1
|
Wlodawer A, Dauter Z, Rubach P, Minor W, Jaskolski M, Jiang Z, Jeffcott W, Anosova O, Kurlin V. Duplicate entries in the Protein Data Bank: how to detect and handle them. Acta Crystallogr D Struct Biol 2025; 81:170-180. [PMID: 40056147 PMCID: PMC11966240 DOI: 10.1107/s2059798325001883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/27/2025] [Indexed: 03/10/2025] Open
Abstract
A global analysis of protein crystal structures in the Protein Data Bank (PDB) using a newly developed computational approach reveals many pairs with (nearly) identical main-chain coordinates. Such cases are identified and analyzed, showing that duplication is possible since the PDB does not currently have tools or mechanisms that would detect potentially duplicate submissions. Some duplicated entries represent modeling efforts of ligand binding that masquerade as experimentally determined structures. We propose that duplicate entries should either be obsoleted by the PDB or, as a minimum, marked with a clear `CAVEAT' record that would alert potential users to the presence of such problems. We also suggest that using a tool for verifying the uniqueness of the deposited structure, such as that presented in this work, should become part of the routine validation procedure for new depositions.
Collapse
Affiliation(s)
- Alexander Wlodawer
- Center for Structural Biology, Center for Cancer ResearchNational Cancer InstituteFrederickMD21702USA
| | - Zbigniew Dauter
- Center for Structural Biology, Center for Cancer ResearchNational Cancer InstituteFrederickMD21702USA
| | - Pawel Rubach
- Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVA22908USA
- Institute of Information Systems and Digital EconomyWarsaw School of EconomicsWarsawPoland
| | - Wladek Minor
- Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVA22908USA
| | - Mariusz Jaskolski
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznańPoland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Ziqiu Jiang
- Department of Surgery and CancerImperial College LondonLondonUnited Kingdom
| | - William Jeffcott
- Computer ScienceUniversity of LiverpoolLiverpoolL69 3BXUnited Kingdom
| | - Olga Anosova
- Computer ScienceUniversity of LiverpoolLiverpoolL69 3BXUnited Kingdom
| | - Vitaliy Kurlin
- Computer ScienceUniversity of LiverpoolLiverpoolL69 3BXUnited Kingdom
- Materials Innovation FactoryUniversity of LiverpoolLiverpoolL69 3NYUnited Kingdom
| |
Collapse
|
2
|
Zhang J, Li K, Cao Y, Wang D, Cheng J, Gao H, Geng M, Yang J, Wei X. Inducible IL-2 production and IL-2 + cell expansion are landmark events for T-cell activation of teleost. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109515. [PMID: 38499218 DOI: 10.1016/j.fsi.2024.109515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
As a multipotent cytokine, interleukin (IL)-2 plays important roles in activation, differentiation and survival of the lymphocytes. Although biological characteristics and function of IL-2 have been clarified in several teleost species, evidence regarding IL-2 production at the cellular and protein levels is still scarce in fish due to the lack of reliable antibody. In this study, we developed a mouse anti-Nile tilapia IL-2 monoclonal antibody (mAb), which could specifically recognize IL-2 protein and identify IL-2-producing lymphocytes of tilapia. Using this mAb, we found that CD3+ T cells, but not CD3- lymphocytes, are the main cellular source of IL-2 in tilapia. Under resting condition, both CD3+CD4-1+ T cells and CD3+CD4-1- T cells of tilapia produce IL-2. Moreover, the IL-2 protein level and the frequency of IL-2+ T cells significantly increased once T cells were activated by phytohemagglutinin (PHA) or CD3 plus CD28 mAbs in vitro. In addition, Edwardsiella piscicida infection also induces the IL-2 production and the expansion of IL-2+ T cells in the spleen lymphocytes. These findings demonstrate that IL-2 takes part in the T-cell activation and anti-bacterial adaptive immune response of tilapia, and can serve as an important marker for T-cell activation of teleost fish. Our study has enriched the knowledge regarding T-cell response in fish species, and also provide novel perspective for understanding the evolution of adaptive immune system.
