1
|
Enya T, Ross SR. Innate Sensing of Viral Nucleic Acids and Their Use in Antiviral Vaccine Development. Vaccines (Basel) 2025; 13:193. [PMID: 40006739 PMCID: PMC11860339 DOI: 10.3390/vaccines13020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/23/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Viruses pose a significant threat to humans by causing numerous infectious and potentially fatal diseases. Understanding how the host's innate immune system recognizes viruses is essential to understanding pathogenesis and ways to control viral infection. Innate immunity also plays a critical role in shaping adaptive immune responses induced by vaccines. Recently developed adjuvants often include nucleic acids that stimulate pattern recognition receptors which are essential components of innate immunity necessary for activating antigen-presentation cells and thereby bridging innate and adaptive immunity. Therefore, understanding viral nucleic acid sensing by cytosolic sensors is essential, as it provides the potential means for developing new vaccine strategies, including effective adjuvants.
Collapse
Affiliation(s)
| | - Susan R. Ross
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA;
| |
Collapse
|
2
|
Chen K, Zhou B, Wang X, Yang G, Lin Y, Wang X, Du C, Wang X. Equine lentivirus Gag protein degrades mitochondrial antiviral signaling protein via the E3 ubiquitin ligase Smurf1. J Virol 2025; 99:e0169124. [PMID: 39665545 PMCID: PMC11784353 DOI: 10.1128/jvi.01691-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024] Open
Abstract
Equine infectious anemia virus (EIAV) and HIV-1 are both members of the Lentivirus genus and are similar in virological characters. EIAV is of great concern in the equine industry. Lentiviruses establish a complex interaction with the host cell to counteract the antiviral responses. There are various pattern recognition receptors in the host, for instance, the cytosolic RNA helicases interact with viral RNA to activate the mitochondrial antiviral signaling protein (MAVS) and subsequent interferon (IFN) response. However, viruses also exploit multiple strategies to resist host immunity by targeting MAVS, but the mechanism by which lentiviruses are able to target MAVS has remained unclear. In this study, we found that EIAV infection induced MAVS degradation, and that EIAV Gag protein recruited the E3 ubiquitin ligase Smurf1 to polyubiquitinate and degrade MAVS. The CARD domain of MAVS and the WW domain of Smurf1 are responsible for the interaction with Gag. EIAV Gag is a precursor polyprotein of the membrane-interacting matrix p15, the capsid p26, and the RNA-binding nucleocapsid proteins p11 and p9. Therefore, we analyzed which protein domain of Gag could interact with MAVS and Smurf1. We found that p15 and p26, but not p11 or p9, target MAVS for degradation. Moreover, we identified the key amino acid residues that support the interactions between p15 or p26 and MAVS or Smurf1. The present study describes a novel role of the EIAV structural protein Gag in targeting MAVS to counteract innate immunity, and reveals the mechanism by which the equine lentivirus can antagonize against MAVS.IMPORTANCEHost anti-RNA virus innate immunity relies mainly on the recognition by retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5), and subsequently initiates downstream signaling through interaction with mitochondrial antiviral signaling protein (MAVS). However, viruses have developed various strategies to counteract MAVS-mediated signaling, although the method of antagonism of MAVS by lentiviruses is still unknown. In this article, we demonstrate that the precursor (Pr55gag) polyprotein of EIAV and its protein domains p15 and p26 target MAVS for ubiquitin-mediated degradation through E3 ubiquitin ligase Smurf1. MAVS degradation leads to the inhibition of the downstream IFN-β pathway. This is the first time that lentiviral structural protein has been found to have antagonistic effects on MAVS pathway. Overall, our study reveals a novel mechanism by which equine lentiviruses can evade host innate immunity, and provides insight into potential therapeutic strategies for the control of lentivirus infection.
Collapse
Affiliation(s)
- Kewei Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bingqian Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinhui Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guangpu Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuezhi Lin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuefeng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Cheng Du
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaojun Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
3
|
Han D, Yin W, Zhang X, Lu X, Wu N. hsa-miR-181-5p inhibits human immunodeficiency virus type 1 replication by downregulating DDX3X expression. Virology 2023; 587:109868. [PMID: 37651885 DOI: 10.1016/j.virol.2023.109868] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/06/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND HIV-1 infection affects expression profiles of microRNA. miR-181 is found negatively correlated with HIV-1 viral load. This study aimed to explain that miR-181 targets DDX3X, a host factor involved in HIV-1 nuclear export, thereby inhibiting HIV-1 replication. METHODS To verify our hypothesis, first, the relationship between miR-181 expression, DDX3X expression, and HIV-1 viral load was analyzed. Second, miR-181 mimics were transfected into Jurkat cells infected with wild pNL4-3 strain or H9-IIIB cells with HIV-1 replication-competent for HIV-1 viral protein P24(Gag) detection. Besides the reporter gene plasmid containing the DDX3X mRNA sequence was transfected into 293T cells to demonstrate the targeting of miR-181 to the DDX3X mRNA. Finally, the spliced, unspliced, or incompletely spliced HIV-1 transcripts and HIV-1 Tat, Rev, and Gag mRNA were also detected after miR-181 transfection. RESULTS Our result proved that miR-181 significantly reduced the HIV-1 viral protein Gag(P24) level and targeted DDX3X mRNA 3'-UTR, inhibiting the unspliced or incompletely spliced HIV-1 mRNA's nuclear export. CONCLUSION Our results confirmed that miR-181 is involved in HIV-1 viral replication in lymphocytes by downregulating DDX3X expression. The research provides a research basis for future HIV-1 antiviral research.
