1
|
Li Q, Whittle S, Rakesh D. Longitudinal associations between greenspace exposure, structural brain development, and mental health and academic performance during early adolescence. Biol Psychiatry 2025:S0006-3223(25)01120-5. [PMID: 40222467 DOI: 10.1016/j.biopsych.2025.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Greenspace exposure is associated with positive mental health and academic outcomes. This preregistered longitudinal study examines whether the influence of greenspace exposure on structural brain development partially explains these associations. METHODS We analyzed data from the Adolescent Brain Cognitive Development (ABCD) study (N=7102), to test the relationship between greenspace exposure at age 9-10 and brain structure two years later, as well as change over time. Additionally, we tested whether brain structural development statistically mediated the associations of greenspace exposure with mental health and academic performance. RESULTS Greenspace exposure was associated with greater total surface area (SA) and cortical volume (CV), greater cortical thickness (CT) in temporal regions and the insula, lower thickness in the caudal middle frontal and superior frontal gyri, greater SA across several regions, and greater volume of the caudate nucleus, putamen, and nucleus accumbens. In analyses studying change in brain structure over time, higher greenspace exposure was associated with greater growth of total SA, lower average thickness reduction, and reduced total CV growth as well as changes at the regional level. We also found significant indirect effects of the association of greenspace exposure with academic performance and mental health through both total and regional cortical structure. CONCLUSIONS Greenspace exposure is linked to structural neurodevelopment, which is, in turn, associated with better mental health and academic achievement. Our findings underscore the importance of greenspace in supporting brain development and positive outcomes in children and adolescents.
Collapse
Affiliation(s)
- Qingyang Li
- Neuroimaging Department, Institute of Psychology, Psychiatry & Neuroscience, King's College London, London, UK
| | - Sarah Whittle
- Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia(,); Orygen, Parkville, Victoria, Australia
| | - Divyangana Rakesh
- Neuroimaging Department, Institute of Psychology, Psychiatry & Neuroscience, King's College London, London, UK.
| |
Collapse
|
2
|
Chen S, Lopez-Quintero C, Elton A. Perceived Racism, Brain Development, and Internalizing and Externalizing Symptoms: Findings From the ABCD Study. J Am Acad Child Adolesc Psychiatry 2025:S0890-8567(25)00206-0. [PMID: 40222403 DOI: 10.1016/j.jaac.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/12/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Abstract
OBJECTIVE Racial discrimination drives health disparities among racial/ethnic minority youth, creating chronic stress that affects brain development and contributes to mental and behavioral health issues. This study analyzed data from the Adolescent Brain Cognitive Development (ABCD) Study to examine the neurobiological mechanisms linking discrimination to mental and behavioral health outcomes. METHOD A sample of 3,321 racial/ethnic minority youth was split into training (80%, n=2,674) and testing (20%, n=647) groups. Propensity-score-weighted machine learning was used to assess the effects of perceived discrimination on two-year changes in resting-state functional connectivity between three subcortical regions (nucleus accumbens, amygdala, hippocampus) and large-scale brain networks. Mediation analyses evaluated whether brain changes mediated sex-specific effects on internalizing or externalizing symptoms. RESULTS Perceived discrimination was significantly associated with two-year changes in connectivity of the nucleus accumbens, amygdala, and hippocampus in both cross-validation and independent testing. Key findings included decreases in nucleus accumbens connectivity with retrosplenial-temporal and sensorimotor (hand) networks, decreases in amygdala connectivity with the sensorimotor (mouth) network, and increases in hippocampal connectivity with the auditory network. These changes suggest accelerated maturation in these connections among youth reporting higher discrimination levels. Moderated mediation analyses revealed sex differences, with discrimination-related changes in nucleus accumbens connectivity linked to poorer internalizing outcomes in female participants. CONCLUSIONS The results indicate perceived racial discrimination experienced in adolescence impact subcortical-cortical brain development, which affect mental and behavioral health outcomes in a sex-specific manner.
Collapse
|
3
|
Rakesh D, Lee PA, Gaikwad A, McLaughlin KA. Annual Research Review: Associations of socioeconomic status with cognitive function, language ability, and academic achievement in youth: a systematic review of mechanisms and protective factors. J Child Psychol Psychiatry 2025; 66:417-439. [PMID: 39625804 PMCID: PMC11920614 DOI: 10.1111/jcpp.14082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 03/20/2025]
Abstract
Low socioeconomic status (SES) is negatively associated with children's cognitive and academic performance, leading to long-term educational and economic disparities. In particular, SES is a powerful predictor of executive function (EF), language ability, and academic achievement. Despite extensive research documenting SES-related differences in these domains, our understanding of the mechanisms underlying these associations and factors that may mitigate these relationships is limited. This systematic review aimed to identify the mediators and moderators in the association of SES with EF, language ability, and academic achievement. Our synthesis revealed stress, support, stimulation, and broader contextual factors at the school- and neighborhood level to be important mediators and protective factors in these associations. In particular, cognitive stimulation mediated the association of SES with EF, language ability, and academic achievement. Educational expectations, classroom and school environment, and teacher-student relationships also played a key role in the association of SES with academic achievement. In addition, factors such as preschool attendance, home learning activities, and parental support buffered the association between low SES and lower cognitive and language outcomes. We discuss these findings in the context of interventions that may help to reduce SES-related cognitive and educational disparities.