Collapse
Affiliation(s)
- Jiansong Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yi Cao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ding Wang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jie Cheng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Haiyou Gao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ming Geng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
3
|
Radi H, Ferdosi-Shahandashti E, Kardar GA, Hafezi N. An Updated Review of Interleukin-2 Therapy in Cancer and Autoimmune Diseases. J Interferon Cytokine Res 2024; 44:143-157. [PMID: 38421721 DOI: 10.1089/jir.2023.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Interleukin-2 (IL-2) is a cytokine that acts in dual and paradoxical ways in the immunotherapy of cancers and autoimmune diseases. Numerous clinical trial studies have shown that the use of different doses of this cytokine in various autoimmune diseases, transplantations, and cancers has resulted in therapeutic success. However, side effects of varying severity have been observed in patients. In recent years, to prevent these side effects, IL-2 has been engineered to bind more specifically to its receptors on the cell surface, decreasing IL-2 toxicities in patients. In this review article, we focus on some recent clinical trial studies and analyze them to determine the appropriate dose of IL-2 drug with the least toxicities. In addition, we discuss the engineering performed on IL-2, which shows that engineered IL-2 increases the specificity function of IL-2 and decreases its adverse effects.
Collapse
Affiliation(s)
- Hale Radi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Elaheh Ferdosi-Shahandashti
- Biomedical and Microbial Advanced Technologies (BMAT) Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Gholam Ali Kardar
- National Institute for Genetic Engineering and Biotechnology, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Hafezi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
4
|
Dimitrakopoulou D, Khwatenge CN, James-Zorn C, Paiola M, Bellin EW, Tian Y, Sundararaj N, Polak EJ, Grayfer L, Barnard D, Ohta Y, Horb M, Sang Y, Robert J. Advances in the Xenopus immunome: Diversification, expansion, and contraction. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104734. [PMID: 37172665 PMCID: PMC10230362 DOI: 10.1016/j.dci.2023.104734] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 03/18/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Xenopus is a genus of African clawed frogs including two species, X. tropicalis and X. laevis that are extensively used in experimental biology, immunology, and biomedical studies. The availability of fully sequenced and annotated Xenopus genomes is strengthening genome-wide analyses of gene families and transgenesis to model human diseases. However, inaccuracies in genome annotation for genes involved in the immune system (i.e., immunome) hamper immunogenetic studies. Furthermore, advanced genome technologies (e.g., single-cell and RNA-Seq) rely on well-annotated genomes. The annotation problems of Xenopus immunome include a lack of established orthology across taxa, merged gene models, poor representation in gene pages on Xenbase, misannotated genes and missing gene IDs. The Xenopus Research Resource for Immunobiology in collaboration with Xenbase and a group of investigators are working to resolve these issues in the latest versions of genome browsers. In this review, we summarize the current problems of previously misannotated gene families that we have recently resolved. We also highlight the expansion, contraction, and diversification of previously misannotated gene families.
Collapse
Affiliation(s)
- Dionysia Dimitrakopoulou
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Collins N Khwatenge
- Department of Agriculture and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, USA
| | - Christina James-Zorn
- Xenbase, Division of Developmental Biology, Cincinnti Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthieu Paiola
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Eleanor Wise Bellin
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Yun Tian
- Department of Agriculture and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, USA
| | - Nivitha Sundararaj
- Xenbase, Division of Developmental Biology, Cincinnti Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Emma J Polak
- Biology Department, Worcester State University, MA, USA
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Daron Barnard
- Biology Department, Worcester State University, MA, USA
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marko Horb
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Yongming Sang
- Department of Agriculture and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, USA.
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
5
|
Zhang Y, Su J. Interleukin-2 family cytokines: An overview of genes, expression, signaling and functional roles in teleost. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104645. [PMID: 36696924 DOI: 10.1016/j.dci.2023.104645] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
The interleukin-2 (IL-2) family cytokines include IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21, which share γ chain (γc) subunit in receptors. The IL-2 family cytokines have unique biological effects that regulate differentiation, survival and activation of multiple lymphocyte lineages. Deficiency of IL-2 family signaling pathway in mammals prevents CD4+ T cells from developing effector functions and CD8+ T cells from developing immunological memory. In the present review, we addressed available information from teleost IL-2 family cytokines and discussed implications in teleost immunity. Also, we described and discussed their expression profiles, receptors, signaling transductions and functions. In teleost, IL-2 family has 5 members (IL-2, IL-4/13, IL-7, IL-15, IL-21) without IL-9, and their receptors share a common γc subunit and include other 6 subunits (IL-2Rβ1/2, IL-4Rα1/2, IL-13Rα1/2, IL-7Rα, IL-15Rα, and IL-21Rα1/2). Some paralogues have changes in domain structure and show differential expression, modulation, functions. IL-2 family cytokines constitutively express in many immune associated tissues and are largely induced after pathogenic microbial stimulation. In general, there are relatively conserved functions in the IL-2 family throughout vertebrates, and many of the key IL-2 family members are important in lymphocyte proliferation and differentiation, development, inflammation from fishes to mammals. This review will give an update on the effective information of teleost IL-2 family cytokines. Thus, it will provide a source of reference for other researchers/readers and inspire further interest.