Collapse
Affiliation(s)
- Dating Han
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wanpeng Yin
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaodi Zhang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangyun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Nanping Wu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Wang L, Guzmán M, Sola I, Enjuanes L, Zuñiga S. Cytoplasmic ribonucleoprotein complexes, RNA helicases and coronavirus infection. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2022.1078454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RNA metabolism in the eukaryotic cell includes the formation of ribonucleoprotein complexes (RNPs) that, depending on their protein components, have a different function. Cytoplasmic RNPs, such as stress granules (SGs) or P-bodies (PBs) are quite relevant during infections modulating viral and cellular RNA expression and as key players in the host cell antiviral response. RNA helicases are abundant components of RNPs and could have a significant effect on viral infection. This review focuses in the role that RNPs and RNA helicases have during coronavirus (CoVs) infection. CoVs are emerging highly pathogenic viruses with a large single-stranded RNA genome. During CoV infection, a complex network of RNA-protein interactions in different RNP structures is established. In general, RNA helicases and RNPs have an antiviral function, but there is limited knowledge on whether the viral protein interactions with cell components are mediators of this antiviral effect or are part of the CoV antiviral counteraction mechanism. Additional data is needed to elucidate the role of these RNA-protein interactions during CoV infection and their potential contribution to viral replication or pathogenesis.
Collapse
|
5
|
Eom S, Lee S, Lee J, Yeom HD, Lee SG, Lee J. DDX3 Upregulates Hydrogen Peroxide-Induced Melanogenesis in Sk-Mel-2 Human Melanoma Cells. Molecules 2022; 27:molecules27207010. [PMID: 36296601 PMCID: PMC9606883 DOI: 10.3390/molecules27207010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
DDX3 is a DEAD-box RNA helicase with diverse biological functions through multicellular pathways. The objective of this study was to investigate the role of DDX3 in regulating melanogenesis by the exploring signaling pathways involved. Various concentrations of hydrogen peroxide were used to induce melanogenesis in SK-Mel-2 human melanoma cells. Melanin content assays, tyrosinase activity analysis, and Western blot analysis were performed to determine how DDX3 was involved in melanogenesis. Transient transfection was performed to overexpress or silence DDX3 genes. Immunoprecipitation was performed using an antityrosinase antibody. Based on the results of the cell viability test, melanin content, and activity of tyrosinase, a key melanogenesis enzyme, in SK-Mel-2 human melanoma cells, hydrogen peroxide at 0.1 mM was chosen to induce melanogenesis. Treatment with H2O2 notably increased the promoter activity of DDX3. After treatment with hydroperoxide for 4 h, melanin content and tyrosinase activity peaked in DDX3-transfected cells. Overexpression of DDX3 increased melanin content and tyrosinase expression under oxidative stress induced by H2O2. DDX3 co-immunoprecipitated with tyrosinase, a melanogenesis enzyme. The interaction between DDX3 and tyrosinase was strongly increased under oxidative stress. DDX3 could increase melanogenesis under the H2O2-treated condition. Thus, targeting DDX3 could be a novel strategy to develop molecular therapy for skin diseases.
Collapse
Affiliation(s)
- Sanung Eom
- Department of Biotechnology, Chonnam National University, Gwangju 61886, Korea
| | - Shinhui Lee
- Department of Biotechnology, Chonnam National University, Gwangju 61886, Korea
| | - Jiwon Lee
- Department of Biotechnology, Chonnam National University, Gwangju 61886, Korea
| | | | - Seong-Gene Lee
- Department of Biotechnology, Chonnam National University, Gwangju 61886, Korea
- Correspondence: (S.-G.L.); (J.L.); Tel.: +82-62-530-2160 (S.-G.L.); +82-62-530-2164 (J.L.)
| | - Junho Lee
- Department of Biotechnology, Chonnam National University, Gwangju 61886, Korea
- Correspondence: (S.-G.L.); (J.L.); Tel.: +82-62-530-2160 (S.-G.L.); +82-62-530-2164 (J.L.)
| |
Collapse
|
6
|
Zhao JZ, Xu LM, Ren GM, Shao YZ, Lu TY. Identification and characterization of DEAD-box RNA helicase DDX3 in rainbow trout (Oncorhynchus mykiss) and its relationship with infectious hematopoietic necrosis virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104493. [PMID: 35840014 DOI: 10.1016/j.dci.2022.104493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/05/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
DDX3, a member of the DEAD-box RNA helicase family and has highly conserved ATP-dependent RNA helicase activity, has important roles in RNA metabolism and innate anti-viral immune responses. In this study, five transcript variants of the DDX3 gene were cloned and characterized from rainbow trout (Oncorhynchus mykiss). These five transcript variants of DDX3 encoded proteins were 74.2 kDa (686 aa), 76.4 kDa (709 aa), 77.8 kDa (711 aa), 78.0 kDa (718 aa), and 78.8 kDa (729 aa) and the predicted isoelectric points were 6.91, 7.63, 7.63, 7.18, and 7.23, respectively. All rainbow trout DDX3 proteins contained two conserved RecA-like domains that were similar to the DDX3 protein reported in mammals. Phylogenetic analysis showed that the five cloned rainbow trout DDX3 were separate from mammals but clustered with fish, especially Northern pike (Esox lucius) and Nile tilapia (Oreochromis niloticus). RT-qPCR analysis showed that the DDX3 gene was broadly expressed in all tissues studied. The expression of DDX3 after infectious hematopoietic necrosis virus (IHNV) infection increased gradually after the early stage of IHNV infection, decreased gradually with the proliferation of IHNV in vivo (liver, spleen, and kidney), and was significantly decreased after the in vitro infection of epithelioma papulosum cyprini (EPC) and rainbow trout gonad cell line-2 (RTG-2) cell lines. We also found that rainbow trout DDX3 was significantly increased by a time-dependent mechanism after the poly I:C treatment of EPC and RTG cells; however no significant changes were observed with lipopolysaccharide (LPS) treatment. Knockdown of DDX3 by siRNA showed significantly increased IHNV replication in infected RTG cells. This study suggests that DDX3 has an important role in host defense against IHNV infection and these results may provide new insights into IHNV pathogenesis and antiviral drug research.
