieu E, Pathak R, Di Bartolo V. Subverting Attachment to Prevent Attacking: Alteration of Effector Immune Cell Migration and Adhesion as a Key Mechanism of Tumor Immune Evasion. BIOLOGY 2024; 13:860. [PMID: 39596815 PMCID: PMC11591779 DOI: 10.3390/biology13110860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Cell adhesion regulates specific migratory patterns, location, communication with other cells, physical interactions with the extracellular matrix, and the establishment of effector programs. Proper immune control of cancer strongly depends on all these events occurring in a highly accurate spatiotemporal sequence. In response to cancer-associated inflammatory signals, effector immune cells navigating the bloodstream shift from their patrolling exploratory migration mode to establish adhesive interactions with vascular endothelial cells. This interaction enables them to extravasate through the blood vessel walls and access the cancer site. Further adhesive interactions within the tumor microenvironment (TME) are crucial for coordinating their distribution in situ and for mounting an effective anti-tumor immune response. In this review, we examine how alterations of adhesion cues in the tumor context favor tumor escape by affecting effector immune cell infiltration and trafficking within the TME. We discuss the mechanisms by which tumors directly modulate immune cell adhesion and migration patterns to affect anti-tumor immunity and favor tumor evasion. We also explore indirect immune escape mechanisms that involve modifications of TME characteristics, such as vascularization, immunogenicity, and structural topography. Finally, we highlight the significance of these aspects in designing more effective drug treatments and cellular immunotherapies.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Emmanuel Donnadieu
- Equipe Labellisée Ligue Contre le Cancer, CNRS, INSERM, Institut Cochin, Université Paris Cité, F-75014 Paris, France;
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Vincenzo Di Bartolo
- Immunoregulation Unit, Institut Pasteur, Université Paris Cité, F-75015 Paris, France;
| |
Collapse
|
3
|
Jiang MJ, Cui HP, Li TT, Yang XM, Lu XL, Liu AQ. A novel anti-CTLA-4 nanobody-IL12 fusion protein in combination with a dendritic cell/tumour fusion cell vaccine enhances the antitumour activity of CD8 + T cells in solid tumours. J Nanobiotechnology 2024; 22:645. [PMID: 39427185 PMCID: PMC11490160 DOI: 10.1186/s12951-024-02914-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND We previously developed a nanobody targeting CTLA-4 and demonstrated that it can boost antitumour T-cell responses in vitro; however, the resulting responses after the injection of T cells into cancer models are usually weak and transient. Here, we explored whether fusing our nanobody to IL-12 would enable it to induce stronger, longer-lasting T-cell immune responses after exposure to immature dendritic cell and tumour cell fusions. RESULTS The fusion protein enhanced the response of CD8+ T cells to tumour antigens in vitro and led to stronger, more persistent immune responses after the T cells were injected into mice bearing different types of xenografts. CONCLUSION Our in vitro and in vivo results suggest the anticancer potential of our nanobody-interleukin fusion system and support the clinical application of this fusion approach for various nanobodies.
Collapse
Affiliation(s)
- Meng-Jie Jiang
- Department of Gastroenterology and Respiratory Medicine & Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China
| | - Hao-Peng Cui
- Department of Gastroenterology and Respiratory Medicine & Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China
| | - Ting-Ting Li
- Department of Gastroenterology and Respiratory Medicine & Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China
| | - Xiao-Mei Yang
- Guangxi Key Laboratory of Nanobody Research and Guangxi Nanobody Engineering Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiao-Ling Lu
- Guangxi Key Laboratory of Nanobody Research and Guangxi Nanobody Engineering Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Ai-Qun Liu
- Department of Gastroenterology and Respiratory Medicine & Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China.
| |
Collapse
|
4
|
Barzegari A, Salemi F, Kamyab A, Aratikatla A, Nejati N, Valizade M, Eltouny E, Ebrahimi A. The efficacy and applicability of chimeric antigen receptor (CAR) T cell-based regimens for primary bone tumors: A comprehensive review of current evidence. J Bone Oncol 2024; 48:100635. [PMID: 39381633 PMCID: PMC11460493 DOI: 10.1016/j.jbo.2024.100635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
Primary bone tumors (PBT), although rare, could pose significant mortality and morbidity risks due to their high incidence of lung metastasis. Survival rates of patients with PBTs may vary based on the tumor type, therapeutic interventions, and the time of diagnosis. Despite advances in the management of patients with these tumors over the past four decades, the survival rates seem not to have improved significantly, implicating the need for novel therapeutic interventions. Surgical resection with wide margins, radiotherapy, and systemic chemotherapy are the main lines of treatment for PBTs. Neoadjuvant and adjuvant chemotherapy, along with emerging immunotherapeutic approaches such as chimeric antigen receptor (CAR)-T cell therapy, have the potential to improve the treatment outcomes for patients with PBTs. CAR-T cell therapy has been introduced as an option in hematologic malignancies, with FDA approval for several CD19-targeting CAR-T cell products. This review aims to highlight the potential of immunotherapeutic strategies, specifically CAR T cell therapy, in managing PBTs.
Collapse
Affiliation(s)
| | - Fateme Salemi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Adarsh Aratikatla
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, County Dublin, Ireland
| | - Negar Nejati
- Pediatric Cell and Gene Therapy Research Centre, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Iran
| | - Mojgan Valizade
- School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehab Eltouny
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Alireza Ebrahimi
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Mu Y, Zhang Z, Zhou H, Ma L, Wang DA. Applications of nanotechnology in remodeling the tumour microenvironment for glioblastoma treatment. Biomater Sci 2024; 12:4045-4064. [PMID: 38993162 DOI: 10.1039/d4bm00665h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
With the increasing research and deepening understanding of the glioblastoma (GBM) tumour microenvironment (TME), novel and more effective therapeutic strategies have been proposed. The GBM TME involves intricate interactions between tumour and non-tumour cells, promoting tumour progression. Key therapeutic goals for GBM treatment include improving the immunosuppressive microenvironment, enhancing the cytotoxicity of immune cells against tumours, and inhibiting tumour growth and proliferation. Consequently, remodeling the GBM TME using nanotechnology has emerged as a promising approach. Nanoparticle-based drug delivery enables targeted delivery, thereby improving treatment specificity, facilitating combination therapies, and optimizing drug metabolism. This review provides an overview of the GBM TME and discusses the methods of remodeling the GBM TME using nanotechnology. Specifically, it explores the application of nanotechnology in ameliorating immune cell immunosuppression, inducing immunogenic cell death, stimulating, and recruiting immune cells, regulating tumour metabolism, and modulating the crosstalk between tumours and other cells.
Collapse
Affiliation(s)
- Yulei Mu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR
| | - Zhen Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
| | - Huiqun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR
| | - Liang Ma
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR
- Centre for Neuromusculoskeletal Restorative Medicine, InnoHK, HKSTP, Sha Tin, Hong Kong SAR 999077, China
| |
Collapse
|
6
|
Chen B, Liu J. Prospects and challenges of CAR-T in the treatment of ovarian cancer. Int Immunopharmacol 2024; 133:112112. [PMID: 38640714 DOI: 10.1016/j.intimp.2024.112112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Ovarian cancer ranks as the seventh most prevalent cancer among women and is considered the most lethal gynecological malignancy on a global scale. The absence of reliable screening techniques, coupled with the insidious onset of nonspecific symptoms, often results in a delayed diagnosis, typically at an advanced stage characterized by peritoneal involvement. Management of advanced tumors typically involves a combination of chemotherapy and cytoreductive surgery. However, the therapeutic arsenal for ovarian cancer patients remains limited, highlighting the unmet need for precise, targeted, and sustained-release pharmacological agents. Genetically engineered T cells expressing chimeric antigen receptors (CARs) represent a promising novel therapeutic modality that selectively targets specific antigens, demonstrating robust and enduring antitumor responses in numerous patients. CAR T cell therapy has exhibited notable efficacy in hematological malignancies and is currently under investigation for its potential in treating various solid tumors, including ovarian cancer. Currently, numerous researchers are engaged in the development of novel CAR-T cells designed to target ovarian cancer, with subsequent evaluation of these candidate cells in preclinical studies. Given the ability of chimeric antigen receptor (CAR) expressing T cells to elicit potent and long-lasting anti-tumor effects, this therapeutic approach holds significant promise for the treatment of ovarian cancer. This review article examines the utilization of CAR-T cells in the context of ovarian cancer therapy.
Collapse
Affiliation(s)
- Biqing Chen
- Harbin Medical University, Harbin, Heilongjiang, China.
| | | |
Collapse
|
7
|
Ende K, Santos F, Guasch J, Kemkemer R. Migration of human T cells can be differentially directed by electric fields depending on the extracellular microenvironment. iScience 2024; 27:109746. [PMID: 38706849 PMCID: PMC11067362 DOI: 10.1016/j.isci.2024.109746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/03/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
T cell migration plays an essential role in the immune response and T cell-based therapies. It can be modulated by chemical and physical cues such as electric fields (EFs). The mechanisms underlying electrotaxis (cell migration manipulated by EFs) are not fully understood and systematic studies with immune cells are rare. In this in vitro study, we show that direct current EFs with strengths of physiologically occurring EFs (25-200 mV/mm) can guide the migration of primary human CD4+ and CD8+ T cells on 2D substrates toward the anode and in a 3D environment differentially (CD4+ T cells show cathodal and CD8+ T cells show anodal electrotaxis). Overall, we find that EFs present a potent stimulus to direct T cell migration in different microenvironments in a cell-type-, substrate-, and voltage-dependent manner, while not significantly influencing T cell differentiation or viability.
