1
|
Liu H, Wang M, Du J, Wang S, Zhang Z, He T, Wang Y, Chen Y, Wang W, Li X. Skin transcriptome of lenok trout (Brachymystax lenok) provides new insight on lectin genes and immune response mechanisms to Aeromonas salmonicida infection. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101439. [PMID: 39933312 DOI: 10.1016/j.cbd.2025.101439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
Brachymystax lenok is an economically valuable cold-water fish species that has shown lower morbidity during pathogen outbreaks compared to other cold-water species. To elucidate the innate immune mechanisms in B. lenok in response to Aeromonas salmonicida infection, the transcriptome sequencing of the skin was performed. A total of 297,142 unigenes were generated, with 64.21 % (190,809) successfully annotated. Differential expression analysis identified 9238 differentially expressed genes (DEGs), with significant enrichment in immune-related pathways, including NOD-like receptor, C-type lectin receptor, and Toll-like receptor signalling pathways. These pathways may play crucial role in pathogen recognition, immune activation, inflammation, and the induction of adaptive immune responses in B. lenok. Further analysis revealed significant upregulation of pro-inflammatory cytokines, complement system components, and antimicrobial peptides such as hepcidin and cathelicidin, highlighting their pivotal roles in B. lenok's immune defense. Moreover, a notable finding was the dynamic expression of various lectin families, including C-type lectins, plectins, galectin-3, and β-galactoside-binding lectins, which are involved in pathogen recognition, immune modulation, and cell signalling. Lectins may also contribute to resistance mechanisms by affecting bacterial membrane permeability, disrupting vital metabolic processes, and enhancing synergy with antimicrobial peptides. In the pathological experiments, histological examination correlated the upregulation of inflammatory mediators and complement components with tissue damage, immune cell infiltration, and lesion development, further supporting the involvement of these genes in the immune response. These results will enrich the information in understanding the immune response in B. lenok, and provide basic data for the following proteomics and functional assays that can verify the protein-level activity of these immune-related genes and clarify their specific roles in host defense and resistance mechanisms. This comprehensive transcriptome analysis provides insights into the immune response mechanisms of B. lenok, with particular emphasis on the role of lectins in pathogen recognition and resistance. These findings offer a foundation for further research on immune mechanisms in fish and the development of therapeutic strategies to mitigate infections in aquaculture.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Maolin Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Jiayu Du
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Shuai Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Zheng Zhang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Tingting He
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Yuang Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Yan Chen
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Wei Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China.
| | - Xuejie Li
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
2
|
Jin XY, Zhang HQ, Feng Z, Liu H, Wang XY, Luo HB, Li XP, Sun YY, Li MF. Complement-activated fragment Ba functions as an antibacterial protein and mediates immune responses in lower vertebrates. J Biol Chem 2025; 301:108278. [PMID: 39922488 PMCID: PMC11929084 DOI: 10.1016/j.jbc.2025.108278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/10/2025] Open
Abstract
The complement system plays an important role in antibacterial infection and immune regulation. Ba, an important complement component, is produced and released by the cleavage of complement factor B during complement activation. However, the immune functions of Ba are unclear. In this study, we reported that recombinant Ba exerted direct bactericidal and immune regulatory effects. Recombinant Paralichthys olivaceus Ba (rPoBa) bound bacteria via interaction with the bacterial wall component lipopolysaccharide, resulting in bacterial membrane permeabilization and bacterial death. Furthermore, rPoBa exhibited bactericidal activity against Gram-negative bacteria in a manner that depended on concentration, time, temperature, pH, and metal ions. Structure prediction analysis showed that PoBa contained three distinct complement control protein (CCP) domains. CCP1 was mainly responsible for binding to lipopolysaccharide, and both CCP1 and CCP3 might be required for bacterial membranous permeabilization. The bactericidal effects of Ba were observed only in lower vertebrates, with no such effects observed in mammals. In addition, rPoBa could protect P. olivaceus against Vibrio harveyi infection both in vitro and in vivo by significantly improving the immune activity of peripheral blood leukocytes and reducing tissue bacterial loads. Consistently, when PoCFB expression in P. olivaceus was knocked down, the PoBa production and complement activity were decreased, and bacterial replication was significantly enhanced. In conclusion, this study revealed that the complement-activated recombinant Ba fragment improved the immune defense against bacterial infection and provided a potential strategy to control disease in lower vertebrates.
Collapse
Affiliation(s)
- Xiao-Yan Jin
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Hong-Qiang Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Zhe Feng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Heng Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Xuan-Yue Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Hao-Bin Luo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Xue-Peng Li
- School of Ocean, Yantai University, Yantai, China
| | - Yuan-Yuan Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Mo-Fei Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| |
Collapse
|
3
|
Mo Z, Lin H, Lai X, Dan P, Wu H, Luo X, Dan X, Li Y. The predominant role of IgM in grouper (Epinephelus coioides) mucosal defense against ectoparasitic protozoan infection. FISH & SHELLFISH IMMUNOLOGY 2024; 155:110023. [PMID: 39547269 DOI: 10.1016/j.fsi.2024.110023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
The skin mucosa of fish is exposed to significant challenges from infectious disease agents due to continuous exposure to the aqueous environment. Interestingly, bony fish have evolved to express a unique IgT, which is absent in terrestrials, that appears to play a predominant role in the mucosal-associated lymphoid tissue of the rainbow trout. Nevertheless, in other IgT-producing fish, it is unclear whether IgM or IgT is primarily responsible for protection against infections of cutaneous tissue. Here, we show that grouper IgM appears quickly within the skin following challenge by the marine parasite, Crytopcaryon irritans. These IgM-class antibodies may arise from local proliferating antibody secreting cells or may infiltrate tissue from the serum in dimer polymer form. Based on details of IgM functional responses, we conclude that grouper IgM plays a predominant role in defense against C. irritans.
Collapse
Affiliation(s)
- Zequan Mo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Huajian Lin
- Guangdong Animal Disease Prevention and Control Center (Guangdong Animal Health and Quarantine Institute), Guangzhou, 510665, China
| | - Xueli Lai
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Pengbo Dan
- International Department, Affiliated High School of South China Normal University, Guangzhou, China
| | - Huicheng Wu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaochun Luo
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou, 510006, China
| | - Xueming Dan
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yanwei Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Huang Y, Chen Z, Zhang J, Amoah K, Asiedu B, Cai J, Wang B, Jian J. Novel C-type lectin mediated non-specific cytotoxic cells killing activity through NCCRP-1 in nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2024; 149:109594. [PMID: 38697376 DOI: 10.1016/j.fsi.2024.109594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Non-specific cytotoxic cells (NCCs) are vital immune cells involved in teleost's non-specific immunity. As a receptor molecule on the NCCs' surface, the non-specific cytotoxic cell receptor protein 1 (NCCRP-1) is known to play a crucial role in mediating their activity. Nevertheless, there have been limited studies on the signal molecule that transmits signals via NCCRP-1. In this study, a yeast two-hybrid (Y2H) library of tilapia liver and head kidney was constructed and subsequently screened with the bait vector NCCRP-1 of Oreochromis niloticus (On-NCCRP-1) to obtain a C-type lectin (On-CTL) with an interacting protein sequence. Consequently, the full-length sequence of On-CTL was cloned and analyzed. The expression analysis revealed that On-CTL is highly expressed in the liver and is widely distributed in other tissues. Furthermore, On-CTL expression was significantly up-regulated in the brain, intestine, and head kidney following a challenge with Streptococcus agalactiae. A point-to-point Y2H method was also used to confirm the binding between On-NCCRP-1 and On-CTL. The recombinant On-CTL (rOn-CTL) protein was purified. In vitro experiments demonstrated that rOn-CTL can up-regulate the expression of killer effector molecules in NCCs via its interaction with On-NCCRP-1. Moreover, activation of NCCs by rOn-CTL resulted in a remarkable enhancement in their ability to eliminate fathead minnow cells, indicating that rOn-CTL effectively modulates the killing activity of NCCs through the NCC receptor molecule On-NCCRP-1. These findings significantly contribute to our comprehension of the regulatory mechanisms governing NCC activity, paving the way for future research in this field.
Collapse
Affiliation(s)
- Yu Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Zhengsi Chen
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Jiaxuan Zhang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Kwaku Amoah
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Berchie Asiedu
- Department of Fisheries and Water Resources, University of Energy and Natural Resources, Post Office Box 214, Sunyani, Ghana
| | - Jia Cai
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Bei Wang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| |
Collapse
|
5
|
Speirs ZC, Loynes CA, Mathiessen H, Elks PM, Renshaw SA, Jørgensen LVG. What can we learn about fish neutrophil and macrophage response to immune challenge from studies in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109490. [PMID: 38471626 DOI: 10.1016/j.fsi.2024.109490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Fish rely, to a high degree, on the innate immune system to protect them against the constant exposure to potential pathogenic invasion from the surrounding water during homeostasis and injury. Zebrafish larvae have emerged as an outstanding model organism for immunity. The cellular component of zebrafish innate immunity is similar to the mammalian innate immune system and has a high degree of sophistication due to the needs of living in an aquatic environment from early embryonic stages of life. Innate immune cells (leukocytes), including neutrophils and macrophages, have major roles in protecting zebrafish against pathogens, as well as being essential for proper wound healing and regeneration. Zebrafish larvae are visually transparent, with unprecedented in vivo microscopy opportunities that, in combination with transgenic immune reporter lines, have permitted visualisation of the functions of these cells when zebrafish are exposed to bacterial, viral and parasitic infections, as well as during injury and healing. Recent findings indicate that leukocytes are even more complex than previously anticipated and are essential for inflammation, infection control, and subsequent wound healing and regeneration.
Collapse
Affiliation(s)
- Zoë C Speirs
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Catherine A Loynes
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Heidi Mathiessen
- Laboratory of Experimental Fish Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Philip M Elks
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Stephen A Renshaw
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Louise von Gersdorff Jørgensen
- Laboratory of Experimental Fish Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark.
| |
Collapse
|
6
|
Wei Y, Lv Z, Liu Q, Yu J, Xiao Y, Du Z, Xiao T. Structural comparison and expression function analysis of BF/C2 in Ctenopharyngodon idella and Squaliobarbus curriculus. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109154. [PMID: 37821003 DOI: 10.1016/j.fsi.2023.109154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/17/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
Ctenopharyngodon idella and Squaliobarbus curriculus, members of the Cyprinidae family and Yaroideae subfamily, have shown different levels of resistance to grass carp reo virus (GCRV), with S. curriculus exhibiting higher resilience. In the pursuit to explore the distinctions in the structural and expression traits of BF/C2 (A,B) between the two species, we conducted an analysis involving the cloning and examination of various coding sequences (CDS). We successfully cloned the CDS of ci-BF/C2A and ci-BF/C2B from C. idella, which spanned 2259 bp and 2514 bp respectively, encoding 752 and 837 amino acids. Similarly, the CDS of sc-BF/C2A and sc-BF/C2B from S. curriculus were cloned, featuring lengths of 1353 bp and 2517 bp and encoding 450 and 838 amino acids, respectively. A chromosome collinearity assessment revealed that ci-BF/C2A demonstrated collinearity with sc-BF/C2A, a finding not replicated with ci-BF/C2B and sc-BF/C2B. Delving into gene structure, we discerned that ci-BF/C2A harbored a greater number of Tryp_SPc domains compared to sc-BF/C2A. Following this, we engineered and purified six prokaryotic recombinant proteins: CI-BF/C2A, CI-BF/C2A1 (a variant resulting from the deletion of the Tryp_SPc domain of CI-BF/C2A), CI-BF/C2A2 (representing the Tryp_SPc domain of CI-BF/C2A), CI-BF/C2B, SC-BF/C2A, and SC-BF/C2B. Through serum co-incubation tests with these recombinant proteins, we established the activation of the complement marker C3 in each case. Utilizing fluorescence quantitative expression analysis, we observed ubiquitous expression of ci-BF/C2A and ci-BF/C2B across all grass carp tissues, predominantly in the liver. This pattern mirrored in S. curriculus, where sc-BF/C2A was highly expressed in the gills, and sc-BF/C2B manifested notably in the liver. Kidney cell infection experiments on both species revealed enhanced resistance to GCRV post-incubation with the recombinant proteins. Notably, cells treated with SC-BF/C2 (A, B) exhibited pronounced resilience compared to those treated with CI-BF/C2 (A, B, A1, A2). However, cells incubated with CI-BF/C2A1 and CI-BF/C2A2 showed strengthen resistance relative to cells treated with CI-BF/C2A and CI-BF/C2B. In GCRV infection trials on grass carp, ci-BF/C2A and ci-BF/C2B expressions reached a zenith on the seventh day post-infection, highlighting a distinctive functional mode in immune defense against GCRV infection orchestrated by BF/C2. The empirical data underscores the pivotal role of the Tryp_SPc domain in immune responses to GCRV infection, pinpointing its influence on ci-BF/C2A expression. Conclusively, this investigation provides a foundational understanding of the unique immune function characteristics of BF/C2 in grass carp, paving the way for further scholarly exploration in this realm.