Collapse
Affiliation(s)
- Divyangana Rakesh
- Department of Psychology, Harvard University, Boston, MA, USA
- Neuroimaging Department, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, UK
| | - Paris Anne Lee
- Department of Psychology, Harvard University, Boston, MA, USA
| | - Amruta Gaikwad
- Department of Psychology, Harvard University, Boston, MA, USA
| | - Katie A McLaughlin
- Department of Psychology, Harvard University, Boston, MA, USA
- Ballmer Institute, University of Oregon, Portland, Oregon, USA
| |
Collapse
|
4
|
Rosen ML, Rakesh D, Romeo RR. The role of socioeconomic status in shaping associations between sensory association cortex and prefrontal structure and implications for executive function. Dev Cogn Neurosci 2025; 73:101550. [PMID: 40117703 PMCID: PMC11987642 DOI: 10.1016/j.dcn.2025.101550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/05/2025] [Accepted: 03/09/2025] [Indexed: 03/23/2025] Open
Abstract
Socioeconomic status (SES) is associated with widespread differences in structure of temporal, parietal, occipital, and frontal cortices. Development of sensory processing regions-in particular visual association cortex (VAC) and auditory association cortex (AAC)-may scaffold development of the prefrontal cortex (PFC). Experiences that correlate with SES like cognitive stimulation and language may influence VAC and AAC development, in turn allowing the PFC to resolve conflicts between similar stimuli. SES-related differences in these regions may partly explain differences in executive function (EF) skills. Here, we use structural equation modeling of longitudinal data from the Adolescent Brain and Cognitive Development study to test the hypothesis that SES-related differences in AAC and VAC are associated with differences in structure of the PFC and development of the PFC over time, which in turn are associated with development of EF. We found partial support for this model, demonstrating that SES-related differences in PFC structure are mediated by differences in sensory cortex structure, and that SES-related differences in sensory cortex structure mediate the association between SES and EF. These findings highlight the role sensory processing regions play in SES-related differences in PFC development. Future studies should explore proximal environmental factors driving SES-related differences to inform interventions.
Collapse
Affiliation(s)
- Maya L Rosen
- Smith College, Program in Neuroscience, Northampton, MA, United States.
| | - Divyangana Rakesh
- Department of Neuroimaging, Institute of Psychology, Psychiatry & Neuroscience, King's College London, London, UK
| | - Rachel R Romeo
- University of Maryland, College Park, Department of Human Development and Quantitative Methodology, College Park, MD, United States
| |
Collapse
|
5
|
Kardan O, Jones N, Wheelock MD, Angstadt M, Michael C, Molloy MF, Tu JC, Cope LM, Martz ME, McCurry KL, Hardee JE, Rosenberg MD, Weigard AS, Hyde LW, Sripada CS, Heitzeg MM. Assessing neurocognitive maturation in early adolescence based on baby and adult functional brain landscapes. Dev Cogn Neurosci 2025; 73:101543. [PMID: 40080996 PMCID: PMC11953962 DOI: 10.1016/j.dcn.2025.101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/14/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
Adolescence is a period of growth in cognitive performance and functioning. Recently, data-driven measures of brain-age gap, which can index cognitive decline in older populations, have been utilized in adolescent data with mixed findings. Instead of using a data-driven approach, here we assess the maturation status of the brain functional landscape in early adolescence by directly comparing an individual's resting-state functional connectivity (rsFC) to the canonical early-life and adulthood communities. Specifically, we hypothesized that the degree to which a youth's connectome is better captured by adult networks compared to infant/toddler networks is predictive of their cognitive development. To test this hypothesis across individuals and longitudinally, we utilized the Adolescent Brain Cognitive Development (ABCD) Study at baseline (9-10 years; n = 6469) and 2-year-follow-up (Y2: 11-12 years; n = 5060). Adjusted for demographic factors, our anchored rsFC score (AFC) was associated with better task performance both across and within participants. AFC was related to age and aging across youth, and change in AFC statistically mediated the age-related change in task performance. In conclusion, we showed that a model-fitting-free index of the brain at rest that is anchored to both adult and baby connectivity landscapes predicts cognitive performance and development in youth.
Collapse
Affiliation(s)
- Omid Kardan
- University of Michigan, Department of Psychiatry, Ann Arbor, MI, United States.
| | - Natasha Jones
- University of Michigan, Department of Psychology, Ann Arbor, MI, United States
| | - Muriah D Wheelock
- Washington University in St. Louis, Department of Radiology, St. Louis, MO, United States
| | - Mike Angstadt
- University of Michigan, Department of Psychiatry, Ann Arbor, MI, United States
| | - Cleanthis Michael
- University of Michigan, Department of Psychology, Ann Arbor, MI, United States
| | - M Fiona Molloy
- University of Michigan, Department of Psychiatry, Ann Arbor, MI, United States
| | - Jiaxin Cindy Tu
- Washington University in St. Louis, Department of Radiology, St. Louis, MO, United States
| | - Lora M Cope
- University of Michigan, Department of Psychiatry, Ann Arbor, MI, United States
| | - Meghan E Martz
- University of Michigan, Department of Psychiatry, Ann Arbor, MI, United States
| | - Katherine L McCurry
- University of Michigan, Department of Psychiatry, Ann Arbor, MI, United States
| | - Jillian E Hardee
- University of Michigan, Department of Psychiatry, Ann Arbor, MI, United States
| | - Monica D Rosenberg
- The University of Chicago, Department of Psychology, Chicago, IL, United States
| | - Alexander S Weigard
- University of Michigan, Department of Psychiatry, Ann Arbor, MI, United States
| | - Luke W Hyde
- University of Michigan, Department of Psychology, Ann Arbor, MI, United States
| | - Chandra S Sripada
- University of Michigan, Department of Psychiatry, Ann Arbor, MI, United States
| | - Mary M Heitzeg
- University of Michigan, Department of Psychiatry, Ann Arbor, MI, United States
| |
Collapse
|
6
|
Xia Y, Vieira VM. The association between neighborhood environment, prenatal exposure to alcohol and tobacco, and structural brain development. Front Hum Neurosci 2025; 19:1531803. [PMID: 40041111 PMCID: PMC11876420 DOI: 10.3389/fnhum.2025.1531803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/06/2025] [Indexed: 03/06/2025] Open
Abstract
Prenatal alcohol and tobacco exposure affects child brain development. Less is known about how neighborhood environment (built, institutional, and social) may be associated with structural brain development and whether prenatal exposure to alcohol or tobacco may modify this relationship. The current study aimed to examine whether neighborhood environment is associated with brain volume at age 9-11, and whether prenatal exposure to alcohol or tobacco modifies this relationship. Baseline data from Adolescent Brain and Cognitive Development (ABCD) study was analyzed (N = 7,887). Neighborhood environment was characterized by 10 variables from the linked external dataset. Prenatal alcohol and tobacco exposures were dichotomized based on the developmental history questionnaire. Bilateral volumes of three regions of interests (hippocampal, parahippocampal, and entorhinal) were examined as outcomes. High residential area deprivation was associated with smaller right hippocampal volume. Prenatal alcohol exposure was associated with larger volume in left parahippocampal and hippocampal regions, while prenatal tobacco exposure was associated with smaller volumes in bilateral parahippocampal, right entorhinal, and right hippocampal regions. In children without prenatal tobacco exposure, high residential area deprivation was associated with smaller right hippocampal volumes. In contrast, neighborhood environment was not significantly associated with brain volumes in children with prenatal tobacco exposure. In summary, neighborhood environment plays a role in child brain development. This relationship may differ by prenatal tobacco exposure. Future studies on prenatal tobacco exposure may need to consider how postnatal neighborhood environment interacts with the teratogenic effect.