Collapse
Affiliation(s)
- Yanqi Zhang
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jianguo Su
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
6
|
Jia Z, Feng J, Yuan G, Xiao H, Dang H, Zhang Y, Chen K, Zou J, Wang J. The Meteorin-like cytokine is upregulated in grass carp after infection with Aeromonas hydrophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104632. [PMID: 36608897 DOI: 10.1016/j.dci.2023.104632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Meteorin-like (Metrnl) is a novel immune regulatory factor or adipokine which is mainly produced by activated macrophages. In teleost fish, two homologs are present. In this study, monoclonal antibodies were prepared against recombinant grass carp (Ctenopharyngodon idella, Ci) Metrnl-a in mice and characterized by Western blotting, flow cytometry and immunofluorescent microscopy. In grass carp infected with Aeromonus hydrophila (A. hydrophila), the cells expressing CiMetrnl-a markedly increased in the gills, head kidney and intestine. In the inflamed intestine caused by A. hydrophila infection, the CiMetrnl-a producing cells were detected mainly in the mucosal layer of anterior, middle and posterior segments. Consistently, qRT-PCR analysis showed that the mRNA expression of CiMetrnl-a was markedly induced. Our results suggest that CiMetrnl-a is involved in regulating intestine inflammation caused by bacterial infection.
Collapse
Affiliation(s)
- Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jianhua Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Gaoliang Yuan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hehe Xiao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Huifeng Dang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yanwei Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Kangyong Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
7
|
Zhu X, Wang J, Jia Z, Feng J, Wang B, Wang Z, Liu Q, Wu K, Huang W, Zhao X, Dang H, Zou J. Novel Dimeric Architecture of an IFN-γ-Related Cytokine Provides Insights into Subfunctionalization of Type II IFNs in Teleost Fish. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2203-2214. [PMID: 36426983 DOI: 10.4049/jimmunol.2200334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/06/2022] [Indexed: 01/04/2023]
Abstract
Gene duplication leads to subfunctionalization of paralogs. In mammals, IFN-γ is the sole member of the type II IFN family and binds to a receptor complex consisting of IFN-γR1 and IFN-γR2. In teleost fish, IFN-γ and its receptors have been duplicated due to the teleost-specific whole-genome duplication event. In this study, the functions of an IFN-γ-related (IFN-γrel) cytokine were found to be partially retained relative to IFN-γ in grass carp (Ctenopharyngodon idella [CiIFN-γrel]). CiIFN-γrel upregulated the expression of proinflammatory genes but had lost the ability to activate genes involved in Th1 response. The results suggest that CiIFN-γrel could have been subfunctionalized from CiIFN-γ. Moreover, CiIFN-γrel induced STAT1 phosphorylation via interaction with duplicated homologs of IFN-γR1 (cytokine receptor family B [CRFB] 17 and CRFB13). Strikingly, CiIFN-γrel did not bind to the IFN-γR2 homolog (CRFB6). To gain insight into the subfunctionalization, the crystal structure of CiIFN-γrel was solved at 2.26 Å, revealing that it forms a homodimer that is connected by two pairs of disulfide bonds. Due to the spatial positions of helix A, loop AB, and helix B, CiIFN-γrel displays a unique topology that requires elements from two identical monomers to form a unit that is similar to IFN-γ. Further, mutagenesis analyses identified key residues interacting with CiIFN-γrel receptors and those required for the biological functions. Our study can help understand the subfunctionalization of duplicated IFN-γ paralogs in fish.