Collapse
Affiliation(s)
- Yuling Wei
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Zhao Lv
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qiaolin Liu
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jianbo Yu
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yu Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Zongjun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
7
|
Lou F, Zhang Y, Xu A, Gao T. Transcriptional responses of liver and spleen in Lota lota to polyriboinosinic polyribocytidylic acid. Front Immunol 2023; 14:1272393. [PMID: 37901224 PMCID: PMC10611466 DOI: 10.3389/fimmu.2023.1272393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction The cultured Lota lota can meet the market demand in the context of the decline of wild resources, but the disease in the high-density culture process also deserves attention. Therefore, understanding the immune regulation mechanisms of L. lota will be the basis for obtaining high benefits in artificial culture. Methods To explore the viral response mechanism of L. lota, RNA-seq was applied to identify the transcriptomic changes of the liver and spleen in L. lota by poly (I:C) stress. Results The DEGs (liver: 2186 to 3123; spleen 1542 to 2622) and up-regulated genes (liver: 1231 to 1776; spleen 769 to 1502) in the liver and spleen increased with the prolongation (12h to 48h) of poly (I:C)-stimulation time. This means L. lota needs to mobilize more functional genes in response to longer periods of poly (I:C)-stimulation. Despite the responses of L. lota to poly (I:C) showed tissue-specificity, we hypothesized that both liver and spleen of L. lota can respond to poly (I:C) challenge may be through promoting apoptosis of DNA-damaged cells, increasing the activity of immune-enhancing enzymes, and increasing energy supply based on DEGs annotation information. Conclusions Our results demonstrate the transcriptional responses of L. lota to poly (I:C)-stimulation, and these data provide the first resource on the genetic regulation mechanisms of L. lota against viruses. Furthermore, the present study can provide basic information for the prevention of viral diseases in L. lota artificial culture process.
Collapse
Affiliation(s)
- Fangrui Lou
- School of Ocean, Yantai University, Yantai, Shandong, China
| | - Yuan Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology Chinese Academy of Sciences, Guangzhou, China
| | - Anle Xu
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| |
Collapse
|
8
|
A century of parasitology in fisheries and aquaculture. J Helminthol 2023; 97:e4. [PMID: 36631485 DOI: 10.1017/s0022149x22000797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fish parasitological research associated with fisheries and aquaculture has expanded remarkably over the past century. The application of parasites as biological tags has been one of the fields in which fish parasitology has generated new insight into fish migration and stock assessments worldwide. It is a well-established discipline whose methodological issues are regularly reviewed and updated. Therefore, no concepts or case-studies will be repeated here; instead, we summarize some of the main recent findings and achievements of this methodology. These include the extension of its use in hosts other than bony fishes; the improvements in the selection of parasite tags; the recognition of the host traits affecting the use of parasite tags; and the increasingly recognized need for integrative, multidisciplinary studies combining parasites with classical methods and modern techniques, such as otolith microchemistry and genetics. Archaeological evidence points to the existence of parasitic problems associated with aquaculture activities more than a thousand years ago. However, the main surge of research within aquaculture parasitology occurred with the impressive development of aquaculture over the past century. Protozoan and metazoan parasites, causing disease in domesticated fish in confined environments, have attracted the interest of parasitologists and, due to their economic importance, funding was made available for basic and applied research. This has resulted in a profusion of basic knowledge about parasite biology, physiology, parasite-host interactions, life cycles and biochemistry. Due to the need for effective control methods, various solutions targeting host-parasite interactions (immune responses and host finding), genetics and pharmacological aspects have been in focus.
Collapse
|
9
|
Chen Y, Wu X, Liu X, Lai J, Liu Y, Song M, Li F, Gong Q. Biochemical, transcriptomic and metabolomic responses to total dissolved gas supersaturation and their underlying molecular mechanisms in Yangtze sturgeon (Acipenser dabryanus). ENVIRONMENTAL RESEARCH 2023; 216:114457. [PMID: 36183788 DOI: 10.1016/j.envres.2022.114457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
With the rapid development of hydropower facility construction, the total dissolved gas (TDG) generated by dam discharge is seriously threatening the survival of fish and has become an ecological environmental issue of global concern. However, how TDG affects fish physiology and the underlying molecular mechanism remain poorly known. In this study, Acipenser dabryanus, an ancient living fossil that is a flagship species of the Yangtze River, was exposed to water supersaturated with TDG at a level of 116% for 48 h. A comprehensive analysis was performed to study the effect of TDG supersaturation stress on A. dabryanus, including histopathological, biochemical, transcriptomic and metabolomic analyses. The histopathological results showed that mucosal-associated lymphoid tissues were seriously damaged after TDG supersaturation stress. Plasma catalase levels increased significantly under TDG supersaturation stress, while superoxide dismutase levels decreased significantly. Transcriptomic analysis revealed 289 upregulated genes and 162 downregulated genes in gill tissue and 535 upregulated and 104 downregulated genes in liver tissue. Metabolomic analysis revealed 63 and 164 differentially abundant metabolites between the control group and TDG group in gill and liver, respectively. The majority of heat shock proteins and genes related to ubiquitin and various immune-related pathways were significantly upregulated by TDG supersaturation stress. Integrated transcriptomic and metabolomic analyses revealed the upregulation of amino acid metabolism and glycometabolism pathways under TDG supersaturation stress. Glycerophospholipid metabolism was increased which might be associated with maintaining cell membrane integrity. This is the first study revealing the underlying molecular mechanisms of effects of TDG supersaturation on fish. Our results suggested that acute TDG supersaturation stress could enhance immune and antioxidative functions and activate energy metabolic pathways as an adaptive mechanism in A. dabryanus.
Collapse
Affiliation(s)
- Yeyu Chen
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Xiaoyun Wu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Xiaoqing Liu
- Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University, Chengdu, 610039, China
| | - Jiansheng Lai
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Ya Liu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Mingjiang Song
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Feiyang Li
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Quan Gong
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China.
| |
Collapse
|
10
|
Kumar V, Das BK, Swain HS, Chowdhury H, Roy S, Bera AK, Das R, Parida SN, Dhar S, Jana AK, Behera BK. Outbreak of Ichthyophthirius multifiliis associated with Aeromonas hydrophila in Pangasianodon hypophthalmus: The role of turmeric oil in enhancing immunity and inducing resistance against co-infection. Front Immunol 2022; 13:956478. [PMID: 36119096 PMCID: PMC9478419 DOI: 10.3389/fimmu.2022.956478] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/05/2022] [Indexed: 01/27/2023] Open
Abstract
Ichthyophthirius multifiliis, a ciliated parasite causing ichthyophthiriasis (white spot disease) in freshwater fishes, results in significant economic loss to the aquaculture sector. One of the important predisposing factors for ichthyophthiriasis is low water temperature (i.e., below 20°C), which affects the health and makes freshwater fishes more susceptible to parasitic infections. During ichthyophthiriasis, fishes are stressed and acute immune reactions are compromised, which enables the aquatic bacterial pathogens to simultaneously infect the host and increase the severity of disease. In the present work, we aimed to understand the parasite–bacteria co-infection mechanism in fish. Later, Curcuma longa (turmeric) essential oil was used as a promising management strategy to improve immunity and control co-infections in fish. A natural outbreak of I. multifiliis was reported (validated by 16S rRNA PCR and sequencing method) in Pangasianodon hypophthalmus from a culture facility of ICAR-CIFRI, India. The fish showed clinical signs including hemorrhage, ulcer, discoloration, and redness in the body surface. Further microbiological analysis revealed that Aeromonas hydrophila was associated (validated by 16S rRNA PCR and sequencing method) with the infection and mortality of P. hypophthalmus, confirmed by hemolysin and survival assay. This created a scenario of co-infections, where both infectious agents are active together, causing ichthyophthiriasis and motile Aeromonas septicemia (MAS) in P. hypophthalmus. Interestingly, turmeric oil supplementation induced protective immunity in P. hypophthalmus against the co-infection condition. The study showed that P. hypophthalmus fingerlings supplemented with turmeric oil, at an optimum concentration (10 ppm), exhibited significantly increased survival against co-infection. The optimum concentration induced anti-stress and antioxidative response in fingerlings, marked by a significant decrease in cortisol and elevated levels of superoxide dismutase (SOD) and catalase (CAT) in treated animals as compared with the controls. Furthermore, the study indicated that supplementation of turmeric oil increases both non-specific and specific immune response, and significantly higher values of immune genes (interleukin-1β, transferrin, and C3), HSP70, HSP90, and IgM were observed in P. hypophthalmus treatment groups. Our findings suggest that C. longa (turmeric) oil modulates stress, antioxidant, and immunological responses, probably contributing to enhanced protection in P. hypophthalmus. Hence, the application of turmeric oil treatment in aquaculture might become a management strategy to control co-infections in fishes. However, this hypothesis needs further validation.
Collapse
Affiliation(s)
- V. Kumar
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - B. K. Das
- Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
- *Correspondence: B. K. Das, ; B. K. Behera,
| | - H. S. Swain
- Fisheries Enhancement and Management (FEM) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - H. Chowdhury
- Reservoir and Wetland Fisheries (RWF) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - S. Roy
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - A. K. Bera
- Fisheries Resource Assessment and Informatics (FRAI) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - R. Das
- Fisheries Enhancement and Management (FEM) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - S. N. Parida
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - S. Dhar
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - A. K. Jana
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - B. K. Behera
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
- *Correspondence: B. K. Das, ; B. K. Behera,
| |
Collapse
|
11
|
Huang X, Liu S, Zuo F, Luo L, Chen D, Ou Y, Geng Y, Zhang Y, Lin G, Yang S, Luo W, Yin L, He Z. cMOS enhanced the mucosal immune function of skin and gill of goldfish (Carassius auratus Linnaeus) to improve the resistance to Ichthyophthirius multifiliis infection. FISH & SHELLFISH IMMUNOLOGY 2022; 126:1-11. [PMID: 35595060 DOI: 10.1016/j.fsi.2022.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
of supporting mucosal immune barrier integrity and prevention of some pathogenic infections in aquatic species, are key areas of active study, often focusing on feed additives. The objectives of this study were to explore the effects of feeding cMOS (concentrated mannan oligosaccharide) on the gill and skin mucosal barriers of goldfish (Carassius auratus Linnaeus) and evaluate health status during Ichthyophthirius multifiliis infection. After feeding the cMOS-containing diet for 60 days, Hematoxylin and eosin (H&E) staining showed greater length of gill lamella and thicker dermal dense layer, while Alcian Blue and Periodic acid-Schiff (AB-PAS) staining showed higher numbers of mucin cells in cMOS fed fish. Chemical analysis showed that fish fed cMOS had greater enzyme activity of lysozyme (LZM) and alkaline phosphatase (AKP) in gill and skin tissues, while qRT-PCR revealed higher expression of Muc-2 and IL-1β, as well as lower expression of IL-10. After Ichthyophthirius multifiliis challenge, goldfish fed the cMOS diet had lower mortality and infection rates, as well as fewer visible white spots on the body surfaces. Histologically, the gill and skin of these fish presented less tissue damage and fewer parasites, and had a greater number of mucus cells. In addition, the expression of Muc-2 and IL-10 were notably higher while the expression of IL-1β was significantly lower in cMOS fed goldfish than control fed fish. In this study, cMOS fed goldfish had stronger immune barrier function of skin and gill mucous, and better survival following Ichthyophthirius multifiliis infection.
Collapse
Affiliation(s)
- Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Senyue Liu
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Fengyuan Zuo
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lin Luo
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yangping Ou
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chendu, 611130, Sichuan, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chendu, 611130, Sichuan, China.
| | - Yufan Zhang
- Alltech Biological Products (China) Co. Ltd, 100060, Beijing, China
| | - Gang Lin
- Alltech Biological Products (China) Co. Ltd, 100060, Beijing, China
| | - Shiyong Yang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Luo
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lizi Yin
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chendu, 611130, Sichuan, China
| | - Zhi He
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| |
Collapse
|
12
|
Roh H, Kim N, Lee Y, Park J, Kim BS, Lee MK, Park CI, Kim DH. Dual-Organ Transcriptomic Analysis of Rainbow Trout Infected With Ichthyophthirius multifiliis Through Co-Expression and Machine Learning. Front Immunol 2021; 12:677730. [PMID: 34305907 PMCID: PMC8296305 DOI: 10.3389/fimmu.2021.677730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/31/2021] [Indexed: 01/16/2023] Open
Abstract
Ichthyophthirius multifiliis is a major pathogen that causes a high mortality rate in trout farms. However, systemic responses to the pathogen and its interactions with multiple organs during the course of infection have not been well described. In this study, dual-organ transcriptomic responses in the liver and head kidney and hemato-serological indexes were profiled under I. multifiliis infection and recovery to investigate systemic immuno-physiological characteristics. Several strategies for massive transcriptomic interpretation, such as differentially expressed genes (DEGs), Poisson linear discriminant (PLDA), and weighted gene co-expression network analysis (WGCNA) models were used to investigate the featured genes/pathways while minimizing the disadvantages of individual methods. During the course of infection, 6,097 and 2,931 DEGs were identified in the head kidney and liver, respectively. Markers of protein processing in the endoplasmic reticulum, oxidative phosphorylation, and the proteasome were highly expressed. Likewise, simultaneous ferroptosis and cellular reconstruction was observed, which is strongly linked to multiple organ dysfunction. In contrast, pathways relevant to cellular replication were up-regulated in only the head kidney, while endocytosis- and phagosome-related pathways were notably expressed in the liver. Moreover, interestingly, most immune-relevant pathways (e.g., leukocyte trans-endothelial migration, Fc gamma R-mediated phagocytosis) were highly activated in the liver, but the same pathways in the head kidney were down-regulated. These conflicting results from different organs suggest that interpretation of co-expression among organs is crucial for profiling of systemic responses during infection. The dual-organ transcriptomics approaches presented in this study will greatly contribute to our understanding of multi-organ interactions under I. multifiliis infection from a broader perspective.