Collapse
Affiliation(s)
- Yingjing Xia
- Joe C. Wen School of Population and Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, CA, United States
| | | |
Collapse
|
7
|
Harris JC, Wilson IG, Cardenas-Iniguez C, Watts AL, Lisdahl KM. The Childhood Opportunity Index 2.0: Factor Structure in 9-10 Year Olds in the Adolescent Brain Cognitive Development Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:228. [PMID: 40003454 PMCID: PMC11855348 DOI: 10.3390/ijerph22020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/20/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025]
Abstract
The built physical and social environments are critical drivers of child neural and cognitive development. This study aimed to identify the factor structure and correlates of 29 environmental, education, and socioeconomic indicators of neighborhood resources as measured by the Child Opportunity Index 2.0 (COI 2.0) in a sample of youths aged 9-10 enrolled in the Adolescent Brain Cognitive Development (ABCD) Study. This study used the baseline data of the ABCD Study (n = 9767, ages 9-10). We used structural equation modeling to investigate the factor structure of neighborhood variables (e.g., indicators of neighborhood quality including access to early child education, health insurance, walkability). We externally validated these factors with measures of psychopathology, impulsivity, and behavioral activation and inhibition. Exploratory factor analyses identified four factors: Neighborhood Enrichment, Socioeconomic Attainment, Child Education, and Poverty Level. Socioeconomic Attainment and Child Education were associated with overall reduced impulsivity and the behavioral activation system, whereas increased Poverty Level was associated with increased externalizing symptoms, an increased behavioral activation system, and increased aspects of impulsivity. Distinct dimensions of neighborhood opportunity were differentially associated with aspects of psychopathology, impulsivity, and behavioral approach, suggesting that neighborhood opportunity may have a unique impact on neurodevelopment and cognition. This study can help to inform future public health efforts and policy about improving built and natural environmental structures that may aid in supporting emotional development and downstream behaviors.
Collapse
Grants
- U24 DA041147 NIDA NIH HHS
- U01 DA051018 NIDA NIH HHS
- U24 DA041123 NIDA NIH HHS
- U01 DA051038 NIDA NIH HHS
- U01 DA051037 NIDA NIH HHS
- U01 DA051016 NIDA NIH HHS
- U01 DA041106 NIDA NIH HHS
- U01 DA041148 NIDA NIH HHS
- U01 DA041174 NIDA NIH HHS
- P30 ES007048 NIEHS NIH HHS
- U01 DA051039 NIDA NIH HHS
- U01 DA041120 NIDA NIH HHS
- U01DA041048, U01DA050989, U01DA051016, U01DA041022, U01DA051018, U01DA051037, U01DA050987, U01DA041174, U01DA041106, U01DA041117, U01DA041028, U01DA041134, U01DA050988, U01DA051039, U01DA041156, U01DA041025, U01DA041120, U01DA051038, U01DA041148, U01DA041 National Institutes of Health and National Center for Advancing Translational Sciences
- U01 DA041093 NIDA NIH HHS
- TL1 TR001437 NCATS NIH HHS
- U01 DA041134 NIDA NIH HHS
- U01 DA041022 NIDA NIH HHS
- U01 DA041156 NIDA NIH HHS
- U01 DA050987 NIDA NIH HHS
- U01 DA041025 NIDA NIH HHS
- U01 DA050989 NIDA NIH HHS
- U01 DA041089 NIDA NIH HHS
- U01 DA050988 NIDA NIH HHS
- U01 DA041117 NIDA NIH HHS
- T32 ES013678 NIEHS NIH HHS
- U01 DA041028 NIDA NIH HHS
- U01 DA041048 NIDA NIH HHS
- R01 ES031074 NIEHS NIH HHS
- R01 ES032295 NIEHS NIH HHS
Collapse
Affiliation(s)
- Julia C. Harris
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA (K.M.L.)
| | - Isabelle G. Wilson
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA (K.M.L.)
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Ashley L. Watts
- Department of Psychological Sciences, Vanderbilt University, Nashville, TN 37212, USA;
| | - Krista M. Lisdahl
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA (K.M.L.)
| |
Collapse
|
8
|
Qiu S, Zuo C, Zhang Y, Deng Y, Zhang J, Huang S. The ecology of poverty and children's brain development: A systematic review and quantitative meta-analysis of brain imaging studies. Neurosci Biobehav Rev 2025; 169:105970. [PMID: 39657837 DOI: 10.1016/j.neubiorev.2024.105970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/05/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024]
Abstract
A growing number of studies have demonstrated associations between poverty and brain structure and function. However, the strength of this association and the effects of poverty level (e.g., family or neighborhood poverty), age and sex on the association are strikingly inconsistent across studies. We aimed to synthesize findings on gray matter volume and task-based brain activation associated with poverty in youth samples and disentangle the effects of poverty level, age, and sex. In general, poverty was associated with alterations in volume and activation in the frontal, temporal, and subcortical regions. Among 14,188 participants and 14,057 participants, poverty was associated with smaller gray matter volumes in the amygdala and hippocampus, respectively. Moderator testing revealed that family poverty had a stronger association than neighborhood poverty and that poverty was related to slower development of amygdala volume. Among 2696 participants, convergent functional alterations associated with poverty were observed in the left middle temporal gyrus (MTG) and left middle frontal gyrus across all task domains, with the percentage of girls positively associated with increased activation in the precuneus. Subgroup analyses revealed that greater poverty was associated with deactivation in the left MTG for top-down control and hyperactivity in the right superior temporal gyrus, left superior frontal gyrus, left insula, cerebellum/left fusiform gyrus, and left amygdala/hippocampus for bottom-up processing. These findings provide insights into the neuroscience of poverty, suggesting implications for targeted interventions to support the cognitive and mental health of children living in poverty.