Collapse
Affiliation(s)
- Karen Ende
- Reutlingen Research Institute and School of Life Sciences, Reutlingen University, 72762 Reutlingen, Germany
| | - Fabião Santos
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
- Dynamic Biomimetics for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Judith Guasch
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
- Dynamic Biomimetics for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Ralf Kemkemer
- Reutlingen Research Institute and School of Life Sciences, Reutlingen University, 72762 Reutlingen, Germany
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Jefferson RE, Oggier A, Füglistaler A, Camviel N, Hijazi M, Villarreal AR, Arber C, Barth P. Computational design of dynamic receptor-peptide signaling complexes applied to chemotaxis. Nat Commun 2023; 14:2875. [PMID: 37208363 DOI: 10.1038/s41467-023-38491-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 05/04/2023] [Indexed: 05/21/2023] Open
Abstract
Engineering protein biosensors that sensitively respond to specific biomolecules by triggering precise cellular responses is a major goal of diagnostics and synthetic cell biology. Previous biosensor designs have largely relied on binding structurally well-defined molecules. In contrast, approaches that couple the sensing of flexible compounds to intended cellular responses would greatly expand potential biosensor applications. Here, to address these challenges, we develop a computational strategy for designing signaling complexes between conformationally dynamic proteins and peptides. To demonstrate the power of the approach, we create ultrasensitive chemotactic receptor-peptide pairs capable of eliciting potent signaling responses and strong chemotaxis in primary human T cells. Unlike traditional approaches that engineer static binding complexes, our dynamic structure design strategy optimizes contacts with multiple binding and allosteric sites accessible through dynamic conformational ensembles to achieve strongly enhanced signaling efficacy and potency. Our study suggests that a conformationally adaptable binding interface coupled to a robust allosteric transmission region is a key evolutionary determinant of peptidergic GPCR signaling systems. The approach lays a foundation for designing peptide-sensing receptors and signaling peptide ligands for basic and therapeutic applications.
Collapse
Affiliation(s)
- Robert E Jefferson
- Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Aurélien Oggier
- Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Andreas Füglistaler
- Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Nicolas Camviel
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
- Department of Oncology UNIL-CHUV, University Hospital Lausanne (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Mahdi Hijazi
- Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Ana Rico Villarreal
- Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Caroline Arber
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
- Department of Oncology UNIL-CHUV, University Hospital Lausanne (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Patrick Barth
- Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland.
| |
Collapse
|
9
|
Zhang XW, Wu YS, Xu TM, Cui MH. CAR-T Cells in the Treatment of Ovarian Cancer: A Promising Cell Therapy. Biomolecules 2023; 13:biom13030465. [PMID: 36979400 PMCID: PMC10046142 DOI: 10.3390/biom13030465] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Ovarian cancer (OC) is among the most common gynecologic malignancies with a poor prognosis and a high mortality rate. Most patients are diagnosed at an advanced stage (stage III or IV), with 5-year survival rates ranging from 25% to 47% worldwide. Surgical resection and first-line chemotherapy are the main treatment modalities for OC. However, patients usually relapse within a few years of initial treatment due to resistance to chemotherapy. Cell-based therapies, particularly adoptive T-cell therapy and chimeric antigen receptor T (CAR-T) cell therapy, represent an alternative immunotherapy approach with great potential for hematologic malignancies. However, the use of CAR-T-cell therapy for the treatment of OC is still associated with several difficulties. In this review, we comprehensively discuss recent innovations in CAR-T-cell engineering to improve clinical efficacy, as well as strategies to overcome the limitations of CAR-T-cell therapy in OC.
Collapse
|
10
|
Chiu FY, Kvadas RM, Mheidly Z, Shahbandi A, Jackson JG. Could senescence phenotypes strike the balance to promote tumor dormancy? Cancer Metastasis Rev 2023; 42:143-160. [PMID: 36735097 DOI: 10.1007/s10555-023-10089-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
After treatment and surgery, patient tumors can initially respond followed by a rapid relapse, or respond well and seemingly be cured, but then recur years or decades later. The state of surviving cancer cells during the long, undetected period is termed dormancy. By definition, the dormant tumor cells do not proliferate to create a mass that is detectable or symptomatic, but also never die. An intrinsic state and microenvironment that are inhospitable to the tumor would bias toward cell death and complete eradication, while conditions that favor the tumor would enable growth and relapse. In neither case would clinical dormancy be observed. Normal cells and tumor cells can enter a state of cellular senescence after stress such as that caused by cancer therapy. Senescence is characterized by a stable cell cycle arrest mediated by chromatin modifications that cause gene expression changes and a secretory phenotype involving many cytokines and chemokines. Senescent cell phenotypes have been shown to be both tumor promoting and tumor suppressive. The balance of these opposing forces presents an attractive model to explain tumor dormancy: phenotypes of stable arrest and immune suppression could promote survival, while reversible epigenetic programs combined with cytokines and growth factors that promote angiogenesis, survival, and proliferation could initiate the emergence from dormancy. In this review, we examine the phenotypes that have been characterized in different normal and cancer cells made senescent by various stresses and how these might explain the characteristics of tumor dormancy.
Collapse
Affiliation(s)
- Fang-Yen Chiu
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Raegan M Kvadas
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Zeinab Mheidly
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Ashkan Shahbandi
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - James G Jackson
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA.
| |
Collapse
|
11
|
Shen J, Yang D, Ding Y. Advances in Promoting the Efficacy of Chimeric Antigen Receptor T Cells in the Treatment of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:5018. [PMID: 36291802 PMCID: PMC9599749 DOI: 10.3390/cancers14205018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 09/14/2023] Open
Abstract
HCC, one of the most common and deadly cancers worldwide, develops from hepatocytes and accounts for more than 90% of primary liver cancers. The current widely used treatment modalities are far from meeting the needs of liver cancer patients. CAR-T cell therapy, which has recently emerged, has shown promising efficacy in lymphoma and hematologic cancers, but there are still many challenges to overcome in its application to the clinical treatment of HCC, including osmotic barriers, the inhibition of hepatocellular carcinoma microenvironment activity, the limited survival and killing ability of CAR-T cells, and inevitable side effects, among others. As a result, a number of studies have begun to address the suboptimal efficacy of CAR-T cells in HCC, and many of these schemes hold good promise. This review focuses on advances in the past five years aimed at promoting the efficacy of CAR-T cell therapy for treatment of HCC.
Collapse
Affiliation(s)
| | | | - Youming Ding
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
12
|
Qin X, Wu F, Chen C, Li Q. Recent advances in CAR-T cells therapy for colorectal cancer. Front Immunol 2022; 13:904137. [PMID: 36238297 PMCID: PMC9551069 DOI: 10.3389/fimmu.2022.904137] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer, with a high mortality rate and a serious impact on people’s life and health. In recent years, adoptive chimeric antigen receptor T (CAR-T) cells therapy has shown well efficacy in the treatment of hematological malignancies, but there are still many problems and challenges in solid tumors such as CRC. For example, the tumor immunosuppressive microenvironment, the low targeting of CAR-T cells, the short time of CAR-T cells in vivo, and the limited proliferation capacity of CAR-T cells, CAR-T cells can not effectively infiltrate into the tumor and so on. New approaches have been proposed to address these challenges in CRC, and this review provides a comprehensive overview of the current state of CAR-T cells therapy in CRC.
Collapse
Affiliation(s)
- Xiaoling Qin
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Fengjiao Wu
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chang Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Department of Pharmacology, Harbin Medical University, Harbin, China
- *Correspondence: Qi Li, ; Chang Chen,
| | - Qi Li
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
- *Correspondence: Qi Li, ; Chang Chen,
| |
Collapse
|
13
|
Li X, Halldórsdóttir HR, Weller S, Colliander A, Bak M, Kempen P, Clergeaud G, Andresen TL. Enhancing Adoptive Cell Therapy by T Cell Loading of SHP2 Inhibitor Nanocrystals before Infusion. ACS NANO 2022; 16:10918-10930. [PMID: 35838499 DOI: 10.1021/acsnano.2c03311] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Whereas adoptive T cell therapy has been extensively studied for cancer treatment, the response is still limited primarily due to immune dysfunction related to poor cell engraftment, tumor infiltration and engagement, and lack of a target. In addition, the modification of therapeutic T cells often suffers from being complex and expensive. Here, we present a strategy to load T cells with SHP099, an allosteric SHP2 inhibitor, to enhance the therapeutic efficacy of the T cells. Remote-loading of SHP099 into lipid nanoparticles decorated with triarginine motifs resulted in nanocrystal formation of SHP099 inside the lipid vesicles and allowed high loading efficiency and prolonged retention of SHP099 nanocrystals within T cells. Cell-loaded SHP099 enabled sustained inhibition of the PD-1/PD-L1 signaling and increased cytolytic activity of the T cells. We show in a mouse model that tumor-homing T cells can circulate with the cargos, improving their tumor accumulation compared to systemically administered lipid nanoparticles. On an established solid tumor model, adoptively transferred SHP099 loaded T cells induced complete tumor eradication and durable immune memory against tumor rechallenging on all treated mice by effectively inhibiting the PD-1/PD-L1 checkpoint signal. We demonstrate that the combination of T cell therapy with SHP2 inhibition is a promising therapeutic strategy, and the lipid nanocrystal platform could be generalized as a promising approach for T cell loading of immunomodulatory drugs.
Collapse
Affiliation(s)
- Xin Li
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | - Sven Weller
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Anna Colliander
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Martin Bak
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Paul Kempen
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Gael Clergeaud
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Thomas L Andresen
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
14
|
Ramos‑Cardona X, Luo W, Mohammed S. Advances and challenges of CAR T therapy and suitability of animal models (Review). Mol Clin Oncol 2022; 17:134. [PMID: 35949897 PMCID: PMC9353808 DOI: 10.3892/mco.2022.2567] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/06/2022] [Indexed: 11/06/2022] Open
Abstract
Chimeric antigen receptors (CARs) recently gained momentum in cancer treatment due to their ability to promote T-cell mediated responses to a specific tumor-associated antigen. CARs are part of the adoptive cell transfer (ACT) strategies that utilize patients' T lymphocytes, genetically engineered to kill cancer cells. However, despite the therapy's success against blood-related malignancies, treating solid tumors has not reached its fullest potential yet. The reasons include the complex suppressive tumor microenvironment, mutations on cancer cells' target receptors, lethal side-effects, restricted trafficking into the tumor, suboptimal persistence in vivo and the lack of animal models that faithfully resemble human tumor's immunological responses. Currently, rodent models are used to investigate the safety and efficacy of CAR therapies. However, these models are limited in representing the human disease faithfully, fail to predict the adverse treatment events and overestimate the efficacy of the therapy. On the other hand, spontaneously developed tumors in dogs are more suited in CAR research and their efficacy has been demonstrated in a number of diseases, including lymphoma, osteosarcoma and mammary tumors. The present review discusses the design and evolution of CARs, challenges of CAR in solid tumors, human and canine clinical trials and advantages of the canine model.