Collapse
Affiliation(s)
- Xiaozhen Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jianhua Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Bangjie Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zixuan Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Qin Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Kaizheng Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Wenji Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xin Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Huifeng Dang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China; and.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Antczak M, Cañete PF, Chen Z, Belle C, Yu D. Evolution of γ chain cytokines: Mechanisms, methods and applications. Comput Struct Biotechnol J 2022; 20:4746-4755. [PMID: 36147674 PMCID: PMC9465101 DOI: 10.1016/j.csbj.2022.08.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/12/2022] Open
Abstract
The common γ chain family of cytokines and their receptors play fundamental roles in the immune system. Evolutionary studies of γ chain cytokines have elegantly illustrated how the immune system adapts to ever-changing environmental conditions. Indeed, these studies have revealed the uniqueness of cytokine evolution, which exhibits strong positive selection pressure needed to adapt to rapidly evolving threats whilst still conserving their receptor binding capabilities. In this review, we summarise the evolutionary mechanisms that gave rise to the characteristically diverse family of γ chain cytokines. We also speculate on the benefits of studying cytokine evolution, which may provide alternative ways to design novel cytokine therapeutic strategies. Additionally, we discuss current evolutionary models that elucidate the emergence of distinct cytokines (IL-4 and IL-13) and cytokine receptors (IL-2Rα and IL-15Rα). Finally, we address and reflect on the difficulties associated with evolutionary studies of rapidly evolving genes and describe a variety of computational methods that have revealed numerous aspects of cytokine evolution.
Collapse
Affiliation(s)
- Magdalena Antczak
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Pablo F. Cañete
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhian Chen
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Clémence Belle
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Di Yu
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Ian Frazer Centre for Children’s Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
9
|
Lv M, Wang F, Yao Y, Liu X, Wang X. In vitro assessment of the capacity of grass carp Il-2 dimeric receptors to mediate Stat5 phosphorylation. Gene 2022; 823:146321. [PMID: 35218892 DOI: 10.1016/j.gene.2022.146321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/14/2022] [Accepted: 02/11/2022] [Indexed: 11/04/2022]
Affiliation(s)
- Mengyuan Lv
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Fanghua Wang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Yuyan Yao
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xuelian Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyan Wang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
10
|
Wang Z, Xu J, Feng J, Wu K, Chen K, Jia Z, Zhu X, Huang W, Zhao X, Liu Q, Wang B, Chen X, Wang J, Zou J. Structural and Functional Analyses of Type I IFNa Shed Light Into Its Interaction With Multiple Receptors in Fish. Front Immunol 2022; 13:862764. [PMID: 35392096 PMCID: PMC8980424 DOI: 10.3389/fimmu.2022.862764] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Teleost type I interferons (IFNs) are categorized into group I and II subgroups that bind to distinct receptors to activate antiviral responses. However, the interaction between ifn ligands and receptors has not fully been understood. In this study, the crystal structure of grass carp [Ctenopharyngodon idella (Ci)] IFNa has been solved at 1.58Å and consists of six helices. The CiIFNa displays a typical structure of type I IFNs with a straight helix F and lacks a helix element in the AB loop. Superposition modeling identified several key residues involved in the interaction with receptors. It was found that CiIFNa bound to cytokine receptor family B (CRFB) 1, CRFB2, and CRFB5, and the three receptors could form heterodimeric receptor complexes. Furthermore, mutation of Leu27, Glu103, Lys117, and His165 markedly decreased the phosphorylation of signal transducer and activator of transcription (STAT) 1a induced by CiIFNa in the Epithelioma papulosum cyprini (EPC) cells, and Glu103 was shown to be required for the CiIFNa-activated antiviral activity. Interestingly, wild-type and mutant CiIFNa proteins did not alter the phosphorylation levels of STAT1b. Our results demonstrate that fish type I IFNs, although structurally conserved, interact with the receptors in a manner that may differ from mammalian homologs.