Collapse
Affiliation(s)
- Shaojie Qiu
- Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Chenyi Zuo
- Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Ye Zhang
- Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Yiyi Deng
- Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Jiatian Zhang
- Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Silin Huang
- Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, China.
| |
Collapse
|
9
|
Nakua H, Propp L, Bedard ACV, Sanches M, Ameis SH, Andrade BF. Investigating cross-sectional and longitudinal relationships between brain structure and distinct dimensions of externalizing psychopathology in the ABCD sample. Neuropsychopharmacology 2025; 50:499-506. [PMID: 39384894 PMCID: PMC11735780 DOI: 10.1038/s41386-024-02000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/30/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024]
Abstract
Externalizing psychopathology in childhood is a predictor of poor outcomes across the lifespan. Children exhibiting elevated externalizing symptoms also commonly show emotion dysregulation and callous-unemotional (CU) traits. Examining cross-sectional and longitudinal neural correlates across dimensions linked to externalizing psychopathology during childhood may clarify shared or distinct neurobiological vulnerability for psychopathological impairment later in life. We used tabulated brain structure and behavioural data from baseline, year 1, and year 2 timepoints of the Adolescent Brain Cognitive Development Study (ABCD; baseline n = 10,534). We fit separate linear mixed effect models to examine whether baseline brain structures in frontolimbic and striatal regions (cortical thickness or subcortical volume) were associated with externalizing symptoms, emotion dysregulation, and/or CU traits at baseline and over a two-year period. The most robust relationships found at the cross-sectional level was between cortical thickness in the right rostral middle frontal gyrus and bilateral pars orbitalis was positively associated with CU traits (β = |0.027-0.033|, pcorrected = 0.009-0.03). Over the two-year follow-up period, higher baseline cortical thickness in the left pars triangularis and rostral middle frontal gyrus predicted greater decreases in externalizing symptoms ((F = 6.33-6.94, pcorrected = 0.014). The results of the current study suggest that unique regions within frontolimbic and striatal networks may be more strongly associated with different dimensions of externalizing psychopathology. The longitudinal findings indicate that brain structure in early childhood may provide insight into structural features that influence behaviour over time.
Collapse
Grants
- U24 DA041147 NIDA NIH HHS
- U01 DA051039 NIDA NIH HHS
- U01 DA041120 NIDA NIH HHS
- U01 DA051018 NIDA NIH HHS
- U01 DA041093 NIDA NIH HHS
- U24 DA041123 NIDA NIH HHS
- U01 DA051038 NIDA NIH HHS
- U01 DA051037 NIDA NIH HHS
- U01 DA051016 NIDA NIH HHS
- U01 DA041106 NIDA NIH HHS
- U01 DA041117 NIDA NIH HHS
- U01 DA041148 NIDA NIH HHS
- U01 DA041174 NIDA NIH HHS
- U01 DA041134 NIDA NIH HHS
- U01 DA041022 NIDA NIH HHS
- U01 DA041156 NIDA NIH HHS
- U01 DA050987 NIDA NIH HHS
- U01 DA041025 NIDA NIH HHS
- U01 DA050989 NIDA NIH HHS
- U01 DA041089 NIDA NIH HHS
- U01 DA050988 NIDA NIH HHS
- U01 DA041028 NIDA NIH HHS
- U01 DA041048 NIDA NIH HHS
- CAMH Discovery Fund, Ontario Graduate Scholarship, Fulbright Canada, Canadian Institutes for Health Research Doctoral Award
- Canadian Institutes of Health Research (CIHR) Doctoral Award, Ontario Graduate Scholarship
- National Institute of Mental Health, Canadian Institutes for Health Research, CAMH Foundation, and the Canada Research Chairs Program
- Canadian Institutes of Health Research, CAMH Discovery Fund, LesLois Shaw Foundation, Peter Gilman Foundation
Collapse
Affiliation(s)
- Hajer Nakua
- Margaret and Wallace McCain Centre for Child Youth and Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Lee Propp
- Margaret and Wallace McCain Centre for Child Youth and Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Applied Psychology and Human Development, Ontario Institute for Studies in Education, University of Toronto, Toronto, ON, Canada
| | - Anne-Claude V Bedard
- Department of Applied Psychology and Human Development, Ontario Institute for Studies in Education, University of Toronto, Toronto, ON, Canada
| | - Marcos Sanches
- Biostatistics Core, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Stephanie H Ameis
- Margaret and Wallace McCain Centre for Child Youth and Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Brendan F Andrade
- Margaret and Wallace McCain Centre for Child Youth and Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Thijssen S, Xerxa Y, Norbom LB, Cima M, Tiemeier H, Tamnes CK, Muetzel RL. Early childhood family threat and longitudinal amygdala-mPFC circuit development: Examining cortical thickness and gray matter-white matter contrast. Dev Cogn Neurosci 2024; 70:101462. [PMID: 39418759 PMCID: PMC11532282 DOI: 10.1016/j.dcn.2024.101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
Early threat-associated cortical thinning may be interpreted as accelerated cortical development. However, non-adaptive processes may show similar macrostructural changes. Examining cortical thickness (CT) together with grey/white-matter contrast (GWC), a proxy for intracortical myelination, may enhance the interpretation of CT findings. In this prospective study, we examined associations between early life family-related threat (harsh parenting, family conflict, and neighborhood safety) and CT and GWC development from late childhood to middle adolescence. MRI was acquired from 4200 children (2069 boys) from the Generation R study at ages 8, 10 and 14 years (in total 6114 scans), of whom 1697 children had >1 scans. Linear mixed effect models were used to examine family factor-by-age interactions on amygdala volume, caudal and rostral anterior cingulate (ACC) and medial orbitofrontal cortex (mOFC) CT and GWC. A neighborhood safety-by-age-interaction was found for rostral ACC GWC, suggesting less developmental change in children from unsafe neighborhoods. Moreover, after more stringent correction for motion, family conflict was associated with greater developmental change in CT but less developmental change in GWC. Results suggest that early threat may blunt ACC GWC development. Our results, therefore, do not provide evidence for accelerated threat-associated structural development of the amygdala-mPFC circuit between ages 8-14 years.
