1
|
Uengwetwanit T, Uawisetwathana U, Angthong P, Phanthura M, Phromson M, Tala S, Thepsuwan T, Chaiyapechara S, Prathumpai W, Rungrassamee W. Investigating a novel β-glucan source to enhance disease resistance in Pacific white shrimp (Penaeus vannamei). Sci Rep 2025; 15:15377. [PMID: 40316575 PMCID: PMC12048547 DOI: 10.1038/s41598-025-00157-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 04/25/2025] [Indexed: 05/04/2025] Open
Abstract
β-glucans supplements are known for enhancing disease resistance and performance in shrimp aquaculture, but their effectiveness depends on their source and structure. This study investigated a novel β-glucan derived from the insect fungus Ophiocordyceps dipterigena BCC 2073 as a potential feed additive for Pacific white shrimp (Penaeus vannamei). To determine its feasibility, juvenile shrimps were fed diets supplemented with 0%, 0.1%, and 0.4% β-glucan oligosaccharide for 30 days prior to their performance evaluation. The groups with β-glucan supplementation showed improved immune levels and significantly higher survival rates (p-value < 0.05) when exposed to the pathogen Vibrio harveyi. Transcriptome, microbiome, and metabolome were employed to understand mechanisms of β-glucan supplement. The feed additive altered the expression of host genes linked to immunity, inflammation, and intestinal barrier function. Moreover, Vibrio spp. and Pseudoalteromonas spp. abundances were significantly modulated (p-value < 0.05) with specific Vibrio clades responding differently depending on the β-glucan concentration. Metabolomic analysis revealed immune-supporting metabolites such as hydroquinone and nicotinic acid, potentially promoting homeostasis, consistent with the observed gene expression profiles. This study highlights the potential of O. dipterigena BCC 2073 β-glucan as a novel feed additive to improve disease resistance and shrimp health.
Collapse
Affiliation(s)
- Tanaporn Uengwetwanit
- Biosensing and Bioprospecting Technology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, 12120, Khlong Luang, Pathum Thani, Thailand
| | - Umaporn Uawisetwathana
- Biosensing and Bioprospecting Technology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, 12120, Khlong Luang, Pathum Thani, Thailand
- International Joint Research Center on Food Security (IJC-FOODSEC), 111 Thailand Science Park, Phahonyothin Road, 12120, Khlong Luang, Pathum Thani, Thailand
| | - Pacharaporn Angthong
- Biosensing and Bioprospecting Technology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, 12120, Khlong Luang, Pathum Thani, Thailand
| | - Mongkhol Phanthura
- Aquaculture Service Development Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, 12120, Khlong Luang, Pathum Thani, Thailand
| | - Metavee Phromson
- Aquaculture Service Development Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, 12120, Khlong Luang, Pathum Thani, Thailand
| | - Siriporn Tala
- Aquaculture Service Development Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, 12120, Khlong Luang, Pathum Thani, Thailand
| | - Timpika Thepsuwan
- Biosensing and Bioprospecting Technology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, 12120, Khlong Luang, Pathum Thani, Thailand
| | - Sage Chaiyapechara
- Aquaculture Service Development Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, 12120, Khlong Luang, Pathum Thani, Thailand
| | - Wai Prathumpai
- Biocontrol Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, 12120, Khlong Luang, Pathum Thani, Thailand
| | - Wanilada Rungrassamee
- Biosensing and Bioprospecting Technology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, 12120, Khlong Luang, Pathum Thani, Thailand.
- International Joint Research Center on Food Security (IJC-FOODSEC), 111 Thailand Science Park, Phahonyothin Road, 12120, Khlong Luang, Pathum Thani, Thailand.
| |
Collapse
|
2
|
Takahashi Y, Kamimura R, Toyama R, Kita S, Ushijima Y, Taniyama S, Unno H, Hatakeyama T, Goda S. Identification and characterization of a novel haemolytic and haemagglutinating bifunctional lectin from the coral Acropora millepora. J Biochem 2025; 177:375-386. [PMID: 39969171 DOI: 10.1093/jb/mvaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/02/2025] [Accepted: 02/08/2025] [Indexed: 02/20/2025] Open
Abstract
Two genes, AML-I and AML-II, have been reported to exhibit increased expression during the development of the coral Acropora millepora. They show amino acid sequence homology with CEL-III, a haemolytic lectin found in the sea cucumber Cucumaria echinata. CEL-III binds to carbohydrate chains on the surface of erythrocytes, forming heptameric pores in their membranes. To clarify the role of these proteins in coral, we identified and elucidated their functions. The carbohydrate-binding domains of them showed similar carbohydrate-binding specificity as that of CEL-III. AML-I showed haemagglutinating activity in erythrocytes, whereas AML-II can only be prepared as an aggregate and its function could not yet be determined. AML-IΔC and AML-IIΔC mutants were generated through deletion of the C-terminal extended amino acid residues of them relative to CEL-III. AML-IΔC showed haemolytic activity towards erythrocytes, whereas AML-IIΔC showed no activity. A tobacco etch virus (TEV) protease recognition site was inserted into the C-terminus of AML-I to regulate these activities. The haemagglutinating activity of AML-I was converted into haemolytic activity after TEV protease treatment. As a result, TEV protease could control the haemolytic and haemagglutinating activity of the lectin, which could be useful as an anticancer or antiviral drug because of its cytotoxic activity.
Collapse
Affiliation(s)
- Yuki Takahashi
- Department of Biosciences, Graduate School of Science and Engineering, Soka University, Tangi-machi 1-236, Hachioji, Tokyo 192-8577, Japan
| | - Ryosuke Kamimura
- Department of Advanced Engineering, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
| | - Ryo Toyama
- Department of Advanced Engineering, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
| | - Shun Kita
- Department of Advanced Engineering, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
| | - Yuki Ushijima
- Department of Advanced Engineering, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
| | - Shigeto Taniyama
- Department of Fisheries Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
| | - Hideaki Unno
- Department of Advanced Engineering, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
- Division of Marine Energy Development, Organization for Marine Science and Technology, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
| | - Tomomitsu Hatakeyama
- Department of Advanced Engineering, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
| | - Shuichiro Goda
- Department of Biosciences, Graduate School of Science and Engineering, Soka University, Tangi-machi 1-236, Hachioji, Tokyo 192-8577, Japan
- Department of Advanced Engineering, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
| |
Collapse
|
3
|
Weerachatyanukul W, Pooljun C, Chotwiwatthanakun C, Jariyapong P. Binding of Infectious Hypodermal and Haematopoietic Necrosis Virus-Like Particles to Mannose Receptor Stimulates Antimicrobial Responses in Immune-Related Tissues of Peneaus vannamei. JOURNAL OF FISH DISEASES 2025; 48:e14051. [PMID: 39609717 DOI: 10.1111/jfd.14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/02/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024]
Abstract
Mannose receptor (MR) is a transmembrane protein and a type of pattern-recognition receptor (PRR) that plays a critical role in the immunity of mammals and fish. In this study, we examined the role of MR in binding with infectious hypodermal and haematopoietic necrosis virus-like particle (IHHN-VLP) and the downstream immune pathway that it triggers in the shrimp Peneaus vannamei. Upon IHHN-VLP challenge, transcripts of MR in P. vannamei (PvMR) increased significantly in all examined tissues, particularly those related to shrimp immunity, including hemocyte, hepatopancreas and gill tissues. Specifically, IHHN-VLP bound to the 34-kDa PvMR protein in shrimp-tissue extracts. Immunohistochemistry results of hemocytes showed that PvMR was initially localised on the plasma membrane but later internalised and dispersed throughout the cytoplasm after IHHN-VLP administration. Binding between IHHN-VLP and PvMR also induced significant upregulation of genes for the antimicrobial peptides (AMPs) penaeidin 3 and crustin, presumably to protect the shrimp against the viral infection. However, knocking down PvMR resulted in down-regulation of all immune-related genes examined. Overall, as an immune-related PRR, PvMR serves as a receptor for invading viruses, which then trigger the expression of AMPs. Strategic designs using PvMR could be developed to either block the interaction of native virus with the host cells or provoke its up-regulation to enhance shrimp immunity, which could open up opportunities to fight against IHHNV infection in shrimp.
Collapse
Affiliation(s)
| | - Chettupon Pooljun
- Akkhraratchakumari Veterinary College, Walailak University, Nakhonsrithammarat, Thailand
| | | | | |
Collapse
|
4
|
Prayoonmaneerat N, Charoensapsri W, Amparyup P, Imjongjirak C. Transcriptomic and microbiome analyses of copepod Apocyclops royi in response to an AHPND-causing strain of Vibrio parahaemolyticus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105277. [PMID: 39349231 DOI: 10.1016/j.dci.2024.105277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Copepods are small crustaceans that live in microorganism-rich aquatic environments and provide a key supply of live food for fish and shellfish larviculture. To better understand the host-pathogen interaction between the copepod and Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease (VPAHPND), the comparative transcriptome and microbiome analyses were conducted in copepod Apocyclops royi-TH following VPAHPND infection. Transcriptome analysis identified a total of 836 differentially expressed genes, with 275 upregulated and 561 downregulated genes. Subsequent analysis showed that a total of 37 differentially expressed genes were associated with the innate immune system, including 16 upregulated genes related to Toll-like receptor signaling pathway, antimicrobial peptides, and stress response genes, and 21 downregulated genes associated with immunological modulators, signaling molecules, and apoptosis-related proteins. Analysis of the copepod microbiome following VPAHPND infection showed that the microbes changed significantly after bacterial infection, with a reduced alpha diversity accompanied by the increased level of Proteobacteria and decreased levels of Bdellovibrionota, Bacteroidota, and Verrucomicrobiota. The population of Vibrio genera were increased significantly, while several other genera, including Denitromonas, Nitrosomonas, Blastopirellula, Fusibacter, Alteromonas, KI89A_clade, and Ruegeria, were decreased significantly after infection. These findings suggest that VPAHPND infection has a significant impact on the immune defense and the composition of the copepod microbiota.
Collapse
Affiliation(s)
- Natkanokporn Prayoonmaneerat
- Department of Food Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Walaiporn Charoensapsri
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand.
| | - Piti Amparyup
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Chanprapa Imjongjirak
- Department of Food Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Wang ZA, Yang L, Zhao Z, Weng S, He J, Xu X. A novel perlucin with immune regulatory functions protects Litopenaeus vannamei against Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2024; 155:110028. [PMID: 39557373 DOI: 10.1016/j.fsi.2024.110028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/24/2024] [Accepted: 11/16/2024] [Indexed: 11/20/2024]
Abstract
C-type lectins (CTLs), a class of carbohydrate-recognizing glycoproteins, play a vital role in immune response against bacterial infection. Vibrio parahaemolyticus is a major bacterial pathogen in shrimp, causing huge economic losses to shrimp farming. The role of the CTL family in anti-V. parahaemolyticus immunity requires further exploration. In this study, a novel CTL named Perlucin with immune regulatory functions was characterized from Litopenaeus vannamei. Perlucin was highly expressed in the muscle and hepatopancreas of healthy L. vannamei. The mRNA levels of Perlucin were significantly upregulated after LPS stimulation, and V. parahaemolyticus, Staphylococcus aureus and Aspergillus niger infections. Silencing of Perlucin by injection of specific dsRNA decreased the survival rate of V. parahaemolyticus-infected shrimp and increased the bacterial load of V. parahaemolyticus in tissues, while injection of recombinant Perlucin protein had the opposite effect. Moreover, silencing of Perlucin significantly affected the expression of multiple immune-related genes, including immune signaling components and downstream effector genes, suggesting that Perlucin is involved in immune regulation. This suggests that perlucin plays a crucial role in regulating humoral immune response against V. parahaemolyticus infection in shrimp.
Collapse
Affiliation(s)
- Zi-Ang Wang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Linwei Yang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zexu Zhao
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Xiaopeng Xu
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
6
|
Shi C, Lin TH, Qu C. The role of pattern recognition receptors in the innate immune system of Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109946. [PMID: 39370020 DOI: 10.1016/j.fsi.2024.109946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Eriocheir sinensis (Chinese mitten crab) is one of the main economic species in China, which has evolved an extremely sophisticated innate immune system to fend off disease invasions. However, bacterial and viral infections have caused significant financial losses for the E. sinensis aquaculture in recent years. Making well-informed judgments for the control microbial infections would require a thorough understanding and clarification of the intricate innate immune system of E. sinensis. Innate immunity is essential for the host's defense against invasive pathogens. Pattern recognition receptors (PRRs) initially recognize pathogen-associated molecular patterns (PAMPs) and trigger an innate immune response, causing the generation of inflammatory cytokine and promoting the clearance and control of pathogens. In E. sinensis, Toll/Toll-like receptors, lipopolysaccharide and β-1,3-glucan binding proteins, C-type lectins, galactoside-binding lectins, L-type lectins, scavenger receptors, and down syndrome cell adhesion molecules have been identified to be PRRs that are involved in the recognition of bacteria, fungi, and viruses. In this review, we give a comprehensive overview of the literature regarding PRRs' roles in the immunological defenses of E. sinensis, with the aim of providing clues to the mechanisms of innate immunity.