Collapse
Affiliation(s)
- Xavier Ramos‑Cardona
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN 47907, USA
| | - Weichuan Luo
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sulma Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN 47907, USA
| |
Collapse
|
15
|
Zhang Y, Liu Z, Wei W, Li Y. TCR engineered T cells for solid tumor immunotherapy. Exp Hematol Oncol 2022; 11:38. [PMID: 35725570 PMCID: PMC9210724 DOI: 10.1186/s40164-022-00291-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022] Open
Abstract
T cell immunotherapy remains an attractive approach for cancer immunotherapy. T cell immunotherapy mainly employs chimeric antigen receptor (CAR)- and T cell receptor (TCR)-engineered T cells. CAR-T cell therapy has been an essential breakthrough in treating hematological malignancies. TCR-T cells can recognize antigens expressed both on cell surfaces and in intracellular compartments. Although TCR-T cells have not been approved for clinical application, a number of clinical trials have been performed, particularly for solid tumors. In this article, we summarized current TCR-T cell advances and their potential advantages for solid tumor immunotherapy.
Collapse
Affiliation(s)
- Yikai Zhang
- Guangzhou Municipality Tianhe Nuoya Bio-engineering Co. Ltd, Guangzhou, 510663, China.,Guangdong Cord blood bank, Guangzhou, 510663, China.,Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, 601 Huang Pu Da Dao Xi, Guangzhou, 510632, China
| | - Zhipeng Liu
- Guangzhou Municipality Tianhe Nuoya Bio-engineering Co. Ltd, Guangzhou, 510663, China.,Guangdong Cord blood bank, Guangzhou, 510663, China
| | - Wei Wei
- Guangzhou Municipality Tianhe Nuoya Bio-engineering Co. Ltd, Guangzhou, 510663, China. .,Guangdong Cord blood bank, Guangzhou, 510663, China.
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China. .,Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, 601 Huang Pu Da Dao Xi, Guangzhou, 510632, China.
| |
Collapse
|
16
|
Jiang Y, Wen W, Yang F, Han D, Zhang W, Qin W. Prospect of Prostate Cancer Treatment: Armed CAR-T or Combination Therapy. Cancers (Basel) 2022; 14:cancers14040967. [PMID: 35205714 PMCID: PMC8869943 DOI: 10.3390/cancers14040967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/29/2022] [Accepted: 02/12/2022] [Indexed: 02/06/2023] Open
Abstract
The incidence rate of prostate cancer is higher in male cancers. With a hidden initiation of disease and long duration, prostate cancer seriously affects men's physical and mental health. Prostate cancer is initially androgen-dependent, and endocrine therapy can achieve good results. However, after 18-24 months of endocrine therapy, most patients eventually develop castration-resistant prostate cancer (CRPC), which becomes metastatic castration resistant prostate cancer (mCRPC) that is difficult to treat. Chimeric Antigen Receptor T cell (CAR-T) therapy is an emerging immune cell therapy that brings hope to cancer patients. CAR-T has shown considerable advantages in the treatment of hematologic tumors. However, there are still obstacles to CAR-T treatment of solid tumors because the physical barrier and the tumor microenvironment inhibit the function of CAR-T cells. In this article, we review the progress of CAR-T therapy in the treatment of prostate cancer and discuss the prospects and challenges of armed CAR-T and combined treatment strategies. At present, there are still many obstacles in the treatment of prostate cancer with CAR-T, but when these obstacles are solved, CAR-T cells can become a favorable weapon for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Yao Jiang
- Department of Urology, First Affiliated Hospital of Air Force Military Medical University, Xi’an 710032, China; (Y.J.); (F.Y.); (D.H.)
| | - Weihong Wen
- Department of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
- Correspondence: (W.W.); (W.Q.)
| | - Fa Yang
- Department of Urology, First Affiliated Hospital of Air Force Military Medical University, Xi’an 710032, China; (Y.J.); (F.Y.); (D.H.)
| | - Donghui Han
- Department of Urology, First Affiliated Hospital of Air Force Military Medical University, Xi’an 710032, China; (Y.J.); (F.Y.); (D.H.)
| | - Wuhe Zhang
- Department of Urology, Air Force 986 Hospital, Xi’an 710054, China;
| | - Weijun Qin
- Department of Urology, First Affiliated Hospital of Air Force Military Medical University, Xi’an 710032, China; (Y.J.); (F.Y.); (D.H.)
- Correspondence: (W.W.); (W.Q.)
| |
Collapse
|
17
|
Sato N, Szajek LP, Choyke PL. Tracking of NK Cells by Positron Emission Tomography Using 89Zr-Oxine Ex Vivo Cell Labeling. Methods Mol Biol 2022; 2463:153-161. [PMID: 35344173 DOI: 10.1007/978-1-0716-2160-8_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A 89Zr-oxine ex vivo cell labeling method for tracking various cells by positron emission tomography (PET) imaging has recently been developed. 89Zr-oxine is synthesized from oxine and 89Zr-chloride, which was converted from 89Zr-oxalate, with neutralization. To track migration of natural killer (NK) cells in vivo in real time by PET imaging, NK cells are labeled with 89Zr-oxine ex vivo and infused to a recipient. The labeling is performed by mixing 89Zr-oxine solution to NK cell suspension at room temperature, followed by washing. Care should be taken to label the cells at optimal radioactivity doses that maintain their viability and functionality. 89Zr-oxine labeled NK cells can be tracked for their migration and distribution by PET/computed tomography imaging for at least 7 days. Of note, this protocol is applicable to other types of cells.
Collapse
Affiliation(s)
- Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Lawrence P Szajek
- PET Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Cao Y, Zhou Y, Chen Z, Zhang Z, Chen X, He C. Localized Chemotherapy Based on Injectable Hydrogel Boosts the Antitumor Activity of Adoptively Transferred T Lymphocytes In Vivo. Adv Healthc Mater 2021; 10:e2100814. [PMID: 34297480 DOI: 10.1002/adhm.202100814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/29/2021] [Indexed: 12/13/2022]
Abstract
The adoptive transfer of antigen-specific T cells has been successfully applied in the treatment of hematological malignancies. However, its application in the treatment of solid tumors has been overshadowed by the immunosuppressive tumor microenvironment. In this context, a preprocessing strategy is developed to reprogram the immunosuppressive tumor microenvironment using a thermoresponsive hydrogel loaded with doxorubicin (DOX@Gel). Compared with hydrogel-based chemotherapy alone or adoptive T cell therapy alone, this combination exhibits enhanced anti-tumor efficacy. In addition to the direct killing of tumor cells, the local chemotherapy releases tumor-associated antigens which enhance the proliferation and effector function of endogenous and adoptively transferred T cells. Moreover, DOX@Gel significantly reduces the numbers of both myeloid derived suppressor cells and Tregs in tumor microenvironment. It is suggested that DOX@Gel promotes the efficacy of adoptively transferred T cells against solid tumors, overcoming the key limitations of adoptive T cell therapy.
Collapse
Affiliation(s)
- Yue Cao
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
- Institute for Interdisciplinary Biomass Functional Materials Studies Jilin Engineering Normal University 3050 Kaixuan Road Changchun 130052 P. R. China
| | - Yuhao Zhou
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Zhixiong Chen
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Zhen Zhang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Chaoliang He
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| |
Collapse
|
19
|
NK Cell-Mediated Eradication of Ovarian Cancer Cells with a Novel Chimeric Antigen Receptor Directed against CD44. Biomedicines 2021; 9:biomedicines9101339. [PMID: 34680456 PMCID: PMC8533227 DOI: 10.3390/biomedicines9101339] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/09/2022] Open
Abstract
Ovarian cancer is the most common cause of gynecological cancer-related death in the developed world. Disease recurrence and chemoresistance are major causes of poor survival rates in ovarian cancer patients. Ovarian cancer stem cells (CSCs) were shown to represent a source of tumor recurrence owing to the high resistance to chemotherapy and enhanced tumorigenicity. Chimeric antigen receptor (CAR)-based adoptive immunotherapy represents a promising strategy to reduce the risk for recurrent disease. In this study, we developed a codon-optimized third-generation CAR to specifically target CD44, a marker widely expressed on ovarian cancer cells and associated with CSC-like properties and intraperitoneal tumor spread. We equipped NK-92 cells with the anti-CD44 CAR (CD44NK) and an anti-CD19 control CAR (CD19NK) using lentiviral SIN vectors. Compared to CD19NK and untransduced NK-92 cells, CD44NK showed potent and specific cytotoxic activity against CD44-positive ovarian cancer cell lines (SKOV3 and OVCAR3) and primary ovarian cancer cells harvested from ascites. In contrast, CD44NK had less cytotoxic activity against CD44-negative A2780 cells. Specific activation of engineered NK cells was also demonstrated by interferon-γ (IFNγ) secretion assays. Furthermore, CD44NK cells still demonstrated cytotoxic activity under cisplatin treatment. Most importantly, the simultaneous treatment with CD44NK and cisplatin showed higher anti-tumor activity than sequential treatment.
Collapse
|
20
|
Bonacina F, Martini E, Svecla M, Nour J, Cremonesi M, Beretta G, Moregola A, Pellegatta F, Zampoleri V, Catapano AL, Kallikourdis M, Norata GD. Adoptive transfer of CX3CR1 transduced-T regulatory cells improves homing to the atherosclerotic plaques and dampens atherosclerosis progression. Cardiovasc Res 2021; 117:2069-2082. [PMID: 32931583 DOI: 10.1093/cvr/cvaa264] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/13/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
AIM Loss of immunosuppressive response supports inflammation during atherosclerosis. We tested whether adoptive cell therapy (ACT) with Tregulatory cells (Tregs), engineered to selectively migrate in the atherosclerotic plaque, would dampen the immune-inflammatory response in the arterial wall in animal models of familial hypercholesterolaemia (FH). METHODS AND RESULTS FH patients presented a decreased Treg suppressive function associated to an increased inflammatory burden. A similar phenotype was observed in Ldlr -/- mice accompanied by a selective increased expression of the chemokine CX3CL1 in the aorta but not in other districts (lymph nodes, spleen, and liver). Treg overexpressing CX3CR1 were thus generated (CX3CR1+-Tregs) to drive Tregs selectively to the plaque. CX3CR1+-Tregs were injected (i.v.) in Ldlr -/- fed high-cholesterol diet (western type diet, WTD) for 8 weeks. CX3CR1+-Tregs were detected in the aorta, but not in other tissues, of Ldlr -/- mice 24 h after ACT, corroborating the efficacy of this approach. After 4 additional weeks of WTD, ACT with CX3CR1+-Tregs resulted in reduced plaque progression and lipid deposition, ameliorated plaque stability by increasing collagen and smooth muscle cells content, while decreasing the number of pro-inflammatory macrophages. Shotgun proteomics of the aorta showed a metabolic rewiring in CX3CR1+-Tregs treated Ldlr -/- mice compared to controls that was associated with the improvement of inflammation-resolving pathways and disease progression. CONCLUSION ACT with vasculotropic Tregs appears as a promising strategy to selectively target immune activation in the atherosclerotic plaque.