Collapse
Affiliation(s)
- Sandra Thijssen
- Behavioral Science Institute, Radboud University, Nijmegen, the Netherlands; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Yllza Xerxa
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Linn B Norbom
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
| | - Maaike Cima
- Behavioral Science Institute, Radboud University, Nijmegen, the Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Social and Behavioral Sciences, T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Christian K Tamnes
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
11
|
Elton A, Lewis B, Nixon SJ. The effects of adverse life events on brain development in the ABCD study®: a propensity-weighted analysis. Mol Psychiatry 2024:10.1038/s41380-024-02850-9. [PMID: 39578521 DOI: 10.1038/s41380-024-02850-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Longitudinal studies of the effects of adversity on human brain development are complicated by the association of stressful events with confounding variables. To counter this bias, we apply a propensity-weighted analysis of the first two years of The Adolescent Brain Cognitive DevelopmentSM (ABCD) Study® data, employing a machine learning analysis weighted by individuals' propensity to experience adversity. Data included 338 resting-state functional connections from 7190 youth (46% female), divided into a training group (80%) and an independent testing group (20%). Propensity scores were computed using 390 variables to balance across two-year adverse life event exposures. Using elastic net regularization with and without inverse propensity weighting, we developed linear models in which changes in functional connectivity of brain connections during the two-year period served as predictors of the number of adverse events experienced during that same period. Haufe's method was applied to forward-transform the backward prediction models. We also tested whether brain changes associated with adverse events correlated with concomitant changes in internalizing or externalizing behaviors or to academic achievement. In the propensity-weighted analysis, brain development significantly predicted the number of adverse events experienced during that period in both the training group (ρ = 0.14, p < 0.001) and the independent testing group (ρ = 0.10, p < 0.001). The predictor indicated a general pattern of decreased functional connectivity between large-scale networks and subcortical brain regions, particularly for cingulo-opercular and sensorimotor networks. These network-to-subcortical functional connectivity decreases inversely associated with the development of internalizing symptoms, suggesting adverse events promoted adaptive brain changes that may buffer against stress-related psychopathology. However, these same functional connections were also associated with poorer grades at the two-year follow-up. Although cortical-subcortical brain developmental responses to adversity potentially shield against stress-induced mood and anxiety disorders, they may be detrimental to other domains such as academic success.
Collapse
Affiliation(s)
- Amanda Elton
- Department of Psychiatry, University of Florida, Gainesville, FL, 32610, USA.
- Center for Addiction Research & Education, University of Florida, Gainesville, FL, 32610, USA.
| | - Ben Lewis
- Department of Psychiatry, University of Florida, Gainesville, FL, 32610, USA
- Center for Addiction Research & Education, University of Florida, Gainesville, FL, 32610, USA
| | - Sara Jo Nixon
- Department of Psychiatry, University of Florida, Gainesville, FL, 32610, USA
- Center for Addiction Research & Education, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
12
|
Whittle S, Zhang L, Rakesh D. Environmental and neurodevelopmental contributors to youth mental illness. Neuropsychopharmacology 2024; 50:201-210. [PMID: 39030435 PMCID: PMC11526094 DOI: 10.1038/s41386-024-01926-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/03/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024]
Abstract
While a myriad of factors likely contribute to the development of mental illness in young people, the social environment (including early adverse experiences) in concert with neurodevelopmental alterations is undeniably important. A number of influential theories make predictions about how and why neurodevelopmental alterations may mediate or moderate the effects of the social environment on the emergence of mental illness. Here, we discuss current evidence supporting each of these theories. Although this area of research is rapidly growing, the body of evidence is still relatively limited. However, there exist some consistent findings, including increased striatal reactivity during positive affective processing and larger hippocampal volumes being associated with increased vulnerability or susceptibility to the effects of social environments on internalizing symptoms. Limited longitudinal work has investigated neurodevelopmental mechanisms linking the social environment with mental health. Drawing from human research and insights from animal studies, we propose an integrated mediation-moderation model and outline future research directions to advance the field.
Collapse
Affiliation(s)
- Sarah Whittle
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia.
- Orygen, Parkville, VIC, Australia.
| | - Lu Zhang
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Divyangana Rakesh
- Neuroimaging Department, Institute of Psychology, Psychiatry & Neuroscience, King's College London, London, UK
| |
Collapse
|
13
|
Reck A, Sweet LH, Geier C, Kogan SM, Cui Z, Oshri A. Food insecurity and adolescent impulsivity: The mediating role of functional connectivity in the context of family flexibility. Dev Sci 2024; 27:e13554. [PMID: 39054810 DOI: 10.1111/desc.13554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
Adolescent food insecurity is a salient adversity hypothesized to affect neural systems associated with increased impulsive behavior. Family environments shape how adverse experiences influence development. In this study, hypotheses were tested regarding the conjoint effects of food insecurity and family flexibility on impulsivity via alterations in connectivity between regions within the salience and central executive networks. Such alterations are reflected in resting-state functional connectivity (rsFC) metrics between the anterior insula (AI) and the middle frontal gyrus (MFG). Hypotheses were tested in a longitudinal moderated mediation model with two waves of data from 142 adolescents (Time 1 [T1] Mage = 12.89, SD = 0.85; Time 2 [T2] Mage = 15.01, SD = 1.07). Data on past-year household food insecurity, family flexibility, and rsFC were obtained at T1. Impulsivity was self-reported by the adolescent at T1 and T2. Findings revealed that high T1 left-to-left rsFC between the AI and MFG was associated with increased impulsivity at T2. The interaction of family flexibility and food insecurity was associated with AI and MFG rsFC. In the context of low family flexibility, food insecurity was linked to high levels of AI and MFG rsFC. Conversely, in the context of optimal family flexibility, food insecurity was associated with low levels of AI and MFG rsFC. Conditional indirect analysis suggests that the links among food insecurity, rsFC, and impulsive behavior depend on family flexibility. RESEARCH HIGHLIGHTS: Adolescent food insecurity was associated with anterior insula and middle frontal gyrus connectivity only at certain levels of family flexibility. High family flexibility attenuated the link between food insecurity and neural connectivity, while low levels of family flexibility increased this risk. High left anterior insula and left middle frontal gyrus connectivity was associated with increased impulsivity 1 year later.