Collapse
Affiliation(s)
- HyeongJin Roh
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Nameun Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Yoonhang Lee
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Jiyeon Park
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Bo Seong Kim
- Aquatic Disease Control Division, National Institute of Fisheries Science (NIFS), Busan, South Korea
| | - Mu Kun Lee
- Korean Aquatic Organism Disease Inspector Association, Busan, South Korea
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong, South Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| |
Collapse
|
13
|
Qi L, Chen Y, Shi K, Ma H, Wei S, Sha Z. Combining of transcriptomic and proteomic data to mine immune-related genes and proteins in the liver of Cynoglossus semilaevis challenged with Vibrio anguillarum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100864. [PMID: 34146917 DOI: 10.1016/j.cbd.2021.100864] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 12/20/2022]
Abstract
The liver is a multi-functional organ including metabolism, substance synthesis, detoxification, and various immune functions, and its role in immunity has attracted more and more attention. However, research on the liver immune response of fish infected by pathogenic bacteria is currently lacking. In this study, the transcriptomics and proteomics of the liver of Cynoglossus semilaevis infected with Vibrio anguillarum were analyzed. A total of 1470 genes and 497 proteins were differentially expressed in the pairwise comparison of obvious symptoms of infection (HOSG), no obvious symptoms of infection (NOSG) and PBS treatment (CG). Gene ontology and KEGG enrichment pathways analysis showed that differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were mainly enriched in toll-like receptors (TLRs), complement and coagulation cascades, nucleotide oligomerization domain (NOD)-like receptors (NLRs), mitogen-activated protein kinase (MAPK) and phagosome signaling pathways, which suggested the combined action of the five pathways were significant to enhance the liver immune defense. The combination of transcriptomic and proteomic analysis showed that ITGβ1, C3, C5 and MRC1 were significantly up-regulated, which might play an important role in the liver immune response to the recognition of V. anguillarum, inflammatory response and phagocytosis. The transcriptome and proteome data we obtained provide information on some key genes and proteins for further study of the mechanism of liver immune response.
Collapse
Affiliation(s)
- Longjiang Qi
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Yadong Chen
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China
| | - Kunpeng Shi
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Hui Ma
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Shu Wei
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Zhenxia Sha
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
14
|
Vorel J, Cwiklinski K, Roudnický P, Ilgová J, Jedličková L, Dalton JP, Mikeš L, Gelnar M, Kašný M. Eudiplozoon nipponicum (Monogenea, Diplozoidae) and its adaptation to haematophagy as revealed by transcriptome and secretome profiling. BMC Genomics 2021; 22:274. [PMID: 33858339 PMCID: PMC8050918 DOI: 10.1186/s12864-021-07589-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background Ectoparasites from the family Diplozoidae (Platyhelminthes, Monogenea) belong to obligate haematophagous helminths of cyprinid fish. Current knowledge of these worms is for the most part limited to their morphological, phylogenetic, and population features. Information concerning the biochemical and molecular nature of physiological processes involved in host–parasite interaction, such as evasion of the immune system and its regulation, digestion of macromolecules, suppression of blood coagulation and inflammation, and effect on host tissue and physiology, is lacking. In this study, we report for the first time a comprehensive transcriptomic/secretome description of expressed genes and proteins secreted by the adult stage of Eudiplozoon nipponicum (Goto, 1891) Khotenovsky, 1985, an obligate sanguivorous monogenean which parasitises the gills of the common carp (Cyprinus carpio). Results RNA-seq raw reads (324,941 Roche 454 and 149,697,864 Illumina) were generated, de novo assembled, and filtered into 37,062 protein-coding transcripts. For 19,644 (53.0%) of them, we determined their sequential homologues. In silico functional analysis of E. nipponicum RNA-seq data revealed numerous transcripts, pathways, and GO terms responsible for immunomodulation (inhibitors of proteolytic enzymes, CD59-like proteins, fatty acid binding proteins), feeding (proteolytic enzymes cathepsins B, D, L1, and L3), and development (fructose 1,6-bisphosphatase, ferritin, and annexin). LC-MS/MS spectrometry analysis identified 721 proteins secreted by E. nipponicum with predominantly immunomodulatory and anti-inflammatory functions (peptidyl-prolyl cis-trans isomerase, homolog to SmKK7, tetraspanin) and ability to digest host macromolecules (cathepsins B, D, L1). Conclusions In this study, we integrated two high-throughput sequencing techniques, mass spectrometry analysis, and comprehensive bioinformatics approach in order to arrive at the first comprehensive description of monogenean transcriptome and secretome. Exploration of E. nipponicum transcriptome-related nucleotide sequences and translated and secreted proteins offer a better understanding of molecular biology and biochemistry of these, often neglected, organisms. It enabled us to report the essential physiological pathways and protein molecules involved in their interactions with the fish hosts. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07589-z.
Collapse
Affiliation(s)
- Jiří Vorel
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Krystyna Cwiklinski
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Pavel Roudnický
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jana Ilgová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Lucie Jedličková
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic.,Department of Zoology and Fisheries, Centre of Infectious Animal Diseases, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic
| | - John P Dalton
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Milan Gelnar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Martin Kašný
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| |
Collapse
|
15
|
Gao XC, Niu SH, Huang Y, Xiong JL, Ren HT. Transcriptome Profiles in the Spleen of the Chinese Giant Salamander (Andrias davidianus) Challenged with Citrobacter freundii. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Piazzon MC, Mladineo I, Dirks RP, Santidrián Yebra-Pimentel E, Hrabar J, Sitjà-Bobadilla A. Ceratothoa oestroides Infection in European Sea Bass: Revealing a Long Misunderstood Relationship. Front Immunol 2021; 12:645607. [PMID: 33777043 PMCID: PMC7991915 DOI: 10.3389/fimmu.2021.645607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/05/2021] [Indexed: 12/16/2022] Open
Abstract
Ceratothoa oestroides (Cymothoidea, Isopoda) is a generalist crustacean parasite that negatively affects the economic sustainability of European sea bass (Dicentrarchus labrax) aquaculture in the North-East Mediterranean. While mortalities are observed in fry and fingerlings, infection in juvenile and adult fish result in approximately 20% growth delay. A transcriptomic analysis (PCR array, RNA-Seq) was performed on organs (tongue, spleen, head kidney, and liver) from infected vs. Ceratothoa-free sea bass fingerlings. Activation of local and systemic immune responses was detected, particularly in the spleen, characterized by the upregulation of cytokines (also in the tongue), a general reshaping of the immunoglobulin (Ig) response and suppression of T-cell mediated responses. Interestingly, starvation and iron transport and metabolism genes were strongly downregulated, suggesting that the parasite feeding strategy is not likely hematophagous. The regulation of genes related to growth impairment and starvation supported the growth delay observed in infected animals. Most differentially expressed (DE) transcripts were exclusive of a specific organ; however, only in the tongue, the difference between infected and uninfected fish was significant. At the attachment/feeding site, the pathways involved in muscle contraction and intercellular junction were the most upregulated, whereas the pathways involved in fibrosis (extracellular matrix organization, collagen formation, and biosynthesis) were downregulated. These results suggest that parasite-inflicted damage is successfully mitigated by the host and characterized by regenerative processes that prevail over the reparative ones.
Collapse
Affiliation(s)
- M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal - Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain
| | - Ivona Mladineo
- Laboratory for Aquaculture, Institute of Oceanography and Fisheries, Split, Croatia.,Biology Centre of the Czech Academy of Sciences, Institute of Parasitology, Ceske Budejovice, Czechia
| | - Ron P Dirks
- Future Genomics Technology, Leiden, Netherlands
| | | | - Jerko Hrabar
- Laboratory for Aquaculture, Institute of Oceanography and Fisheries, Split, Croatia
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal - Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain
| |
Collapse
|
17
|
Shang-Guan XY, Xu HZ, Cheng X, Zhang RF, Lu YT, Liu HX. A C-type lectin (OmCTL) in Onychostoma macrolepis: Binding ability to LPS, PGN and agglutinating activity against bacteria. Mol Immunol 2021; 132:21-29. [PMID: 33524771 DOI: 10.1016/j.molimm.2021.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 11/19/2022]
Abstract
C-type lectins (CTLs) are calcium-dependent carbohydrate-binding proteins that mainly bind to carbohydrate-based or other ligands to mediate cell adhesion, recognize pathogens, and play important roles in the immune system. In the present study, a novel C-type lectin (OmCTL) isolated from Onychostoma macrolepis was investigated. The open reading frame of OmCTL comprises 468 bp, encoding a 155 amino acid polypeptide with an 18 amino acid putative signaling peptide. The predicted primary OmCTL structure contains a signal peptide, a single carbohydrate recognition domain (CRD) and an EPN/WND motif required for carbohydrate-binding specificity. Using tissue expression pattern analysis, OmCTL has been shownto be highly expressed in the liver, and is also detected in other tissues. OmCTL was significantly upregulated in the liver and spleen following infection with Aeromonas hydrophila, suggesting its involvement in immune response. The recombinant OmCTL protein (rOmCTL) agglutinated two gram-negative bacteria, Escherichia coli and A. hydrophila, in vitro in the presence of Ca2+, showing that it is a typical Ca2+-dependent carbohydrate-binding protein.Furthermore, rOmCTL purified from E. coli BL21 (DE3) strongly bound to LPS and PGN, as well as all tested bacteria in a Ca2+-independent manner. These results indicate that OmCTL plays a central role in the innate immune response and as a pattern recognition receptor that recognizes diverse pathogens among O. macrolepis.
Collapse
Affiliation(s)
- Xin-Yan Shang-Guan
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shan'xi, 712100, China
| | - Hong-Zhou Xu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shan'xi, 712100, China
| | - Xu Cheng
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shan'xi, 712100, China
| | - Rui-Fang Zhang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shan'xi, 712100, China
| | - Yi-Tong Lu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shan'xi, 712100, China
| | - Hai-Xia Liu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shan'xi, 712100, China.
| |
Collapse
|
18
|
Najafpour B, Cardoso JCR, Canário AVM, Power DM. Specific Evolution and Gene Family Expansion of Complement 3 and Regulatory Factor H in Fish. Front Immunol 2020; 11:568631. [PMID: 33381109 PMCID: PMC7768046 DOI: 10.3389/fimmu.2020.568631] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/19/2020] [Indexed: 01/17/2023] Open
Abstract
The complement system comprises a large family of plasma proteins that play a central role in innate and adaptive immunity. To better understand the evolution of the complement system in vertebrates and the contribution of complement to fish immunity comprehensive in silico and expression analysis of the gene repertoire was made. Particular attention was given to C3 and the evolutionary related proteins C4 and C5 and to one of the main regulatory factors of C3b, factor H (Cfh). Phylogenetic and gene linkage analysis confirmed the standing hypothesis that the ancestral c3/c4/c5 gene duplicated early. The duplication of C3 (C3.1 and C3.2) and C4 (C4.1 and C4.2) was likely a consequence of the (1R and 2R) genome tetraploidization events at the origin of the vertebrates. In fish, gene number was not conserved and multiple c3 and cfh sequence related genes were encountered, and phylogenetic analysis of each gene generated two main clusters. Duplication of c3 and cfh genes occurred across the teleosts in a species-specific manner. In common, with other immune gene families the c3 gene expansion in fish emerged through a process of tandem gene duplication. Gilthead sea bream (Sparus aurata), had nine c3 gene transcripts highly expressed in liver although as reported in other fish, extra-hepatic expression also occurs. Differences in the sequence and protein domains of the nine deduced C3 proteins in the gilthead sea bream and the presence of specific cysteine and N-glycosylation residues within each isoform was indicative of functional diversity associated with structure. The diversity of C3 and other complement proteins as well as Cfh in teleosts suggests they may have an enhanced capacity to activate complement through direct interaction of C3 isoforms with pathogenic agents.