Collapse
Affiliation(s)
- Jing-Zhuang Zhao
- Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, 150070, PR China; Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, 150070, PR China.
| | - Li-Ming Xu
- Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, 150070, PR China.
| | - Guang-Ming Ren
- Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, 150070, PR China.
| | - Yi-Zhi Shao
- Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, 150070, PR China.
| | - Tong-Yan Lu
- Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, 150070, PR China.
| |
Collapse
|
7
|
Kwon J, Choi H, Han C. A Dual Role of DDX3X in dsRNA-Derived Innate Immune Signaling. Front Mol Biosci 2022; 9:912727. [PMID: 35874614 PMCID: PMC9299366 DOI: 10.3389/fmolb.2022.912727] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022] Open
Abstract
DEAD-Box Helicase 3 X-Linked (DDX3X) is essential for RNA metabolism and participates in various cellular processes involving RNA. DDX3X has been implicated in cancer growth and metastasis. DDX3X is involved in antiviral responses for viral RNAs and contributes to pro- or anti-microbial responses. A better understanding of how human cells regulate innate immune response against the viral “non-self” double-stranded RNAs (dsRNAs) and endogenous viral-like “self” dsRNAs is critical to understanding innate immune sensing, anti-microbial immunity, inflammation, immune cell homeostasis, and developing novel therapeutics for infectious, immune-mediated diseases, and cancer. DDX3X has known for activating the viral dsRNA-sensing pathway and innate immunity. However, accumulating research reveals a more complex role of DDX3X in regulating dsRNA-mediated signaling in cells. Here, we discuss the role of DDX3X in viral dsRNA- or endogenous dsRNA-mediated immune signaling pathways.
Collapse
Affiliation(s)
- Juntae Kwon
- Department of Oncology, Georgetown University School of Medicine, Washington, DC, United States
| | - Hyeongjwa Choi
- Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Cecil Han
- Department of Oncology, Georgetown University School of Medicine, Washington, DC, United States.,Lombardi Comprehensive Cancer Center, Washington, DC, United States
| |
Collapse
|
8
|
Zhai LY, Liu JF, Zhao JJ, Su AM, Xi XG, Hou XM. Targeting the RNA G-Quadruplex and Protein Interactome for Antiviral Therapy. J Med Chem 2022; 65:10161-10182. [PMID: 35862260 DOI: 10.1021/acs.jmedchem.2c00649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In recent years, G-quadruplexes (G4s), types of noncanonical four-stranded nucleic acid structures, have been identified in many viruses that threaten human health, such as HIV and Epstein-Barr virus. In this context, G4 ligands were designed to target the G4 structures, among which some have shown promising antiviral effects. In this Perspective, we first summarize the diversified roles of RNA G4s in different viruses. Next, we introduce small-molecule ligands developed as G4 modulators and highlight their applications in antiviral studies. In addition to G4s, we comprehensively review the medical intervention of G4-interacting proteins from both the virus (N protein, viral-encoded helicases, severe acute respiratory syndrome-unique domain, and Epstein-Barr nuclear antigen 1) and the host (heterogeneous nuclear ribonucleoproteins, RNA helicases, zinc-finger cellular nucelic acid-binding protein, and nucleolin) by inhibitors as an alternative way to disturb the normal functions of G4s. Finally, we discuss the challenges and opportunities in G4-based antiviral therapy.
Collapse
Affiliation(s)
- Li-Yan Zhai
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi 712100, China
| | - Jing-Fan Liu
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi 712100, China
| | - Jian-Jin Zhao
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi 712100, China
| | - Ai-Min Su
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi 712100, China
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi 712100, China.,Laboratory of Biology and Applied Pharmacology, CNRS UMR 8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Xi-Miao Hou
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi 712100, China
| |
Collapse
|
9
|
Olson RM, Gornalusse G, Whitmore LS, Newhouse D, Tisoncik-Go J, Smith E, Ochsenbauer C, Hladik F, Gale M. Innate immune regulation in HIV latency models. Retrovirology 2022; 19:15. [PMID: 35804422 PMCID: PMC9270781 DOI: 10.1186/s12977-022-00599-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/25/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Innate immunity and type 1 interferon (IFN) defenses are critical for early control of HIV infection within CD4 + T cells. Despite these defenses, some acutely infected cells silence viral transcription to become latently infected and form the HIV reservoir in vivo. Latently infected cells persist through antiretroviral therapy (ART) and are a major barrier to HIV cure. Here, we evaluated innate immunity and IFN responses in multiple T cell models of HIV latency, including established latent cell lines, Jurkat cells latently infected with a reporter virus, and a primary CD4 + T cell model of virologic suppression. RESULTS We found that while latently infected T cell lines have functional RNA sensing and IFN signaling pathways, they fail to induce specific interferon-stimulated genes (ISGs) in response to innate immune activation or type 1 IFN treatment. Jurkat cells latently infected with a fluorescent reporter HIV similarly demonstrate attenuated responses to type 1 IFN. Using bulk and single-cell RNA sequencing we applied a functional genomics approach and define ISG expression dynamics in latent HIV infection, including HIV-infected ART-suppressed primary CD4 + T cells. CONCLUSIONS Our observations indicate that HIV latency and viral suppression each link with cell-intrinsic defects in specific ISG induction. We identify a set of ISGs for consideration as latency restriction factors whose expression and function could possibly mitigate establishing latent HIV infection.