Collapse
MESH Headings
- Adoptive Transfer
- Adult
- Animals
- Aortic Diseases/immunology
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Atherosclerosis/immunology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- CX3C Chemokine Receptor 1/genetics
- CX3C Chemokine Receptor 1/metabolism
- Cells, Cultured
- Disease Models, Animal
- Disease Progression
- Female
- Genetic Therapy
- Humans
- Hyperlipoproteinemia Type II/immunology
- Hyperlipoproteinemia Type II/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Plaque, Atherosclerotic
- Prospective Studies
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Retrospective Studies
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/transplantation
- Transduction, Genetic
- Mice
Collapse
Affiliation(s)
- Fabrizia Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Elisa Martini
- Adaptive Immunity Lab, Humanitas Clinical and Research Center, Rozzano-IRCCS, Milan, Italy
| | - Monika Svecla
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Jasmine Nour
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Marco Cremonesi
- Adaptive Immunity Lab, Humanitas Clinical and Research Center, Rozzano-IRCCS, Milan, Italy
| | - Giangiacomo Beretta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Annalisa Moregola
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | | | - Veronica Zampoleri
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
- Centro SISA per lo Studio dell'Aterosclerosi, Ospedale Bassini, Cinisello Balsamo, Italy
| | - Alberico Luigi Catapano
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
- IRCCS Multimedica, Milan, Italy
| | - Marinos Kallikourdis
- Adaptive Immunity Lab, Humanitas Clinical and Research Center, Rozzano-IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Giuseppe Danilo Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
- Centro SISA per lo Studio dell'Aterosclerosi, Ospedale Bassini, Cinisello Balsamo, Italy
| |
Collapse
|
21
|
Ray SK, Meshram Y, Mukherjee S. Cancer Immunology and CAR-T Cells: A Turning Point Therapeutic Approach in Colorectal Carcinoma with Clinical Insight. Curr Mol Med 2021; 21:221-236. [PMID: 32838717 DOI: 10.2174/1566524020666200824103749] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/24/2020] [Accepted: 08/28/2020] [Indexed: 12/24/2022]
Abstract
Cancer immunotherapy endeavours in harnessing the delicate strength and specificity of the immune system for therapy of different malignancies, including colorectal carcinoma. The recent challenge for cancer immunotherapy is to practice and develop molecular immunology tools to create tactics that efficiently and securely boost antitumor reactions. After several attempts of deceptive outcomes, the wave has lastly altered and immunotherapy has become a clinically confirmed treatment for several cancers. Immunotherapeutic methods include the administration of antibodies or modified proteins that either block cellular activity or co-stimulate cells through immune control pathways, cancer vaccines, oncolytic bacteria, ex vivo activated adoptive transfer of T cells and natural killer cells. Engineered T cells are used to produce a chimeric antigen receptor (CAR) to treat different malignancies, including colorectal carcinoma in a recent decade. Despite the considerable early clinical success, CAR-T therapies are associated with some side effects and sometimes display minimal efficacy. It gives special emphasis on the latest clinical evidence with CAR-T technology and also other related immunotherapeutic methods with promising performance, and highlighted how this therapy can affect the therapeutic outcome and next upsurge as a key clinical aspect of colorectal carcinoma. In this review, we recapitulate the current developments produced to improve the efficacy and specificity of CAR-T therapies in colon cancer.
Collapse
Affiliation(s)
- Suman K Ray
- Independent Researcher, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| | - Yamini Meshram
- Independent Researcher, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| |
Collapse
|
22
|
Wang W, Wu Q, Wang Z, Ren S, Shen H, Shi W, Xu Y. Development of a Prognostic Model for Ovarian Cancer Patients Based on Novel Immune Microenvironment Related Genes. Front Oncol 2021; 11:647273. [PMID: 33869044 PMCID: PMC8045757 DOI: 10.3389/fonc.2021.647273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Ovarian cancer (OV) has become the most lethal gynecological cancer. However, its treatment methods and staging system are far from ideal. In the present study, taking the advantage of large-scale public cohorts, we extracted a list of immune-related prognostic genes that differentially expressed in tumor and normal ovarian tissues. Importantly, an individualized immune-related gene based prognostic model (IPM) for OV patients were developed. Furthermore, we validated our IPM in Gene Expression Omnibus (GEO) repository and compared the immune landscape and pathways between high-risk and low-risk groups. The results of our study can serve as an important model to identify the immune subset of patients and has potential for use in immune therapeutic selection and patient management.
Collapse
Affiliation(s)
- Wei Wang
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, China.,Department of Medicine, Nantong University Xinling College, Nantong, China
| | - Qianqian Wu
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, China
| | - Ziheng Wang
- Department of Medicine, Nantong University Xinling College, Nantong, China
| | - Shiqi Ren
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, China.,Department of Medicine, Nantong University Xinling College, Nantong, China
| | - Hanyu Shen
- Department of Medicine, Nantong University Xinling College, Nantong, China
| | - Wenyu Shi
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yunzhao Xu
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, China.,Department of Obstetrics and Gynecology, Nantong University Affiliated Hospital, Nantong, China
| |
Collapse
|
23
|
Choi YW, Kim YH, Oh SY, Suh KW, Kim Y, Lee G, Yoon JE, Park SS, Lee Y, Park YJ, Kim HS, Park SH, Kim J, Park TJ. Senescent Tumor Cells Build a Cytokine Shield in Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002497. [PMID: 33643790 PMCID: PMC7887594 DOI: 10.1002/advs.202002497] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/09/2020] [Indexed: 05/25/2023]
Abstract
Cellular senescence can either support or inhibit cancer progression. Here, it is shown that intratumoral infiltration of CD8+ T cells is negatively associated with the proportion of senescent tumor cells in colorectal cancer (CRC). Gene expression analysis reveals increased expression of C-X-C motif chemokine ligand 12 (CXCL12) and colony stimulating factor 1 (CSF1) in senescent tumor cells. Senescent tumor cells inhibit CD8+ T cell infiltration by secreting a high concentration of CXCL12, which induces a loss of CXCR4 in T cells that result in impaired directional migration. CSF1 from senescent tumor cells enhance monocyte differentiation into M2 macrophages, which inhibit CD8+ T cell activation. Neutralization of CXCL12/CSF1 increases the effect of anti-PD1 antibody in allograft tumors. Furthermore, inhibition of CXCL12 from senescent tumor cells enhances T cell infiltration and results in reducing the number and size of tumors in azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced CRC. These findings suggest senescent tumor cells generate a cytokine barrier protecting nonsenescent tumor cells from immune attack and provide a new target for overcoming the immunotherapy resistance of CRC.
Collapse
Affiliation(s)
- Yong Won Choi
- Department of Biochemistry and Molecular BiologyAjou University School of MedicineSuwon16499Korea
- Department of Hematology–OncologyAjou University School of MedicineSuwon16499Korea
- Inflamm‐Aging Translational Research CenterAjou University Medical CenterSuwon16499Korea
| | - Young Hwa Kim
- Department of Biochemistry and Molecular BiologyAjou University School of MedicineSuwon16499Korea
- Department of Biomedical SciencesAjou University Graduate School of MedicineSuwon16499Korea
| | - Seung Yeop Oh
- Department of SurgeryAjou University School of MedicineSuwon16499Korea
| | - Kwang Wook Suh
- Department of SurgeryAjou University School of MedicineSuwon16499Korea
| | - Young‐Sam Kim
- Department of Biochemistry and Molecular BiologyAjou University School of MedicineSuwon16499Korea
- Department of Biomedical SciencesAjou University Graduate School of MedicineSuwon16499Korea
| | - Ga‐Yeon Lee
- Department of Biochemistry and Molecular BiologyAjou University School of MedicineSuwon16499Korea
- Department of Biomedical SciencesAjou University Graduate School of MedicineSuwon16499Korea
| | - Jung Eun Yoon
- Department of Biochemistry and Molecular BiologyAjou University School of MedicineSuwon16499Korea
- Department of Biomedical SciencesAjou University Graduate School of MedicineSuwon16499Korea
| | - Soon Sang Park
- Department of Biochemistry and Molecular BiologyAjou University School of MedicineSuwon16499Korea
- Department of Biomedical SciencesAjou University Graduate School of MedicineSuwon16499Korea
| | - Young‐Kyoung Lee
- Department of Biochemistry and Molecular BiologyAjou University School of MedicineSuwon16499Korea
- Inflamm‐Aging Translational Research CenterAjou University Medical CenterSuwon16499Korea
- Department of Biomedical SciencesAjou University Graduate School of MedicineSuwon16499Korea
| | - Yoo Jung Park
- Department of Hematology–OncologyAjou University School of MedicineSuwon16499Korea
| | - Hong Seok Kim
- Department of Molecular MedicineInha University School of MedicineIncheon22212Korea
| | - So Hyun Park
- Department of PathologyAjou University School of MedicineSuwon16499Korea
| | - Jang‐Hee Kim
- Inflamm‐Aging Translational Research CenterAjou University Medical CenterSuwon16499Korea
- Department of PathologyAjou University School of MedicineSuwon16499Korea
| | - Tae Jun Park
- Department of Biochemistry and Molecular BiologyAjou University School of MedicineSuwon16499Korea
- Inflamm‐Aging Translational Research CenterAjou University Medical CenterSuwon16499Korea
- Department of Biomedical SciencesAjou University Graduate School of MedicineSuwon16499Korea
| |
Collapse
|
24
|
Moaaz M, Lotfy H, Elsherbini B, Motawea MA, Fadali G. TGF-β Enhances the Anti-inflammatory Effect of Tumor- Infiltrating CD33+11b+HLA-DR Myeloid-Derived Suppressor Cells in Gastric Cancer: A Possible Relation to MicroRNA-494. Asian Pac J Cancer Prev 2020; 21:3393-3403. [PMID: 33247701 PMCID: PMC8033108 DOI: 10.31557/apjcp.2020.21.11.3393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Accumulation of myeloid-derived suppressor cells (MDSCs) constitutes a key mechanism of tumor immune evasion in gastric cancer (GC). Therefore, searching for more accurate prognostic factors affecting their immunosuppressive role has become a growing interest in cancer immunotherapy research. Increased expression of microRNA-494 was noticed in MDSCs from tumor-bearing mice, suggesting another new therapeutic objective for cancer treatment. It was also discovered that tumor-derived transforming growth factor beta (TGF-β) is responsible for the up-regulation of microRNA-494 in MDSCs. The purpose of this study was to address the effect of recombinant (rTGF-β) on the anti-inflammatory activity of MDSCs in GC and its possible association with micro-RNA-494 expression in tumor tissue. METHODS Freshly obtained GC tumor tissue samples and peripheral blood were used for isolation of CD33+11b+HLADR- MDSCs cells from 40 GC patients and 31 corresponding controls using flow cytometry. MDSCs were co-cultured with isolated autologous T cells to assess proliferation and cytokine production in the presence and absence of rTGF-β. Real-time PCR and Enzyme linked immunosorbent assay were used to evaluate tumor expression of miRNA-494 and TGF-β respectively. RESULTS Results showed that rTGF-β markedly increased the suppressive ability of tumor MDSCs on proliferation of autologous T cells and interferon gamma production. However, no inhibitory effect was observed for MDSCs from circulation. In addition, infiltration of MDSCs in tumors is associated with the prognosis of GC. MiRNA-494 was also extensively expressed in tumor samples with a significant correlation to MDSCs. CONCLUSION These results indicate that tumor-derived MDSCs but not circulatory MDSCs have an immunosuppressive effect on T cells, potentially involving TGF-β mediated stimulation. Results also suggest a role for miRNA-494 in GC progression. Therefore, control of TGF-β and miRNA-494 may be used as a treatment strategy to downregulate the immunosuppressive effect of MDSCs. .