Collapse
Affiliation(s)
- Zixuan Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jing Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jianhua Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Kaizheng Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Kangyong Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xiaozhen Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Wenji Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xin Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Qin Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Bangjie Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
11
|
Mu P, Huo J, Li X, Li W, Li X, Ao J, Chen X. IL-2 Signaling Couples the MAPK and mTORC1 Axes to Promote T Cell Proliferation and Differentiation in Teleosts. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1616-1631. [PMID: 35321881 DOI: 10.4049/jimmunol.2100764] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
IL-2 is a pleiotropic cytokine that is critical for T cell immunity. Although the IL-2-mediated regulation of T cell immunity in mammals is relatively well understood, it remains largely unknown whether and how IL-2 regulates T cell immunity in lower vertebrates. To address this knowledge gap, we investigated the role played by IL-2 in the regulation of T cell response, as well as the associated underlying mechanisms in a teleost fish, large yellow croaker (Larimichthys crocea). We found that large yellow croaker (L. crocea) IL-2 (LcIL-2) significantly promoted T cell proliferation both in vivo and in vitro; significantly induced the differentiation of Th1, Th2, regulatory T, and cytotoxic T cells while inhibiting Th17 differentiation; and participated in the elimination of invading pathogenic bacteria. Mechanistically, the binding of LcIL-2 to its heterotrimer receptor complex (LcIL-15Rα/LcIL-2Rβ/Lcγc) triggered the conserved JAK-STAT5 pathway, which in turn regulated the expression of genes involved in T cell expansion, differentiation, and biological function. The MAPK and mammalian target of rapamycin complex 1 (mTORC1) axes, which are involved in TCR-mediated signaling, were also required for LcIL-2-mediated T cell response. Collectively, our results demonstrated that fish IL-2 plays a comprehensive regulatory role in T cell response and highlighted the complex and delicate network regulating T cell-driven immune response. We propose that T cell immunity is regulated by the interplay between TCR signaling and cytokine signaling, and that this basic strategy evolved before the emergence of the tetrapod lineage. Our findings provide valuable insights into the regulatory mechanisms underlying T cell response in teleosts.
Collapse
Affiliation(s)
- Pengfei Mu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China; and
| | - Jieying Huo
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China; and
| | - Xiaofeng Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wanru Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaomeng Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China; and
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China;
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China; and
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
12
|
Zhao M, Xing J, Tang X, Sheng X, Chi H, Zhan W. Expression of Interleukin-2 receptor subunit gamma (IL-2Rγ) and its binding with IL-2 induced activation of CD4 T lymphocytes in flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2022; 122:426-436. [PMID: 35183740 DOI: 10.1016/j.fsi.2022.02.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Interleukin-2 receptor (IL-2R), as the specific ligand of interleukin-2 (IL-2), binds to IL-2 and transmits signals and then can induce the proliferation of T lymphocytes in mammals. In this paper, the subunit of IL-2R in flounder (Paralichthys olivaceus), interleukin-2 receptor subunit gamma (IL-2Rγ) was cloned, and polyclonal antibodies (Abs) against its extracellular region were produced, then the expression of flounder IL-2Rγ (fIL-2Rγ) at transcriptional and cellular levels were characterized. Moreover, the interaction of flounder IL-2 (fIL-2) with fIL-2Rγ was investigated, and the variations on CD4+/IL-2Rγ+ cells in flounder after treatment with recombinant IL-2 (rIL-2), anti-IL-2Rγ Abs were detected, respectively. The results showed that fIL-2Rγ protein had a typical fibronectin type III (FN3) domain. The Abs could specifically recognize native fIL-2Rγ molecules at 39.9 kDa. FIL-2Rγ was localized on both T and B lymphocytes, and the percentages of CD4+/IL-2Rγ+ and IgM+/IL-2Rγ+ lymphocytes were high in spleen. In addition, pBiFC-VN173-IL-2Rγ plasmids could bind to pBiFC-VC155-IL-2 plasmids. The percentage of CD4+/IL-2Rγ+ lymphocytes was significantly decreased after blocking with anti-IL-2Rγ Abs both in vivo and in vitro. In the meantime, four T cell markers genes and six IL-2-IL-2R pathway genes were down-regulated in anti-IL-2Rγ Abs group. These results first demonstrated that fIL-2Rγ molecules were expressed on both T and B lymphocytes in flounder, and the bond between fIL-2Rγ and fIL-2 activated the CD4 T lymphocytes. This study gave a new sight into the exploration of IL-2R function on T lymphocytes proliferation in fish.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, China
| |
Collapse
|
13
|