Collapse
Affiliation(s)
- Babak Najafpour
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Adelino V M Canário
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
19
|
Jaafar R, Ødegård J, Mathiessen H, Karami AM, Marana MH, von Gersdorff Jørgensen L, Zuo S, Nielsen T, Kania PW, Buchmann K. Quantitative trait loci (QTL) associated with resistance of rainbow trout Oncorhynchus mykiss against the parasitic ciliate Ichthyophthirius multifiliis. JOURNAL OF FISH DISEASES 2020; 43:1591-1602. [PMID: 32944955 PMCID: PMC7692903 DOI: 10.1111/jfd.13264] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
The parasitic ciliate Ichthyophthirius multifiliis has a low host specificity eliciting white spot disease (WSD) in a wide range of freshwater fishes worldwide. The parasite multiplies rapidly whereby the infection may reach problematic levels in a host population within a few days. The parasite targets both wild and cultured fish but the huge economic impact of the protozoan is associated with mortality, morbidity and treatment in aquacultural enterprises. We have investigated the potential for genetic selection of WSD-resistant strains of rainbow trout. Applying the DNA typing system Affymetrix® and characterizing the genome of the individual fish by use of 57,501 single nucleotide polymorphisms (SNP) and their location on the rainbow trout chromosomes, we have genetically characterized rainbow trout with different levels of natural resistance towards WSD. Quantitative trait loci (QTL) used for the selection of breeders with specific markers for resistance are reported. We found a significant association between resistance towards I. multifiliis infection and SNP markers located on the two specific rainbow trout chromosomes Omy 16 and Omy 17. Comparing the expression of immune-related genes in fish-with and without clinical signs-we recorded no significant difference. However, trout surviving the infection showed high expression levels of genes encoding IgT, T-cell receptor TCRβ, C3, cathelicidins 1 and 2 and SAA, suggesting these genes to be associated with protection.
Collapse
Affiliation(s)
- R Jaafar
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg C.Denmark
| | | | - H Mathiessen
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg C.Denmark
| | - A M Karami
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg C.Denmark
| | - M H Marana
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg C.Denmark
| | - L von Gersdorff Jørgensen
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg C.Denmark
| | - S Zuo
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg C.Denmark
| | | | - P W Kania
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg C.Denmark
| | - K Buchmann
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg C.Denmark
| |
Collapse
|
20
|
Patterns of the innate immune response in tambaqui Colossoma macropomum: Modulation of gene expression in haemorrhagic septicaemia caused by Aeromonas hydrophila. Microb Pathog 2020; 150:104638. [PMID: 33242647 DOI: 10.1016/j.micpath.2020.104638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 11/23/2022]
Abstract
The production of tambaqui Colossoma macropomum has recently reached a milestone, being considered the main native species produced in South American continental waters. Despite the importance of this fish, its immunity is not well understood. In this study we established some patterns of innate immunity for the species via two experiments. Both studies evaluated the fish in the absence (intraperitoneal saline) or presence (intraperitoneal, 3 x 107 CFU/mL of Aeromonas hydrophila at 0.1 mL/10 g of living weight) of infection at 5 points over time-course of 14 days (0 h, 6 h, 24 h, 7 d, 14 d). In the first experiment, the partial gene sequences and gene expression of IL-1β, IRAK-1, C3, C4, lysozyme, IL-10, HSP70 and β-actin were determined in the main secondary lymphoid organs of fish: the spleen and head kidney. The second study was performed to analyse the alternative complement pathway ACH50 in serum to support the elucidation of C3 gene expression. Results of the gene expression assays showed a tendency towards up-regulation of immune genes in infected fish in early phases of infection (mostly around 6 h and 24 h) and in the chronic phase (7 d and 14 d), with the exception of HSP70 which showed a down-regulation in infected fish. Our results also suggested that lysozyme was evolved in both pro- and anti-inflammatory activities. For genes of the complement system, it was demonstrated that C4 regulation followed the tendency of pro-inflammatory genes. However, the C3 gene was, surprisingly, not expressed in most fish and this corroborated with the results of the complement system activity in serum that also did not show activity in most fish. The possible reasons for the regulation of gene expression and association with fish disease are addressed in this paper.
Collapse
|
21
|
Seroconversion and Skin Mucosal Parameters during Koi Herpesvirus Shedding in Common Carp, Cyprinus carpio. Int J Mol Sci 2020; 21:ijms21228482. [PMID: 33187217 PMCID: PMC7696817 DOI: 10.3390/ijms21228482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Seroconversion and the mucosal lysozyme G (lysG), complement 3 (c3), and immunoglobulins M (IgMsec) and Z2 (IgZ2) were measured for up to 900 degree days (DD) in skin swabs from common carp exposed to koi herpesvirus (KHV or CyHV-3) at either a non-permissive temperature (12 °C) or permissive temperatures (17 and 22 °C), and in survivors subjected to temperature increase to 22 °C 500 DD after the initial exposure. The survival rate at 22 °C varied from 100% in fish initially exposed at 12 °C, to 20% at 17 °C and 0% at 22 °C. Viral shedding episodes lasted for up to 29 days (493 DD) for fish clinically infected at 17 °C, and up to 57 days (684 DD) for asymptomatic fish held at 12 °C. Up-regulation of lysG transcripts was measured at 17 and 22 °C. Down-regulation of c3 and IgMsec transcripts was measured independent of the water temperature, followed by up-regulation after the temperature increase coinciding with seroconversion and clearance of KHV from the skin mucus. IgZ2 mRNA showed a negative correlation with IgM transcripts. KHV subversion of the complement system at the mucosal site coupled with poor immunoglobulin secretion during the viral replication might contribute to the long window of viral shedding, thus facilitating viral transmission.
Collapse
|
22
|
Valle A, Leiro JM, Pereiro P, Figueras A, Novoa B, Dirks RPH, Lamas J. Interactions between the Parasite Philasterides dicentrarchi and the Immune System of the Turbot Scophthalmus maximus. A Transcriptomic Analysis. BIOLOGY 2020; 9:biology9100337. [PMID: 33076342 PMCID: PMC7602577 DOI: 10.3390/biology9100337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022]
Abstract
The present study analyses the interactions between Philasterides dicentrarchi (a ciliate parasite that causes high mortalities in cultured flatfish) and the peritoneal cells of the turbot Scophthalmus maximus during an experimental infection. The transcriptomic response was evaluated in the parasites and in the fish peritoneal cells, at 1, 2 and 4 h post-infection (hpi) in turbot injected intraperitoneally (ip) with 107 ciliates and at 12 and 48 hpi in turbot injected ip with 105 ciliates. Numerous genes were differentially expressed (DE) in P. dicentrarchi, relative to their expression in control ciliates (0 hpi): 407 (369 were up-regulated) at 1 hpi, 769 (415 were up-regulated) at 2 hpi and 507 (119 were up-regulated) at 4 hpi. Gene ontology (GO) analysis of the DE genes showed that the most representative categories of biological processes affected at 1, 2 and 4 hpi were biosynthetic processes, catabolic processes, biogenesis, proteolysis and transmembrane transport. Twelve genes of the ABC transporter family and eight genes of the leishmanolysin family were DE at 1, 2 and 4 hpi. Most of these genes were strongly up-regulated (UR), suggesting that they are involved in P. dicentrarchi infection. A third group of UR genes included several genes related to ribosome biogenesis, DNA transcription and RNA translation. However, expression of tubulins and tubulin associated proteins, such as kinesins or dyneins, which play key roles in ciliate division and movement, was down-regulated (DR). Similarly, genes that coded for lysosomal proteins or that participate in the cell cycle mitotic control, glycolysis, the Krebs cycle and/or in the electron transport chain were also DR. The transcriptomic analysis also revealed that in contrast to many parasites, which passively evade the host immune system, P. dicentrarchi strongly stimulated turbot peritoneal cells. Many genes related to inflammation were DE in peritoneal cells at 1, 2 and 4 hpi. However, the response was much lower at 12 hpi and almost disappeared completely at 48 hpi in fish that were able to kill P. dicentrarchi during the first few hpi. The genes that were DE at 1, 2 and 4 hpi were mainly related to the apoptotic process, the immune response, the Fc-epsilon receptor signalling pathway, the innate immune response, cell adhesion, cell surface receptors, the NF-kappaB signalling pathway and the MAPK cascade. Expression of toll-like receptors 2, 5 and 13 and of several components of NF-κB, MAPK and JAK/STAT signalling pathways was UR in the turbot peritoneal cells. Genes expressing chemokines and chemokine receptors, genes involved in prostaglandin and leukotriene synthesis, prostaglandins, leukotriene receptors, proinflammatory cytokines and genes involved in apoptosis were strongly UR during the first four hours of infection. However, expression of anti-inflammatory cytokines such as Il-10 and lipoxygenases with anti-inflammatory activity (i.e., arachidonate 15-lipoxygenase) were only UR at 12 and/or 48 hpi, indicating an anti-inflammatory state in these groups of fish. In conclusion, the present study shows the regulation of several genes in P. dicentrarchi during the early stages of infection, some of which probably play important roles in this process. The infection induced a potent acute inflammatory response, and many inflammatory genes were regulated in peritoneal cells, showing that the turbot uses all the protective mechanisms it has available to prevent the entry of the parasite.
Collapse
Affiliation(s)
- Alejandra Valle
- Department of Fundamental Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - José Manuel Leiro
- Department of Microbiology and Parasitology, Laboratory of Parasitology, Institute of Research on Chemical and Biological Analysis, Campus Vida, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Patricia Pereiro
- Institute of Marine Research, Consejo Superior de Investigaciones Científicas-CSIC, 36208 Vigo, Spain; (P.P.); (A.F.); (B.N.)
| | - Antonio Figueras
- Institute of Marine Research, Consejo Superior de Investigaciones Científicas-CSIC, 36208 Vigo, Spain; (P.P.); (A.F.); (B.N.)
| | - Beatriz Novoa
- Institute of Marine Research, Consejo Superior de Investigaciones Científicas-CSIC, 36208 Vigo, Spain; (P.P.); (A.F.); (B.N.)
| | - Ron P. H. Dirks
- Future Genomics Technologies, Leiden BioScience Park, 2333 BE Leiden, The Netherlands;
| | - Jesús Lamas
- Department of Fundamental Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Correspondence: ; Tel.: +34-88-181-6951; Fax: +34-88-159-6904
| |
Collapse
|
23
|
Paknejad H, Hosseini Shekarabi SP, Shamsaie Mehrgan M, Hajimoradloo A, Khorshidi Z, Rastegari S. Dietary peppermint (Mentha piperita) powder affects growth performance, hematological indices, skin mucosal immune parameters, and expression of growth and stress-related genes in Caspian roach (Rutilus caspicus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1883-1895. [PMID: 32592128 DOI: 10.1007/s10695-020-00839-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Peppermint is a popular herbal medicine due to its several pharmaceutical applications. In this study, peppermint powder was used as a feed additive to evaluate growth performance, hematological parameters, protein profile of skin mucus, and immune parameters, as well as growth hormone (GH), insulin-like growth factor (IGF), and 70 kDa heat shock protein (HSP70) gene expression in Caspian roach (Rutilus caspicus). The fingerlings (average weight of 2.40 ± 0.12 g) were fed with diet containing 0 (control), 2, 3, and 4 g/kg peppermint for 8 weeks. The addition of peppermint significantly enhanced the growth parameters and decreased the food conversion ratio. Hematological indices of fish fed with peppermint-supplemented diets were significantly different from the control group (P < 0.05). Soluble protein, alkaline phosphatase, and lysozyme enzyme activity in mucus samples showed an incremental trend by increasing the peppermint levels in the diet. Evaluation of mucosal immunity indicated a remarkable difference between the protein profile in treatments fed with peppermint-supplemented diets and the control group. A new protein band (approximately 27 kDa) was also found in the skin mucus of fish fed with the diet containing 4 g/kg peppermint, and the highest band density was observed in this treatment. The highest IGF and GH gene expression were observed in 4 g/kg peppermint treatment. There was a significant difference in HSP70 expression between the fish fed with peppermint powder and the control group (P < 0.05). Overall, the results showed that dietary oral administration of peppermint at 4 g/kg of feed can act as a growth promoter and immunostimulant.
Collapse
Affiliation(s)
- Hammed Paknejad
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | | | - Mehdi Shamsaie Mehrgan
- Department of Fisheries Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Abdolmajid Hajimoradloo
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Zohre Khorshidi
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Soheila Rastegari
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
24
|
Bai J, Hu X, Wang R, Lü A, Sun J. MicroRNA expression profile analysis of skin immune response in crucian carp (Carassius auratus) infected by Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2020; 104:673-685. [PMID: 32505719 DOI: 10.1016/j.fsi.2020.05.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) are non-coding RNA molecules that regulate gene expression in fish, but its regulatory mechanism of the skin mucosal immune response remains poorly understood. In order to investigate the immunological role of miRNAs, three sRNA libraries (mSC, mST1, mST2) from skin samples of crucian carp (Carassiusauratus) infected with Aeromonas hydrophila at three time points (0, 6 and 12 hpi) were constructed and examined using Illumina Hiseq 2000 platform. All of the identified miRNA, rRNA and tRNA were 69444 (13.39%), 29550 (5.70%) and 10704 (2.06%) in skin, respectively. At 6 and 12 hpi, 829 and 856 miRNAs were differentially expressed, respectively. Among these DEMs, 53 known and 10 novel miRNAs were all significantly differentially expressed during early infection (p < 0.01). GO and KEGG enrichment analyses revealed that 118111 target-genes were primarily involved in cellular process, metabolic process, biological regulation and stress response, such as antigen processing and presentation, complement and coagulation cascades, phagosome, MAPK, TLR, NF-κB and JAK-STAT signaling pathways. These results will help to elucidate the mechanism of miRNAs involved in the skin mucosal immune response of crucian carp against Aeromonas hydrophila infection.