Collapse
Affiliation(s)
- Mai Moaaz
- Department of Immunology and Allergy, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Hassan Lotfy
- Department of Surgery, Vascular Surgery Unit, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Bassem Elsherbini
- Department of Immunology and Allergy, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Mohamed A. Motawea
- Department of Experimental Surgery, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Geylan Fadali
- Department of Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
25
|
Wang Y, Wei B, Gao J, Cai X, Xu L, Zhong H, Wang B, Sun Y, Guo W, Xu Q, Gu Y. Combination of Fruquintinib and Anti-PD-1 for the Treatment of Colorectal Cancer. THE JOURNAL OF IMMUNOLOGY 2020; 205:2905-2915. [PMID: 33028620 DOI: 10.4049/jimmunol.2000463] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/04/2020] [Indexed: 12/28/2022]
Abstract
Identification of effective therapies for colorectal cancer (CRC) remains an urgent medical need, especially for the microsatellite-stable (MSS) phenotype. In the current study, a combination of fruquintinib plus anti-PD-1 for MSS CRC therapy was investigated. First, a case of advanced MSS CRC was reported. After failure of multiline therapy, the patient finally achieved rapid response after receiving fruquintinib plus anti-PD-1 treatment. Then the effect of fruquintinib plus anti-PD-1 was verified using a murine syngeneic model of CT26 cells (MSS). The results showed that cotreatment significantly inhibited tumor growth and promote survival time for tumor-bearing mice compared with the single drug alone. In addition, fruquintinib/anti-PD-1 cotreatment decreased angiogenesis, enhanced normalization of the vascular structure, and alleviated tumor hypoxia. Moreover, the combination therapy reprogrammed the immune microenvironment by enhancing chemotactic factor release, increasing CD8+ T cell infiltration and activation, decreasing ration of regulatory T cells, and promoting M1/M2 ratio of macrophage. Finally, the enhanced antitumor effect of fruquintinib/anti-PD-1 cotreatment was significantly reversed in CD8 knockout mice compared with that in the wild-type mice. Our study indicated that combination of fruquintinib and anti-PD-1 could synergistically suppress CRC progression and altered the tumor microenvironment in favor of antitumor immune responses.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.,Department of Oncology, Cancer Rehabilitation Center, Jiangsu Province Hospital, Nanjing 210029, China
| | - Bin Wei
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.,Department of Oncology, Cancer Rehabilitation Center, Jiangsu Province Hospital, Nanjing 210029, China.,The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an 223001, China; and
| | - Jianhua Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiaomin Cai
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.,Department of Oncology, Cancer Rehabilitation Center, Jiangsu Province Hospital, Nanjing 210029, China
| | - Lingyan Xu
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.,Department of Oncology, Cancer Rehabilitation Center, Jiangsu Province Hospital, Nanjing 210029, China
| | - Haiqing Zhong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Binglin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yanhong Gu
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; .,Department of Oncology, Cancer Rehabilitation Center, Jiangsu Province Hospital, Nanjing 210029, China
| |
Collapse
|
26
|
Jo Y, Ali LA, Shim JA, Lee BH, Hong C. Innovative CAR-T Cell Therapy for Solid Tumor; Current Duel between CAR-T Spear and Tumor Shield. Cancers (Basel) 2020; 12:cancers12082087. [PMID: 32731404 PMCID: PMC7464778 DOI: 10.3390/cancers12082087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Novel engineered T cells containing chimeric antigen receptors (CAR-T cells) that combine the benefits of antigen recognition and T cell response have been developed, and their effect in the anti-tumor immunotherapy of patients with relapsed/refractory leukemia has been dramatic. Thus, CAR-T cell immunotherapy is rapidly emerging as a new therapy. However, it has limitations that prevent consistency in therapeutic effects in solid tumors, which accounts for over 90% of all cancer patients. Here, we review the literature regarding various obstacles to CAR-T cell immunotherapy for solid tumors, including those that cause CAR-T cell dysfunction in the immunosuppressive tumor microenvironment, such as reactive oxygen species, pH, O2, immunosuppressive cells, cytokines, and metabolites, as well as those that impair cell trafficking into the tumor microenvironment. Next-generation CAR-T cell therapy is currently undergoing clinical trials to overcome these challenges. Therefore, novel approaches to address the challenges faced by CAR-T cell immunotherapy in solid tumors are also discussed here.
Collapse
Affiliation(s)
- Yuna Jo
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Korea; (Y.J.); (L.A.A.); (J.A.S.)
| | - Laraib Amir Ali
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Korea; (Y.J.); (L.A.A.); (J.A.S.)
| | - Ju A Shim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Korea; (Y.J.); (L.A.A.); (J.A.S.)
| | - Byung Ha Lee
- NeoImmuneTech, Inc., 2400 Research Blvd., Suite 250, Rockville, MD 20850, USA;
| | - Changwan Hong
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Korea; (Y.J.); (L.A.A.); (J.A.S.)
- Correspondence: ; Tel.: +82-51-510-8041
| |
Collapse
|
27
|
Dal Bo M, De Mattia E, Baboci L, Mezzalira S, Cecchin E, Assaraf YG, Toffoli G. New insights into the pharmacological, immunological, and CAR-T-cell approaches in the treatment of hepatocellular carcinoma. Drug Resist Updat 2020; 51:100702. [DOI: 10.1016/j.drup.2020.100702] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/06/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
|
28
|
Gunderson AJ, Yamazaki T, McCarty K, Fox N, Phillips M, Alice A, Blair T, Whiteford M, O'Brien D, Ahmad R, Kiely MX, Hayman A, Crocenzi T, Gough MJ, Crittenden MR, Young KH. TGFβ suppresses CD8 + T cell expression of CXCR3 and tumor trafficking. Nat Commun 2020; 11:1749. [PMID: 32273499 PMCID: PMC7145847 DOI: 10.1038/s41467-020-15404-8] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor beta (TGFβ) is a multipotent immunosuppressive cytokine. TGFβ excludes immune cells from tumors, and TGFβ inhibition improves the efficacy of cytotoxic and immune therapies. Using preclinical colorectal cancer models in cell type-conditional TGFβ receptor I (ALK5) knockout mice, we interrogate this mechanism. Tumor growth delay and radiation response are unchanged in animals with Treg or macrophage-specific ALK5 deletion. However, CD8αCre-ALK5flox/flox (ALK5ΔCD8) mice reject tumors in high proportions, dependent on CD8+ T cells. ALK5ΔCD8 mice have more tumor-infiltrating effector CD8+ T cells, with more cytotoxic capacity. ALK5-deficient CD8+ T cells exhibit increased CXCR3 expression and enhanced migration towards CXCL10. TGFβ reduces CXCR3 expression, and increases binding of Smad2 to the CXCR3 promoter. In vivo CXCR3 blockade partially abrogates the survival advantage of an ALK5ΔCD8 host. These data demonstrate a mechanism of TGFβ immunosuppression through inhibition of CXCR3 in CD8+ T cells, thereby limiting their trafficking into tumors.
Collapse
Affiliation(s)
- Andrew J Gunderson
- Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Tomoko Yamazaki
- Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Kayla McCarty
- Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Nathaniel Fox
- Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Michaela Phillips
- Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Alejandro Alice
- Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Tiffany Blair
- Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Mark Whiteford
- Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan St, Portland, OR, 97213, USA
- The Oregon Clinic, Colon and Rectal Surgery Division, 4805 NE Glisan St, Suite 6N60, Portland, OR, 97213, USA
| | - David O'Brien
- Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan St, Portland, OR, 97213, USA
- The Oregon Clinic, Colon and Rectal Surgery Division, 4805 NE Glisan St, Suite 6N60, Portland, OR, 97213, USA
| | - Rehan Ahmad
- Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan St, Portland, OR, 97213, USA
- The Oregon Clinic, Colon and Rectal Surgery Division, 4805 NE Glisan St, Suite 6N60, Portland, OR, 97213, USA
| | - Maria X Kiely
- Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan St, Portland, OR, 97213, USA
- The Oregon Clinic, Colon and Rectal Surgery Division, 4805 NE Glisan St, Suite 6N60, Portland, OR, 97213, USA
| | - Amanda Hayman
- Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan St, Portland, OR, 97213, USA
- The Oregon Clinic, Colon and Rectal Surgery Division, 4805 NE Glisan St, Suite 6N60, Portland, OR, 97213, USA
| | - Todd Crocenzi
- Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Michael J Gough
- Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan St, Portland, OR, 97213, USA
- The Oregon Clinic, Radiation Oncology Division, 4805 NE Glisan St, G level, Portland, OR, 97213, USA
| | - Kristina H Young
- Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan St, Portland, OR, 97213, USA.