Collapse
Affiliation(s)
- Rebecca M. Olson
- grid.34477.330000000122986657Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA USA
| | - Germán Gornalusse
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ,grid.34477.330000000122986657Department of Obstetrics & Gynecology, University of Washington, Seattle, WA USA
| | - Leanne S. Whitmore
- grid.34477.330000000122986657Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA USA
| | - Dan Newhouse
- grid.34477.330000000122986657Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA USA
| | - Jennifer Tisoncik-Go
- grid.34477.330000000122986657Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA USA
| | - Elise Smith
- grid.34477.330000000122986657Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA USA
| | - Christina Ochsenbauer
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Florian Hladik
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA ,grid.34477.330000000122986657Department of Obstetrics & Gynecology, University of Washington, Seattle, WA USA ,grid.34477.330000000122986657Department of Medicine, University of Washington, Seattle, WA USA
| | - Michael Gale
- grid.34477.330000000122986657Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA USA
| |
Collapse
|
10
|
Liu J, Zhang H, Su Y, Zhang B. Application and prospect of targeting innate immune sensors in the treatment of autoimmune diseases. Cell Biosci 2022; 12:68. [PMID: 35619184 PMCID: PMC9134593 DOI: 10.1186/s13578-022-00810-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/09/2022] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of auto-reactive T cells and autoantibody-producing B cells and excessive inflammation are responsible for the occurrence and development of autoimmune diseases. The suppression of autoreactive T cell activation and autoantibody production, as well as inhibition of inflammatory cytokine production have been utilized to ameliorate autoimmune disease symptoms. However, the existing treatment strategies are not sufficient to cure autoimmune diseases since patients can quickly suffer a relapse following the end of treatments. Pattern recognition receptors (PRRs), including Toll-like receptors (TLRs), Nod-like receptors (NLRs), RIG-I like receptors (RLRs), C-type lectin receptors (CLRs) and various nucleic acid sensors, are expressed in both innate and adaptive immune cells and are involved in the development of autoimmune diseases. Here, we have summarized advances of PRRs signaling pathways, association between PRRs and autoimmune diseases, application of inhibitors targeting PRRs and the corresponding signaling molecules relevant to strategies targeting autoimmune diseases. This review emphasizes the roles of different PRRs in activating both innate and adaptive immunity, which can coordinate to trigger autoimmune responses. The review may also prompt the formulation of novel ideas for developing therapeutic strategies against autoimmune diseases by targeting PRRs-related signals.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Hui Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China. .,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China. .,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China. .,Basic and Translational Research Laboratory of Immune Related Diseases, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
11
|
Vandelli A, Vocino G, Tartaglia GG. Phase Separation Drives SARS-CoV-2 Replication: A Hypothesis. Front Mol Biosci 2022; 9:893067. [PMID: 35647024 PMCID: PMC9132231 DOI: 10.3389/fmolb.2022.893067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/25/2022] [Indexed: 12/28/2022] Open
Abstract
Identifying human proteins that interact with SARS-CoV-2 genome is important to understand its replication and to identify therapeutic strategies. Recent studies have unveiled protein interactions of SARS-COV-2 in different cell lines and through a number of high-throughput approaches. Here, we carried out a comparative analysis of four experimental and one computational studies to characterize the interactions of SARS-CoV-2 genomic RNA. Although hundreds of interactors have been identified, only twenty-one appear in all the experiments and show a strong propensity to bind. This set of interactors includes stress granule forming proteins, pre-mRNA regulators and elements involved in the replication process. Our calculations indicate that DDX3X and several editases bind the 5′ end of SARS-CoV-2, a regulatory region previously reported to attract a large number of proteins. The small overlap among experimental datasets suggests that SARS-CoV-2 genome establishes stable interactions only with few interactors, while many proteins bind less tightly. In analogy to what has been previously reported for Xist non-coding RNA, we propose a mechanism of phase separation through which SARS-CoV-2 progressively sequesters human proteins hijacking the host immune response.
Collapse
Affiliation(s)
- Andrea Vandelli
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Giovanni Vocino
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Gian Gaetano Tartaglia
- Center for Human Technologies, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Biology ‘Charles Darwin’, Sapienza University of Rome, Rome, Italy
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- *Correspondence: Gian Gaetano Tartaglia,
| |
Collapse
|
12
|
Ma J, Mahmud N, Bosland MC, Ross SR. DDX41 is needed for pre- and postnatal hematopoietic stem cell differentiation in mice. Stem Cell Reports 2022; 17:879-893. [PMID: 35303436 PMCID: PMC9023775 DOI: 10.1016/j.stemcr.2022.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
DDX41 is a tumor suppressor frequently mutated in human myeloid neoplasms, but whether it affects hematopoiesis is unknown. Using a knockout mouse, we demonstrate that DDX41 is required for mouse hematopoietic stem and progenitor cell (HSPC) survival and differentiation, particularly of myeloid lineage cells. Transplantation of Ddx41 knockout fetal liver and adult bone marrow (BM) cells was unable to rescue mice from lethal irradiation, and knockout stem cells were also defective in colony formation assays. RNA-seq analysis of Lin-/cKit+/Sca1+Ddx41 knockout cells from fetal liver demonstrated that the expression of many genes associated with hematopoietic differentiation were altered. Furthermore, differential splicing of genes involved in key biological processes was observed. Our data reveal a critical role for DDX41 in HSPC differentiation and myeloid progenitor development, likely through regulating gene expression programs and splicing.