Collapse
Affiliation(s)
- Chenchen Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ta-Hui Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China; Fujian Provincial Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Medical College, Xiamen, Fujian, 361023, China.
| | - Chen Qu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
7
|
Huo W, Qin L, Guo W, Zhang X, Xia X. Characteristics and functional analysis of a novel mannose receptor in Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109820. [PMID: 39117127 DOI: 10.1016/j.fsi.2024.109820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024]
Abstract
The mannose receptor (MR) plays a key role in the innate immune system as a pattern recognition receptor. Here, a novel type of mannose receptor, named PvMR2, was identified from Penaeus vannamei (P. vannamei). The PvMR2 coding sequence (CDS) obtained was 988 base pairs in length, encoding a protein consisting of 328 amino acids. This protein includes a signal peptide and two classical C-type lectin domains (CTLD). Quantitative real-time PCR showed that PvMR2 was distributed in all detected tissues, with the highest levels in the intestines and stomach. Following a bacterial challenge with Vibrio anguillarum (V. anguillarum), PvMR2 showed significant up-regulation in both the intestines and stomach of shrimp. To validate the function of PvMR2, recombinant proteins were extracted and purified using a His-tag. The resulting rPvMR2 demonstrated binding capability with lipopolysaccharides (LPS) and peptidoglycan (PGN) in a dose-dependent manner, affirming its binding affinity. The purified rPvMR2 demonstrated calcium-independent binding activity towards both Gram-positive bacteria (V. anguilliarum and Vibrio parahaemolyticus) and Gram-negative bacteria (Escherichia coli and Aeromonas Veronii). Antibacterial assays confirmed that rPvMR2 inhibits bacterial growth. Intestinal adhesion and adhesion inhibition experiments confirmed that the rPvMR2 can be used to reduce the adhesion capacity of harmful bacteria in the gut. Phagocytosis experiments have shown that rPvMR2 promotes phagocytosis in hemocytes and protects the host from external infection. Treatment with recombinant PvMR2 significantly bolstered bacterial clearance within the hemolymph and markedly augmented shrimp survival post-infection with V. anguillarum. These results suggest that PvMR2 has agglutination, growth inhibition, adhesion inhibition, clearance promotion, and phagocytosis effects on harmful bacteria, and plays a crucial role in the antimicrobial immune response of P. vannamei.
Collapse
Affiliation(s)
- Weiran Huo
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Lu Qin
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Wanwan Guo
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiaowen Zhang
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiaohua Xia
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
8
|
Xue Q, Yang B, Luo K, Luan S, Kong J, Fu Q, Cao J, Chen B, Dai P, Xing Q, Li X, Meng X. Characterization and Expression Analysis of the C-Type Lectin Ladderlectin in Litopenaeus vannamei Post-WSSV Infection. BIOLOGY 2024; 13:758. [PMID: 39452067 PMCID: PMC11505416 DOI: 10.3390/biology13100758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/26/2024]
Abstract
C-type lectins are known for agglutination activity and play crucial roles in regulating the prophenoloxidase (proPO) activation system, enhancing phagocytosis and encapsulation, synthesizing antimicrobial peptides, and mediating antiviral immune responses. This work cloned a C-type lectin, ladderlectin (LvLL), from Litopenaeus vannamei. LvLL comprised a 531 bp open reading frame (ORF) that encoded 176 amino acids. The predicted LvLL protein included a signal peptide and a CLECT domain. LvLL was predicted to feature a transmembrane region, suggesting it may be a transmembrane protein. LvLL was predominantly expressed in the shrimp's hepatopancreas. After WSSV infection, LvLL expression in the hepatopancreas increased significantly by 11.35-fold after 228 h, indicating a general upregulation. Knockdown of LvLL resulted in a significant decrease in WSSV viral load and a notable increase in shrimp survival rates. Additionally, knockdown of LvLL led to a significant downregulation of apoptosis-related genes Bcl-2 and caspase 8 and a significant upregulation of p53 and proPO in WSSV-infected shrimp. This study showed that LvLL played a vital role in the interaction between L. vannamei and WSSV.
Collapse
Affiliation(s)
- Qian Xue
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.); (Q.F.); (J.C.); (B.C.); (P.D.)
| | - Bingbing Yang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.); (Q.F.); (J.C.); (B.C.); (P.D.)
| | - Kun Luo
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.); (Q.F.); (J.C.); (B.C.); (P.D.)
| | - Sheng Luan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.); (Q.F.); (J.C.); (B.C.); (P.D.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jie Kong
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.); (Q.F.); (J.C.); (B.C.); (P.D.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Qiang Fu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.); (Q.F.); (J.C.); (B.C.); (P.D.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jiawang Cao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.); (Q.F.); (J.C.); (B.C.); (P.D.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Baolong Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.); (Q.F.); (J.C.); (B.C.); (P.D.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Ping Dai
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.); (Q.F.); (J.C.); (B.C.); (P.D.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Qun Xing
- BLUP Aquabreed Co., Ltd., Weifang 261311, China;
| | - Xupeng Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.); (Q.F.); (J.C.); (B.C.); (P.D.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xianhong Meng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.X.); (B.Y.); (K.L.); (S.L.); (J.K.); (Q.F.); (J.C.); (B.C.); (P.D.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
9
|
Cui X, Jiang Z, Xu J, Yu Y, Liu Q, Ren Q, Wang L, Wan X, Huang X. Immune function of a C-type lectin with long tandem repeats and abundant threonine in the ridgetail white prawn Exopalaemon carinicauda. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109721. [PMID: 38917950 DOI: 10.1016/j.fsi.2024.109721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
C-type lectins (CTLs) are an important class of pattern recognition receptors (PRRs) that exhibit structural and functional diversity in invertebrates. Repetitive DNA sequences are ubiquitous in eukaryotic genomes, representing distinct modes of genome evolution and promoting new gene generation. Our study revealed a new CTL that is composed of two long tandem repeats, abundant threonine, and one carbohydrate recognition domain (CRD) in Exopalaemon carinicauda and has been designated EcTR-CTL. The full-length cDNA of EcTR-CTL was 1242 bp long and had an open reading frame (ORF) of 999 bp that encoded a protein of 332 amino acids. The genome structure of EcTR-CTL contains 4 exons and 3 introns. The length of each repeat unit in EcTR-CTL was 198 bp, which is different from the short tandem repeats reported previously in prawns and crayfish. EcTR-CTL was abundantly expressed in the intestine and hemocytes. After Vibrio parahaemolyticus and white spot syndrome virus (WSSV) challenge, the expression level of EcTR-CTL in the intestine was upregulated. Knockdown of EcTR-CTL downregulated the expression of anti-lipopolysaccharide factor, crustin, and lysozyme during Vibrio infection. The recombinant CRD of EcTR-CTL (rCRD) could bind to bacteria, lipopolysaccharides, and peptidoglycans. Additionally, rCRD can directly bind to WSSV. These findings indicate that 1) CTLs with tandem repeats may be ubiquitous in crustaceans, 2) EcTR-CTL may act as a PRR to participate in the innate immune defense against bacteria via nonself-recognition and antimicrobial peptide regulation, and 3) EcTR-CTL may play a positive or negative role in the process of WSSV infection by capturing virions.
Collapse
Affiliation(s)
- Xinyi Cui
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Zilin Jiang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Juntao Xu
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Yunhao Yu
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Qingchuan Liu
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Qian Ren
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing, Jiangsu Province, 210044, China
| | - Libao Wang
- Institute of Oceanology & Marine Fisheries, Nantong, Jiangsu Province, 226007, China.
| | - Xihe Wan
- Institute of Oceanology & Marine Fisheries, Nantong, Jiangsu Province, 226007, China.
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
10
|
Du J, Tang Y, Chu J, Yang Q, Qian X, Wan Y, Lu Y, Zhang L, Wang W. A novel exoskeletal-derived C-type lectin facilitates phagocytosis of hemocytes in the oriental river prawn Macrobrachium nipponense. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109532. [PMID: 38579977 DOI: 10.1016/j.fsi.2024.109532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/27/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
C-type lectins (CTLs) execute critical functions in multiple immune responses of crustaceans as a member of pattern recognition receptors (PRRs) family. In this study, a novel CTL was identified from the exoskeleton of the oriental river prawn Macrobrachium nipponense (MnLec3). The full-length cDNA of MnLec3 was 1150 bp with an open reading frame of 723 bp, encoding 240 amino acids. MnLec3 protein contained a signal peptide and one single carbohydrate-recognition domain (CRD). MnLec3 transcripts were widely distributed at the exoskeleton all over the body. Significant up-regulation of MnLec3 in exoskeleton after Aeromonas hydrophila challenged suggested the involvement of MnLec3 as well as the possible function of the exoskeleton in immune response. In vitro tests with recombinant MnLec3 protein (rMnLec3) manifested that it had polysaccharide binding activity, a wide spectrum of bacterial binding activity and agglutination activity only for tested Gram-negative bacteria (Escherichia coli, Vibrio anguillarum and A. hydrophila). Moreover, rMnLec3 significantly promoted phagocytic ability of hemocytes against A. hydrophila in vivo. What's more, MnLec3 interference remarkably impaired the survivability of the prawns when infected with A. hydrophila. Collectively, these results ascertained that MnLec3 derived from exoskeleton took an essential part in immune defense of the prawns against invading bacteria as a PRR.
Collapse
Affiliation(s)
- Juan Du
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Yuanyuan Tang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Jiaye Chu
- School of Stomatology, Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Quanli Yang
- School of Stomatology, Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Xiaohan Qian
- School of the Third Clinical Medicine, Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Yan Wan
- School of the Third Clinical Medicine, Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Yuming Lu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Limin Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Wenfeng Wang
- College of Life Sciences, Xinxiang Medical University, Xinxiang, 453002, Henan, China.
| |
Collapse
|
11
|
Cui C, Tang X, Xing J, Sheng X, Chi H, Zhan W. Single-cell RNA-seq revealed heterogeneous responses and functional differentiation of hemocytes against white spot syndrome virus infection in Litopenaeus vannamei. J Virol 2024; 98:e0180523. [PMID: 38323810 PMCID: PMC10949519 DOI: 10.1128/jvi.01805-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Shrimp hemocytes are the vital immune cells participating in innate immune response to defend against viruses. However, the lack of specific molecular markers for shrimp hemocyte hindered the insightful understanding of their functional clusters and differential roles in combating microbial infections. In this study, we used single-cell RNA sequencing to map the transcriptomic landscape of hemocytes from the white spot syndrome virus (WSSV)-infected Litopenaeus vannamei and conjointly analyzed with our previous published single-cell RNA sequencing technology data from the healthy hemocytes. A total of 16 transcriptionally distinct cell clusters were identified, which occupied different proportions in healthy and WSSV-infected hemocytes and exerted differential roles in antiviral immune response. Following mapping of the sequencing data to the WSSV genome, we found that all types of hemocytes could be invaded by WSSV virions, especially the cluster 8, which showed the highest transcriptional levels of WSSV genes and exhibited a cell type-specific antiviral response to the viral infection. Further evaluation of the cell clusters revealed the delicate dynamic balance between hemocyte immune response and viral infestation. Unsupervised pseudo-time analysis of hemocytes showed that the hemocytes in immune-resting state could be significantly activated upon WSSV infection and then functionally differentiated to different hemocyte subsets. Collectively, our results revealed the differential responses of shrimp hemocytes and the process of immune-functional differentiation post-WSSV infection, providing essential resource for the systematic insight into the synergistic immune response mechanism against viral infection among hemocyte subtypes. IMPORTANCE Current knowledge of shrimp hemocyte classification mainly comes from morphology, which hinder in-depth characterization of cell lineage development, functional differentiation, and different immune response of hemocyte types during pathogenic infections. Here, single-cell RNA sequencing was used for mapping hemocytes during white spot syndrome virus (WSSV) infection in Litopenaeus vannamei, identifying 16 cell clusters and evaluating their potential antiviral functional characteristics. We have described the dynamic balance between viral infestation and hemocyte immunity. And the functional differentiation of hemocytes under WSSV stimulation was further characterized. Our results provided a comprehensive transcriptional landscape and revealed the heterogeneous immune response in shrimp hemocytes during WSSV infection.