- The Oregon Clinic, Radiation Oncology Division, 4805 NE Glisan St, G level, Portland, OR, 97213, USA.
| |
Collapse
|
29
|
Iwahori K. Cytotoxic CD8 + Lymphocytes in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1224:53-62. [PMID: 32036604 DOI: 10.1007/978-3-030-35723-8_4] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the tumor microenvironment, CD8+ T cells play a major role in tumor immunity. CD8+ T cells differentiate to cytotoxic T cells, traffic into the tumor microenvironment, and exhibit cytotoxicity against tumor cells. These processes have both positive and negative effects. Enhancements in the cytotoxic activity of tumor antigen-specific cytotoxic T cells in the tumor microenvironment are crucial for the development of cancer immunotherapy. To achieve this, several immunotherapies, including cancer vaccines, T cells engineered to express chimeric antigen receptors (CAR T cells), and bispecific T-cell engagers (BiTEs), have been developed. In contrast to cancer vaccines, CAR T cells, and BiTEs, immune checkpoint inhibitors enhance the activity of cytotoxic T cells by inhibiting the negative regulators of T cells.The total number, type, and activity of tumor antigen-specific cytotoxic T cells in the tumor microenvironment need to be clarified, particularly for the development of companion diagnostics to identify patients for whom these therapies are effective. Therefore, technologies including TCR repertoire, single-cell, and T-cell cytotoxicity analyses using BiTEs have been developed.Based on these and future innovations, the generation of effective cancer immunotherapies is anticipated.
Collapse
Affiliation(s)
- Kota Iwahori
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan. .,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan.
| |
Collapse
|
30
|
Neo SY, Lundqvist A. The Multifaceted Roles of CXCL9 Within the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1231:45-51. [PMID: 32060845 DOI: 10.1007/978-3-030-36667-4_5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemokines are soluble proteins that orchestrate cell migration in a regulated concentration gradient. During early stages of tumor development, chemokines shape the immune landscape of tumor microenvironment. CXCL9, also known as monokine induced by gamma-interferon (MIG), can be produced during inflammatory conditions by myeloid cells within the tumor microenvironment. It attracts cells expressing the CXCR3 receptor including activated T and NK cells and has been shown to play a role in responses to immune checkpoint therapy. Overexpression of CXCL9 has also shown to reduce tumor progression and metastasis via the inhibition of angiogenesis. Conversely, CXCL9 can act directly on tumor cells expressing the CXCR3 receptor to promote cell migration and epithelial mesenchymal transition. In this chapter we discuss the anti- and pro-tumoral features of CXCL9 within the tumor microenvironment.
Collapse
Affiliation(s)
- Shi Yong Neo
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
31
|
Mononuclear but Not Polymorphonuclear Phagocyte Depletion Increases Circulation Times and Improves Mammary Tumor-Homing Efficiency of Donor Bone Marrow-Derived Monocytes. Cancers (Basel) 2019; 11:cancers11111752. [PMID: 31717301 PMCID: PMC6896201 DOI: 10.3390/cancers11111752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/29/2019] [Accepted: 11/06/2019] [Indexed: 01/05/2023] Open
Abstract
Tumor associated macrophages are an essential part of the tumor microenvironment. Consequently, bone marrow-derived monocytes (BMDMs) are continuously recruited to tumors and are therefore seen as ideal delivery vehicles with tumor-targeting properties. By using immune cell depleting agents and macroscopic in vivo fluorescence imaging, we demonstrated that removal of endogenous monocytes and macrophages (but not neutrophils) leads to an increased tumor accumulation of exogenously administered BMDMs. By means of intravital microscopy (IVM), we confirmed our macroscopic findings on a cellular level and visualized in real time the migration of the donor BMDMs in the tumors of living animals. Moreover, IVM also revealed that clodronate-mediated depletion drastically increases the circulation time of the exogenously administered BMDMs. In summary, these new insights illustrate that impairment of the mononuclear phagocyte system increases the circulation time and tumor accumulation of donor BMDMs.
Collapse
|
32
|
Lesch S, Benmebarek MR, Cadilha BL, Stoiber S, Subklewe M, Endres S, Kobold S. Determinants of response and resistance to CAR T cell therapy. Semin Cancer Biol 2019; 65:80-90. [PMID: 31705998 DOI: 10.1016/j.semcancer.2019.11.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/28/2019] [Accepted: 11/03/2019] [Indexed: 12/27/2022]
Abstract
The remarkable success of chimeric antigen receptor (CAR)-engineered T cells in pre-B cell acute lymphoblastic leukemia (ALL) and B cell lymphoma led to the approval of anti-CD19 CAR T cells as the first ever CAR T cell therapy in 2017. However, with the number of CAR T cell-treated patients increasing, observations of tumor escape and resistance to CAR T cell therapy with disease relapse are demonstrating the current limitations of this therapeutic modality. Mechanisms hampering CAR T cell efficiency include limited T cell persistence, caused for example by T cell exhaustion and activation-induced cell death (AICD), as well as therapy-related toxicity. Furthermore, the physical properties, antigen heterogeneity and immunosuppressive capacities of solid tumors have prevented the success of CAR T cells in these entities. Herein we review current obstacles of CAR T cell therapy and propose strategies in order to overcome these hurdles and expand CAR T cell therapy to a broader range of cancer patients.
Collapse
Affiliation(s)
- Stefanie Lesch
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany
| | - Mohamed-Reda Benmebarek
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany
| | - Bruno L Cadilha
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany
| | - Stefan Stoiber
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany
| | - Marion Subklewe
- German Center for Translational Cancer Research (DKTK), partner site Munich, Munich, Germany; Department of Medicine III, Klinikum der Universität München, LMU Munich, Germany
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany; German Center for Translational Cancer Research (DKTK), partner site Munich, Munich, Germany
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany; German Center for Translational Cancer Research (DKTK), partner site Munich, Munich, Germany.
| |
Collapse
|
33
|
Trivett MT, Burke JD, Deleage C, Coren LV, Hill BJ, Jain S, Barsov EV, Breed MW, Kramer JA, Del Prete GQ, Lifson JD, Swanstrom AE, Ott DE. Preferential Small Intestine Homing and Persistence of CD8 T Cells in Rhesus Macaques Achieved by Molecularly Engineered Expression of CCR9 and Reduced Ex Vivo Manipulation. J Virol 2019; 93:e00896-19. [PMID: 31434738 PMCID: PMC6803279 DOI: 10.1128/jvi.00896-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/16/2019] [Indexed: 12/29/2022] Open
Abstract
Adoptive cell transfer (ACT) is a powerful experimental approach to directly study T-cell-mediated immunity in vivo In the rhesus macaque AIDS virus model, infusing simian immunodeficiency virus (SIV)-infected animals with CD8 T cells engineered to express anti-SIV T-cell receptor specificities enables direct experimentation to better understand antiviral T-cell immunity in vivo Limiting factors in ACT experiments include suboptimal trafficking to, and poor persistence in, the secondary lymphoid tissues targeted by AIDS viruses. Previously, we redirected CD8 T cells to B-cell follicles by ectopic expression of the CXCR5 homing protein. Here, we modify peripheral blood mononuclear cell (PBMC)-derived CD8 T cells to express the CCR9 chemokine receptor, which induces preferential homing of the engineered cells to the small intestine, a site of intense early AIDS virus replication and pathology in rhesus macaques. Additionally, we increase in vivo persistence and overall systemic distribution of infused CD8 T cells, especially in secondary lymphoid tissues, by minimizing ex vivo culture/manipulation, thereby avoiding the loss of CD28+/CD95+ central memory T cells by differentiation in culture. These proof-of-principle results establish the feasibility of preferentially localizing PBMC-derived CD8 T cells to the small intestine and enables the direct experimental ACT-based assessment of the potential role of the quality and timing of effective antiviral CD8 T-cell responses to inhibit viral infection and subsequent replication in small intestine CD4 T cells. More broadly, these results support the engineered expression of homing proteins to direct CD8 T cells to target tissues as a means for both experimental and potential therapeutic advances in T-cell immunotherapies, including cancer.IMPORTANCEAdoptive cell transfer (ACT) of T cells engineered with antigen-specific effector properties can deliver targeted immune responses against malignancies and infectious diseases. Current T-cell-based therapeutic ACT relies on circulatory distribution to deliver engineered T cells to their targets, an approach which has proven effective for some leukemias but provided only limited efficacy against solid tumors. Here, engineered expression of the CCR9 homing receptor redirected CD8 T cells to the small intestine in rhesus macaque ACT experiments. Targeted homing of engineered T-cell immunotherapies holds promise to increase the effectiveness of adoptively transferred cells in both experimental and clinical settings.
Collapse
Affiliation(s)
- Matthew T Trivett
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - James D Burke
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Lori V Coren
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Brenna J Hill
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Sumiti Jain
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Eugene V Barsov
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Matthew W Breed
- Laboratory Animal Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Joshua A Kramer
- Laboratory Animal Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Adrienne E Swanstrom
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - David E Ott
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
34
|
Martini E, Kunderfranco P, Peano C, Carullo P, Cremonesi M, Schorn T, Carriero R, Termanini A, Colombo FS, Jachetti E, Panico C, Faggian G, Fumero A, Torracca L, Molgora M, Cibella J, Pagiatakis C, Brummelman J, Alvisi G, Mazza EMC, Colombo MP, Lugli E, Condorelli G, Kallikourdis M. Single-Cell Sequencing of Mouse Heart Immune Infiltrate in Pressure Overload-Driven Heart Failure Reveals Extent of Immune Activation. Circulation 2019; 140:2089-2107. [PMID: 31661975 DOI: 10.1161/circulationaha.119.041694] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Inflammation is a key component of cardiac disease, with macrophages and T lymphocytes mediating essential roles in the progression to heart failure. Nonetheless, little insight exists on other immune subsets involved in the cardiotoxic response. METHODS Here, we used single-cell RNA sequencing to map the cardiac immune composition in the standard murine nonischemic, pressure-overload heart failure model. By focusing our analysis on CD45+ cells, we obtained a higher resolution identification of the immune cell subsets in the heart, at early and late stages of disease and in controls. We then integrated our findings using multiparameter flow cytometry, immunohistochemistry, and tissue clarification immunofluorescence in mouse and human. RESULTS We found that most major immune cell subpopulations, including macrophages, B cells, T cells and regulatory T cells, dendritic cells, Natural Killer cells, neutrophils, and mast cells are present in both healthy and diseased hearts. Most cell subsets are found within the myocardium, whereas mast cells are found also in the epicardium. Upon induction of pressure overload, immune activation occurs across the entire range of immune cell types. Activation led to upregulation of key subset-specific molecules, such as oncostatin M in proinflammatory macrophages and PD-1 in regulatory T cells, that may help explain clinical findings such as the refractivity of patients with heart failure to anti-tumor necrosis factor therapy and cardiac toxicity during anti-PD-1 cancer immunotherapy, respectively. CONCLUSIONS Despite the absence of infectious agents or an autoimmune trigger, induction of disease leads to immune activation that involves far more cell types than previously thought, including neutrophils, B cells, Natural Killer cells, and mast cells. This opens up the field of cardioimmunology to further investigation by using toolkits that have already been developed to study the aforementioned immune subsets. The subset-specific molecules that mediate their activation may thus become useful targets for the diagnostics or therapy of heart failure.