Collapse
Affiliation(s)
- Jing Ma
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, 835 South Wolcott Avenue, E705 MSB (MC 790), Chicago, IL 60612, USA
| | - Nadim Mahmud
- Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Maarten C Bosland
- Department of Pathology, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Susan R Ross
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, 835 South Wolcott Avenue, E705 MSB (MC 790), Chicago, IL 60612, USA.
| |
Collapse
|
13
|
Shi Y, Su J, Chen R, Wei W, Yuan Z, Chen X, Wang X, Liang H, Ye L, Jiang J. The Role of Innate Immunity in Natural Elite Controllers of HIV-1 Infection. Front Immunol 2022; 13:780922. [PMID: 35211115 PMCID: PMC8861487 DOI: 10.3389/fimmu.2022.780922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/19/2022] [Indexed: 12/26/2022] Open
Abstract
The natural process of human immunodeficiency virus type 1(HIV-1) infection is characterized by high viral load, immune cell exhaustion, and immunodeficiency, which eventually leads to the stage of acquired immunodeficiency syndrome (AIDS) and opportunistic infections. Rapidly progressing HIV-1 individuals often die of AIDS several years after infection without treatment. The promotion of ART greatly prolongs the survival time of HIV-infected persons. However, some patients have incomplete immune function reconstruction after ART due to latent storage of HIV-infected cells. Therefore, how to achieve a functional cure has always been the focus and hot spot of global AIDS research. Fortunately, the emergence of ECs/LTNPs who can control virus replication naturally has ignited new hope for realizing a functional cure for AIDS. Recently, a special category of infected individuals has attracted attention that can delay the progression of the disease more rigorously than the natural progression of HIV-1 infection described above. These patients are characterized by years of HIV-1 infection, long-term asymptomatic status, and normal CD4+T cell count without ART, classified as HIV-infected long-term nonprogressors (LTNPs) and elite controllers (ECs). Numerous studies have shown that the host and virus jointly determine the progression of HIV-1 infection, in which the level of innate immunity activation plays an important role. As the first line of defense against pathogen invasion, innate immunity is also a bridge to induce adaptive immunity. Compared with natural progressors, innate immunity plays an antiviral role in HIV-1 infection by inducing or activating many innate immune-related factors in the natural ECs. Learning the regulation of ECs immunity, especially the innate immunity in different characteristics, and thus studying the mechanism of the control of disease progression naturally, will contribute to the realization of the functional cure of AIDS. Therefore, this review will explore the relationship between innate immunity and disease progression in ECs of HIV-1 infection from the aspects of innate immune cells, signaling pathways, cytokines, which is helpful to provide new targets and theoretical references for the functional cure, prevention and control of AIDS, and development of a vaccine.
Collapse
Affiliation(s)
- Yuting Shi
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jinming Su
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Rongfeng Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Wudi Wei
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Zongxiang Yuan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xiu Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xinwei Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| |
Collapse
|
14
|
DEAD/H-box helicases:Anti-viral and pro-viral roles during infections. Virus Res 2021; 309:198658. [PMID: 34929216 DOI: 10.1016/j.virusres.2021.198658] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
DEAD/H-box RNA helicases make the prominent family of helicases super family-2 which take part in almost all RNA-related processes, from initiation of transcription to RNA decay pathways. In addition to these RNA-related activities, in recent years a certain number of these helicases are reported to play important roles in anti-viral immunity through various ways. Along with RLHs, endosomal TLRs, and cytosolic DNA receptors, many RNA helicases including DDX3, DHX9, DDX6, DDX41, DHX33, DDX60, DHX36 and DDX1-DDX21-DHX36 complex act as viral nucleic acid sensors or co-sensors. These helicases mostly follow RLHs-MAVS and STING mediated signaling cascades to trigger induction of type-I interferons and pro-inflammatory cytokines. Many of them also function as downstream adaptor molecules (DDX3), segments of stress and processing bodies (DDX3 and DDX6) or negative regulators (DDX19, DDX24, DDX25, DDX39A and DDX46). On the contrary, many studies indicated that several DEAD/H-box helicases such as DDX1, DDX3, DDX6, DDX24, and DHX9 could be exploited by viruses to evade innate immune responses, suggesting that these helicases seem to have a dual function as anti-viral innate immune mediators and viral replication cofactors. In this review, we summarized the current knowledge on several representative DEAD/H-box helicases, with an emphasis on their functions in innate immunity responses, involved in their anti-viral and pro-viral roles.
Collapse
|
15
|
Variations in the Abortive HIV-1 RNA Hairpin Do Not Impede Viral Sensing and Innate Immune Responses. Pathogens 2021; 10:pathogens10070897. [PMID: 34358047 PMCID: PMC8308900 DOI: 10.3390/pathogens10070897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
The highly conserved trans-acting response element (TAR) present in the RNA genome of human immunodeficiency virus 1 (HIV-1) is a stably folded hairpin structure involved in viral replication. However, TAR is also sensed by viral sensors, leading to antiviral immunity. While high variation in the TAR RNA structure renders the virus replication-incompetent, effects on viral sensing remain unclear. Here, we investigated the role of TAR RNA structure and stability on viral sensing. TAR mutants with deletions in the TAR hairpin that enhanced thermodynamic stability increased antiviral responses. Strikingly, TAR mutants with lower stability due to destabilization of the TAR hairpin also increased antiviral responses without affecting pro-inflammatory responses. Moreover, mutations that affected the TAR RNA sequence also enhanced specific antiviral responses. Our data suggest that mutations in TAR of replication-incompetent viruses can still induce immune responses via viral sensors, hereby underscoring the robustness of HIV-1 RNA sensing mechanisms.