Collapse
Affiliation(s)
- Ava Reck
- Department of Human Development and Family Science, University of Georgia, Athens, Georgia, USA
| | - Lawrence H Sweet
- Department of Psychology, University of Georgia, Athens, Georgia, USA
| | - Charles Geier
- Department of Human Development and Family Science, University of Georgia, Athens, Georgia, USA
| | - Steven M Kogan
- Department of Human Development and Family Science, University of Georgia, Athens, Georgia, USA
| | - Zehua Cui
- Department of Psychology, University of Maryland, College Park, Maryland, USA
| | - Assaf Oshri
- Department of Human Development and Family Science, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
14
|
Cook KM, De Asis-Cruz J, Sitrin C, Barnett SD, Krishnamurthy D, Limperopoulos C. Greater Neighborhood Disadvantage Is Associated with Alterations in Fetal Functional Brain Network Structure. J Pediatr 2024; 274:114201. [PMID: 39032768 PMCID: PMC11499008 DOI: 10.1016/j.jpeds.2024.114201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVE To determine the association between neighborhood disadvantage (ND) and functional brain development of in utero fetuses. STUDY DESIGN We conducted an observational study using Social Vulnerability Index (SVI) scores to assess the impact of ND on a prospectively recruited sample of healthy pregnant women from Washington, DC. Using 79 functional magnetic resonance imaging scans from 68 healthy pregnancies at a mean gestational age of 33.12 weeks, we characterized the overall functional brain network structure using a graph metric approach. We used linear mixed effects models to assess the relationship between SVI and gestational age on 5 graph metrics, adjusting for multiple scans. RESULTS Exposure to greater ND was associated with less well integrated functional brain networks, as observed by longer characteristic path lengths and diminished global efficiency (GE), as well as diminished small world propensity (SWP). Across gestational ages, however, the association between SVI and network integration diminished to a negligible relationship in the third trimester. Conversely, SWP was significant across pregnancy, but the relationship changed such that there was a negative association with SWP earlier in the second trimester that inverted around the transition to the third trimester to a positive association. CONCLUSIONS These data directly connect ND and altered functional brain maturation in fetuses. Our results suggest that, even before birth, proximity to environmental stressors in the wider neighborhood environment are associated with altered brain development.
Collapse
Affiliation(s)
- Kevin Michael Cook
- Developing Brain Institute, Children's National Hospital, Washington, DC
| | | | - Chloe Sitrin
- Department of Psychology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI
| | - Scott D Barnett
- Developing Brain Institute, Children's National Hospital, Washington, DC
| | | | | |
Collapse
|
15
|
Polemiti E, Hese S, Schepanski K, Yuan J, Schumann G. How does the macroenvironment influence brain and behaviour-a review of current status and future perspectives. Mol Psychiatry 2024; 29:3268-3286. [PMID: 38658771 PMCID: PMC11449798 DOI: 10.1038/s41380-024-02557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
The environment influences brain and mental health, both detrimentally and beneficially. Existing research has emphasised the individual psychosocial 'microenvironment'. Less attention has been paid to 'macroenvironmental' challenges, including climate change, pollution, urbanicity, and socioeconomic disparity. Notably, the implications of climate and pollution on brain and mental health have only recently gained prominence. With the advent of large-scale big-data cohorts and an increasingly dense mapping of macroenvironmental parameters, we are now in a position to characterise the relation between macroenvironment, brain, and behaviour across different geographic and cultural locations globally. This review synthesises findings from recent epidemiological and neuroimaging studies, aiming to provide a comprehensive overview of the existing evidence between the macroenvironment and the structure and functions of the brain, with a particular emphasis on its implications for mental illness. We discuss putative underlying mechanisms and address the most common exposures of the macroenvironment. Finally, we identify critical areas for future research to enhance our understanding of the aetiology of mental illness and to inform effective interventions for healthier environments and mental health promotion.
Collapse
Affiliation(s)
- Elli Polemiti
- Centre of Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience CCM, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Sören Hese
- Institute of Geography, Friedrich Schiller University Jena, Jena, Germany
| | | | - Jiacan Yuan
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences & CMA-FDU Joint Laboratory of Marine Meteorology & IRDR-ICOE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Gunter Schumann
- Centre of Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience CCM, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Centre for Population Neuroscience and Stratified Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Elton A, Lewis B, Nixon SJ. The Effects of Adverse Life Events on Brain Development in the ABCD Study ®: A Propensity-weighted Analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.25.24314355. [PMID: 39399053 PMCID: PMC11469365 DOI: 10.1101/2024.09.25.24314355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Longitudinal studies of the effects of adversity on human brain development are complicated by the association of stressful events with confounding variables. To counter this bias, we apply a propensity-weighted analysis of the first two years of The Adolescent Brain Cognitive DevelopmentSM (ABCD) Study® data, employing a machine learning analysis weighted by individuals' propensity to experience adversity. Data included 338 resting-state functional connections from 7190 youth (46% female), divided into a training group (80%) and an independent testing group (20%). Propensity scores were computed using 390 variables to balance across two-year adverse life event exposures. Using elastic net regularization with and without inverse propensity weighting, we developed linear models in which changes in functional connectivity of brain connections during the two-year period served as predictors of the number of adverse events experienced during that same period. Haufe's method was applied to forward-transform the backward prediction models. We also tested whether brain changes associated with adverse events correlated with concomitant changes in internalizing or externalizing behaviors or to academic achievement. In the propensity-weighted analysis, brain development significantly predicted the number of adverse events experienced during that period in both the training group (ρ=0.14, p<0.001) and the independent testing group (ρ=0.10, p<0.001). The predictor indicated a general pattern of decreased functional connectivity between large-scale networks and subcortical brain regions, particularly for cingulo-opercular and sensorimotor networks. These network-to-subcortical functional connectivity decreases inversely associated with the development of internalizing symptoms, suggesting adverse events promoted adaptive brain changes that may buffer against stress-related psychopathology. However, these same functional connections were also associated with poorer grades at the two-year follow-up. Although cortical-subcortical brain developmental responses to adversity potentially shield against stress-induced mood and anxiety disorders, they may be detrimental to other domains such as academic success.