Collapse
Affiliation(s)
- Elisa Martini
- Adaptive Immunity Laboratory (E.M., M.C., M.K.), Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Paolo Kunderfranco
- Bioinformatics Unit (P.K., R.C., A.T.), Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Clelia Peano
- Genomic Unit (C. Peano, J.C.), Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, Rozzano, Italy (C. Peano, P.C., G.C.)
| | - Pierluigi Carullo
- Department of Cardiovascular Medicine (P.C., C. Panico, C. Pagiatakis, G.C.), Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, Rozzano, Italy (C. Peano, P.C., G.C.)
| | - Marco Cremonesi
- Adaptive Immunity Laboratory (E.M., M.C., M.K.), Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Tilo Schorn
- Advanced Imaging Unit (T.S.), Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Roberta Carriero
- Bioinformatics Unit (P.K., R.C., A.T.), Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Alberto Termanini
- Bioinformatics Unit (P.K., R.C., A.T.), Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Federico Simone Colombo
- Flow Cytometry Core (F.S.C., E.L.), Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Elena Jachetti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy (E.J., M.P.C.)
| | - Cristina Panico
- Department of Cardiovascular Medicine (P.C., C. Panico, C. Pagiatakis, G.C.), Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Giuseppe Faggian
- Department of Cardiac Surgery, University of Verona, Italy (G.F.)
| | - Andrea Fumero
- Cardiac Surgery Division, Department of Cardiovascular Medicine (A.F., L.T.), Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Lucia Torracca
- Cardiac Surgery Division, Department of Cardiovascular Medicine (A.F., L.T.), Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Martina Molgora
- Laboratory of Experimental Immunopathology (M.M.), Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Javier Cibella
- Genomic Unit (C. Peano, J.C.), Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Christina Pagiatakis
- Department of Cardiovascular Medicine (P.C., C. Panico, C. Pagiatakis, G.C.), Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Jolanda Brummelman
- Laboratory of Translational Immunology (J.B., G.A., E.M.C., E.L.), Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Giorgia Alvisi
- Laboratory of Translational Immunology (J.B., G.A., E.M.C., E.L.), Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Emilia Maria Cristina Mazza
- Laboratory of Translational Immunology (J.B., G.A., E.M.C., E.L.), Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Mario Paolo Colombo
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy (E.J., M.P.C.)
| | - Enrico Lugli
- Flow Cytometry Core (F.S.C., E.L.), Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Laboratory of Translational Immunology (J.B., G.A., E.M.C., E.L.), Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Gianluigi Condorelli
- Department of Cardiovascular Medicine (P.C., C. Panico, C. Pagiatakis, G.C.), Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, Rozzano, Italy (C. Peano, P.C., G.C.).,Humanitas University, Pieve Emanuele, Italy (G.C., M.K.)
| | - Marinos Kallikourdis
- Adaptive Immunity Laboratory (E.M., M.C., M.K.), Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Humanitas University, Pieve Emanuele, Italy (G.C., M.K.)
| |
Collapse
|
35
|
The Vascular Disrupting Agent CA4P Improves the Antitumor Efficacy of CAR-T Cells in Preclinical Models of Solid Human Tumors. Mol Ther 2019; 28:75-88. [PMID: 31672285 DOI: 10.1016/j.ymthe.2019.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/29/2019] [Accepted: 10/10/2019] [Indexed: 11/20/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy remains relatively ineffective against solid tumors due to inadequate infiltration and in vivo expansion of CAR-T cells. Unlike hematological malignancies, solid tumors have vascular barriers that hinder CAR-T cells from reaching the tumor site. Here, we demonstrated that combretastatin A-4 phosphate (CA4P), a vascular disrupting agent (VDA), can significantly improve the infiltration ability of CAR-T cells in solid tumors as evidenced by elevated levels of IFN-γ. Moreover, combined treatment with CA4P and CAR-T cells greatly increased the therapeutic efficiency of the CAR-T cells in subcutaneous ovarian cancer mouse xenograft models and patient-derived xenograft (PDX) models of colon and ovarian carcinoma. Our findings highlight CA4P as an effective antitumor agent candidate for combination with CAR-T cells in clinical applications to treat solid tumors.
Collapse
|
36
|
Harjunpää H, Llort Asens M, Guenther C, Fagerholm SC. Cell Adhesion Molecules and Their Roles and Regulation in the Immune and Tumor Microenvironment. Front Immunol 2019; 10:1078. [PMID: 31231358 PMCID: PMC6558418 DOI: 10.3389/fimmu.2019.01078] [Citation(s) in RCA: 478] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/29/2019] [Indexed: 12/14/2022] Open
Abstract
The immune system and cancer have a complex relationship with the immune system playing a dual role in tumor development. The effector cells of the immune system can recognize and kill malignant cells while immune system-mediated inflammation can also promote tumor growth and regulatory cells suppress the anti-tumor responses. In the center of all anti-tumor responses is the ability of the immune cells to migrate to the tumor site and to interact with each other and with the malignant cells. Cell adhesion molecules including receptors of the immunoglobulin superfamily and integrins are of crucial importance in mediating these processes. Particularly integrins play a vital role in regulating all aspects of immune cell function including immune cell trafficking into tissues, effector cell activation and proliferation and the formation of the immunological synapse between immune cells or between immune cell and the target cell both during homeostasis and during inflammation and cancer. In this review we discuss the molecular mechanisms regulating integrin function and the role of integrins and other cell adhesion molecules in immune responses and in the tumor microenvironment. We also describe how malignant cells can utilize cell adhesion molecules to promote tumor growth and metastases and how these molecules could be targeted in cancer immunotherapy.
Collapse
Affiliation(s)
- Heidi Harjunpää
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marc Llort Asens
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Carla Guenther
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Susanna C Fagerholm
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
37
|
Caliendo F, Dukhinova M, Siciliano V. Engineered Cell-Based Therapeutics: Synthetic Biology Meets Immunology. Front Bioeng Biotechnol 2019; 7:43. [PMID: 30937303 PMCID: PMC6431652 DOI: 10.3389/fbioe.2019.00043] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/20/2019] [Indexed: 12/30/2022] Open
Abstract
Synthetic Biology has enabled new approaches to several medical applications including the development of immunotherapies based on bioengineered cells, and most notably the engineering of T-cells with tumor-targeting receptors, the Chimeric Antigen Receptor (CAR)-T cells. CAR-T-cells have successfully treated blood tumors such as large B-cell lymphoma and promise a new scenario of therapeutic interventions also for solid tumors. Learning the lesson from CAR-T cells, we can foster the reprogramming of T lymphocytes with enhanced survival and functional activity in depressing tumor microenvironment, or to challenge diseases such as infections, autoimmune and chronic inflammatory disorders. This review will focus on the most updated bioengineering approaches to increase control, and safety of T-cell activity and to immunomodulate the extracellular microenvironment to augment immune responses. We will also discuss on applications beyond cancer treatment with implications toward the understanding and cure of a broader range of diseases by means of mammalian cells engineering.
Collapse
Affiliation(s)
- Fabio Caliendo
- Istituto Italiano di Tecnologia-IIT, Largo Barsanti e Matteucci, Naples, Italy
| | - Marina Dukhinova
- Istituto Italiano di Tecnologia-IIT, Largo Barsanti e Matteucci, Naples, Italy
| | - Velia Siciliano
- Istituto Italiano di Tecnologia-IIT, Largo Barsanti e Matteucci, Naples, Italy
- Imperial College London, South Kensington, London, United Kingdom
| |
Collapse
|
38
|
Martinez M, Moon EK. CAR T Cells for Solid Tumors: New Strategies for Finding, Infiltrating, and Surviving in the Tumor Microenvironment. Front Immunol 2019; 10:128. [PMID: 30804938 PMCID: PMC6370640 DOI: 10.3389/fimmu.2019.00128] [Citation(s) in RCA: 587] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/16/2019] [Indexed: 12/26/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells, T cells that have been genetically engineered to express a receptor that recognizes a specific antigen, have given rise to breakthroughs in treating hematological malignancies. However, their success in treating solid tumors has been limited. The unique challenges posed to CAR T cell therapy by solid tumors can be described in three steps: finding, entering, and surviving in the tumor. The use of dual CAR designs that recognize multiple antigens at once and local administration of CAR T cells are both strategies that have been used to overcome the hurdle of localization to the tumor. Additionally, the immunosuppressive tumor microenvironment has implications for T cell function in terms of differentiation and exhaustion, and combining CARs with checkpoint blockade or depletion of other suppressive factors in the microenvironment has shown very promising results to mitigate the phenomenon of T cell exhaustion. Finally, identifying and overcoming mechanisms associated with dysfunction in CAR T cells is of vital importance to generating CAR T cells that can proliferate and successfully eliminate tumor cells. The structure and costimulatory domains chosen for the CAR may play an important role in the overall function of CAR T cells in the TME, and “armored” CARs that secrete cytokines and third- and fourth-generation CARs with multiple costimulatory domains offer ways to enhance CAR T cell function.
Collapse
Affiliation(s)
- Marina Martinez
- Perelman School of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Edmund Kyung Moon
- Perelman School of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
39
|
Tokarew N, Ogonek J, Endres S, von Bergwelt-Baildon M, Kobold S. Teaching an old dog new tricks: next-generation CAR T cells. Br J Cancer 2019; 120:26-37. [PMID: 30413825 PMCID: PMC6325111 DOI: 10.1038/s41416-018-0325-1] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023] Open
Abstract
Adoptive T cell therapy (ACT) refers to the therapeutic use of T cells. T cells genetically engineered to express chimeric antigen receptors (CAR) constitute the most clinically advanced form of ACT approved to date for the treatment of CD19-positive leukaemias and lymphomas. CARs are synthetic receptors that are able to confer antigen-binding and activating functions on T cells with the aim of therapeutically targeting cancer cells. Several factors are essential for CAR T cell therapy to be effective, such as recruitment, activation, expansion and persistence of bioengineered T cells at the tumour site. Despite the advances made in CAR T cell therapy, however, most tumour entities still escape immune detection and elimination. A number of strategies counteracting these problems will need to be addressed in order to render T cell therapy effective in more situations than currently possible. Non-haematological tumours are also the subject of active investigation, but ACT has so far shown only marginal success rates in these cases. New approaches are needed to enhance the ability of ACT to target solid tumours without increasing toxicity, by improving recognition, infiltration, and persistence within tumours, as well as an enhanced resistance to the suppressive tumour microenvironment.