Collapse
Affiliation(s)
- Chuang Cui
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
12
|
Phonsiri K, Mavichak R, Panserat S, Boonanuntanasarn S. Differential responses of hepatopancreas transcriptome between fast and slow growth in giant freshwater prawns (Macrobrachium rosenbergii) fed a plant-based diet. Sci Rep 2024; 14:4957. [PMID: 38418833 PMCID: PMC10902295 DOI: 10.1038/s41598-024-54349-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Efficient utilisation of plant-based diets in the giant freshwater prawn, Marcrobrachium rosenbergii, varies according to individual, suggesting that it might be associated with differences in physiological and metabolic responses. Therefore, we aimed to investigate the individual differences in the growth response of shrimp fed to a soybean-based diet (SBM). Two hundred shrimp were fed SBM for 90 days, and specific growth rate (SGR) was determined individually. Fast- and slow-growing shrimp (F-shrimp vs. S-shrimp), with the highest and lowest 5% SGRs, respectively, were sampled to determine haemolymph chemistry and carcass composition. The hepatopancreas of these shrimps were used for transcriptome analysis through RNA sequencing (RNA-Seq). The results showed no significant differences in haemolymph chemistry parameters. In terms of carcass proximate composition, F-shrimp exhibited higher protein composition than did S-shrimp, suggesting that F-shrimp have higher protein anabolism. Using RNA-seq and real-time reverse transcription polymerase chain reaction (qRT-PCR), the expression levels of several genes encoding physiologic and metabolic enzymes were found to be upregulated in F-shrimp compared to in S-shrimp, suggesting that these enzymes/proteins mediated the efficient use of SBM-based diets for growth promotion in shrimp. Various DEGs associated with the immune system were observed, indicating a difference in immune processes between F- and S-shrimp. The expression of several housekeeping genes was found to be upregulated in S-shrimp. Collectively, the upregulated expression of several enzymes associated with physiological and/or metabolic processes and increased protein anabolism may be attributed to the efficient use of SBM for maximal growth in shrimp.
Collapse
Affiliation(s)
- Khanakorn Phonsiri
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima, 30000, Thailand
| | - Rapeepat Mavichak
- Aquatic Animal Health Research Center, Charoen Pokphand Co. Ltd., Rama 2 Rd., Km 41.5, Bangtorat, Muang Samutsakorn, Samutsakorn, 74000, Thailand
| | - Stephane Panserat
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NuMéA, Saint-Pée-Sur-Nivelle, France
| | - Surintorn Boonanuntanasarn
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
13
|
Huo W, Qin L, Guo W, Zhang X, Du Q, Xia X. PvMR1, a novel C-type lectin plays a crucial role in the antibacterial immune response of Pacific white shrimp, Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109346. [PMID: 38163494 DOI: 10.1016/j.fsi.2023.109346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
C-type lectins (CTLs) are important immune molecules in innate immune, which participate in non-self recognition and clearance of pathogens. Here, a new CTL with two distinct C-type lectin domains (CTLDs) from Pacific white shrimp Penaeus vannamei, designated as PvMR1 was identified. The obtained PvMR1 coding sequence (CDS) was 1044 bp long encoding a protein with 347 amino acids. PvMR1 had two CTLD, a conserved mannose-specific EPN motif and a galactose-specific QPD motif, clustering into the same branch as the crustacean CTLs. PvMR1 was widely distributed in shrimp tissues with the highest transcription level in the hepatopancreas, with significantly induced mRNA expression on the hepatopancreas and intestines after immune challenge with Vibrio anguillarum. In vitro assays with recombinant PvMR1 (rPvMR1) protein revealed that it exhibited a wide range of antimicrobial activity, bacterial binding ability, and bacterial agglutination activity in a Ca2+-independent manner. Moreover, PvMR1 promoted bacterial phagocytosis in hemocytes. Furthermore, rPvMR1 treatment could significantly enhance the bacterial clearance in hemolymph and greatly improved the survival of shrimp under V. anguillarum infection in vivo. These results collectively suggest that PvMR1 plays an important role in antibacterial immune response of P. vannamei.
Collapse
Affiliation(s)
- Weiran Huo
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Lu Qin
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Wanwan Guo
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiaowen Zhang
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Qiyan Du
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Xiaohua Xia
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
14
|
Purbiantoro W, Huynh-Phuoc V, Castillo-Corea BRJ, Byadgi OV, Cheng TC. Effectiveness of dietary heat-killed Bacillus subtilis harboring plasmid containing 60 copies of CpG-ODN 1668 against Vibrio harveyi in Penaeus vannamei. Vet Res Commun 2024; 48:85-101. [PMID: 37530963 DOI: 10.1007/s11259-023-10182-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
The cost of the purification process hinders the extensive use of cytosine phosphate guanosine-oligodeoxynucleotides (CpG-ODNs) for shrimp culture. Therefore, this study used a shuttle vector plasmid to carry 60 copies of CpG-ODN 1668 (pAD43-25_60CpG), which can replicate in Escherichia coli and Bacillus subtilis strain RIK1285. The first experiment used a reverse gavage procedure to deliver a substance (PBS [CK], pAD43-25 [P0], and pAD43-25_60CpG [P60], respectively) directly into the anterior midgut of Penaeus vannamei and transcriptome sequence analysis with a reference genome was performed to examine the expression of well-known immune-related genes. The results showed that the expression levels of immune-related genes in P60 group were significantly increased, particularly those associated with AMPs. In addition, using RT‒qPCR, the expression levels of AMP genes (LvALF, LvPEN-2, and LvPEN-3) in the P60 group may vary depending on the tissue and time point. The second experiment used dietary supplementation with three kinds of heat-killed B. subtilis (HKBS, HKBS-P0, and HKBS-P60) in 28 days of feeding experiments. The results showed that dietary supplementation with HKBS-P60 did not significantly improve shrimp growth performance and survival. However, on days 14 and 28 of the feeding regimens, alkaline phosphatase (AKP) and acid phosphatase (ACP) activity were considerably higher than in other treatments. In addition, following infection with Vibrio harveyi, AKP and ACP activity in the HKBS-P60 group was significantly higher than in other treatments, particularly at the early stage of bacterial infection. Moreover, HKBS-P60 was found to be better protected against V. harveyi infection with lower cumulative mortality (60%) compared to HKBS (90%) and HKBS-P0 (100%) at 7 days after infection. Overall, these findings confirmed that P60 could increase immunological responses in the shrimp midgut, and HKBS-P60 could be used as an effective tool to enhance the immune response and disease resistance in shrimp.
Collapse
Affiliation(s)
- Wahyu Purbiantoro
- Laboratory of Molecular Fish Immunology and Genetics, Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center for Marine and Land Bioindustry, National Research and Innovation Agency (BRIN), Mataram, Nusa Tenggara Barat, Indonesia
| | - Vinh Huynh-Phuoc
- Laboratory of Molecular Fish Immunology and Genetics, Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
- College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
| | - B R J Castillo-Corea
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Omkar Vijay Byadgi
- International Program in Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Ta-Chih Cheng
- Laboratory of Molecular Fish Immunology and Genetics, Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan.
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| |
Collapse
|
15
|
Xu X, Yin P, Zhang Y, Yang H. The immune response of fairy shrimp Branchinella kugenumaensis against Edwardsiella anguillarum infections by de novo transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109260. [PMID: 38043874 DOI: 10.1016/j.fsi.2023.109260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
To explore the immune defense mechanisms of the ancient crustacean fairy shrimp (B.kugenumaensis) and uncover antibacterial-related gene resources, the present study analyzed the pathological changes in B. kugenumaensis infected with E. anguillarum. Differential gene expression changes between the infected and uninfected groups were investigated through comparative transcriptome sequencing to elucidate the molecular responses to the infection. Under transmission electron microscopy, the intestinal mucosal structure of B. kugenumaensis was damaged, the microvilli disappeared, the number of mitochondria and endoplasmic reticulum increased, mitochondria vacuolated and arranged disordered. The transcriptome data indicated that a total of 250,520,580 clean reads were assembled into 66,502 unigenes, with an average length of 789 bp and an N50 length of 1326 bp. Following bacterial infection, approximately 2678 differentially expressed genes (DEGs) were identified, with 1732 genes upregulated and 946 genes downregulated. The detected DEGs related to immune responses, particularly involving apoptosis, lysosome, autophagy, phagosome, and MAPK signaling pathways. Moreover, 9 immunity-related genes with different expressions were confirmed by using real-time quantitative PCR (RT-qPCR). This study first reports the pathogenicity of E. anguillarum on B. kugenumaensis and speculates that immune effectors such as lysozyme and lectin, as well as apoptosis, lysosome, and the MAPK signaling pathway, play crucial roles in the innate immunity of fairy shrimp. These findings deepen our understanding of fairy shrimp immune regulatory mechanisms and provide a theoretical foundation for disease prevention and control.
Collapse
Affiliation(s)
- Xinrui Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Peng Yin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
16
|
Hatakeyama T, Masuda K, Kudo M, Tanaka K, Takeuchi A, Unno H. Mannose oligosaccharide recognition of CGL1, a mannose-specific lectin containing DM9 motifs from Crassostrea gigas, revealed by X-ray crystallographic analysis. J Biochem 2023; 175:35-41. [PMID: 37793172 DOI: 10.1093/jb/mvad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023] Open
Abstract
CGL1 is a mannose-specific lectin isolated from the Pacific oyster Crassostrea gigas, and it belongs to the DM9 domain protein family. Each subunit of the CGL1 dimer consists of a tandem repeat of DM9 motifs, which were originally found in the Drosophila melanogaster genome. The CGL1 protomer contains two carbohydrate-binding sites: a high-affinity site A and a low-affinity site B. An assay using dendrimers containing oligomannose from yeast (Saccharomyces cerevisiae) revealed that CGL1 exhibited significantly higher affinity for mannotetraose (Man4) compared to mannobiose (Man2) and mannotriose (Man3). To investigate its oligomannose-recognition mechanism, X-ray crystallographic analyses of CGL1/oligomannose complexes were performed. In the CGL1/Man2 and CGL1/Man3 complexes, Manα1-2Man and Manα1-2Manα1-2Man, respectively, were primarily bound to site A, interacting with the non-reducing mannose residue. On the other hand, in the CGL1/Man4 crystal, Man4 (Manα1-2Manα1-2Manα1-6Man) was bound at both site A and site B at the non-reducing and reducing ends, thus linking adjacent CGL1 molecules with crystallographic symmetry. These findings suggest that CGL1 can recognize both the non-reducing and reducing mannose residues of mannose oligosaccharides at its two distinct carbohydrate-binding sites. This enables efficient complex formation, making CGL1 a pattern-recognition molecule capable of recognizing diverse structures of mannose-containing carbohydrate chains.
Collapse
Affiliation(s)
- Tomomitsu Hatakeyama
- Biomolecular Chemistry Laboratory, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
| | - Kazuki Masuda
- Biomolecular Chemistry Laboratory, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
| | - Mizuki Kudo
- Biomolecular Chemistry Laboratory, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
| | - Koshi Tanaka
- Biomolecular Chemistry Laboratory, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
| | - Ayaka Takeuchi
- Biomolecular Chemistry Laboratory, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
| | - Hideaki Unno
- Biomolecular Chemistry Laboratory, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
- Organization for Marine Science and Technology, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
| |
Collapse
|
17
|
Huang Y, Yu XY, Luo P, Jiang FH, Cui LF, Shi Y, Song XR, Zhao Z. Three novel L-type lectins from obscure puffer Takifugu obscurus promote antimicrobial immune response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 149:105046. [PMID: 37619908 DOI: 10.1016/j.dci.2023.105046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
L-type lectins (LTLs) have leguminous lectin domains that bind to high-mannose-type oligosaccharides. LTLs are involved in glycoprotein secretory pathways and associated with many immune responses. In the present research, three LTL homologs from obscure puffer Takifugu obscurus, designated as ToVIP36-1, ToVIP36-2, and ToVIP36-3, were first cloned and identified. The open reading frames of ToVIP36-1, ToVIP36-2, and ToVIP36-3 were 1068, 1002, and 1086 bp in length, respectively, and encode polypeptides with 355, 333, and 361 amino acids, respectively. Key conserved residues and functional domains, including lectin_leg-like domain (LTLD), transmembrane region, and C-terminal trafficking signal KRFY, were identified in all ToVIP36s. Quantitative real-time PCR analysis showed that the three ToVIP36s were widely expressed in six examined tissues and had relatively high expression levels in the liver and intestine. The expression levels of ToVIP36s were remarkably altered in the liver and kidney after induction by Vibrio harveyi and Staphylococcus aureus. Subsequently, the recombinant LTLDs of ToVIP36s (rToVIP36-LTLDs) were prepared by prokaryotic expression. Three rToVIP36-LTLD proteins agglutinated with S. aureus, V. harveyi, Vibrio parahaemolyticus, and Aeromonas hydrophila in a calcium-dependent manner. In the absence of calcium, rToVIP36-LTLD proteins bound to the bacteria by binding to lipopolysaccharides, peptidoglycans, d-mannose, and d-galactose and inhibited the growth of S. aureus and V. harveyi. Our results indicated that ToVIP36s function as pattern-recognition receptors in T. obscurus immunity, providing insights into the role of LTLs in the antibacterial immunity of fishes.