Collapse
|
16
|
Sergeeva O, Abakumova T, Kurochkin I, Ialchina R, Kosyreva A, Prikazchikova T, Varlamova V, Shcherbinina E, Zatsepin T. Level of Murine DDX3 RNA Helicase Determines Phenotype Changes of Hepatocytes In Vitro and In Vivo. Int J Mol Sci 2021; 22:ijms22136958. [PMID: 34203429 PMCID: PMC8269429 DOI: 10.3390/ijms22136958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/26/2022] Open
Abstract
DDX3 RNA helicase is intensively studied as a therapeutic target due to participation in the replication of some viruses and involvement in cancer progression. Here we used transcriptome analysis to estimate the primary response of hepatocytes to different levels of RNAi-mediated knockdown of DDX3 RNA helicase both in vitro and in vivo. We found that a strong reduction of DDX3 protein (>85%) led to similar changes in vitro and in vivo—deregulation of the cell cycle and Wnt and cadherin pathways. Also, we observed the appearance of dead hepatocytes in the healthy liver and a decrease of cell viability in vitro after prolonged treatment. However, more modest downregulation of the DDX3 protein (60–65%) showed discordant results in vitro and in vivo—similar changes in vitro as in the case of strong knockdown and a different phenotype in vivo. These results demonstrate that the level of DDX3 protein can dramatically influence the cell phenotype in vivo and the decrease of DDX3, for more than 85% leads to cell death in normal tissues, which should be taken into account during the drug development of DDX3 inhibitors.
Collapse
Affiliation(s)
- Olga Sergeeva
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia; (T.A.); (I.K.); (R.I.); (T.P.); (V.V.); (E.S.); (T.Z.)
- Correspondence: ; Tel.: +7-926-388-0865
| | - Tatiana Abakumova
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia; (T.A.); (I.K.); (R.I.); (T.P.); (V.V.); (E.S.); (T.Z.)
| | - Ilia Kurochkin
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia; (T.A.); (I.K.); (R.I.); (T.P.); (V.V.); (E.S.); (T.Z.)
| | - Renata Ialchina
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia; (T.A.); (I.K.); (R.I.); (T.P.); (V.V.); (E.S.); (T.Z.)
| | - Anna Kosyreva
- Research Institute of Human Morphology, 117418 Moscow, Russia;
| | - Tatiana Prikazchikova
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia; (T.A.); (I.K.); (R.I.); (T.P.); (V.V.); (E.S.); (T.Z.)
| | - Varvara Varlamova
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia; (T.A.); (I.K.); (R.I.); (T.P.); (V.V.); (E.S.); (T.Z.)
| | - Evgeniya Shcherbinina
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia; (T.A.); (I.K.); (R.I.); (T.P.); (V.V.); (E.S.); (T.Z.)
| | - Timofei Zatsepin
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia; (T.A.); (I.K.); (R.I.); (T.P.); (V.V.); (E.S.); (T.Z.)
- Department of Chemistry, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
17
|
RNA Helicase DDX3: A Double-Edged Sword for Viral Replication and Immune Signaling. Microorganisms 2021; 9:microorganisms9061206. [PMID: 34204859 PMCID: PMC8227550 DOI: 10.3390/microorganisms9061206] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
DDX3 is a cellular ATP-dependent RNA helicase involved in different aspects of RNA metabolism ranging from transcription to translation and therefore, DDX3 participates in the regulation of key cellular processes including cell cycle progression, apoptosis, cancer and the antiviral immune response leading to type-I interferon production. DDX3 has also been described as an essential cellular factor for the replication of different viruses, including important human threats such HIV-1 or HCV, and different small molecules targeting DDX3 activity have been developed. Indeed, increasing evidence suggests that DDX3 can be considered not only a promising but also a viable target for anticancer and antiviral treatments. In this review, we summarize distinct functional aspects of DDX3 focusing on its participation as a double-edged sword in the host immune response and in the replication cycle of different viruses.
Collapse
|
18
|
Ciccosanti F, Di Rienzo M, Romagnoli A, Colavita F, Refolo G, Castilletti C, Agrati C, Brai A, Manetti F, Botta L, Capobianchi MR, Ippolito G, Piacentini M, Fimia GM. Proteomic analysis identifies the RNA helicase DDX3X as a host target against SARS-CoV-2 infection. Antiviral Res 2021; 190:105064. [PMID: 33781803 PMCID: PMC7997689 DOI: 10.1016/j.antiviral.2021.105064] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 12/31/2022]
Abstract
COVID-19 is currently a highly pressing health threat and therapeutic strategies to mitigate the infection impact are urgently needed. Characterization of the SARS-CoV-2 interactome in infected cells may represent a powerful tool to identify cellular proteins hijacked by viruses for their life cycle and develop host-oriented antiviral therapeutics. Here we report the proteomic characterization of host proteins interacting with SARS-CoV-2 Nucleoprotein in infected Vero E6 cells. We identified 24 high-confidence proteins mainly playing a role in RNA metabolism and translation, including RNA helicases and scaffold proteins involved in the formation of stress granules, cytoplasmic aggregates of messenger ribonucleoproteins that accumulate as a result of stress-induced translation arrest. Analysis of stress granules upon SARS-CoV-2 infection showed that these structures are not induced in infected cells, neither eIF2α phosphorylation, an upstream event leading to stress-induced translation inhibition. Notably, we found that G3BP1, a stress granule component that associates with the Nucleoprotein, is required for efficient SARS-CoV-2 replication. Moreover, we showed that the Nucleoprotein-interacting RNA helicase DDX3X colocalizes with viral RNA foci and its inhibition by small molecules or small interfering RNAs significantly reduces viral replication. Altogether, these results indicate that SARS-CoV-2 subverts the stress granule machinery and exploits G3BP1 and DDX3X for its replication cycle, offering groundwork for future development of host-directed therapies.
Collapse
Affiliation(s)
- Fabiola Ciccosanti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Martina Di Rienzo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Alessandra Romagnoli
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Francesca Colavita
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Giulia Refolo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Concetta Castilletti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Chiara Agrati
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Annalaura Brai
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Lorenzo Botta
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Maria Rosaria Capobianchi
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Giuseppe Ippolito
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Mauro Piacentini
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy; Department of Biology, University of Rome 'Tor Vergata', Rome, Italy.