Collapse
Affiliation(s)
- Amanda Elton
- Department of Psychiatry, University of Florida, Gainesville, FL 32610, USA
- Center for Addiction Research & Education, University of Florida, Gainesville, FL 32610, USA
| | - Ben Lewis
- Department of Psychiatry, University of Florida, Gainesville, FL 32610, USA
- Center for Addiction Research & Education, University of Florida, Gainesville, FL 32610, USA
| | - Sara Jo Nixon
- Department of Psychiatry, University of Florida, Gainesville, FL 32610, USA
- Center for Addiction Research & Education, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
17
|
Corrigan NM, Rokem A, Kuhl PK. COVID-19 lockdown effects on adolescent brain structure suggest accelerated maturation that is more pronounced in females than in males. Proc Natl Acad Sci U S A 2024; 121:e2403200121. [PMID: 39250666 PMCID: PMC11420155 DOI: 10.1073/pnas.2403200121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/26/2024] [Indexed: 09/11/2024] Open
Abstract
Adolescence is a period of substantial social-emotional development, accompanied by dramatic changes to brain structure and function. Social isolation due to lockdowns that were imposed because of the COVID-19 pandemic had a detrimental impact on adolescent mental health, with the mental health of females more affected than males. We assessed the impact of the COVID-19 pandemic lockdowns on adolescent brain structure with a focus on sex differences. We collected MRI structural data longitudinally from adolescents prior to and after the pandemic lockdowns. The pre-COVID data were used to create a normative model of cortical thickness change with age during typical adolescent development. Cortical thickness values in the post-COVID data were compared to this normative model. The analysis revealed accelerated cortical thinning in the post-COVID brain, which was more widespread throughout the brain and greater in magnitude in females than in males. When measured in terms of equivalent years of development, the mean acceleration was found to be 4.2 y in females and 1.4 y in males. Accelerated brain maturation as a result of chronic stress or adversity during development has been well documented. These findings suggest that the lifestyle disruptions associated with the COVID-19 pandemic lockdowns caused changes in brain biology and had a more severe impact on the female than the male brain.
Collapse
Affiliation(s)
- Neva M. Corrigan
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA98195
- Institute on Human Development and Disability, University of Washington, Seattle, WA98195
| | - Ariel Rokem
- Institute on Human Development and Disability, University of Washington, Seattle, WA98195
- Department of Psychology, University of Washington, Seattle, WA98195
- eScience Institute, University of Washington, Seattle, WA98195
| | - Patricia K. Kuhl
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA98195
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA98195
| |
Collapse
|
18
|
Rakesh D, McLaughlin KA, Sheridan M, Humphreys KL, Rosen ML. Environmental contributions to cognitive development: The role of cognitive stimulation. DEVELOPMENTAL REVIEW 2024; 73:101135. [PMID: 39830601 PMCID: PMC11741553 DOI: 10.1016/j.dr.2024.101135] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Early environmental experiences influence children's cognitive and neural development. In particular, cognitive stimulation, defined as environmental inputs that engage the senses and provide learning opportunities for children, fosters acquisition of knowledge across various cognitive domains. Low levels of cognitive stimulation in early life may restrict learning opportunities, contributing to lasting consequences for neural development and later academic and occupational achievement. This review delves into the role of cognitive stimulation in neural development and related cognitive performance, available tools for measuring cognitive stimulation in various settings, and offers insights into future research directions. In addition, variability in cognitive stimulation, often linked to differences in socioeconomic status, may create disparities in children's access to enriching experiences that provide the foundation for learning. We therefore briefly review the role of socioeconomic status in cognitive stimulation and cognitive development. We also leverage evidence from intervention studies to illustrate the importance of cognitive stimulation for children's outcomes. Investigating the influence of cognitive stimulation on children's brain and behavior development is crucial for developing effective intervention strategies to foster the healthy development of all children and unlocking their full potential.
Collapse
Affiliation(s)
- Divyangana Rakesh
- Neuroimaging Department, Institute of Psychology, Psychiatry & Neuroscience, King’s College London, London, UK
- Department of Psychology, Harvard University, Cambridge MA USA
| | - Katie A. McLaughlin
- Department of Psychology, Harvard University, Cambridge MA USA
- Ballmer Institute, University of Oregon, Portland, OR, USA
| | - Margaret Sheridan
- University of North Carolina, Chapel Hill, Department of Psychology, Chapel Hill, NC, USA
| | | | - Maya L. Rosen
- Program in Neuroscience, Smith College, Northampton, MA, USA
| |
Collapse
|
19
|
Fan X, Wu N, Tu Y, Zang T, Bai J, Peng G, Liu Y. Perinatal depression and infant and toddler neurodevelopment: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 159:105579. [PMID: 38342472 DOI: 10.1016/j.neubiorev.2024.105579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Many studies have focused on the effect of perinatal depression on neurodevelopment among children and adolescents. However, only a few studies have explored this relationship in infants and toddlers with inconsistent results. We performed a systematic review and meta-analysis to evaluate the association between perinatal depression and infant and toddler neurodevelopment during the first two postnatal years. Twenty-three studies were included in this meta-analysis. Perinatal depression was associated with poorer cognitive (Cohen's d = -0.19, SE= 0.06, 95% CI = -0.30 to -0.08), language (Cohen's d = -0.24, SE = 0.09, 95% CI = -0.40 to -0.07), and motor (Cohen's d = -0.15, SE = 0.05, 95% CI = -0.26 to -0.05) development. Subgroup analyses showed that the types of maternal depression (prenatal depression vs. postnatal depression), the method of measuring maternal depression (rating scale vs. diagnostic interview), and the time interval between assessment of exposure and outcome had an impact on the observed effect about neurodevelopment of infants and toddlers. In addition, the results of our study pointed to a stronger significant association between prenatal depression and cognitive, language, and motor delays in infants and toddlers, whereas the association between postnatal depression and cognitive, language, and motor delays in infants and toddlers was not statistically significant. In conclusion, this study provided convincing evidence that the perinatal window is a sensitive period for offspring neurodevelopment.