Collapse
Affiliation(s)
- Ying Huang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Xin-Yue Yu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 501301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, 510301, China
| | - Fu-Hui Jiang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Li-Fan Cui
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Yan Shi
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Xiao-Rui Song
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
18
|
Zhang J, Liu K, Gong X, Zhang N, Zeng Y, Ren W, Huang A, Long H, Xie Z. Transcriptome analysis of the hepatopancreas from the Litopenaeus vannamei infected with different flagellum types of Vibrio alginolyticus strains. Front Cell Infect Microbiol 2023; 13:1265917. [PMID: 38076457 PMCID: PMC10703188 DOI: 10.3389/fcimb.2023.1265917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Vibrio alginolyticus, one of the prevalently harmful Vibrio species found in the ocean, causes significant economic damage in the shrimp farming industry. Its flagellum serves as a crucial virulence factor in the invasion of host organisms. However, the processes of bacteria flagella recognition and activation of the downstream immune system in shrimp remain unclear. To enhance comprehension of this, a ΔflhG strain was created by in-frame deletion of the flhG gene in V. alginolyticus strain HN08155. Then we utilized the transcriptome analysis to examine the different immune responses in Litopenaeus vannamei hepatopancreas after being infected with the wild type and the mutant strains. The results showed that the ΔflhG strain, unlike the wild type, lost its ability to regulate flagella numbers negatively and displayed multiple flagella. When infected with the hyperflagella-type strain, the RNA-seq revealed the upregulation of several immune-related genes in the shrimp hepatopancreas. Notably, two C-type lectins (CTLs), namely galactose-specific lectin nattectin and macrophage mannose receptor 1, and the TNF receptor-associated factor (TRAF) 6 gene were upregulated significantly. These findings suggested that C-type lectins were potentially involved in flagella recognition in shrimp and the immune system was activated through the TRAF6 pathway after flagella detection by CTLs.
Collapse
Affiliation(s)
- Jingwen Zhang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, China
| | - Kaifang Liu
- School of Fisheries, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Xiaoxiao Gong
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, China
| | - Na Zhang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, China
| | - Yanhua Zeng
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Wei Ren
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Aiyou Huang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Hao Long
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Zhenyu Xie
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, China
- Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| |
Collapse
|
19
|
Yang QF, Li S, Feng GP, Qin C, Min XW, Fang WH, Wu Y, Zhou J, Li XC. A novel C-type lectin (SpccCTL) suppresses MCRV replication by binding viral protein and regulating antiviral peptides in Scylla paramamosain. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109143. [PMID: 37827249 DOI: 10.1016/j.fsi.2023.109143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
Pattern recognition receptors (PRRs) play a crucial role in the recognition and activation of innate immune responses against invading microorganisms. This study characterizes a novel C-type lectin (CTL), SpccCTL. The cDNA sequence of SpccCTL has a full length of 1744 bp encoding a 338-amino acid protein. The predicted protein contains a signal peptide, a coiled-coil (CC) domain, and a CLECT domain. It shares more than 50 % similarity with a few CTLs with a CC domain in crustaceans. SpccCTL is highly expressed in gills and hemocytes and upregulated after MCRV challenge, suggesting that it may be involved in antiviral immunity. Recombinant SpccCTL (rSpccCTL) as well as two capsid proteins of MCRV (VP11 and VP12) were prepared. Pre-incubating MCRV virions with rSpccCTL significantly suppresses the proliferation of MCRV in mud crabs, compared with the control (treatment with GST protein), and the survival rate of mud crabs is also significantly decreased. Knockdown of SpccCTL significantly facilitates the proliferation of MCRV in mud crabs. These results reveal that SpccCTL plays an important role in antiviral immune response. GST pull-down assay result shows that rSpccCTL interacts specifically with VP11, but not to VP12. This result is further confirmed by a Co-IP assay. In addition, we found that silencing SpccCTL significantly inhibits the expression of four antimicrobial peptides (AMPs). Considering that these AMPs are members of anti-lipopolysaccharide factor family with potential antiviral activity, they are likely involved in immune defense against MCRV. Taken together, these findings clearly demonstrate that SpccCTL can recognize MCRV by binding viral capsid protein VP11 and regulate the expression of certain AMPs, suggesting that SpccCTL may function as a potential PRR playing an essential role in anti-MCRV immunity of mud crab. This study provides new insights into the antiviral immunity of crustaceans and the multifunctional characteristics of CTLs.
Collapse
Affiliation(s)
- Qing-Feng Yang
- Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Shouhu Li
- Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Guang-Peng Feng
- Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Chuang Qin
- Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiu-Wen Min
- Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Wen-Hong Fang
- Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Yue Wu
- Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Jin Zhou
- Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China.
| | - Xin-Cang Li
- Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China.
| |
Collapse
|
20
|
Zhong Y, He Z, Long X, Hou D, Hu X, Sun C. Transcriptome analysis of Fenneropenaeus merguiensis in response to Vibrio proteolyticus infection. JOURNAL OF FISH DISEASES 2023; 46:1207-1224. [PMID: 37589383 DOI: 10.1111/jfd.13840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
In recent years, due to the destruction of the culture environment and serious ecological pressure, especially in the process of culture, residual bait, faeces and fishery drug abuse will lead to the accumulation of harmful metabolites such as ammonia nitrogen and nitrite, and biological denitrification is the most economical and effective method to remove the single. Therefore, in this study, a nitrite removal strain XA19 was isolated and screened from a shrimp biofloc culture pond. This strain was identified as a clade of Vibrio proteolyticus because the homology between XA19 and V. proteolyticus WDVP was as high as 99.86% by using 16S rDNA gene sequence analysis and NCBI database comparison. Scanning electron microscopy images showed that V. proteolyticus is short-rod-shaped with a curved body and no budding spores, pods and flagella. Antimicrobial susceptibility test proved that V. proteolyticus was resistant to ampicillin, oxacillin, penicillin, vancomycin and clindamycin. In the median lethal concentration 50 (LC50 ) test, at 7-day post-infection (dpi), LC50 of V. proteolyticus for Fenneropenaeus merguiensis was 1.69 × 104 CFU/mL. Transcriptome sequencing analysis was carried out on hepatopancreas of F. merguiensis at 24 and 48 hpi. A total of 176 differentially expressed genes (DEGs) were screened at 24 hpi, including 104 up-regulated DEGs and 72 down-regulated DEGs, and a total of 52 DEGs were screened at 48 hpi, including 32 up-regulated DEGs and 20 down-regulated DEGs. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs, many immune-related signalling pathways were significantly enriched, including Hippo signalling pathway, phagosome, Toll and Imd signalling pathways and Wnt signalling pathway. In addition, some pathways related to Warburg effect were also enriched, including Glycolysis/Gluconeogenesis, Biosynthesis of amino acids, amino sugar and nucleotide sugar metabolism and so on. In this study, the toxicity and drug sensitivity of V. proteolyticus were systematically studied, and the immune response of hepatopancreas of F. merguiensis to V. proteolyticus infection was preliminarily revealed from the molecular level. The results may provide a reference for the prevention and control of V. proteolyticus.
Collapse
Affiliation(s)
- Yunqi Zhong
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Zihao He
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Xinxin Long
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Danqing Hou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Xianye Hu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| |
Collapse
|
21
|
Gu Y, Zhu L, Wang X, Li H, Hou L, Kong X. Research progress of pattern recognition receptors in red swamp crayfish (Procambarus clarkii). FISH & SHELLFISH IMMUNOLOGY 2023; 141:109028. [PMID: 37633345 DOI: 10.1016/j.fsi.2023.109028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/19/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Though Procambarus clarkii (red swamp crayfish) is a lower invertebrate, it has nonetheless developed a complex innate immune system. The crayfish farming industry has suffered considerable economic losses in recent years as a consequence of bacterial and viral diseases. Hence, perhaps the most effective ways to prevent microbial infections in P. clarkii are to examine and elucidate its innate immunity. The first step in the immune response is to recognize pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors (PRRs). PRRs are expressed mainly on immune cell surfaces and recognize at least one PAMP. Thence, downstream immune responses are activated and pathogens are phagocytosed. To date, the PRRs identified in P. clarkii include Toll-like receptors (TLRs), lectins, fibrinogen-related proteins (FREPs), and β-1,3-glucan-binding proteins (BGRPs). The present review addresses recent progress in research on PRRs and aims to provide guidance for improving immunity and preventing and treating infectious diseases in P. clarkii.
Collapse
Affiliation(s)
- Yanlong Gu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Lei Zhu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.
| | - Xinru Wang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Hao Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Libo Hou
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.
| |
Collapse
|
22
|
Shi XZ, Yang MC, Kang XL, Li YX, Hong PP, Zhao XF, Vasta G, Wang JX. Scavenger receptor B2, a type III membrane pattern recognition receptor, senses LPS and activates the IMD pathway in crustaceans. Proc Natl Acad Sci U S A 2023; 120:e2216574120. [PMID: 37276415 PMCID: PMC10268257 DOI: 10.1073/pnas.2216574120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/24/2023] [Indexed: 06/07/2023] Open
Abstract
The immune deficiency (IMD) pathway is critical for elevating host immunity in both insects and crustaceans. The IMD pathway activation in insects is mediated by peptidoglycan recognition proteins, which do not exist in crustaceans, suggesting a previously unidentified mechanism involved in crustacean IMD pathway activation. In this study, we identified a Marsupenaeus japonicus B class type III scavenger receptor, SRB2, as a receptor for activation of the IMD pathway. SRB2 is up-regulated upon bacterial challenge, while its depletion exacerbates bacterial proliferation and shrimp mortality via abolishing the expression of antimicrobial peptides. The extracellular domain of SRB2 recognizes bacterial lipopolysaccharide (LPS), while its C-terminal intracellular region containing a cryptic RHIM-like motif interacts with IMD, and activates the pathway by promoting nuclear translocation of RELISH. Overexpressing shrimp SRB2 in Drosophila melanogaster S2 cells potentiates LPS-induced IMD pathway activation and diptericin expression. These results unveil a previously unrecognized SRB2-IMD axis responsible for antimicrobial peptide induction and restriction of bacterial infection in crustaceans and provide evidence of biological diversity of IMD signaling in animals. A better understanding of the innate immunity of crustaceans will permit the optimization of prevention and treatment strategies against the arising shrimp diseases.
Collapse
Affiliation(s)
- Xiu-Zhen Shi
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
| | - Ming-Chong Yang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Xin-Le Kang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
| | - Yan-Xue Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
| | - Pan-Pan Hong
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
| | - Gerardo R. Vasta
- Department of Microbiology and Immunology, School of Medicine, Institute of Marine and Environmental Technology, University of Maryland Baltimore, Baltimore, MD21202
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| |
Collapse
|
23
|
Farhadi A, Tang S, Huang M, Yu Q, Xu C, Li E. Identification of key immune and stress related genes and pathways by comparative analysis of the gene expression profile under multiple environmental stressors in pacific white shrimp (Litopenaeus vannamei). FISH & SHELLFISH IMMUNOLOGY 2023; 135:108695. [PMID: 36935045 DOI: 10.1016/j.fsi.2023.108695] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/01/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Water salinity, pH, and nitrite concentration are considered environmental factors affecting the growth rate, survival, health, and physiological conditions of aquatic animals. The identification of key genes that are involved in the response to environmental stressors is essential for controlling stress in aquatic animals and sustainable aquaculture. In this study, RNA sequencing was performed to identify the differentially expressed genes (DEGs) and biological pathways that are involved in the response of the hepatopancreas to environmental stressors, including low salinity stress, nitrite stress, low pH stress, and high pH stress. The DEGs were enriched in biological pathways related to immune response, energy metabolism, oxidative stress response, hemostasis, and enzymatic activity of the hepatopancreas. In addition to the identification of DEGs related to each stressor, some DEGs were found to be expressed among all groups. The most important overlapping DEGs under multiple stressors were juvenile hormone esterase-like protein 2 (JHE-like), myosin light chain, C-type lectin 2, myosin-9-like, anti-lipopolysaccharide factor 1 (ALF-1), peroxisomal acyl-coenzyme An oxidase 1-like (ACX1), hepatic lectin-like, venom phosphodiesterase 2-like, hemolymph clottable protein-like (CP), cathepsin L, and Ras-like protein 2. The results of the present study provide additional information regarding the transcriptional response of the hepatopancreas to low salinity, nitrite, low pH, and high pH stress. Moreover, the discovery of several overlapping DEGs among different stressors provided a better understanding of the molecular function of the hepatopancreas.