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy; Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
19
|
MAVS Genetic Variation Is Associated with Decreased HIV-1 Replication In Vitro and Reduced CD4 + T Cell Infection in HIV-1-Infected Individuals. Viruses 2020; 12:v12070764. [PMID: 32708557 PMCID: PMC7412276 DOI: 10.3390/v12070764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
The mitochondrial antiviral protein MAVS is a key player in the induction of antiviral responses; however, human immunodeficiency virus 1 (HIV-1) is able to suppress these responses. Two linked single nucleotide polymorphisms (SNPs) in the MAVS gene render MAVS insensitive to HIV-1-dependent suppression, and have been shown to be associated with a lower viral load at set point and delayed increase of viral load during disease progression. Here, we studied the underlying mechanisms involved in the control of viral replication in individuals homozygous for this MAVS genotype. We observed that individuals with the MAVS minor genotype had more stable total CD4+ T cell counts during a 7-year follow up and had lower cell-associated proviral DNA loads. Genetic variation in MAVS did not affect immune activation levels; however, a significantly lower percentage of naïve CD4+ but not CD8+ T cells was observed in the MAVS minor genotype. In vitro HIV-1 infection of peripheral blood mononuclear cells (PBMCs) from healthy donors with the MAVS minor genotype resulted in decreased viral replication. Although the precise underlying mechanism remains unclear, our data suggest that the protective effect of the MAVS minor genotype may be exerted by the initiation of local innate responses affecting viral replication and CD4+ T cell susceptibility.
Collapse
|
20
|
Aksenova M, Sybrandt J, Cui B, Sikirzhytski V, Ji H, Odhiambo D, Lucius MD, Turner JR, Broude E, Peña E, Lizarraga S, Zhu J, Safro I, Wyatt MD, Shtutman M. Inhibition of the Dead Box RNA Helicase 3 Prevents HIV-1 Tat and Cocaine-Induced Neurotoxicity by Targeting Microglia Activation. J Neuroimmune Pharmacol 2020; 15:209-223. [PMID: 31802418 PMCID: PMC8048136 DOI: 10.1007/s11481-019-09885-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 10/01/2019] [Indexed: 01/09/2023]
Abstract
HIV-1 Associated Neurocognitive Disorder (HAND) is a common and clinically detrimental complication of HIV infection. Viral proteins, including Tat, released from infected cells, cause neuronal toxicity. Substance abuse in HIV-infected patients greatly influences the severity of neuronal damage. To repurpose small molecule inhibitors for anti-HAND therapy, we employed MOLIERE, an AI-based literature mining system that we developed. All human genes were analyzed and prioritized by MOLIERE to find previously unknown targets connected to HAND. From the identified high priority genes, we narrowed the list to those with known small molecule ligands developed for other applications and lacking systemic toxicity in animal models. To validate the AI-based process, the selective small molecule inhibitor of DDX3 helicase activity, RK-33, was chosen and tested for neuroprotective activity. The compound, previously developed for cancer treatment, was tested for the prevention of combined neurotoxicity of HIV Tat and cocaine. Rodent cortical cultures were treated with 6 or 60 ng/ml of HIV Tat and 10 or 25 μM of cocaine, which caused substantial toxicity. RK-33 at doses as low as 1 μM greatly reduced the neurotoxicity of Tat and cocaine. Transcriptome analysis showed that most Tat-activated transcripts are microglia-specific genes and that RK-33 blocks their activation. Treatment with RK-33 inhibits the Tat and cocaine-dependent increase in the number and size of microglia and the proinflammatory cytokines IL-6, TNF-α, MCP-1/CCL2, MIP-2, IL-1α and IL-1β. These findings reveal that inhibition of DDX3 may have the potential to treat not only HAND but other neurodegenerative diseases. Graphical Abstract RK-33, selective inhibitor of Dead Box RNA helicase 3 (DDX3) protects neurons from combined Tat and cocaine neurotoxicity by inhibition of microglia activation and production of proinflammatory cytokines.
Collapse
Affiliation(s)
- Marina Aksenova
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter st, Columbia, SC, 29208, USA
| | - Justin Sybrandt
- School of Computing, Clemson University, 228 McAdams Hall, Clemson, SC, USA
| | - Biyun Cui
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter st, Columbia, SC, 29208, USA
| | - Vitali Sikirzhytski
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter st, Columbia, SC, 29208, USA
| | - Hao Ji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter st, Columbia, SC, 29208, USA
| | - Diana Odhiambo
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter st, Columbia, SC, 29208, USA
| | - Matthew D Lucius
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter st, Columbia, SC, 29208, USA
| | - Jill R Turner
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter st, Columbia, SC, 29208, USA
- School of Computing, Clemson University, 228 McAdams Hall, Clemson, SC, USA
| | - Eugenia Broude
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter st, Columbia, SC, 29208, USA
| | - Edsel Peña
- Department of Statistics, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| | - Sofia Lizarraga
- Department of Biological Sciences, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter st, Columbia, SC, 29208, USA
| | - Ilya Safro
- School of Computing, Clemson University, 228 McAdams Hall, Clemson, SC, USA.
| | - Michael D Wyatt
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter st, Columbia, SC, 29208, USA
| | - Michael Shtutman
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter st, Columbia, SC, 29208, USA.