Collapse
Affiliation(s)
- Nicholas Tokarew
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Justyna Ogonek
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany
| | | | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Klinikum der Universität München, Lindwurmstrasse 2a, 80337, Munich, Germany.
| |
Collapse
|
40
|
Manipulating the tumor microenvironment by adoptive cell transfer of CAR T-cells. Mamm Genome 2018; 29:739-756. [PMID: 29987406 DOI: 10.1007/s00335-018-9756-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022]
Abstract
T-cells expressing synthetic chimeric antigen receptors (CARs) have revolutionized immuno-oncology and highlighted the use of adoptive cell transfer, for the treatment of cancer. The phenomenal clinical success obtained in the treatment of hematological malignancies with CAR T-cells has not been reproduced in the treatment of solid tumors, mainly due to the suppressive and hostile tumor microenvironment (TME). This review will address the immunosuppressive features of the TME, which include the stroma, cytokine and chemokine milieu, suppressive regulatory cells and hypoxic conditions, which can all pose formidable barriers for the effective anti-tumor function of CAR T-cells. Some of the novel next generation CARs that have been developed and tested against the TME, will be discussed, to highlight the status of current research in CAR T-cell therapy for solid tumors.
Collapse
|
41
|
Lieber S, Reinartz S, Raifer H, Finkernagel F, Dreyer T, Bronger H, Jansen JM, Wagner U, Worzfeld T, Müller R, Huber M. Prognosis of ovarian cancer is associated with effector memory CD8 + T cell accumulation in ascites, CXCL9 levels and activation-triggered signal transduction in T cells. Oncoimmunology 2018. [PMID: 29721385 DOI: 10.1080/2162402x.2018.1424672] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022] Open
Abstract
The accumulation of intratumoral CD8+ T cells is associated with the survival of high grade serous ovarian carcinoma patients, but it is unclear which CD8+ T cell subsets contribute to this effect and how they are affected by the peritoneal tumor microenvironment. Here, we provide evidence for a functional link between long relapse-free survival, accumulation of CD8+ effector memory T (TEM) cells in peritoneal effusion (ascites), and the level of the CD8+ TEM attracting chemokine CXCL9, produced by macrophages as a major source. We also propose a novel mechanism by which the tumor microenvironment could contribute to T cell dysfunction and shorter survival, i.e., diminished expression levels of essential signaling proteins, including STAT5B, PLCγ1 and NFATc2. CD8+ TEM cells in ascites, CXCL9 levels and the expression of crucial signal transduction proteins may therefore be important biomarkers to gauge the efficiency of immune therapies and potentially represent therapeutic targets.
Collapse
Affiliation(s)
- Sonja Lieber
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Silke Reinartz
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, Center for Tumor Biology and Immunology (ZTI), Philipps University Marburg, Marburg, Germany
| | - Hartmann Raifer
- FACS Core Facility, Biomedical Research Center, Philipps University Marburg, Marburg, Germany.,Institute of Medical Microbiology and Hygiene, Biomedical Research Center, Philipps University Marburg, Marburg, Germany
| | - Florian Finkernagel
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Tobias Dreyer
- Department of Gynecology and Obstetrics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Holger Bronger
- Department of Gynecology and Obstetrics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Julia M Jansen
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital of Giessen and Marburg (UKGM), Marburg, Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital of Giessen and Marburg (UKGM), Marburg, Germany
| | - Thomas Worzfeld
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), Philipps University Marburg, Marburg, Germany.,Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Magdalena Huber
- Institute of Medical Microbiology and Hygiene, Biomedical Research Center, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
42
|
Lieber S, Reinartz S, Raifer H, Finkernagel F, Dreyer T, Bronger H, Jansen JM, Wagner U, Worzfeld T, Müller R, Huber M. Prognosis of ovarian cancer is associated with effector memory CD8 + T cell accumulation in ascites, CXCL9 levels and activation-triggered signal transduction in T cells. Oncoimmunology 2018; 7:e1424672. [PMID: 29721385 PMCID: PMC5927536 DOI: 10.1080/2162402x.2018.1424672] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 12/14/2022] Open
Abstract
The accumulation of intratumoral CD8+ T cells is associated with the survival of high grade serous ovarian carcinoma patients, but it is unclear which CD8+ T cell subsets contribute to this effect and how they are affected by the peritoneal tumor microenvironment. Here, we provide evidence for a functional link between long relapse-free survival, accumulation of CD8+ effector memory T (TEM) cells in peritoneal effusion (ascites), and the level of the CD8+ TEM attracting chemokine CXCL9, produced by macrophages as a major source. We also propose a novel mechanism by which the tumor microenvironment could contribute to T cell dysfunction and shorter survival, i.e., diminished expression levels of essential signaling proteins, including STAT5B, PLCγ1 and NFATc2. CD8+ TEM cells in ascites, CXCL9 levels and the expression of crucial signal transduction proteins may therefore be important biomarkers to gauge the efficiency of immune therapies and potentially represent therapeutic targets.
Collapse
Affiliation(s)
- Sonja Lieber
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Silke Reinartz
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, Center for Tumor Biology and Immunology (ZTI), Philipps University Marburg, Marburg, Germany
| | - Hartmann Raifer
- FACS Core Facility, Biomedical Research Center, Philipps University Marburg, Marburg, Germany.,Institute of Medical Microbiology and Hygiene, Biomedical Research Center, Philipps University Marburg, Marburg, Germany
| | - Florian Finkernagel
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Tobias Dreyer
- Department of Gynecology and Obstetrics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Holger Bronger
- Department of Gynecology and Obstetrics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Julia M Jansen
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital of Giessen and Marburg (UKGM), Marburg, Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital of Giessen and Marburg (UKGM), Marburg, Germany
| | - Thomas Worzfeld
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), Philipps University Marburg, Marburg, Germany.,Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Magdalena Huber
- Institute of Medical Microbiology and Hygiene, Biomedical Research Center, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
43
|
King J, Abraham D, Stratton R. Chemokines in systemic sclerosis. Immunol Lett 2018; 195:68-75. [PMID: 29247681 DOI: 10.1016/j.imlet.2017.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Jamie King
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, UCL, NW3 2QG, United Kingdom
| | - David Abraham
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, UCL, NW3 2QG, United Kingdom
| | - Richard Stratton
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, UCL, NW3 2QG, United Kingdom.
| |
Collapse
|
44
|
Antigen-adjuvant effects of icariin in enhancing tumor-specific immunity in mastocytoma-bearing DBA/2J mice. Biomed Pharmacother 2018; 99:810-816. [PMID: 29710479 DOI: 10.1016/j.biopha.2018.01.139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/04/2018] [Accepted: 01/28/2018] [Indexed: 12/31/2022] Open
Abstract
Cancer immunotherapy has attracted much attention in recent years because of the ability of immune system to identify tumor cells and limit their growth. Icariin (ICA) is a natural flavonoid glucoside isolated from Epimedium plants and has shown a variety of pharmacological activities such as anti-inflammatory effects, immunological regulation and anticancer potency. Furthermore, it has immunoadjuvant effects on enhancing Th1-immune response, suggesting that ICA may serve as an adjuvant for cancer immunotherapy. In this study, we used P815 mouse mastocytoma tumor model and immunized them with P815AB peptide and/or ICA. Our results demonstrated that ICA could increase the cytotoxic T lymphocytes (CTL) response for P815AB peptide on the tumor-bearing DBA/2J mice. In addition, the percentage of CD4+CD8+/CD3+CD69+/CD69+NKG2D+ positive cells in splenocytes of the tumor-bearing mice all significantly increased after combined immunization with ICA and P815AB peptide. This illustrated that ICA could enhance the immunogenicity of P815AB and improve the ability of T cells and CTLs in recognizing the tumor cells. Moreover, ICA improved the function of peritoneal macrophages with effects of inhibition on tumor growth. Besides, we discussed the possible mechanism of ICA to enhance body immunity by detecting the expression level of MHC-I and related genes in B16-F10 and RMA/S cells. The results suggested that ICA has the potential to up-regulate LMP/TAP related molecules and induce the expression of MHC-I, which increase the immune surveillance and keep cancer in remission. In conclusion, ICA showed an anti-tumor effect both in vitro and in vivo and may be an effective antigen adjuvant for cancer treatment by enhancing tumor-specific immunity.
Collapse
|
45
|
Toor SM, Elkord E. Comparison of Myeloid Cells in Circulation and in the Tumor Microenvironment of Patients with Colorectal and Breast Cancers. J Immunol Res 2017; 2017:7989020. [PMID: 29230424 PMCID: PMC5694573 DOI: 10.1155/2017/7989020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 10/04/2017] [Indexed: 12/22/2022] Open
Abstract
We have previously reported levels of myeloid cells in the periphery and in the tumor microenvironment (TME) of patients with primary breast cancer (PBC) and colorectal cancer (CRC). We found that both PBC and CRC patients have significantly higher levels of granulocytic and immature myeloid cells in the TME. Additionally, we reported an expansion of circulating granulocytic myeloid cells in CRC patients, but not in PBC patients. In this report, we compared levels of myeloid cells between these two common cancers and have added data from more cancer patients. We also investigated associations between clinical stage/histological grade of tumors and levels of myeloid cells in cancer patients. We found that although granulocytic myeloid cells were expanded in the TME of both PBC and CRC patients, the levels of these cells were significantly higher in the TME of CRC patients. Moreover, our results indicate that increased levels of circulating granulocytic myeloid cells are associated with poorly differentiated tumors in CRC patients. Taken together, this work suggests that CRC patients may benefit more from the development of therapeutic agents to promote myeloid cell differentiation or inhibition for the reversal of immune suppression.
Collapse
Affiliation(s)
- Salman M. Toor
- Cancer Research Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Eyad Elkord
- Cancer Research Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
- Institute of Cancer Sciences, University of Manchester, Manchester, UK
| |
Collapse
|