Collapse
Affiliation(s)
- Ardavan Farhadi
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Shangshang Tang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Maoxian Huang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Qiuran Yu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Chang Xu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Erchao Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
24
|
Mendoza-Porras O, Broadbent JA, Beale DJ, Escobar-Correas SM, Osborne SA, Simon CJ, Wade NM. Post-prandial response in hepatopancreas and haemolymph of Penaeus monodon fed different diets. Omics insights into glycoconjugate metabolism, energy utilisation, chitin biosynthesis, immune function, and autophagy. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY PART D: GENOMICS AND PROTEOMICS 2023; 46:101073. [PMID: 37018937 DOI: 10.1016/j.cbd.2023.101073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/28/2023] [Accepted: 03/12/2023] [Indexed: 03/30/2023]
Abstract
Raw materials or bioactive ingredients trigger mechanisms to assimilate nutrients and activate metabolic pathways that promote growth, immune function, or energy storage. Our understanding of these processes at a molecular level remains limited in aquaculture, especially in shrimp. Here, hepatopancreas proteomics and haemolymph metabolomics were used to investigate the post-prandial response of black tiger shrimps (Penaeus monodon) fed a conventional fishmeal diet (FM); a diet supplemented with the microbial biomass Novacq™ (NV); krill meal (KM); or, fasted (FS). Using FM as a control, a 2-fold change in abundance threshold was implemented to determine the significance of proteins and metabolites. NV fed shrimp showed preference for energy derived from carbohydrates indicated by a strong signature of glycoconjugate metabolism and activation of the amino- and nucleotide sugar metabolic pathway. KM activated the glyoxylate and dicarboxylate pathway that denoted shrimp preference for lipidic energy. KM also influenced energy generation by the TCA cycle inferred from higher abundance of the metabolites succinic semialdehyde, citric acid, isocitrate, alpha ketoglutarate and ATP and downregulation of the enzyme isocitrate dehydrogenase that catalyses oxidative decarboxylation of isocitrate. FS shrimp displayed down-regulation of oxidative phosphorylation and resorted to internal lipid reserves for energy homeostasis displaying a strong signature of autophagy. Pyrimidine metabolism was the preferred energy strategy in this group. Our study also provided evidence that during fasting or consumption of specific ingredients, shrimp share common pathways to meet their energy requirements, however, the intensity at which these pathways were impacted was diet dependent.
Collapse
Affiliation(s)
- Omar Mendoza-Porras
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia.
| | - James A Broadbent
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| | - David J Beale
- CSIRO Land and Water, Ecosciences Precinct, Dutton Park, QLD, Australia
| | | | - Simone A Osborne
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| | - Cedric J Simon
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| | - Nicholas M Wade
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| |
Collapse
|
25
|
Soo TCC, Bhassu S. Signature selection forces and evolutionary divergence of immune-survival genes compared between two important shrimp species. PLoS One 2023; 18:e0280250. [PMID: 36634148 PMCID: PMC9836293 DOI: 10.1371/journal.pone.0280250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
In recent years, shrimp aquaculture industry had grown significantly to become the major source of global shrimp production. Despite that, shrimp aquaculture production was impeded by various shrimp diseases over the past decades. Interestingly, different shrimp species demonstrated variable levels of immune strength and survival (immune-survival) ability towards different diseases, especially the much stronger immune-survival ability shown by the ancient shrimp species, Macrobrachium rosenbergii compared to other shrimp species. In this study, two important shrimp species, M. rosenbergii and Penaeus monodon (disease tolerant strain) (uninfected control and VpAHPND-infected) were compared to uncover the potential underlying genetic factors. The shrimp species were sampled, followed by RNA extraction and cDNA conversion. Five important immune-survival genes (C-type Lectin, HMGB, STAT, ALF3, and ATPase 8/6) were selected for PCR, sequencing, and subsequent genetics analysis. The overall genetic analyses conducted, including Analysis of Molecular Variance (AMOVA) and population differentiation, showed significant genetic differentiation (p<0.05) between different genes of M. rosenbergii and P. monodon. There was greater genetic divergence identified between HMGB subgroups of P. monodon (uninfected control and VpAHPND-infected) compared to other genes. Besides that, based on neutrality tests conducted, purifying selection was determined to be the main evolutionary driving force of M. rosenbergii and P. monodon with stronger purifying selection exhibited in M. rosenbergii genes. Potential balancing selection was identified for VpAHPND-infected HMGB subgroup whereas directional selection was detected for HMGB (both species) and ATPase 8/6 (only P. monodon) genes. The divergence times between M. rosenbergii and P. monodon genes were estimated through Bayesian molecular clock analysis, which were 438.6 mya (C-type Lectin), 1885.4 mya (HMGB), 432.6 mya (STAT), 448.1 mya (ALF3), and 426.4 mya (ATPase 8/6) respectively. In conclusion, important selection forces and evolutionary divergence information of immune-survival genes between M. rosenbergii and P. monodon were successfully identified.
Collapse
Affiliation(s)
- Tze Chiew Christie Soo
- Department of Genetics and Molecular Biology, Animal Genetics and Genome Evolutionary Laboratory (AGAGEL), Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Subha Bhassu
- Department of Genetics and Molecular Biology, Animal Genetics and Genome Evolutionary Laboratory (AGAGEL), Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Terra Aqua Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), Research Management and Innovation Complex, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
26
|
Filshtein AP, Chikalovets IV, Mizgina TO, Lukyanov PA, Hua KF, Chernikov OV. Spatial Structure of Lectin from the Mussel Mytilus trossulus: In-Sights from Molecular Modelling and Practical Proof. Mar Drugs 2022; 21:md21010010. [PMID: 36662183 PMCID: PMC9866010 DOI: 10.3390/md21010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Most proteins have the ability to self-associate into homooligomeric protein complexes, which consist of two or more identical subunits. Today, modern methods of molecular modeling are an integral part of the study of many biologically active molecules. In silico methods are widely used in structure establishing and function and activity prediction of lectins - carbohydrate-binding proteins. Here, we described by computer simulation the spatial organization of lectin isolated from the mantle of the mussel Mytilus trossulus (MTL). It was shown that the dimerization of MTL gives a total of six ligand binding sites that may be important for the manifestation its biological properties. The ability of MTL to form a dimeric and oligomeric structure was confirmed by dynamic light scattering and SDS-PAGE methods.
Collapse
Affiliation(s)
- Alina P. Filshtein
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, Vladivostok 690022, Russia
| | - Irina V. Chikalovets
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, Vladivostok 690022, Russia
| | - Tatyana O. Mizgina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, Vladivostok 690022, Russia
| | - Pavel A. Lukyanov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, Vladivostok 690022, Russia
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan 260007, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404327, Taiwan
| | - Oleg V. Chernikov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, Vladivostok 690022, Russia
- Correspondence:
| |
Collapse
|
27
|
Chen YC, Qiu W, Zhang W, Zhang J, Chen R, Chen F, Wang KJ. A Novel Antimicrobial Peptide Sp-LECin with Broad-Spectrum Antimicrobial Activity and Anti- Pseudomonas aeruginosa Infection in Zebrafish. Int J Mol Sci 2022; 24:ijms24010267. [PMID: 36613722 PMCID: PMC9820466 DOI: 10.3390/ijms24010267] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
New antimicrobial agents are urgently needed to address the increasing emergence and dissemination of multidrug-resistant bacteria. In the study, a chemically synthesized truncated peptide containing 22-amino acids derived from a C-type lectin homolog SpCTL6 of Scylla paramamosain was screened and found to exhibit broad-spectrum antimicrobial activity, indicating that it is an antimicrobial peptide (AMP), named Sp-LECin. Sp-LECin possessed the basic characteristics of most cationic AMPs, such as positive charge (+4) and a relatively high hydrophobicity (45%). After treatment with Sp-LECin, the disruption of microbial membrane integrity and even leakage of cellular contents was observed by scanning electron microscopy (SEM). In addition, Sp-LECin could bind lipopolysaccharide (LPS), increase the outer and inner membrane permeability and induce reactive oxygen species (ROS) production, ultimately leading to the death of Pseudomonas aeruginosa. Furthermore, Sp-LECin exhibited potent anti-biofilm activity against P. aeruginosa during both biofilm formation and maturation. Notably, Sp-LECin had no obvious cytotoxicity and could greatly improve the survival of P. aeruginosa-infected zebrafish, by approximately 40% over the control group after 72 h of treatment. This study indicated that Sp-LECin is a promising antibacterial agent with the potential to be used against devastating global pathogen infections such as P. aeruginosa.
Collapse
Affiliation(s)
- Yan-Chao Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Wanlei Qiu
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Weibin Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Jingrong Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Roushi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- Correspondence: (F.C.); (K.-J.W.)
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- Correspondence: (F.C.); (K.-J.W.)
| |
Collapse
|
28
|
Ou J, Liu Q, Bian Y, Luan X, Meng Y, Dong H, Cao M, Zhang B, Wang Z, Zhao W. Integrated analysis of mRNA and microRNA transcriptome related to immunity and autophagy in shrimp hemocytes infected with Spiroplasma eriocheiris. FISH & SHELLFISH IMMUNOLOGY 2022; 130:436-452. [PMID: 36184970 DOI: 10.1016/j.fsi.2022.09.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
In recent years, the industry in charge of the cultivation of Macrobrachium nipponense (M.nipponense) has suffered significant economic losses due to an infectious pathogen called Spiroplasma eriocheiris (S.eriocheiris). There has therefore been a need to identify the key immune and autophagy genes that respond to M.nipponense's infection with S. eriocheiris to analyze its immune response mechanism and the regulation of related microRNAs (miRNAs). In this study, the mRNA and miRNA transcriptome of M.nipponense's hemocytes were analyzed at different stages of infection. This analysis employed the second and third-generation sequencing technologies. In the mRNA transcriptome, 1656 genes were expressed in healthy and susceptible M.nipponense. 892 of these were significantly up-regulated, while 764 were down-regulated. 118 genes with significant differences in autophagy, endocytosis, lysosome, Toll, IMD, and VEGF pathways were obtained from the transcriptome. In the miRNA transcriptome, 312 miRNAs (Conserved: 112, PN-type: 18, PC-type: 182) were sequenced. 74 were significantly up-regulated, and 57 were down-regulated. There were 25 miRNAs involved in regulating the Toll and IMD pathways, 41 in endocytosis, 30 in lysosome, and 12 in the VEGF pathway. An integrated analysis of immune-related miRNAs and mRNAs showed that miRNAs with significant differences (P < 0.05) such as ame-miR-29b-3p, dpu-miR-1and PC-3p-945_4074, had corresponding regulatory relationships with 118 important immune genes such as Relish, Dorsal, Caspase-3, and NF-κB. This study obtained the key immune and autophagy-related genes and corresponding regulatory miRNAs in M. nipponense's hemocytes in response to an infection by S.eriocheiris. The results can provide vital data that further reveals the defense mechanism of M.nipponense's immune system against S.eriocheiris. It can also help further comprehension and interpretation of M.nipponense's resistance mechanism to the invading S.eriocheiris, and provide molecular research information for the realization of host-directed therapies (HDT) for M.nipponense.
Collapse
Affiliation(s)
- Jiangtao Ou
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China.
| | - Qiao Liu
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China; The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Province Jiangsu, China
| | - Yunxia Bian
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Xiaoqi Luan
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China; Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yusuo Meng
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Huizi Dong
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Miao Cao
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Benhou Zhang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Zisheng Wang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Weihong Zhao
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| |
Collapse
|
29
|
Dai X, Sun M, Nie X, Zhao Y, Xu H, Han Z, Gao T, Huang X, Ren Q. A positive feedback loop between two C-type lectins originated from gene duplication and relish promotes the expression of antimicrobial peptides in Procambarus clarkii. Front Immunol 2022; 13:1021121. [PMID: 36353630 PMCID: PMC9638144 DOI: 10.3389/fimmu.2022.1021121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
Gene duplication (GD) leads to the expansion of gene families that contributes organisms adapting to stress or environment and dealing with the infection of various pathogens. C-type lectins (CTLs) in crustaceans undergo gene expansion and participate in various immune responses. However, the functions of different CTL produced by GD are not fully characterized. In the present study, two CTL genes (designated as PcLec-EPS and PcLec-QPS, respectively) were identified from Procambarus clarkii. PcLec-EPS and PcLec-QPS originate from GD and the main difference between them is exon 3. PcLec-EPS and PcLec-QPS respectively contains EPS and QPS motif in their carbohydrate recognition domain. The mRNA levels of PcLec-EPS and PcLec-QPS in hemocytes, gills, intestine and lymph underwent time-dependent enhancement after D-Mannose and D-Galactose challenge. Recombinant PcLec-EPS and PcLec-QPS could bind to carbohydrates and microbes, and agglutinate bacteria. The results of experiments on recombinant protein injection and RNA interference indicate that PcLec-EPS and PcLec-QPS can respectively strong recognize and bind D-Mannose and D-Galactose, activate the Relish transcriptional factor, and further upregulate the expression of different antimicrobial peptides (AMPs). In addition, these two CTLs and Relish could positively regulate the expression of each other, suggesting that there is a positive feedback loop between two CTLs and Relish that regulates the expression of AMPs. It may contribute to the expansion of the immune response for host quickly and efficiently eliminating pathogenic microorganisms. This study provides new knowledge for clear understanding the significance and function of different CTL generated by GD in immune defenses in crustacean.