| |
Collapse
|
21
|
Stunnenberg M, Sprokholt JK, van Hamme JL, Kaptein TM, Zijlstra-Willems EM, Gringhuis SI, Geijtenbeek TBH. Synthetic Abortive HIV-1 RNAs Induce Potent Antiviral Immunity. Front Immunol 2020; 11:8. [PMID: 32038656 PMCID: PMC6990453 DOI: 10.3389/fimmu.2020.00008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
Strong innate and adaptive immune responses are paramount in combating viral infections. Dendritic cells (DCs) detect viral infections via cytosolic RIG-I like receptors (RLRs) RIG-I and MDA5 leading to MAVS-induced immunity. The DEAD-box RNA helicase DDX3 senses abortive human immunodeficiency virus 1 (HIV-1) transcripts and induces MAVS-dependent type I interferon (IFN) responses, suggesting that abortive HIV-1 RNA transcripts induce antiviral immunity. Little is known about the induction of antiviral immunity by DDX3-ligand abortive HIV-1 RNA. Here we synthesized a 58 nucleotide-long capped RNA (HIV-1 Cap-RNA58) that mimics abortive HIV-1 RNA transcripts. HIV-1 Cap-RNA58 induced potent type I IFN responses in monocyte-derived DCs, monocytes, macrophages and primary CD1c+ DCs. Compared with RLR agonist poly-I:C, HIV-1 Cap-RNA58 induced comparable levels of type I IFN responses, identifying HIV-1 Cap-RNA58 as a potent trigger of antiviral immunity. In monocyte-derived DCs, HIV-1 Cap-RNA58 activated the transcription factors IRF3 and NF-κB. Moreover, HIV-1 Cap-RNA58 induced DC maturation and the expression of pro-inflammatory cytokines. HIV-1 Cap-RNA58-stimulated DCs induced proliferation of CD4+ and CD8+ T cells and differentiated naïve T helper (TH) cells toward a TH2 phenotype. Importantly, treatment of DCs with HIV-1 Cap-RNA58 resulted in an efficient antiviral innate immune response that reduced ongoing HIV-1 replication in DCs. Our data strongly suggest that HIV-1 Cap-RNA58 induces potent innate and adaptive immune responses, making it an interesting addition in vaccine design strategies.
Collapse
Affiliation(s)
- Melissa Stunnenberg
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Joris K Sprokholt
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - John L van Hamme
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tanja M Kaptein
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Esther M Zijlstra-Willems
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sonja I Gringhuis
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
22
|
Samir P, Kesavardhana S, Patmore DM, Gingras S, Malireddi RKS, Karki R, Guy CS, Briard B, Place DE, Bhattacharya A, Sharma BR, Nourse A, King SV, Pitre A, Burton AR, Pelletier S, Gilbertson RJ, Kanneganti TD. DDX3X acts as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome. Nature 2019; 573:590-594. [PMID: 31511697 PMCID: PMC6980284 DOI: 10.1038/s41586-019-1551-2] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 08/07/2019] [Indexed: 12/28/2022]
Abstract
The cellular stress response has a vital role in regulating homeostasis by modulating cell survival and death. Stress granules are cytoplasmic compartments that enable cells to survive various stressors. Defects in the assembly and disassembly of stress granules are linked to neurodegenerative diseases, aberrant antiviral responses and cancer1-5. Inflammasomes are multi-protein heteromeric complexes that sense molecular patterns that are associated with damage or intracellular pathogens, and assemble into cytosolic compartments known as ASC specks to facilitate the activation of caspase-1. Activation of inflammasomes induces the secretion of interleukin (IL)-1β and IL-18 and drives cell fate towards pyroptosis-a form of programmed inflammatory cell death that has major roles in health and disease6-12. Although both stress granules and inflammasomes can be triggered by the sensing of cellular stress, they drive contrasting cell-fate decisions. The crosstalk between stress granules and inflammasomes and how this informs cell fate has not been well-studied. Here we show that the induction of stress granules specifically inhibits NLRP3 inflammasome activation, ASC speck formation and pyroptosis. The stress granule protein DDX3X interacts with NLRP3 to drive inflammasome activation. Assembly of stress granules leads to the sequestration of DDX3X, and thereby the inhibition of NLRP3 inflammasome activation. Stress granules and the NLRP3 inflammasome compete for DDX3X molecules to coordinate the activation of innate responses and subsequent cell-fate decisions under stress conditions. Induction of stress granules or loss of DDX3X in the myeloid compartment leads to a decrease in the production of inflammasome-dependent cytokines in vivo. Our findings suggest that macrophages use the availability of DDX3X to interpret stress signals and choose between pro-survival stress granules and pyroptotic ASC specks. Together, our data demonstrate the role of DDX3X in driving NLRP3 inflammasome and stress granule assembly, and suggest a rheostat-like mechanistic paradigm for regulating live-or-die cell-fate decisions under stress conditions.
Collapse
Affiliation(s)
- Parimal Samir
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sannula Kesavardhana
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Deanna M Patmore
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Sebastien Gingras
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | | | - Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Clifford S Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Benoit Briard
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David E Place
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anannya Bhattacharya
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bhesh Raj Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amanda Nourse
- The Molecular Interaction Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sharon V King
- Cell and Tissue Imaging Center, Light Microscopy Division, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Aaron Pitre
- Cell and Tissue Imaging Center, Light Microscopy Division, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amanda R Burton
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephane Pelletier
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | |
Collapse
|
23
|
From the magic bullet to the magic target: exploiting the diverse roles of DDX3X in viral infections and tumorigenesis. Future Med Chem 2019; 11:1357-1381. [PMID: 30816053 DOI: 10.4155/fmc-2018-0451] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
DDX3X is an ATPase/RNA helicase of the DEAD-box family and one of the most multifaceted helicases known up to date, acting in RNA metabolism, cell cycle control, apoptosis, stress response and innate immunity. Depending on the virus or the viral cycle stage, DDX3X can act either in a proviral fashion or as an antiviral factor. Similarly, in different cancer types, it can act either as an oncogene or a tumor-suppressor gene. Accumulating evidence indicated that DDX3X can be considered a promising target for anticancer and antiviral chemotherapy, but also that its exploitation requires a deeper understanding of the molecular mechanisms underlying its dual role in cancer and viral infections. In this Review, we will summarize the known roles of DDX3X in different tumor types and viral infections, and the different inhibitors available, illustrating the possible advantages and potential caveats of their use as anticancer and antiviral drugs.
Collapse
|