Collapse
Affiliation(s)
- Jie Bai
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Xiucai Hu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Ruixia Wang
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Aijun Lü
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Jingfeng Sun
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| |
Collapse
|
25
|
Thornton Hampton LM, Martyniuk CJ, Venables BJ, Sellin Jeffries MK. Advancing the fathead minnow (Pimephales promelas) as a model for immunotoxicity testing: Characterization of the renal transcriptome following Yersinia ruckeri infection. FISH & SHELLFISH IMMUNOLOGY 2020; 103:472-480. [PMID: 32439514 DOI: 10.1016/j.fsi.2020.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Recent studies have utilized the fathead minnow (Pimephales promelas) to explore the immunotoxic effects associated with a variety of environmental contaminants in the absence of immunological stimuli. Though this approach allows for alterations in the resting immune system to be detected, previous evidence suggests that many immunotoxic effects may only manifest in the activated immune system. However, basic immune responses to pathogens have not been well described in this species. To expand the utility of the fathead minnow as a model for immunotoxicity testing, a more comprehensive understanding of the activated immune system is required. As such, the main goal of this study was to characterize the transcriptomic response to pathogen infection in the fathead minnow using RNA sequencing. To achieve this goal, female fathead minnows were intraperitoneally injected with either Hank's Balanced Salt Solution (sham-injected) or Yersinia ruckeri (pathogen-injected). Eight hours following injection, fish were sacrificed for the assessment of general morphological (i.e., mass, length, condition factor, hepatic index) and immunological (i.e., leukocyte counts, spleen index) endpoints. To assess the molecular immune response to Y. ruckeri, kidney tissue was collected for transcriptomic analysis. A comparison of sham- and pathogen-injected fish revealed that >1800 genes and >500 gene networks were differentially expressed.Gene networks associated with inflammation, innate immunity, complement, hemorrhaging and iron absorption are highlighted and their utility within the context of immunotoxicity is discussed. These data reveal pathogen-related molecular endpoints to improve data interpretation of future studies utilizing the fathead minnow as a model for immunotoxicity.
Collapse
Affiliation(s)
- Leah M Thornton Hampton
- Department of Biology, Texas Christian University, Fort Worth, TX, USA; Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, USA
| | - Barney J Venables
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | | |
Collapse
|
26
|
Buchmann K. Immune response to Ichthyophthirius multifiliis and role of IgT. Parasite Immunol 2020; 42:e12675. [PMID: 31587318 PMCID: PMC7507210 DOI: 10.1111/pim.12675] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/19/2019] [Accepted: 10/02/2019] [Indexed: 12/24/2022]
Abstract
The parasitic ciliate Ichthyophthirius multifiliis causes white spot disease in freshwater fish worldwide. The theront penetrates external surfaces of the naïve fish where it develops into the feeding trophont stage and elicits a protective immune response both at the affected site as well as at the systemic level. The present work compiles data and presents an overall model of the protective reactions induced. A wide spectrum of inflammatory reactions are established upon invasion but the specific protection is provided by adaptive factors. Immunoglobulin IgT is involved in protection of surfaces in several fish species and is thereby one of the first adaptive immune molecules reacting with the penetrating theront. IgT producing lymphocytes occur in epithelia, dispersed or associated with lymphoid cell aggregations (skin epidermis, fins, gills, nostrils and buccal cavities) but they are also present in central immune organs such as the head kidney, spleen and liver. When theronts invade immunized fish skin, they are encountered by host factors which opsonize the parasite and may result in complement activation, phagocytosis or cell-mediated killing. However, antibody (IgT, IgM and IgD) binding to parasite cilia has been suggested to alter parasite behaviour and induce an escape reaction, whereby specific IgT (or other classes of immunoglobulin in fish surfaces) takes a central role in protection against the parasite.
Collapse
Affiliation(s)
- Kurt Buchmann
- Department of Veterinary and Animal ScienceFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CDenmark
| |
Collapse
|
27
|
Zebrafish as a Model for Fish Diseases in Aquaculture. Pathogens 2020; 9:pathogens9080609. [PMID: 32726918 PMCID: PMC7460226 DOI: 10.3390/pathogens9080609] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
The use of zebrafish as a model for human conditions is widely recognized. Within the last couple of decades, the zebrafish has furthermore increasingly been utilized as a model for diseases in aquacultured fish species. The unique tools available in zebrafish present advantages compared to other animal models and unprecedented in vivo imaging and the use of transgenic zebrafish lines have contributed with novel knowledge to this field. In this review, investigations conducted in zebrafish on economically important diseases in aquacultured fish species are included. Studies are summarized on bacterial, viral and parasitic diseases and described in relation to prophylactic approaches, immunology and infection biology. Considerable attention has been assigned to innate and adaptive immunological responses. Finally, advantages and drawbacks of using the zebrafish as a model for aquacultured fish species are discussed.
Collapse
|
28
|
Comprehensive transcriptional changes in the liver of Kanglang white minnow ( Anabarilius g rahami) in response to the infection of parasite Ichthyophthirius m ultifiliis. Animals (Basel) 2020; 10:ani10040681. [PMID: 32295151 PMCID: PMC7222788 DOI: 10.3390/ani10040681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Kanglang white minnow (KWM, Anabarilius grahami), is a typical “3E” (Endangered, Endemic and Economic) fish species in Yunnan-Guizhou Plateau. As one of the traditional “Four Famous Fishes” in Yunnan province, it has become the major local aquaculture species with increasing demand after the success of artificial breeding. However, this economically important fish is highly susceptible to the infection of a parasite ciliate, Ichthyophthirius multifiliis (Ich), during the practical procedure of artificial breeding. To examine the host immune responses to Ich, we divided the experimental fishes into three groups (including control, early-infected stage, and late-infected stage) for transcriptome sequencing to analyze the differentially expressed genes (DEGs) and immune response mechanisms. Abstract The notorious parasite Ichthyophthirius multifiliis (Ich) has been recorded worldwide in fish species and causes white spot disease, posing major threats and resulting in severe losses to international fish production. Extensively effective strategies for treating Ich are not available yet, and genetic mechanisms of hosts in response to the parasite are still largely unknown. In this study, we selected Kanglang white minnow (KWM, Anabarilius grahami) to examine its liver transcriptional changes after Ich infection, as white spot disease is one bottleneck problem in exploring this economically important species. We divided the experimental fishes into three groups (control, early-infected, and late-infected) to examine differentially expressed genes (DEGs). A total of 831 DEGs were identified and classified into 128 significantly enriched GO (Gene Ontology) terms and 71 significantly enriched KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. Most of these terms or pathways were functionally enriched in immunity, inflammatory response, and apoptosis, such as nucleotide-binding oligomerization domain-like (NOD-like) receptor signaling, tumor necrosis factor (TNF) signaling, interleukin-17 (IL-17) signaling, and apoptosis pathways. We also identified 178 putative antimicrobial peptides (AMPs) and AMP precursors based on our previously reported genome assembly of KWM, and revealed that the expressional patterns varied according to different types. In summary, our work reported the first comprehensive transcriptional changes in KWM in response to the exogenous infection of Ich, which would lay a solid foundation for in-depth studies on disease defense or resistant strains selection in this valuable fish.
Collapse
|
29
|
Jia BB, Jin CD, Li MF. The trypsin-like serine protease domain of Paralichthys olivaceus complement factor I regulates complement activation and inhibits bacterial growth. FISH & SHELLFISH IMMUNOLOGY 2020; 97:18-26. [PMID: 31830570 DOI: 10.1016/j.fsi.2019.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
In mammals, complement factor I (CFI) is a serine protease in serum and plays a pivotal role in the regulation of complement activation. In the presence of cofactor, CFI cleaves C3b to iC3b, and further degrades iC3b to C3c and C3d. In teleost, the function of CFI is poorly understood. In this study, we examined the immunological property of CFI from Japanese flounder (Paralichthys olivaceus) (PoCFI), a teleost species with important economic value. PoCFI is composed of 597 amino acid residues and possesses a trypsin-like serine protease (Tryp) domain. We found that PoCFI expressions occurred in nine different tissues and were upregulated by bacterial challenge. Recombinant PoCFI-Tryp (rPoCFI-Tryp) inhibited complement activation and degraded C3b in serum. rPoCFI-Tryp exhibited apparent binding capacities to a board-spectrum of bacteria and inhibited bacterial growth. These results provide the first evidence to indicate that CFI in teleost negatively regulates complement activation via degradation C3b, and probably plays a role in host immune defense against bacterial infection.
Collapse
Affiliation(s)
- Bei-Bei Jia
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Cheng-Dong Jin
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Mo-Fei Li
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology Qingdao, China.
| |
Collapse
|
30
|
Tong C, Li M. Transcriptomic signature of rapidly evolving immune genes in a highland fish. FISH & SHELLFISH IMMUNOLOGY 2020; 97:587-592. [PMID: 31891809 DOI: 10.1016/j.fsi.2019.12.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/21/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Recent genome-wide studies have begun to elucidate the genomic basis of hypoxia, long-term cold and high saline and alkaline adaptation in highland fish, and a number of key genes contributed to its highland adaptation were identified. An increasing number of studies indicated that immune genes of Tibetan endemic fish species underwent positive selection towards functional shift, while the insight into immune gene repertoire of Tibetan highland fishes from genome-wide studies has largely lagged behind. In this study, we performed one of the first comparative genomics study in particular focusing on the signatures of immune genes in a highland fish, Gymnocypris przewalskii based on immune-relevant tissue transcriptome assemblies. We identified seven putative rapidly evolving immune genes with elevated molecular evolutionary rate (dN/dS) relative to lowland fish species. Using tissue-transcriptome data, we found most of rapidly evolving immune genes were broadly expressed in head-kidney, spleen, gills and skin tissues, which significantly enriched for complement activation and inflammatory response processes. In addition, we found a set of complement activation related genes underwent accelerated evolution and showed consistently repressed expression patterns in response to parasite Ichthyophthirius multifiliis infection. Moreover, we detected a number of immune genes involved in adaptive immune system exhibited distinct signature of upregulated expression patterns after parasite infection. Taken together, this study provided putative transcriptomic signatures of rapidly evolving immune genes, and will gain the insight into Schizothoracine fish adaptation to high-altitude extreme aquatic environments including diversified pathogen challenge.
Collapse
Affiliation(s)
- Chao Tong
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Miao Li
- Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
31
|
Lv H, Zhou T, Dong C, Kong S, Chen L, Pu F, Li X, Xu P. Genome-wide identification, evolution, and mRNA expression of complement genes in common carp (Cyprinus carpio). FISH & SHELLFISH IMMUNOLOGY 2020; 96:190-200. [PMID: 31765792 DOI: 10.1016/j.fsi.2019.11.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/06/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Complement is a complex component of innate immune system, playing an important role in defense against pathogens and host homeostasis. The complement system has been comprehensively studied in mammals, however less is known about complement in teleost, especially in tetraploid common carp (Cyprinus carpio). In this study, a total of 110 complement genes were identified and characterized in common carp, which include almost all the homologs of mammalian complement genes. These genes were classified into three pathways (alternative pathways, lectin pathways and classical pathways), similar to those in mammals. Phylogenetic and selection pressure analysis showed that the complement genes were evolving-constrained and the function was conserved. Most of the complement genes were highly expressed in spleen, liver, brain and skin among the tested 12 health tissues of common carp. After Aeromonas hydrophila infection in the common carp, many members of complement genes were activated to bring about an immune response and expressed to against any pathogenic encroachment. Gene expression divergences which were found between two homoeologous genes suggested the functional divergences of the homoeologous genes after the 4R WGD event, revealing the evolutionary fate of the tetraploid common carp after the recent WGD.
Collapse
Affiliation(s)
- Hongzao Lv
- College of Fishery, Henan Normal University, Xinxiang, Henan, 453007, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Tao Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Chuanju Dong
- College of Fishery, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Shengnan Kong
- College of Fishery, Henan Normal University, Xinxiang, Henan, 453007, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Lin Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Fei Pu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Xuejun Li
- College of Fishery, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Peng Xu
- College of Fishery, Henan Normal University, Xinxiang, Henan, 453007, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, China.
| |
Collapse
|
32
|
Wang Q, Yu Y, Zhang X, Xu Z. Immune responses of fish to Ichthyophthirius multifiliis (Ich): A model for understanding immunity against protozoan parasites. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 93:93-102. [PMID: 30630003 DOI: 10.1016/j.dci.2019.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/05/2019] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
The parasitic ciliate Ichthyophthirius multifiliis (Ich), which infects almost all freshwater fish species, provides an optimal model for the study of immunity against extracellular protozoa. Ich invades the epithelia of mucosal tissues, forms white spots covering the whole body, and induces high mortality, while survivor fish develop both innate and adaptive immunity against Ich attack in systemic and mucosal tissues. Besides the protective roles of the Toll-like receptor (TLR)-mediated innate immune response, the critical immune functions of novel IgT in the skin, gut, gill, and olfactory organ of teleosts have been demonstrated in recent years, and all this information contributes to the ontogeny of the mucosal immune response in vertebrates. Especially in rainbow trout, Ich-infected fish exhibited higher IgT concentrations and titers in the mucosa and increased IgT+ B-lymphocyte proliferation in mucosal tissues. IgM mainly functions in the adaptive immune response in the systemic tissues of rainbow trout, accompanied with increased IgM+ B-lymphocyte proliferation in the head kidney of Ich-infected trout. However, little is known about the interaction between these mucosal tissues and systemic immune organs and the interaction between the inductive immune organs and functional immune organs. Immobilization antigens (Iags), located on the parasite cell and ciliary membranes, have been characterized to be targeted by specific antibodies produced in the host. The crosslinking of antigens mediated by antibodies triggers either an escape response or the immobilization of Ich. With more knowledge about the Iags of Ich and the immunity of teleosts, a more targeted vaccine, even a DNA vaccine, can be developed for the immune control strategy of Ich. Due to the high frequency of clinical fish ichthyophthiriasis, the study of fish immune responses to Ich provides an optimal experimental model for understanding immunity against extracellular protozoa.