Collapse
Affiliation(s)
- Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Mengling Sun
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Ximei Nie
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Yuqi Zhao
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Hao Xu
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Zhengxiao Han
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Tianheng Gao
- Institute of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
- *Correspondence: Tianheng Gao, ; Xin Huang, ; Qian Ren,
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
- *Correspondence: Tianheng Gao, ; Xin Huang, ; Qian Ren,
| | - Qian Ren
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
- *Correspondence: Tianheng Gao, ; Xin Huang, ; Qian Ren,
| |
Collapse
|
30
|
Viana JT, Rocha RDS, Maggioni R. Structural and functional diversity of lectins associated with immunity in the marine shrimp Litopenaeusvannamei. FISH & SHELLFISH IMMUNOLOGY 2022; 129:152-160. [PMID: 36058435 DOI: 10.1016/j.fsi.2022.08.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Lectins are important pattern recognition receptors (PRRs) and their immunological action is related to the recognition of glycans present in the pathogen cells surface. The lectins described for Litopenaeus vannamei are divided into C-type, L-type and galectin, which are mainly expressed in hepatopancreas and hemocytes. They are involved in several immune response pathways, such as phagocytosis, hemocytes recruitment, prophenoloxidase activation, and gene regulation. Although lectins have multiple immune functions, most experimental challenges focus only on WSSV and Vibrio sp. This article is a detailed review on the role of lectins in L. vannamei immune system, bringing together information on molecular structure, temporal and special expression and immune function, highlighting the wide participation of these molecules in shrimp innate immune system.
Collapse
Affiliation(s)
- Jhonatas Teixeira Viana
- Center for the Diagnosis of Diseases of Aquatic Organisms, Marine Sciences Institute, Federal University of Ceará, 60165-081, Fortaleza, CE, Brazil.
| | - Rafael Dos Santos Rocha
- Center for the Diagnosis of Diseases of Aquatic Organisms, Marine Sciences Institute, Federal University of Ceará, 60165-081, Fortaleza, CE, Brazil.
| | - Rodrigo Maggioni
- Center for the Diagnosis of Diseases of Aquatic Organisms, Marine Sciences Institute, Federal University of Ceará, 60165-081, Fortaleza, CE, Brazil.
| |
Collapse
|
31
|
Zhang Y, Ni M, Zhang P, Bai Y, Zhou B, Zheng J, Cui Z. Identification and functional characterization of C-type lectins and crustins provide new insights into the immune response of Portunus trituberculatus. FISH & SHELLFISH IMMUNOLOGY 2022; 129:170-181. [PMID: 36057429 DOI: 10.1016/j.fsi.2022.08.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
A meticulous understanding of the immune characteristics of aquaculture animals is the basis for developing precise disease prevention and control strategies. In this study, four novel C-type lectins (PtCTL-5, PtCTL-6, PtCTL-7 and PtCTL-8) including a single carbohydrate-recognition domain (CRD), and four novel crustins (Ptcrustin-1, Ptcrustin-2, Ptcrustin-3 and Ptcrustin-4) with a single whey acidic protein (WAP) domain were identified from the swimming crab Portunus trituberculatus. Tissue distribution analysis indicated that most of the target genes were predominantly expressed in the hepatopancreas in all examined tissues, except for Ptcrustin-1 which were mainly expressed in the gills. Our results showed that the eight genes displayed various transcriptional profiles across different tissues. In hemocytes, the PtCTL-7 responded quickly to Vibrio alginolyticus and exhibited much more strongly up-regulation than other three PtCTLs. The Ptcrustin-1 rapidly responded to V. alginolyticus within 3 h in all the three tested tissues. Furthermore, recombinant proteins of PtCTL-5 and PtCTL-8 were successfully obtained, and both of them displayed bacterial binding activities toward V. alginolyticus, V. harveyi and Staphylococcus aureus, and only showed antibacterial activity against V. harveyi. These findings provided new insights into the diverse immune response of P. trituberculatus and laid theoretical foundations for the development of precise disease prevention and control strategies in P. trituberculatus farming. Moreover, the specific anti-V. harveyi activities exhibited by rPtCTL-5 and rPtCTL-8 suggested their promising application prospects for controlling diseases caused by V. harveyi.
Collapse
Affiliation(s)
- Yi Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Mengqi Ni
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Peng Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Yunhui Bai
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Bin Zhou
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Jinbin Zheng
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China.
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| |
Collapse
|
32
|
Wang Z, Wu Q, Liao G, Fan L. New insights into the regulation mechanism of Litopenaeus vannamei hepatopancreas after lipopolysaccharide challenge using transcriptome analyses. FISH & SHELLFISH IMMUNOLOGY 2022; 128:466-473. [PMID: 35987503 DOI: 10.1016/j.fsi.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Litopenaeus vannamei (L. vannamei) is the most economically valuable cultured shrimp in the world, while Gram-negative bacteria infection causes huge economic losses to shrimp culture. In this study, we performed transcriptome sequencing of the hepatopancreas in L. vannamei after lipopolysaccharide (LPS, the cell wall component of Gram-negative bacteria) injection to investigate the response of shrimp under Gram-negative bacteria invasion. A total of 306 differentially expressed genes (DEGs) (70 up- and 236 down-regulated) were identified in the LPS treatment group (L group) when compared to their expression levels in the control group (C group). The oxidoreductase activity (GO:0016491) in the molecular function category was enriched in the LPS-responsive DEGs in GO annotation, and the metabolism of xenobiotics by cytochrome P450 (ko00980) was the most enriched pathway in KEGG annotation. The transcriptome profiling revealed that the toll like receptor, C-type lectin receptor, and β-1,3-glucan binding protein were involved in the recognition of LPS during its early invasion stage. Although LPS could reduce the metabolic ability of exogenous substances, induce inflammation and reduce antioxidant capacity, L. vannamei could maintain its homeostasis by improving immunity, enhancing anti-stress ability and reducing apoptosis. Our research provides the first transcriptome profiling for the L. vannamei hepatopancreas after LPS injection. These results could offer a valuable reference on the mechanism of shrimp against Gram-negative bacteria and could provide guidance for shrimp farming.
Collapse
Affiliation(s)
- Zhenlu Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Qiuping Wu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Guowei Liao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lanfen Fan
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
33
|
Huang X, Xu Y, Zhao Y, Cao X, Wang D, Yan J, Wei T, Dai X, Xu Z, Ren Q. Characterization of four spliced isoforms of a transmembrane C-type lectin from Procambarus clarkii and their function in facilitating WSSV infection. FISH & SHELLFISH IMMUNOLOGY 2022; 127:1127-1138. [PMID: 35870750 DOI: 10.1016/j.fsi.2022.07.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
C-type lectin (CTL) is an important pattern recognition receptor that play vital functions in the innate immunity. Many soluble CTLs in crustacean participate in the inhibition or promotion of white spot syndrome virus (WSSV) infection. However, whether transmembrane CTLs participate in WSSV infection in crustacean remains unknown. In the present study, four spliced isoforms of a transmembrane CTL (designated as PcTlec) from Procambarus clarkii were identified for the first time. The genome structure of PcTlec contains eight exons, six known introns, and one unknown intron. PcTlec-isoform1 is produced by intron retention, whereas PcTlec-isoform3 and PcTlec-isoform4 are produced by exon skipping. All of them contain the transmembrane domain and characteristic carbohydrate recognition domain (CRD). Four PcTlec isoforms were mainly expressed in the hepatopancreas, stomach, and intestine. After WSSV challenge, the expression levels of PcTlec-isoform1-4 in the intestine were upregulated. The knockdown of the region shared by four PcTlec isoforms evidently decreased the expression of WSSV envelope protein VP28 and the copies of viral particles. A recombinant protein (rPcTlec-CRD) containing the CRD that was shared by four PcTlec isoforms was acquired by procaryotic expression system. The injection of purified rPcTlec-CRD protein evidently increased the VP28 expression and WSSV copies during viral infection. Moreover, rPcTlec-CRD could directly bind to WSSV and interact with VP28 protein. These findings indicate that new-found transmembrane CTL isoforms in P. clarkii may act as viral receptors that facilitate WSSV infection. This study contributes to the recognition and understanding of the functions of transmembrane CTLs in crustacean in the infection of host by WSSV.
Collapse
Affiliation(s)
- Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Yu Xu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, Jiangsu Province, 210017, China
| | - Yuqi Zhao
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Xunyuan Cao
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Dandan Wang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Jing Yan
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Tianxiang Wei
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Zhiqiang Xu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, Jiangsu Province, 210017, China.
| | - Qian Ren
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
34
|
Zhao C, Wen H, Huang S, Weng S, He J. A Novel Disease (Water Bubble Disease) of the Giant Freshwater Prawn Macrobrachium rosenbergii Caused by Citrobacter freundii: Antibiotic Treatment and Effects on the Antioxidant Enzyme Activity and Immune Responses. Antioxidants (Basel) 2022; 11:1491. [PMID: 36009210 PMCID: PMC9405353 DOI: 10.3390/antiox11081491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
The giant freshwater prawn, Macrobrachium rosenbergii, is an important and economical aquaculture species widely farmed in tropical and subtropical areas of the world. A new disease, "water bubble disease (WBD)", has emerged and resulted in a large loss of M. rosenbergii cultured in China. A water bubble with a diameter of about 7 mm under the carapace represents the main clinical sign of diseased prawns. In the present study, Citrobacter freundii was isolated and identified from the water bubble. The optimum temperature, pH, and salinity of the C. freundii were 32 °C, 6, and 1%, respectively. A challenging experiment showed that C. freundii caused the same typical signs of WBD in prawns. Median lethal dose of the C. freundii to prawn was 104.94 CFU/g. According to the antibiogram tests of C. freundii, florfenicol and ofloxacin were selected to evaluate their therapeutic effects against C. freundii in prawn. After the challenge with C. freundii, 86.67% and 72.22% survival of protective effects against C. freundii were evaluated in the oral florfenicol pellets and oral ofloxacin pellets feding prawns, respectively, whereas the mortality of prawns without fed antibiotics was 93%. After antibiotic treatment and C. freundii infection, the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), malondialdehyde (MDA), acid phosphatase (ACP), alkaline phosphatase (ALP), and lysozyme (LZM) in the hemolymph and hepatopancreas of the prawns and the immune-related gene expression levels of Cu/Zn-SOD, CAT, GPx, GST, LZM, ACP, anti-lipopolysaccharide factor, crustin, cyclophilin A, and C-type lectin in hepatopancreas were all significantly changed, indicating that innate immune responses were induced by C. freundii. These results can be beneficial for the prevention and control of C. freundii in prawns.
Collapse
Affiliation(s)
- Caiyuan Zhao
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China;
| | - Huagen Wen
- Southtern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Science, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China; (H.W.); (S.H.); (S.W.)
| | - Shengsheng Huang
- Southtern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Science, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China; (H.W.); (S.H.); (S.W.)
| | - Shaoping Weng
- Southtern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Science, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China; (H.W.); (S.H.); (S.W.)
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China;
- Southtern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Science, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China; (H.W.); (S.H.); (S.W.)
| |
Collapse
|
35
|
Zhu K, Yang F, Li F. Molecular markers for hemocyte subpopulations in crayfish Cherax quadricarinatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 132:104407. [PMID: 35364134 DOI: 10.1016/j.dci.2022.104407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Semigranular cells (SGCs) and granular cells (GCs) are two dominant groups of circulating hemocytes in crayfish Cherax quadricarinatus. Molecular markers are required for the clear classification of the hemocytes and the research of their function and differentiation. In this study, we compared the protein content of GCs and SGCs by using two workflows: one-dimensional gel electrophoresis followed by LC-MS/MS and in-solution digestion of cell lysate followed by LC-MS/MS. Cell type-specific proteins were identified, and their expression in SGCs and GCs was further investigated by RT-PCR, Western blotting, and immunofluorescence analysis. Three molecular markers for GCs (peroxinectin, a mannose-binding protein, and prophenoloxidase-activating enzyme 2a) and three molecular markers for SGCs (a vitelline membrane outer layer protein I-like protein, a C-type lectin, and a peptidase) were identified. The application of some of the markers in Eriocheir sinensis was also analyzed. These molecular markers are useful tools for the research of crustaceans hemocytes.
Collapse
Affiliation(s)
- Kun Zhu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Feng Yang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Fang Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, PR China.
| |
Collapse
|
36
|
Du J, Yue K, Peng Y, Ning Q. Crucial roles of a novel exoskeletal-derived lectin in innate immunity of the oriental river prawn, Macrobrachium nipponense. JOURNAL OF FISH DISEASES 2022; 45:717-728. [PMID: 35253248 DOI: 10.1111/jfd.13597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
As important pattern recognition receptors (PRRs), C-type lectins play crucial roles in the crustacean innate immune system. In this study, a novel C-type lectin, designated as MnLec1, was obtained from the exoskeleton of the oriental river prawn Macrobrachium nipponense for the first time. The full-length cDNA of MnLec1 was 1329 bp with an open reading frame of 774 bp. The predicted MnLec1 protein contains a single carbohydrate-recognition domain with an EPN/LND motif and one Ca2+ binding site-2. MnLec1 transcripts were widely detected in the tested tissues of M. nipponense and significantly up-regulated after Aeromonas hydrophila challenge. The recombinant MnLec1 protein was found to have a wide spectrum of binding activities towards various microorganisms, agglutinate two kinds of Gram-negative bacteria (Escherichia coli and A. hydrophila) in a Ca2+ -independent manner. What's more, the survivability of prawns was significantly down-regulated after RNAi of MnLec1 when infected with A. hydrophila. Collectively, these findings suggest that MnLec1 from the exoskeleton might function as a PRR and play a crucial role in immune defense against invading pathogens in M. nipponense.