Kubick N, Klimovich P, Flournoy PH, Bieńkowska I, Łazarczyk M, Sacharczuk M, Bhaumik S, Mickael ME, Basu R. Interleukins and Interleukin Receptors Evolutionary History and Origin in Relation to CD4+ T Cell Evolution. Genes (Basel) 2021; 12:genes12060813. [PMID: 34073576 PMCID: PMC8226699 DOI: 10.3390/genes12060813] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the evolution of interleukins and interleukin receptors is essential to control the function of CD4+ T cells in various pathologies. Numerous aspects of CD4+ T cells’ presence are controlled by interleukins including differentiation, proliferation, and plasticity. CD4+ T cells have emerged during the divergence of jawed vertebrates. However, little is known about the evolution of interleukins and their origin. We traced the evolution of interleukins and their receptors from Placozoa to primates. We performed phylogenetic analysis, ancestral reconstruction, HH search, and positive selection analysis. Our results indicated that various interleukins’ emergence predated CD4+ T cells divergence. IL14 was the most ancient interleukin with homologs in fungi. Invertebrates also expressed various interleukins such as IL41 and IL16. Several interleukin receptors also appeared before CD4+ T cells divergence. Interestingly IL17RA and IL17RD, which are known to play a fundamental role in Th17 CD4+ T cells first appeared in mollusks. Furthermore, our investigations showed that there is not any single gene family that could be the parent group of interleukins. We postulate that several groups have diverged from older existing cytokines such as IL4 from TGFβ, IL10 from IFN, and IL28 from BCAM. Interleukin receptors were less divergent than interleukins. We found that IL1R, IL7R might have diverged from a common invertebrate protein that contained TIR domains, conversely, IL2R, IL4R and IL6R might have emerged from a common invertebrate ancestor that possessed a fibronectin domain. IL8R seems to be a GPCR that belongs to the rhodopsin-like family and it has diverged from the Somatostatin group. Interestingly, several interleukins that are known to perform a critical function for CD4+ T cells such as IL6, IL17, and IL1B have gained new functions and evolved under positive selection. Overall evolution of interleukin receptors was not under significant positive selection. Interestingly, eight interleukin families appeared in lampreys, however, only two of them (IL17B, IL17E) evolved under positive selection. This observation indicates that although lampreys have a unique adaptive immune system that lacks CD4+ T cells, they could be utilizing interleukins in homologous mode to that of the vertebrates’ immune system. Overall our study highlights the evolutionary heterogeneity within the interleukins and their receptor superfamilies and thus does not support the theory that interleukins evolved solely in jawed vertebrates to support T cell function. Conversely, some of the members are likely to play conserved functions in the innate immune system.
Collapse
Affiliation(s)
- Norwin Kubick
- Institute of Biochemistry, Molecular Cell Biology, University Clinic Hamburg-Eppendorf, 0251 Hamburg, Germany;
| | - Pavel Klimovich
- PM Research Center, 20 Kaggeholm, Ekerö, 178 54 Stockholm, Sweden; (P.K.); (P.H.F.)
| | | | - Irmina Bieńkowska
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (I.B.); (M.Ł.); (M.S.)
| | - Marzena Łazarczyk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (I.B.); (M.Ł.); (M.S.)
| | - Mariusz Sacharczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (I.B.); (M.Ł.); (M.S.)
| | - Suniti Bhaumik
- Bevill Biomedical Sciences Research Building, The University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA;
| | - Michel-Edwar Mickael
- PM Research Center, 20 Kaggeholm, Ekerö, 178 54 Stockholm, Sweden; (P.K.); (P.H.F.)
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (I.B.); (M.Ł.); (M.S.)
- Correspondence: (M.-E.M.); (R.B.)
| | - Rajatava Basu
- Bevill Biomedical Sciences Research Building, The University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA;
- Correspondence: (M.-E.M.); (R.B.)
| |
Collapse
|
14
|
Dijkstra JM. A method for making alignments of related protein sequences that share very little similarity; shark interleukin 2 as an example. Immunogenetics 2021; 73:35-51. [PMID: 33512550 DOI: 10.1007/s00251-020-01191-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
An optimized alignment of related protein sequences helps to see their important shared features and to deduce their phylogenetic relationships. At low levels of sequence similarity, there are no suitable computer programs for making the best possible alignment. This review summarizes some guidelines for how in such instances, nevertheless, insightful alignments can be made. The method involves, basically, the understanding of molecular family features at both the protein and intron-exon level, and the collection of many related sequences so that gradual differences may be observed. The method is exemplified by identifying and aligning interleukin 2 (IL-2) and related sequences in Elasmobranchii (sharks/rays) and coelacanth, as other authors have expressed difficulty with their identification. From the point of general immunology, it is interesting that the unusual long "leader" sequence of IL-15, already known in other species, is even more impressively conserved in cartilaginous fish. Furthermore, sequence comparisons suggest that IL-2 in cartilaginous fish has lost its ability to bind an IL-2Rα/15Rα receptor chain, which would prohibit the existence of a mechanism for regulatory T cell regulation identical to mammals.
Collapse
Affiliation(s)
- Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Dengaku-gakubo 1-98Toyoake-shi, Aichi-ken, 470-1192, Japan.
| |
Collapse
|