Collapse
Affiliation(s)
- Qingchao Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiaoting Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
33
|
Embregts CWE, Reyes-Lopez F, Pall AC, Stratmann A, Tort L, Lorenzen N, Engell-Sorensen K, Wiegertjes GF, Forlenza M, Sunyer JO, Parra D. Pichia pastoris yeast as a vehicle for oral vaccination of larval and adult teleosts. FISH & SHELLFISH IMMUNOLOGY 2019; 85:52-60. [PMID: 30016686 DOI: 10.1016/j.fsi.2018.07.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Oral vaccination is of major interest because it can be used for mass vaccination of fish of various size and age. Given that their administration is relatively easy and stress-free, oral vaccines have both economic and animal welfare benefits. Yet, mostly due to their limited efficacy, only very few oral vaccines are available to aquaculture industry. Here we present a method for oral vaccine delivery based on the yeast Pichia pastoris. We could express a model antigen, green fluorescent protein (GFP), in this yeast and subsequently show delivery of the GFP protein to the intestine of juvenile flounder or adult carp and trout. We tested this approach in several commercially-relevant fish species, from juvenile to adult stage. To test the oral delivery of antigen to larval fish, the GFP-expressing Pichia pastoris was first fed to planktonic crustacean Daphnia or rotifers that served as 'bioencapsulation vehicles' and afterwards, fed to flounder larvae. Again, we could show delivery of intact GFP protein to the intestine. In rainbow trout, the orally-administered GFP-expressing yeast elicited a rapid local innate immune response in the intestine and a subsequent systemic response in the spleen. Our results show that Pichia pastoris is a good vehicle for oral antigen delivery and that it can be used in non-encapsulated form for older fish or in bioencapsulated form for larval fish. We discuss the immunomodulatory properties of the yeast itself, and its potential to enhance local immune responses and act as an adjuvant.
Collapse
Affiliation(s)
- Carmen W E Embregts
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, 6708 WD, Wageningen, the Netherlands
| | - Felipe Reyes-Lopez
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Adina C Pall
- Fishlab, Terp Skovvej 107B, DK 8270, Højbjerg, Denmark
| | - Ansgar Stratmann
- W42 Industrial Biotechnology GmbH, BMZ Dortmund, Otto-Hahn-Straße 15, D-44227, Dortmund, Germany
| | - Luis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Niels Lorenzen
- Department of Animal Science, Aarhus University, Aarhus, Denmark; Technical University of Denmark, Denmark
| | | | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, 6708 WD, Wageningen, the Netherlands; Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University & Research, 6708 WD, Wageningen, the Netherlands
| | - Maria Forlenza
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, 6708 WD, Wageningen, the Netherlands
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David Parra
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
34
|
Noman Reza MA, Mohapatra S, Shimizu S, Kitamura SI, Harakawa S, Kawakami H, Nakayama K, Sawayama E, Matsubara T, Ohta K, Chakraborty T. Molecular cloning, characterization and expression analysis of complement components in red sea bream (Pagrus major) after Edwardsiella tarda and red sea bream Iridovirus (RSIV) challenge. FISH & SHELLFISH IMMUNOLOGY 2018; 82:286-295. [PMID: 30125707 DOI: 10.1016/j.fsi.2018.08.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
The complement system plays an important role in immune regulation and acts as the first line of defense against any pathogenic attack. To comprehend the red sea bream (Pagrus major) immune response, three complement genes, namely, pmC1r, pmMASP and pmC3, belonging to the classical, lectin and alternative complement cascade, respectively, were identified and characterized. pmC1r, pmMASP, and pmC3 were comprised of 2535, 3352, and 5735 base mRNA which encodes 732, 1029 and 1677 aa putative proteins, respectively. Phylogenetically, all the three studied genes clustered with their corresponding homologous clade. Tissue distribution and cellular localization data demonstrated a very high prevalence of all the three genes in the liver. Both bacterial and viral infection resulted in significant transcriptional alterations in all three genes in the liver with respect to their vehicle control counterparts. Specifically, bacterial challenge affected the pmMASP and pmC3 expression, while the viral infection resulted in pmC1r and pmC3 mRNA activation. Altogether, our data demonstrate the ability of pmC1r, pmMASP and pmC3 in bringing about an immune response against any pathogenic encroachment, and thus activating, not only one, but all the three complement pathways, in red sea bream.
Collapse
Affiliation(s)
- Mohammad Ali Noman Reza
- South Ehime Fisheries Research Center, Ehime University, Uchidomari, Ainan-cho, Ehime, 798-4206, Japan
| | - Sipra Mohapatra
- South Ehime Fisheries Research Center, Ehime University, Uchidomari, Ainan-cho, Ehime, 798-4206, Japan
| | - Sonoko Shimizu
- South Ehime Fisheries Research Center, Ehime University, Uchidomari, Ainan-cho, Ehime, 798-4206, Japan
| | - Shin-Ichi Kitamura
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Shogo Harakawa
- Ehime Prefectural Fish Disease Control Center, Uwajima, 798-0087, Japan
| | - Hidemasa Kawakami
- Ehime Prefectural Fish Disease Control Center, Uwajima, 798-0087, Japan
| | - Kei Nakayama
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Eitaro Sawayama
- R&D Division, Marua Suisan Co., Ltd., 4472 Iwagi, Kamijima-cho, Ochi-gun, Ehime, 794-2410, Japan
| | - Takahiro Matsubara
- South Ehime Fisheries Research Center, Ehime University, Uchidomari, Ainan-cho, Ehime, 798-4206, Japan
| | - Kohei Ohta
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
| | - Tapas Chakraborty
- South Ehime Fisheries Research Center, Ehime University, Uchidomari, Ainan-cho, Ehime, 798-4206, Japan.
| |
Collapse
|
35
|
Jørgensen LVG, Korbut R, Jeberg S, Kania PW, Buchmann K. Association between adaptive immunity and neutrophil dynamics in zebrafish (Danio rerio) infected by a parasitic ciliate. PLoS One 2018; 13:e0203297. [PMID: 30204772 PMCID: PMC6133357 DOI: 10.1371/journal.pone.0203297] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/17/2018] [Indexed: 01/12/2023] Open
Abstract
The protective immune response in zebrafish (Danio rerio) against the parasitic ciliate Ichthyophthirius multifiliis, targeting host skin, fins and gills, comprises an accelerated and manifold elevated immunoglobulin gene expression as well as a significantly elevated number of neutrophils at infected sites. Experimental fish were subjected to a primary I. multifiliis infection followed by a series of secondary exposures before they were challenged by a high dosage of infective theronts. Immunized fish responded immediately with a protective response suggesting existence of immunological memory whereas fish exposed to the parasite for the first time obtained a marked infection. The primary response to infection was dominated by expression of genes encoding acute phase reactants and inflammatory cytokines as well as recruitment of neutrophils at infected locations. Immunized fish showed a significantly upregulated immunoglobulin gene expression following challenge, which indicates existence of a secondary response effected by antibodies. Both responses induced a significantly elevated expression of the Th2 signature cytokine Il13. The increased presence of neutrophils in immunized fish suggests that innate cell mediated immunity supplements or influence the protective response against the parasite.
Collapse
Affiliation(s)
- Louise von Gersdorff Jørgensen
- Section of Parasitology and Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
- * E-mail:
| | - Rozalia Korbut
- Section of Parasitology and Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Sandra Jeberg
- Section of Parasitology and Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Per Walter Kania
- Section of Parasitology and Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kurt Buchmann
- Section of Parasitology and Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
36
|
Rebl A, Goldammer T. Under control: The innate immunity of fish from the inhibitors' perspective. FISH & SHELLFISH IMMUNOLOGY 2018; 77:328-349. [PMID: 29631025 DOI: 10.1016/j.fsi.2018.04.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
The innate immune response involves a concerted network of induced gene products, preformed immune effectors, biochemical signalling cascades and specialised cells. However, the multifaceted activation of these defensive measures can derail or overshoot and, if left unchecked, overwhelm the host. A plenty of regulatory devices therefore mediate the fragile equilibrium between pathogen defence and pathophysiological manifestations. Over the past decade in particular, an almost complete set of teleostean sequences orthologous to mammalian immunoregulatory factors has been identified in various fish species, which prove the remarkable conservation of innate immune-control concepts among vertebrates. This review will present the current knowledge on more than 50 teleostean regulatory factors (plus additional fish-specific paralogs) that are of paramount importance for controlling the clotting cascade, the complement system, pattern-recognition pathways and cytokine-signalling networks. A special focus lies on those immunoregulatory features that have emerged as potential biomarker genes in transcriptome-wide research studies. Moreover, we report on the latest progress in elucidating control elements that act directly with immune-gene-encoding nucleic acids, such as transcription factors, hormone receptors and micro- and long noncoding RNAs. Investigations into the function of teleostean inhibitory factors are still mainly based on gene-expression profiling or overexpression studies. However, in support of structural and in-vitro analyses, evidence from in-vivo trials is also available and revealed many biochemical details on piscine immune regulation. The presence of multiple gene copies in fish adds a degree of complexity, as it is so far hardly understood if they might play distinct roles during inflammation. The present review addresses this and other open questions that should be tackled by fish immunologists in future.
Collapse
Affiliation(s)
- Alexander Rebl
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Dummerstorf, Germany.
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Dummerstorf, Germany
| |
Collapse
|
37
|
Nilojan J, Bathige SDNK, Kugapreethan R, Yang H, Kim MJ, Nam BH, Lee J. Molecular features and the transcriptional and functional delineation of complement system activators C1r and C1s from Sebastes schlegelii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:279-290. [PMID: 29247723 DOI: 10.1016/j.dci.2017.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
C1r and C1s are serine proteases responsible for activating the classical complement pathway to initiate the complement cascade, which plays a crucial role in eliminating invading pathogenic microbes. In this study, cDNA sequences of C1r and C1s were identified from black rockfish and designated as SsC1r and SsC1s, respectively. In both sequences, two CUB domains, an EGF-like domain, two CCP domains, and a trypsin-like serine protease domain were identified. Multiple sequence alignments with known vertebrate homologs demonstrated that both sequences were highly conserved and, especially, the catalytic and substrate binding residues were completely conserved. In the constructed phylogenetic tree, C1r and C1s formed two separate clusters, which further branched into groups of related organisms. SsC1r and SsC1s joined with their respective teleostean clusters. Transcriptional analysis showed that the highest mRNA expression level was in the liver under normal physiological conditions. Significantly upregulated expression of both mRNAs in spleen and liver after pathologic stress, by intraperitoneal injection with different stimuli, suggested their vital role in immunity. The serine protease domains of SsC1r and SsC1s were cloned and the recombinant proteins were expressed and purified. A protease assay, conducted to confirm their functionality, indicated that both recombinant proteins had proteolytic activity. Taken together, these results indicate that SsC1r and SsC1s have significant properties to aid in the immunity of black rockfish by activating the complement system by proteolytic cleavage.
Collapse
Affiliation(s)
- Jehanathan Nilojan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - S D N K Bathige
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Sri Lanka Institute of Nanotechnology (SLINTEC), Nanotechnology and Science Park, Mahenwatta, Pitipana, Homagama, Sri Lanka
| | - Roopasingam Kugapreethan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Myoung-Jin Kim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea.
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan 46083, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea.
| |
Collapse
|
38
|
Xu Y, Yu Y, Zhang X, Huang Z, Li H, Dong S, Liu Y, Dong F, Xu Z. Molecular characterization and expression analysis of complement component 3 in dojo loach (Misgurnus anguillicaudatus). FISH & SHELLFISH IMMUNOLOGY 2018; 72:484-493. [PMID: 29155029 DOI: 10.1016/j.fsi.2017.11.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/06/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
The complement component 3 (C3) is a central component of complement system. All three pathways converge at formation of C3 convertases and share the terminal pathways of membrane attack complex (MAC) formation. In this study, three isoforms of C3 were discovered in Misgurnus anguillicaudatus, named "C3-1", "C3-2" and "C3-3", respectively. The full-length of C3-1 cDNA sequence was firstly identified and analyzed from dojo loach (Misgurnus anguillicaudatus). The Ma-C3-1 cDNA sequence comprised of 4509 bp encoding 1454 amino acids with a putative signal peptide of 20 amino acid residues. The deduced amino acid sequence showed that Ma-C3-1 has conserved residues and domain, which are known to be crucial for C3 function. Interestingly, an amino acid substitution of the highly conserved GCGEQ was discovered in Ma-C3-1. Phylogenetic analysis showed that Ma-C3-1 was closely related to Cyprinidae. The mRNA expression levels of three isoforms of C3 were detected in kidney, eye, spleen, gonad, heart, fin ray, gut, muscle, brain, gill, skin, blood and liver. The expression of Ma-C3-1 and Ma-C3-3 were mainly detected in liver, followed by spleen, gonad. However, the high expression of Ma-C3-2 was found in kidney, followed by blood and gonad. The morphological changes of gill and skin, and the expression pattern of these three isoforms C3 molecular following the infection with Aeromonas hydrophila were investigated. The mRNA expression levels of three C3 isoforms were up-regulated in the gill, skin, liver and spleen after infection with A.hydrophila. Similarly, challenge experiments resulted in significant up-regulated expression of other complement-relevant genes in gill, liver and skin, such as C4, C5, C8b, especially at 24 h and 36 h. These results suggest that complement system might play an important role not only in liver, but also in the mucosal tissues as gill and skin of teleost fish.