Collapse
Affiliation(s)
- Juan Du
- College of Life Sciences, Henan Normal University, Xinxiang, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Kaidi Yue
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yanxin Peng
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Qianji Ning
- College of Life Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
37
|
Huang Y, Wang RX, Jiang FH, Xu XT, Shi Y, Zhao Z. A new calnexin modulates antibacterial immune response in obscure puffer Takifugu obscurus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104288. [PMID: 34624358 DOI: 10.1016/j.dci.2021.104288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Calnexin (Cnx) is a membrane-bound lectin chaperone of the endoplasmic reticulum. In this study, a novel Cnx homologue from the obscure puffer Takifugu obscurus was characterized, tentatively named ToCnx. The cDNA of ToCnx was 1803 bp, and it contained an open reading frame encoding a polypeptide of 600 amino acid residues with a calculated molecular weight of 67.5 kDa. Multiple alignment of the deduced amino acid sequences of ToCnx and other related fish Cnxs revealed that ToCnx had typical characteristics of fish Cnxs. Sequence comparison and phylogenetic tree analysis showed that ToCnx had the closest relationship with Cnxs from Takifugu flavidus and Takifugu rubripes. ToCnx transcripts were detected in all the tissues examined, and they were mainly expressed in the liver, kidney, and intestine. Upon Vibrio harveyi, Edwardsiella tarda, and Aeromonas hydrophila infection, ToCnx transcripts were all significantly upregulated in the kidneys. The recombinant calreticulin domain of ToCnx (rToCnx) was prepared by prokaryotic expression. In the absence of calcium, rToCnx was able to bind three Gram-negative bacteria (V. harveyi, E. tarda, and A. hydrophila) and two bacterial saccharides, such as lipopolysaccharide and peptidoglycan. In the presence of calcium, rToCnx could agglutinate all the detected microorganisms. In addition, rToCnx possessed the effect of inhibiting the growth of three microbe strains. These observations suggested that ToCnx is an important participant in host immune defense against bacteria.
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China
| | - Rui-Xia Wang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China
| | - Fu-Hui Jiang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China
| | - Xiao-Tong Xu
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China
| | - Yan Shi
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China
| | - Zhe Zhao
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China.
| |
Collapse
|
38
|
Zhao BR, Wang XX, Wang XW. Shoc2 recognizes bacterial flagellin and mediates antibacterial Erk/Stat signaling in an invertebrate. PLoS Pathog 2022; 18:e1010253. [PMID: 35073369 PMCID: PMC8812994 DOI: 10.1371/journal.ppat.1010253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/03/2022] [Accepted: 01/06/2022] [Indexed: 11/18/2022] Open
Abstract
Flagellin is a key bacterial virulence factor that can stimulate molecular immune signaling in both animals and plants. The detailed mechanisms of recognizing flagellin and mounting an efficient immune response have been uncovered in vertebrates; however, whether invertebrates can discriminate flagellin remains largely unknown. In the present study, the homolog of human SHOC2 leucine rich repeat scaffold protein in kuruma shrimp (Marsupenaeus japonicus), designated MjShoc2, was found to interact with Vibrio anguillarum flagellin A (FlaA) using yeast two-hybrid and pull-down assays. MjShoc2 plays a role in antibacterial response by mediating the FlaA-induced expression of certain antibacterial effectors, including lectin and antimicrobial peptide. FlaA challenge, via MjShoc2, led to phosphorylation of extracellular regulated kinase (Erk), and the subsequent activation of signal transducer and activator of transcription (Stat), ultimately inducing the expression of effectors. Therefore, by establishing the FlaA/MjShoc2/Erk/Stat signaling axis, this study revealed a new antibacterial strategy in shrimp, and provides insights into the flagellin sensing mechanism in invertebrates. Flagellin sensing has been proven as a general antibacterial strategy. Recognition of bacterial flagellin by the transmembrane receptor toll like receptor 5 (TLR5) leads to the activation of nuclear factor kappa B (NF-κB) pathway and induction of proinflammatory cytokines, while recognition by the intracellular nucleotide-binding leucine-rich (NLR) receptor leads to caspase-activation and cytokines-expression. Although flagellin is an effective immune stimulator that induces antimicrobial peptides in Drosophila and in crustaceans, how an invertebrate host senses flagellin and mounts an immune response is poorly understood. Here, we used the flagellin (FlaA) from Vibrio anguillarum, a pathogen of shrimp, as a bait protein to screen a yeast two-hybrid library derived from kuruma shrimp (Marsupenaeus japonicus). We found a scaffold protein, MjShoc2, able to interact with FlaA. We also found that FlaA could effectively induce the expression of certain recognized antibacterial effectors in shrimp depending on MjShoc2. We revealed that extracellular regulated kinase (Erk) phosphorylation occurred downstream of FlaA/MjShoc2, and led to signal transducer and activator of transcription (Stat) activation, resulting in transcription of certain effectors. Therefore our study provides new insights into the FlaA-induced molecular immunity in invertebrates.
Collapse
Affiliation(s)
- Bao-Rui Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xin-Xin Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- * E-mail:
| |
Collapse
|
39
|
Huang YH, Kumar R, Liu CH, Lin SS, Wang HC. A novel C-type lectin LvCTL 4.2 has antibacterial activity but facilitates WSSV infection in shrimp (L. vannamei). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104239. [PMID: 34425174 DOI: 10.1016/j.dci.2021.104239] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Glycan-binding protein C-type lectin (CTL), one of the pattern recognition receptors (PRRs), binds to carbohydrates on the surface of pathogens and elicits antimicrobial responses in shrimp innate immunity. The objective was to identify and characterize a novel C-type lectin LvCTL 4.2 in Litopenaeus vannamei. The LvCTL 4.2 protein consisted of a signal peptide at the N terminal and a carbohydrate-recognition domain (CRD) with a mutated mannose-binding (Glu-Pro-Ala; EPA) motif at the C terminal, and thereby has a putative secreted mannose-binding C-type lectin architecture. LvCTL 4.2 was highly expressed in nervous tissue and stomach. Infection with white spot syndrome virus (WSSV) induced expression of LvCTL 4.2 in shrimp stomach at 12 h post infection. Conversely, there was no obvious upregulation in expression of LvCTL 4.2 in stomach or hepatopancreas of shrimp with AHPND (acute hepatopancreas necrosis disease). Pathogen binding assays confirmed recombinant LvCTL 4.2 protein (rLvCTL 4.2) had significant binding ability with the WSSV virion, Gram-negative, and Gram-positive bacteria. Moreover, rLvCTL 4.2 had strong growth inhibition of Vibrio parahaemolyticus. Silencing LvCTL 4.2 suppressed WSSV replication, whereas pretreatment of WSSV with rLvCTL 4.2 facilitated viral replication in vivo. In conclusion, LvCTL 4.2 acted as a PRR that inhibited AHPND-causing bacteria, but facilitated WSSV pathogenesis.
Collapse
Affiliation(s)
- Yu-Hsun Huang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Ramya Kumar
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
40
|
Zhao X, Qiao J, Zhang P, Zhang Z, Aweya JJ, Chen X, Zhao Y, Zhang Y. Protein Diversity and Immune Specificity of Hemocyanin From Shrimp Litopenaeus vannamei. Front Immunol 2021; 12:772091. [PMID: 34950141 PMCID: PMC8688539 DOI: 10.3389/fimmu.2021.772091] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Hemocyanin is an important non-specific innate immune defense molecule with phenoloxidase, antiviral, antibacterial, hemolytic, and antitumor activities. To better understand the mechanism of functional diversity, proteomics approach was applied to characterize hemocyanin (HMC) expression profiles from Litopenaeus vannamei. At first, hemocyanin was purified by Sephadex G-100 and DEAE-cellulose (DE-52) columns from shrimp serum, and 34 protein spots were identified as HMC on the 2-DE gels. Furthermore, we found that 9 HMC spots about 75 or 77 kDa were regulated by Streptococcus agalactiae and Vibrio parahaemolyticus infection at 6, 12, and 24 h. In addition, 6 different pathogen-binding HMC fractions, viz., HMC-Mix, HMC-Vp, HMC-Va, HMC-Vf, HMC-Ec, and HMC-Sa, showed different agglutinative and antibacterial activities. Moreover, lectin-blotting analysis showed significant differences in glycosylation level among HMC isomers and bacteria-binding HMC fractions. Particularly, the agglutinative activities of the HMC fractions were almost completely abolished when HMC was deglycosylated by O-glycosidase, which suggest that O-linked sugar chains of HMC played important roles in the innate immune recognition. Our findings demonstrated for the first time that L. vannamei HMC had molecular diversity in protein level, which is closely associated with its ability to recognize diverse pathogens, whereas glycan modification probably contributed to HMC’s diversity and multiple immune activities.
Collapse
Affiliation(s)
- Xianliang Zhao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,College of Fisheries, Henan Normal University, Xinxiang, China
| | - Jie Qiao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Pei Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Zehui Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Xiaohan Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Yongzhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
41
|
Characterization and functional analysis of tandem threonine containing C-type lectin (Thr-Lec) from the ridgetail white prawn Exopalaemon carinicauda. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100018. [DOI: 10.1016/j.fsirep.2021.100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/15/2021] [Accepted: 07/06/2021] [Indexed: 11/21/2022] Open
|
42
|
Zheng J, Ni M, Mao Y, Su Y. Antibacterial activity of four recombinant carbohydrate recognition domain proteins identified from the kuruma shrimp Marsupenaeus japonicus. Int J Biol Macromol 2021; 191:746-752. [PMID: 34592219 DOI: 10.1016/j.ijbiomac.2021.09.138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022]
Abstract
The carbohydrate recognition domain (CRD) is the key component of C-type lectins (CTLs) with the capacity to recognize and eliminate invading pathogens. Herein, the recombinant proteins of four CRDs identified from the kuruma shrimp, Marsupenaeus japonicus, were produced and purified by an Escherichia coli expression system and affinity chromatography. Bacterial binding and antibacterial assays showed that the four CRDs displayed various bacterial binding and antibacterial activities against different bacteria. Among the four recombinant CRDs, His-CRD2-3 exhibited the broadest spectrum of bacterial binding and antibacterial activities against gram-negative bacteria (Vibrio parahaemolyticus, V. alginolyticus and V. harveyi) and gram-positive bacteria (Staphylococcus aureus and Micrococcus lysodeikticus). Moreover, the four recombinant CRDs showed different capacities to regulate the expression of several immune effector genes (MjCTL3, MjCTL4, MjCTL, Mjily and Mjsty), among which His-CRD2-3 displayed broader and stronger inductive effects on these immune effector genes. This study indicated that the four CRDs participated in immune defense by binding and killing bacteria and regulating the transcription of other immune effector genes. In addition, our results suggested that His-CRD2-3 might be a promising agent for the prevention and treatment of bacteriosis.
Collapse
Affiliation(s)
- Jinbin Zheng
- School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Mengqi Ni
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yongquan Su
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
43
|
Soo TCC, Bhassu S. Differential STAT gene expressions of Penaeus monodon and Macrobrachium rosenbergii in response to white spot syndrome virus (WSSV) and bacterial infections: Additional insight into genetic variations and transcriptomic highlights. PLoS One 2021; 16:e0258655. [PMID: 34653229 PMCID: PMC8519450 DOI: 10.1371/journal.pone.0258655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/04/2021] [Indexed: 01/14/2023] Open
Abstract
Diseases have remained the major issue for shrimp aquaculture industry for decades by which different shrimp species demonstrated alternative disease resistance or tolerance. However, there had been insufficient studies on the underlying host mechanisms of such phenomenon. Hence, in this study, the main objective involves gaining a deeper understanding into the functional importance of shrimp STAT gene from the aspects of expression, sequence, structure, and associated genes. STAT gene was selected primarily because of its vital signalling roles in stress, endocrine, and immune response. The differential gene expressions of Macrobrachium rosenbergii STAT (MrST) and Penaeus monodon STAT (PmST) under White Spot Syndrome Virus (WSSV) and Vibrio parahaemolyticus/VpAHPND infections were identified through qPCR analysis. Notably, during both pathogenic infections, MrST demonstrated significant gene expression down-regulations (during either early or later post-infection time points) whereas PmST showed only significant gene expression up-regulations. Important sequence conservation or divergence was highlighted through STAT sequence comparison especially amino acid alterations at 614 aa [K (Lysine) to E (Glutamic Acid)] and 629 aa [F (Phenylalanine) to V (Valine)] from PmST (AY327491.1) to PmST (disease tolerant strain). There were significant differences observed between in silico characterized structures of MrST and PmST proteins. Important functional differentially expressed genes (DEGs) in the aspects of stress, endocrine, immune, signalling, and structural were uncovered through comparative transcriptomic analysis. The DEGs associated with STAT functioning were identified including inositol 1,4,5-trisphosphate receptor, hsp90, caspase, ATP binding cassette transmembrane transporter, C-type Lectin, HMGB, ALF1, ALF3, superoxide dismutase, glutathione peroxidase, catalase, and TBK1. The main findings of this study are STAT differential gene expression patterns, sequence divergence, structural differences, and associated functional DEGs. These findings can be further utilized for shrimp health or host response diagnostic studies. STAT gene can also be proposed as a suitable candidate for future studies of shrimp innate immune enhancement.