Collapse
Affiliation(s)
- Yongsheng Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiaoting Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhenyu Huang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Huili Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shuai Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yangzhou Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Fen Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, 415000, China.
| |
Collapse
|
39
|
Dang Y, Meng X, Wang S, Li L, Zhang M, Hu M, Xu X, Shen Y, Lv L, Wang R, Li J. Mannose-binding lectin and its roles in immune responses in grass carp (Ctenopharyngodon idella) against Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2018; 72:367-376. [PMID: 29129586 DOI: 10.1016/j.fsi.2017.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
The complement system is a crucial component of the innate immune system that links innate and adaptive immunity via four pathways. Mannose-binding lectin (MBL), the initiating molecule of the lectin pathway, plays a significant role in the innate immune system in mammals and fish. Herein, we identified an MBL homolog (gcMBL) in grass carp (Ctenopharyngodon idella). The full-length 948 bp gcMBL cDNA includes a 741 bp open reading frame encoding a 246 amino acid protein with a signal peptide, collagen triple helix repeat domain, and a C-type lectin-like/link domain. The gcMBL protein shares low similarity with MBL counterparts in other species, and is most closely related to Cyprinus carpio MBL. Transcription of gcMBL was widely distributed in different tissues, and was induced by Aeromonas hydrophila in vivo and in vitro. Expression of gcMBL was also affected by LPS and flagellin stimulation in vitro. In cells over-expressing gcMBL, transcripts of almost all components except gcC5 were up-regulated, and gcMBL, gcIL1β, gcTNF-α, gcIFN, gcCD59, gcC5aR and gcITGβ-2 were significantly up-regulated following exposure to A. hydrophila or stimulation by bacterial PAMPs. Meanwhile, gcMBL deficiency achieved by RNAi down-regulated transcript levels following A. hydrophila challenge, and gcMBL induced NF-κB signalling. These findings indicate a vital role of gcMBL in innate immunity in grass carp.
Collapse
Affiliation(s)
- Yunfei Dang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China; Laboratory of Biochemistry and Molecular Biology, Ningbo University, Ningbo, PR China
| | - Xinzhan Meng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Shentong Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Lisen Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Meng Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Moyan Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Xiaoyan Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, PR China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, PR China
| | - Yubang Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, PR China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, PR China
| | - Liqun Lv
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, PR China
| | - Rongquan Wang
- Key Laboratory of Conventional Freshwater Fish Breeding and Health Culture Technology Germplasm Resources, Suzhou Shenhang Eco-technology Development Limited Company, Suzhou, PR China
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, PR China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, PR China.
| |
Collapse
|
40
|
Tian F, Tong C, Feng C, Wanghe K, Zhao K. Transcriptomic profiling of Tibetan highland fish (Gymnocypris przewalskii) in response to the infection of parasite ciliate Ichthyophthirius multifiliis. FISH & SHELLFISH IMMUNOLOGY 2017; 70:524-535. [PMID: 28882799 DOI: 10.1016/j.fsi.2017.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/26/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Gymnocypris przewalskii is a native cyprinid in the Lake Qinghai of the Qinghai-Tibetan Plateau. G. przewalskii is highly susceptible to the infection of a parasite, Ichthyophthirius multifiliis, in the artificial propagation and breeding. To better understand the host immune reaction to I. multifiliis infection, we characterize the gene expression profiles in the spleen of healthy and I. multifiliis infected G. przewalskii by RNA-seq. Totally, the transcriptomic analysis produces 463,031,110 high quality reads, which are assembled to 213,538 genes with N50 of 1918 bp and the average length of 1205 bp. Of assembled genes, 90.52% are annotated by public databases. The expression analysis shows 744 genes are significantly changed by the infection of I. multifiliis, which are validated by qRT-PCR with the correlation coefficient of 0.896. The differentially expressed genes are classified into 689 GO terms and 230 KEGG pathways, highlighting the promoted innate immunity in I. multifiliis infected G. przewalskii at 2 days post infection. Our results pinpoint that the up-regulated genes are enriched in TLR signaling pathway, inflammatory response and activation of immune cell migration. On the contrary, complement genes are down-regulated, indicating the evasion of host complement cascades by I. multifiliis. The repressed genes are also enriched in the pathways related to metabolism and endocrine, suggesting the metabolic disturbance in I. multifiliis treated G. przewalskii. In summary, the present study profiles the gene expression signature of G. przewalskii in the responses to I. multifiliis infection, and improves our understanding on molecular mechanisms of host-parasite interaction in G. przewalskii, which focuses the crucial function of TLRs, cytokines and complement components in the host defense against I. multifiliis.
Collapse
Affiliation(s)
- Fei Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; Qinghai Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China
| | - Chao Tong
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; Qinghai Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chenguang Feng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; Qinghai Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Kunyuan Wanghe
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; Qinghai Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; Qinghai Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China.
| |
Collapse
|
41
|
Yuan XY, Liu WB, Liang C, Sun CX, Xue YF, Wan ZD, Jiang GZ. Effects of partial replacement of fish meal by yeast hydrolysate on complement system and stress resistance in juvenile Jian carp (Cyprinus carpio var. Jian). FISH & SHELLFISH IMMUNOLOGY 2017; 67:312-321. [PMID: 28606860 DOI: 10.1016/j.fsi.2017.06.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 06/07/2023]
Abstract
A 10-week feeding trial was carried out to investigate the effects of dietary fish meal replacement by yeast hydrolysate (YH) on growth performance, complement system and stress resistance of juvenile Jian carp (Cyprinus carpio var. Jian) (initial average weight 19.44 ± 0.06 g). In the study, there were five groups: one control group was fed with a basal diet (YH0), and four treatment groups were fed with dietary fish meal replaced by 1% YH (YH1), 3% (YH3), 5% (YH5) and 7% (YH7), respectively. Each group had four replicates. At the end of feeding trial, twelve fish from each group (three fish per replicate) were randomly selected for assessing the growth and immunity. Meanwhile, 20 fish per replicate were injected by Aeromonas hydrophila. The results showed that (1) Replacement levels of YH significantly affected the growth of the fish with the highest values of weight gain (WG) occurred in fish fed YH3 diet. However, no significant difference in feed conversion ratios (FCR) was observed among all groups. (2) Pre-stressed plasma lysozyme activity, total protein and albumin contents and complement component 3 (C3) and complement component 4 (C4) levels of fish fed YH3 diet were significantly higher than those of fish fed YH0 diet. However, post-stressed immune parameters of fish in all groups were significantly lower. (3) There was a trend that the expression levels of the complement-related genes (c1r/s-A, c4-1, c3-H1, c5-1, fb/c2-A, mbl-2 and masp) initially increased and then decreased except mbl-2 and masp, with the maximum values observed in fish fed YH3 diet. Before stress, the expression levels of the inflammation-related genes (alp, il-1β and tnf-α) in the hepatopancreas and spleen of fish fed YH1 diet and YH7 diet were significant higher than that of fish fed YH0 diet. After stress, no significant difference in the expression levels of those genes was observed among all groups. These results indicated that FM replacement by YH could improve growth performance, enhance innate immunity, and activate complement via the alternative complement pathway (ACP) and the classical complement pathway (CCP).
Collapse
Affiliation(s)
- Xiang-Yang Yuan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Wen-Bin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chao Liang
- Guangdong Hinabiotech CO., Ltd, Guangzhou 511400, PR China
| | - Cun-Xin Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yun-Fei Xue
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zu-De Wan
- Guangdong Hinabiotech CO., Ltd, Guangzhou 511400, PR China
| | - Guang-Zhen Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
42
|
Wang L, Zhang J, Kong X, Zhao X, Pei C, Li L. A C-type lectin, Nattectin-like protein (CaNTC) in Qihe crucian carp Carassius auratus: Binding ability with LPS, PGN and various bacteria, and agglutinating activity against bacteria. FISH & SHELLFISH IMMUNOLOGY 2017; 67:382-392. [PMID: 28602683 DOI: 10.1016/j.fsi.2017.06.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/25/2017] [Accepted: 06/03/2017] [Indexed: 06/07/2023]
Abstract
C-type lectins (CTLs), as the members of pattern-recognition receptors (PRRs), play the significant roles in innate immunity through binding with pathogen-associated molecular patterns (PAMPs) on the surface of microbe. In the present study, a novel CTL, Nattectin-like protein (named as CaNTC), was investigated in Qihe crucian carp Carassius auratus. The full-length cDNA of CaNTC was composed of 776 bp, with a 152 bp 5'-untranslated region (UTR), a 492 bp ORF encoding a 163-aa protein, and a 132 bp 3'-UTR with a polyadenylation signal sequence AATAAA and a poly(A) tail. The deduced amino acid sequence of CaNTC contained a signal peptide, a single carbohydrate recognition domain (CRD) which had four conserved disulfide-bonded cysteine residues (Cys57-Cys150, Cys126-Cys142), and an EPN/WND motif required for carbohydrate-binding specificity. With regard to the mRNA transcript of CaNTC, it was predominately expressed in liver. The temporal expressions of CaNTC were obviously up-regulated in liver, spleen and head-kidney after challenged by Aeromonas hydrophila and poly I: C, respectively, and the change pattern was in the time-depended manner. The recombinant CaNTC (rCaNTC) purified from Escherichia coli BL21 (DE3), exhibited strong binding ability with LPS and PGN, as well as all tested bacteria in a Ca2+-independent manner. With regard to the agglutinating activity of rCaNTC, rCaNTC was able to agglutinate rabbit erythrocytes and three kinds of bacteria (Gram-negative bacteria, Escherichia coli and A. hydrophila, and Gram-positive bacteria Staphylococcus aureus) in a Ca2+-dependent manner. These findings collectively demonstrated that CaNTC, as a PRR, could be involved in the innate immunity and play an important role in immune defense of C. auratus.
Collapse
Affiliation(s)
- Li Wang
- College of Life Science, Henan Normal University, Henan province, PR China
| | - Jie Zhang
- College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xianghui Kong
- College of Life Science, Henan Normal University, Henan province, PR China; College of Fisheries, Henan Normal University, Henan province, PR China.
| | - Xianliang Zhao
- College of Fisheries, Henan Normal University, Henan province, PR China
| | - Chao Pei
- College of Fisheries, Henan Normal University, Henan province, PR China
| | - Li Li
- College of Fisheries, Henan Normal University, Henan province, PR China
| |
Collapse
|
43
|
Di G, Li H, Zhang C, Zhao Y, Zhou C, Naeem S, Li L, Kong X. Label-free proteomic analysis of intestinal mucosa proteins in common carp (Cyprinus carpio) infected with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2017; 66:11-25. [PMID: 28476666 DOI: 10.1016/j.fsi.2017.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/27/2017] [Accepted: 04/30/2017] [Indexed: 06/07/2023]
Abstract
Outbreaks of infectious diseases in common carp Cyprinus carpio, a major cultured fish in northern regions of China, constantly result in significant economic losses. Until now, information proteomic on immune defence remains limited. In the present study, a profile of intestinal mucosa immune response in Cyprinus carpio was investigated after 0, 12, 36 and 84 h after challenging tissues with Aeromonas hydrophila at a concentration of 1.4 × 108 CFU/mL. Proteomic profiles in different samples were compared using label-free quantitative proteomic approach. Based on MASCOT database search, 1149 proteins were identified in samples after normalisation of proteins. Treated groups 1 (T1) and 2 (T2) were first clustered together and then clustered with control (C group). The distance between C and treated group 3 (T3) represented the maxima according to hierarchical cluster analysis. Therefore, comparative analysis between C and T3 was selected in the following analysis. A total of 115 proteins with differential abundance were detected to show conspicuous expressing variances. A total of 52 up-regulated proteins and 63 down-regulated proteins were detected in T3. Gene ontology analysis showed that identified up-regulated differentially expressed proteins in T3 were mainly localised in the hemoglobin complex, and down-regulated proteins in T3 were mainly localised in the major histocompatibility complex II protein complex. Forty-six proteins of differential abundance (40% of 115) were involved in immune response, with 17 up-regulated and 29 down-regulated proteins detected in T3. This study is the first to report proteome response of carp intestinal mucosa against A. hydrophila infection; information obtained contribute to understanding defence mechanisms of carp intestinal mucosa.
Collapse
Affiliation(s)
- Guilan Di
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Hui Li
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Chao Zhang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Yanjing Zhao
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Chuanjiang Zhou
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Sajid Naeem
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Li Li
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Xianghui Kong
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
44
|
Christoffersen TB, Kania PW, von Gersdorff Jørgensen L, Buchmann K. Zebrafish Danio rerio as a model to study the immune response against infection with Ichthyophthirius multifiliis. JOURNAL OF FISH DISEASES 2017; 40:847-852. [PMID: 27495112 DOI: 10.1111/jfd.12543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 06/06/2023]
Affiliation(s)
- T B Christoffersen
- Laboratory of Aquatic Pathobiology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - P W Kania
- Laboratory of Aquatic Pathobiology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - L von Gersdorff Jørgensen
- Laboratory of Aquatic Pathobiology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - K Buchmann
- Laboratory of Aquatic Pathobiology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
45
|
Li XP, Sun L. A teleost complement factor Ba possesses antimicrobial activity and inhibits bacterial infection in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 71:49-58. [PMID: 28130094 DOI: 10.1016/j.dci.2017.01.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
Complement factor B (Bf) is a component of the complement system. Following activation of the alternative pathway of the complement system, factor B is cleaved into Ba and Bb fragments. In fish, the Bf of rainbow trout is known to act as a C3 convertase, but the function of the Ba fragment is essentially unknown. In this study, we examined the expression patterns of tongue sole Cynoglossus semilaevis Bf (named CsBf) and the biological activity of the Ba fragment of CsBf (named CsBa). CsBf possesses the conserved domains of Bf and shares 39.9%-56.4% sequence identities with other fish Bf. CsBf expression was high in liver, muscle, and heart, and low in intestine, blood, and kidney. Bacterial infection significantly induced CsBf expression in kidney, spleen, and liver in a time-dependent manner. Recombinant CsBa (rCsBa) exhibited apparent binding capacities to bacteria and tongue sole peripheral blood leukocytes, and binding of rCsBa to bacteria inhibited bacterial growth. When overexpressed in tongue sole, CsBa significantly reduced bacterial dissemination in fish tissues. Together these results indicate for the first time that a fish Ba possesses antibacterial effect as well as immune cell-binding capacity, and thus probably plays a role in host immune defense against bacterial infection.
Collapse
Affiliation(s)
- Xue-Peng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
46
|
De novo assembly of the sea trout (Salmo trutta m. trutta) skin transcriptome to identify putative genes involved in the immune response and epidermal mucus secretion. PLoS One 2017; 12:e0172282. [PMID: 28212382 PMCID: PMC5315281 DOI: 10.1371/journal.pone.0172282] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 02/02/2017] [Indexed: 01/02/2023] Open
Abstract
In fish, the skin is a multifunctional organ and the first barrier against pathogens. Salmonids differ in their susceptibility to microorganisms due to varied skin morphology and gene expression patterns. The brown trout is a salmonid species with important commercial and ecological value in Europe. However, there is a lack of knowledge regarding the genes involved in the immune response and mucus secretion in the skin of this fish. Thus, we characterized the skin transcriptome of anadromous brown trout using next-generation sequencing (NGS). A total of 1,348,306 filtered reads were obtained and assembled into 75,970 contigs. Of these contigs 48.57% were identified using BLAST tool searches against four public databases. KEGG pathway and Gene Ontology analyses revealed that 13.40% and 34.57% of the annotated transcripts, respectively, represent a variety of biological processes and functions. Among the identified KEGG Orthology categories, the best represented were signal transduction (23.28%) and immune system (8.82%), with a variety of genes involved in immune pathways, implying the differentiation of immune responses in the trout skin. We also identified and transcriptionally characterized 8 types of mucin proteins–the main structural components of the mucosal layer. Moreover, 140 genes involved in mucin synthesis were identified, and 1,119 potential simple sequence repeats (SSRs) were detected in 3,134 transcripts.
Collapse
|
47
|
Li MF, Li J, Sun L. CsMAP34, a teleost MAP with dual role: A promoter of MASP-assisted complement activation and a regulator of immune cell activity. Sci Rep 2016; 6:39287. [PMID: 28008939 PMCID: PMC5180248 DOI: 10.1038/srep39287] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/22/2016] [Indexed: 01/28/2023] Open
Abstract
In teleost fish, the immune functions of mannan-binding lectin (MBL) associated protein (MAP) and MBL associated serine protease (MASP) are scarcely investigated. In the present study, we examined the biological properties both MAP (CsMAP34) and MASP (CsMASP1) molecules from tongue sole (Cynoglossus semilaevis). We found that CsMAP34 and CsMASP1 expressions occurred in nine different tissues and were upregulated by bacterial challenge. CsMAP34 protein was detected in blood, especially during bacterial infection. Recombinant CsMAP34 (rCsMAP34) bound C. semilaevis MBL (rCsBML) when the latter was activated by bacteria, while recombinant CsMASP1 (rCsMASP1) bound activated rCsBML only in the presence of rCsMAP34. rCsMAP34 stimulated the hemolytic and bactericidal activities of serum complement, whereas anti-CsMAP34 antibody blocked complement activities. Knockdown of CsMASP1 in C. semilaevis resulted in significant inhibition of complement activities. Furthermore, rCsMAP34 interacted directly with peripheral blood leukocytes (PBL) and enhanced the respiratory burst, acid phosphatase activity, chemotactic activity, and gene expression of PBL. These results indicate for the first time that a teleost MAP acts one hand as a regulator that promotes the lectin pathway of complement activation via its ability to recruit MBL to MASP, and other hand as a modulator of immune cell activity.
Collapse
Affiliation(s)
- Mo-Fei Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jun Li
- School of Biological Sciences, Lake Superior State University, Sault Ste Marie, MI, USA
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
48
|
Chen M, Wang H, Yan Q, Zheng Q, Yang M, Lv Z, He M, Feng L, Zhao J, Tang T, Wu Y. Effects of dietary oxidized konjac glucomannan sulfates (OKGMS) and acidolysis-oxidized konjac glucomannan (A-OKGM) on the immunity and expression of immune-related genes of Schizothorax prenanti. FISH & SHELLFISH IMMUNOLOGY 2016; 56:96-105. [PMID: 27394968 DOI: 10.1016/j.fsi.2016.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
In the present study, konjac glucomannan (KGM) was degraded by H2O2, and then used trisulfonated sodium amine and HCl, individually, to obtain two kinds of derivatives: oxidized konjac glucomannan sulfates (OKGMS) and acidolysis-oxidized konjac glucomannan (A-OKGM). The effects of two OKGM modified products on the immune parameters and expressions of toll-like receptor 22 (TLR22), myeloid differentiation factor 88 (MyD88) and interferon regulatory factors 7 (IRF7) genes in Schizothorax prenanti were determined. The alternative haemolytic complement (ACH50) activity was found to be significantly increased by the OKGMS diets. The immunoglobulin M (IgM) level was significantly enhanced by the OKGMS diets. The lysozyme activity was significantly increased by both OKGMS and A-OKGM diets. The superoxide dismutase (T-SOD) activity in fish fed with all doses of OKGMS diets was significantly higher than that in fish fed with basal diet. The glutathione peroxidase (GSH-PX) activity in fish fed with 0.8% and 1.6% A-OKGM diets was significantly higher than control group. The malondialdehyde (MDA) level was significantly decreased by both OKGMS and A-OKGM diets. The 0.8% A-OKGM diet significantly up-regulated TLR22 gene expression in the head kidney and spleen. TLR22 gene expression was significantly promoted by all OKGMS diets in the mesonephros and liver. The MyD88 mRNA level in 1.6% A-OKGM group significantly increased in the head kidney. The low dose of OKGMS significantly induced the MyD88 gene expression in the mesonephros, gut and liver, while 0.8% A-OKGM group also showed a significantly enhanced MyD88 mRNA expression in the gut. High dose of OKGMS significantly increased the IRF7 mRNA expression in the mesonephros and spleen. Fish fed with low dose of A-OKGM showed significantly higher expression of IRF7 in the gut and liver. Present study suggested that OKGMS and A-OKGM can act as immunostimulant to improve the immune indexes and up-regulate the immune-related gene expressions.
Collapse
Affiliation(s)
- Mingrui Chen
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, Sichuan, PR China
| | - Hongjie Wang
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, Sichuan, PR China
| | - Qiuping Yan
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, Sichuan, PR China
| | - Qiaoran Zheng
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, Sichuan, PR China
| | - Min Yang
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, Sichuan, PR China
| | - Zhenzhen Lv
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, Sichuan, PR China
| | - Mei He
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, Sichuan, PR China
| | - Limei Feng
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, Sichuan, PR China
| | - Jiaqi Zhao
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, Sichuan, PR China
| | - Tingting Tang
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, Sichuan, PR China
| | - Yinglong Wu
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, Sichuan, PR China.
| |
Collapse
|
49
|
von Gersdorff Jørgensen L. The dynamics of neutrophils in zebrafish (Danio rerio) during infection with the parasite Ichthyophthirius multifiliis. FISH & SHELLFISH IMMUNOLOGY 2016; 55:159-164. [PMID: 27231191 DOI: 10.1016/j.fsi.2016.05.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/16/2016] [Accepted: 05/22/2016] [Indexed: 06/05/2023]
Abstract
Ichthyophthirius multifiliis is a ciliated protozoan parasite infecting the skin and gills of freshwater fish. Neutrophils are attracted to the infection sites, as a part of the innate immune response. In this study a transgenic line of zebrafish (Tg(MPO:GFP)(i114)) with GFP-tagged neutrophils was infected with I. multifiliis and the neutrophil influx in the caudal fin was quantified. Twenty-four hours post infection (pi) the neutrophil count had gone up with an average of 3.4 fold. Forty-eight h pi the neutrophil count had dropped 12% and 72 h pi it had dropped to 21% compared to 24 h pi. At 72 h pi the neutrophil count was 2.7 times higher than prior to infection. A few dead parasites were observed, which were disintegrated and covered internally and externally with neutrophils. Live parasites, both surrounded by neutrophils and with no neutrophils in the near vicinity, were found during the infection. Neutrophils interacted directly with the parasites with pseudopod formation projecting towards the pathogen. These results indicate a strong innate immune response immediately following infection and/or a subsequent immune evasion by the parasite.
Collapse
Affiliation(s)
- Louise von Gersdorff Jørgensen
- Laboratory of Aquatic Pathobiology, Department of Veterinary Disease Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
50
|
Yin F, Gong H, Ke Q, Li A. Stress, antioxidant defence and mucosal immune responses of the large yellow croaker Pseudosciaena crocea challenged with Cryptocaryon irritans. FISH & SHELLFISH IMMUNOLOGY 2015; 47:344-351. [PMID: 26370540 DOI: 10.1016/j.fsi.2015.09.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 09/02/2015] [Accepted: 09/05/2015] [Indexed: 06/05/2023]
Abstract
To clarify the effects of a Cryptocaryon irritans infection on the stress, antioxidant and mucosal immune response of the large yellow croaker Pseudosciaena crocea, this study utilized C. irritans at dose of 12,000 (group I); 24,000 (group II); and 36,000 (group III) theronts/fish to infect large yellow croaker weighing 100 ± 10 g. The food intake, survival and relative infection intensity (RII); levels of reactive oxygen species (ROS), malondialdehyde (MDA) and vitamin C (VC), activities of super oxide dismutase (SOD) and catalase (CAT) in liver; variation patterns of lysozyme (LZM), alkaline phosphatase (AKP), complement component 3 (C3) and immunoglobulin M (IgM) levels in the body surface mucus at different time points after infection were compared. These results showed that with the increase of the infection dose and the passage of time, the food intake and survival of the fish gradually decreased. The final survival of the control group (0 theronts/fish), group I, group II, and group III was 100, 100, 96.67 ± 5.77, and 48.33 ± 7.64. Group I, II, and III stopped feeding respectively on the third, third and second days after infection. RII increased significantly with increased infection dose. The RII of the control group, group I, group II, and group III was 0, 0.73 ± 0.06, 1.30 ± 0.26, and 1.84 ± 0.02. With the infection dose increased, ROS contents showed an overall upward trend; MDA contents of the group I, group II and group III did not show significant changes at any timepoint compared with the control group; Activities of SOD and CAT and the overall VC levels in the liver of P. crocea dropped; LZM activity showed an overall upward trend; AKP activity increased first then dropped at each timepoint with its highest level appearing at group II; Complement C3 and IgM levels in body surface mucus were significantly increased. In conclusion, P. crocea has a strong ability to resist oxidative stress caused by the infection of C. irritans. The body surface mucus of P. crocea contains high levels of immune factors, which presented a rapid and significant response to the infection of C. irritans.
Collapse
Affiliation(s)
- Fei Yin
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China.
| | - Hui Gong
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province 350003, PR China
| | - Qiaozhen Ke
- Key Laboratory of Large Yellow Croaker in Fujian Province, Ningde Fufa Fisheries Co., Ltd., Ningde, Fujian Province 352000, PR China
| | - Anxing Li
- Key Laboratory for Aquatic Products Safety of Ministry of Education, State Key Laboratory of Biocontrol, The School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, PR China.
| |
Collapse
|