Collapse
Affiliation(s)
- Tze Chiew Christie Soo
- Faculty of Science, Animal Genetics and Genome Evolutionary Laboratory (AGAGEL), Department of Genetics and Molecular Biology, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Subha Bhassu
- Faculty of Science, Animal Genetics and Genome Evolutionary Laboratory (AGAGEL), Department of Genetics and Molecular Biology, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
- Terra Aqua Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), Research Management and Innovation Complex, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
44
|
Perazzolo LM, Li C, Somboonwiwat K. Editorial: Aquatic Invertebrate Immunity Against Infectious Diseases. Front Immunol 2021; 12:762082. [PMID: 34630438 PMCID: PMC8494284 DOI: 10.3389/fimmu.2021.762082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/06/2021] [Indexed: 12/04/2022] Open
Affiliation(s)
- Luciane Maria Perazzolo
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Chaozheng Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
45
|
He Z, Zhao J, Chen X, Liao M, Xue Y, Zhou J, Chen H, Chen G, Zhang S, Sun C. The Molecular Mechanism of Hemocyte Immune Response in Marsupenaeus japonicus Infected With Decapod Iridescent Virus 1. Front Microbiol 2021; 12:710845. [PMID: 34512588 PMCID: PMC8427283 DOI: 10.3389/fmicb.2021.710845] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
As a new type of shrimp lethal virus, decapod iridescent virus 1 (DIV1) has caused huge economic losses to shrimp farmers in China. Up to now, DIV1 has been detected in a variety of shrimps, but there is no report in Marsupenaeus japonicus. In the current study, we calculated the LC50 to evaluate the toxicity of DIV1 to M. japonicus and determined through nested PCR that M. japonicus can be the host of DIV1. Through enzyme activity study, it was found that DIV1 can inhibit the activities of superoxide dismutase, catalase, lysozyme, and phenoloxidase, which could be a way for DIV1 to achieve immune evasion. In a comprehensive study on the transcriptomic changes of M. japonicus in response to DIV1 infection, a total of 52,287 unigenes were de novo assembled, and 20,342 SSR markers associated with these unigenes were obtained. Through a comparative transcriptomic analysis, 6,900 differentially expressed genes were identified, including 3,882 upregulated genes and 3,018 downregulated genes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that some GO terms related to virus invasion, replication, and host antiviral infection were promoted under DIV1 infection, such as carbohydrate binding, chitin binding, chitin metabolic process, and DNA replication initiation, and some KEGG pathways related to immune response were significantly influenced by DIV1 infection, including Toll and IMD signaling pathway, JAK-STAT signaling pathway, IL-17 signaling pathway, C-type lectin receptor signaling pathway, complement and coagulation cascades, antigen processing and presentation, necroptosis, apoptosis, NOD-like receptor signaling pathway, apoptosis-multiple species, and TNF signaling pathway. Further analysis showed that STAT, Dorsal, Relish, heat shock protein 70 (HSP70), C-type lectins, and caspase play an important role in DIV1 infection. This is the first detailed study of DIV1 infection in M. japonicus, which initially reveals the molecular mechanism of DIV1 infection in M. japonicus by using the transcriptome analysis of hemocytes combined with enzyme activity study.
Collapse
Affiliation(s)
- Zihao He
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Jichen Zhao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Xieyan Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Minze Liao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Yuan Xue
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Jianing Zhou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Haozhen Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Guoliang Chen
- Haimao Seed Technology Group Co., Ltd., Zhanjiang, China
| | - Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
| |
Collapse
|
46
|
Liu Y, Su Y, Zhang A, Cui Z. A C-Type Lectin Highly Expressed in Portunus trituberculatus Intestine Functions in AMP Regulation and Prophenoloxidase Activation. Antibiotics (Basel) 2021; 10:antibiotics10050541. [PMID: 34066980 PMCID: PMC8151143 DOI: 10.3390/antibiotics10050541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/30/2022] Open
Abstract
A C-type lectin (PtCLec2) from Portunus trituberculatus was identified for characterization of its role in defense and innate immunity. PtCLec2 contains a single carbohydrate-recognition domain (CRD) with a conserved QPD motif, which was predicted to have galactose specificity. The mRNA expression of PtCLec2 was predominantly detected in intestine and increased rapidly and significantly upon pathogen challenge. The recombinant PtCLec2 (rPtCLec2) could bind various microorganisms and PAMPs with weak binding ability to yeast and PGN. It agglutinated the tested Gram-negative bacteria (Vibrio alginolyticus and Pseudomonas aeruginosa), Gram-positive bacteria (Staphylococcus aureus and Micrococcus luteus), and rabbit erythrocytes in the presence of exogenous Ca2+, and these agglutination activities were suppressed by LPS, d-galactose, and d-mannose. Further, rPtCLec2 enhanced phagocytosis and clearance of V. alginolyticus, and displayed inhibitory activities against the tested bacteria. Knockdown of PtCLec2 decreased the transcription of two phagocytosis genes (PtArp and PtMyosin), three prophenoloxidase (proPO) system-related genes (PtPPAF, PtcSP1, and PtproPO), six antimicrobial peptides (AMPs) (PtALF4-7, PtCrustin1, and PtCrustin3), and PtRelish but upregulated the expression levels of PtJNK, PtPelle, and PtTLR. These results collectively indicate that PtCLec2 might perform its immune recognition function via binding and agglutination, and mediate pathogen elimination via regulating hemocyte phagocytosis, AMP synthesis, and proPO activation.
Collapse
Affiliation(s)
- Yuan Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (A.Z.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-532-8289-8637
| | - Yue Su
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (A.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ao Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (A.Z.)
| | - Zhaoxia Cui
- School of Marine Science, Ningbo University, Ningbo 315211, China;
| |
Collapse
|
47
|
Qiu W, Chen F, Chen R, Li S, Zhu X, Xiong M, Wang KJ. A New C-Type Lectin Homolog SpCTL6 Exerting Immunoprotective Effect and Regulatory Role in Mud Crab Scylla paramamosain. Front Immunol 2021; 12:661823. [PMID: 33897708 PMCID: PMC8062930 DOI: 10.3389/fimmu.2021.661823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/16/2021] [Indexed: 11/15/2022] Open
Abstract
C-type lectin (CTL), a well-known immune-related molecule, has received more and more attention due to its diverse functions, especially its important role in development and host defense of vertebrate and invertebrate. Since the research on crab CTLs is still lack, we screened a new CTL homolog, named SpCTL6 from mud crab Scylla paramamosain. The full-length cDNA sequence of SpCTL6 was 738 bp with a 486 bp of ORF, and the deduced amino acids were 161 aa. SpCTL6 was predicted to have a 17 aa signal peptide and its mature peptide was 144 aa (MW 16.7 kDa) with pI value of 5.22. It had typical CTL structural characteristics, such as a single C-type lectin-like domain, 4 conserved cysteines, similar tertiary structure to that of vertebrate CTLs and a mutated Ca2+ binding motif Gln-Pro-Thr (QPT), clustering into the same branch as the crustacean CTLs. SpCTL6 was highly expressed in the entire zoeal larval stages and widely distributed in adult crab tissues with the highest transcription level in testis. During the molting process of juvenile crabs, the expression level of SpCTL6 was remarkably increased after molting. SpCTL6 could be significantly upregulated in two larval stages (Z1 and megalopa) and adult crab testis under immune challenges. Recombinant SpCTL6 (rSpCTL6) was successfully obtained from eukaryotic expression system. rSpCTL6 exhibited binding activity with PAMPs (LPS, lipoteichoic acid, peptidoglycan, and glucan) and had a broad spectrum bacterial agglutination activity in a Ca2+-dependent manner. In addition, rSpCTL6 could enhance the encapsulation activity of hemocytes and has no cytotoxic effect on hemocytes. Although rSpCTL6 had no bactericidal activity on Vibrio alginolyticus, rSpCTL6 treatment could significantly reduce the bacterial endotoxin level in vitro and greatly improved the survival of S. paramamosain under V. alginolyticus infection in vivo. The immunoprotective effect of rSpCTL6 might be due to the regulatory role of rSpCTL6 in immune-related genes and immunological parameters. Our study provides new information for understanding the immune defense of mud crabs and would facilitate the development of effective strategies for mud crab aquaculture disease control.
Collapse
Affiliation(s)
- Wanlei Qiu
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China.,Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
| | - Roushi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
| | - Shuang Li
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
| | - Xuewu Zhu
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
| | - Ming Xiong
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China.,Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China.,Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
48
|
Guo H, Chen T, Liang Z, Fan L, Shen Y, Zhou D. iTRAQ and PRM-based comparative proteomic profiling in gills of white shrimp Litopenaeus vannamei under copper stress. CHEMOSPHERE 2021; 263:128270. [PMID: 33297214 DOI: 10.1016/j.chemosphere.2020.128270] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 05/11/2023]
Abstract
Crustaceans are particularly sensitive to heavy metal pollution. Copper (Cu) is one of typical heavy metal pollutants in aquatic ecosystems. However, limited attention has been paid on the proteomic responses of shrimp under Cu stress. White shrimp Litopenaeus vannamei held in 5‰ seawater were exposed to 5 mg L-1 Cu for 3 h, and the regulatory mechanism in the gills was elucidated using iTRAQ-based quantitative proteomics. The results showed that a total of 5034 proteins were identified, 385 differentially expressed proteins (DEPs), including 147 differentially up-regulated proteins (DUPs) and 238 differentially down-regulated proteins (DDPs) were found. Bioinformatics analysis indicated the DEPs responding to Cu stress mainly involved in cytoskeleton, immune response, stress response, protein synthesis, detoxification, ion homeostasis and apoptosis. Furthermore, we still performed PRM analysis on sarcoplasmic calcium binding protein (SCP), serine proteinase inhibitor B3 (SPIB3), C-type lectin 4 (CTL4), cathepsin L (CATHL), JHE-like carboxylesterase 1 (CXE1) and paramyosin (PMY), and biochemical analysis on Cu/Zn-superoxide dismutase (Cu/Zn-SOD) to validate the iTRAQ results, respectively. The present proteome analysis revealed that Cu stress disrupted the ion homeostasis and protein synthesis, and L.vannamei mainly regulates a series of molecular pathways which contained many key proteins involved in the immune process to protect the organism from Cu stress. Our data provides more insight about the underlying mechanisms that related to the stress response of Cu exposure in crustacean.
Collapse
Affiliation(s)
- Hui Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institute, Zhanjiang, China
| | - Tianci Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institute, Zhanjiang, China
| | - Zhi Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institute, Zhanjiang, China
| | - Lanfen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yuchun Shen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institute, Zhanjiang, China.
| | - Dayan Zhou
- Aquatic Species Introduction and Breeding Center of Guangxi Zhuang Autonomous Region, Nanning, 530031, China.
| |
Collapse
|
49
|
Tsaneva M, Van Damme EJM. 130 years of Plant Lectin Research. Glycoconj J 2020; 37:533-551. [PMID: 32860551 PMCID: PMC7455784 DOI: 10.1007/s10719-020-09942-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/12/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022]
Abstract
Lectins are proteins with diverse molecular structures that share the ability to recognize and bind specifically and reversibly to carbohydrate structures without changing the carbohydrate moiety. The history of lectins started with the discovery of ricin about 130 years ago but since then our understanding of lectins has dramatically changed. Over the years the research focus was shifted from 'the characterization of carbohydrate-binding proteins' to 'understanding the biological function of lectins'. Nowadays plant lectins attract a lot of attention especially because of their potential for crop improvement and biomedical research, as well as their application as tools in glycobiology. The present review aims to give an overview of plant lectins and their applications, and how the field evolved in the last decades.
Collapse
Affiliation(s)
- Mariya Tsaneva
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Els J M Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
50
|
Lindenwald DL, Lepenies B. C-Type Lectins in Veterinary Species: Recent Advancements and Applications. Int J Mol Sci 2020; 21:ijms21145122. [PMID: 32698416 PMCID: PMC7403975 DOI: 10.3390/ijms21145122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
C-type lectins (CTLs), a superfamily of glycan-binding receptors, play a pivotal role in the host defense against pathogens and the maintenance of immune homeostasis of higher animals and humans. CTLs in innate immunity serve as pattern recognition receptors and often bind to glycan structures in damage- and pathogen-associated molecular patterns. While CTLs are found throughout the whole animal kingdom, their ligand specificities and downstream signaling have mainly been studied in humans and in model organisms such as mice. In this review, recent advancements in CTL research in veterinary species as well as potential applications of CTL targeting in veterinary medicine are outlined.
Collapse
|