Collapse
Affiliation(s)
- Xiaoxiao Fan
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Ni Wu
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Yiming Tu
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Tianzi Zang
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Jinbing Bai
- Emory University Nell Hodgson Woodruff School of Nursing, 1520 Clifton Road, Atlanta, GA 30322, USA
| | - Ganggang Peng
- Shenzhen Second People's Hospital, Shenzhen 518000, China
| | - Yanqun Liu
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China.
| |
Collapse
|
20
|
Seitz-Holland J, Haas SS, Penzel N, Reichenberg A, Pasternak O. BrainAGE, brain health, and mental disorders: A systematic review. Neurosci Biobehav Rev 2024; 159:105581. [PMID: 38354871 PMCID: PMC11119273 DOI: 10.1016/j.neubiorev.2024.105581] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
The imaging-based method of brainAGE aims to characterize an individual's vulnerability to age-related brain changes. The present study systematically reviewed brainAGE findings in neuropsychiatric conditions and discussed the potential of brainAGE as a marker for biological age. A systematic PubMed search (from inception to March 6th, 2023) identified 273 articles. The 30 included studies compared brainAGE between neuropsychiatric and healthy groups (n≥50). We presented results qualitatively and adapted a bias risk assessment questionnaire. The imaging modalities, design, and input features varied considerably between studies. While the studies found higher brainAGE in neuropsychiatric conditions (11 mild cognitive impairment/ dementia, 11 schizophrenia spectrum/ other psychotic and bipolar disorder, six depression/ anxiety, two multiple groups), the associations with clinical characteristics were mixed. While brainAGE is sensitive to group differences, limitations include the lack of diverse training samples, multi-modal studies, and external validation. Only a few studies obtained longitudinal data, and all have used algorithms built solely to predict chronological age. These limitations impede the validity of brainAGE as a biological age marker.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Shalaila S Haas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nora Penzel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Abraham Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
DeJoseph ML, Ellwood-Lowe ME, Miller-Cotto D, Silverman D, Shannon KA, Reyes G, Rakesh D, Frankenhuis WE. The promise and pitfalls of a strength-based approach to child poverty and neurocognitive development: Implications for policy. Dev Cogn Neurosci 2024; 66:101375. [PMID: 38608359 PMCID: PMC11019102 DOI: 10.1016/j.dcn.2024.101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
There has been significant progress in understanding the effects of childhood poverty on neurocognitive development. This progress has captured the attention of policymakers and promoted progressive policy reform. However, the prevailing emphasis on the harms associated with childhood poverty may have inadvertently perpetuated a deficit-based narrative, focused on the presumed shortcomings of children and families in poverty. This focus can have unintended consequences for policy (e.g., overlooking strengths) as well as public discourse (e.g., focusing on individual rather than systemic factors). Here, we join scientists across disciplines in arguing for a more well-rounded, "strength-based" approach, which incorporates the positive and/or adaptive developmental responses to experiences of social disadvantage. Specifically, we first show the value of this approach in understanding normative brain development across diverse human environments. We then highlight its application to educational and social policy, explore pitfalls and ethical considerations, and offer practical solutions to conducting strength-based research responsibly. Our paper re-ignites old and recent calls for a strength-based paradigm shift, with a focus on its application to developmental cognitive neuroscience. We also offer a unique perspective from a new generation of early-career researchers engaged in this work, several of whom themselves have grown up in conditions of poverty. Ultimately, we argue that a balanced strength-based scientific approach will be essential to building more effective policies.
Collapse
Affiliation(s)
| | | | | | - David Silverman
- Department of Psychology, Northwestern University, United States
| | | | - Gabriel Reyes
- Graduate School of Education, Stanford University, United States
| | - Divyangana Rakesh
- Neuroimaging Department, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Willem E Frankenhuis
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, the Netherlands; Max Planck Institute for the Study of Crime, Security, and Law, Germany
| |
Collapse
|
22
|
Diniz BS, Seitz-Holland J, Sehgal R, Kasamoto J, Higgins-Chen AT, Lenze E. Geroscience-Centric Perspective for Geriatric Psychiatry: Integrating Aging Biology With Geriatric Mental Health Research. Am J Geriatr Psychiatry 2024; 32:1-16. [PMID: 37845116 PMCID: PMC10841054 DOI: 10.1016/j.jagp.2023.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/30/2023] [Accepted: 09/14/2023] [Indexed: 10/18/2023]
Abstract
The geroscience hypothesis asserts that physiological aging is caused by a small number of biological pathways. Despite the explosion of geroscience research over the past couple of decades, the research on how serious mental illnesses (SMI) affects the biological aging processes is still in its infancy. In this review, we aim to provide a critical appraisal of the emerging literature focusing on how we measure biological aging systematically, and in the brain and how SMIs affect biological aging measures in older adults. We will also review recent developments in the field of cellular senescence and potential targets for interventions for SMIs in older adults, based on the geroscience hypothesis.
Collapse
Affiliation(s)
- Breno S Diniz
- UConn Center on Aging & Department of Psychiatry (BSD), School of Medicine, University of Connecticut Health Center, Farmington, CT.
| | - Johanna Seitz-Holland
- Department of Psychiatry (JSH), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry (JSH), Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Raghav Sehgal
- Program in Computational Biology and Bioinformatics (RS, JK), Yale University, New Haven, CT
| | - Jessica Kasamoto
- Program in Computational Biology and Bioinformatics (RS, JK), Yale University, New Haven, CT
| | - Albert T Higgins-Chen
- Department of Psychiatry (ATHC), Yale University School of Medicine, New Haven, CT; Department of Pathology (ATHC), Yale University School of Medicine, New Haven, CT
| | - Eric Lenze
- Department of Psychiatry (EL), School of Medicine, Washington University at St. Louis, St. Louis, MO
| |
Collapse
|
23
|
Cohen JW, Ramphal B, DeSerisy M, Zhao Y, Pagliaccio D, Colcombe S, Milham MP, Margolis AE. Relative brain age is associated with socioeconomic status and anxiety/depression problems in youth. Dev Psychol 2024; 60:199-209. [PMID: 37747510 PMCID: PMC10993304 DOI: 10.1037/dev0001593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Brain age, a measure of biological aging in the brain, has been linked to psychiatric illness, principally in adult populations. Components of socioeconomic status (SES) associate with differences in brain structure and psychiatric risk across the lifespan. This study aimed to investigate the influence of SES on brain aging in childhood and adolescence, a period of rapid neurodevelopment and peak onset for many psychiatric disorders. We reanalyzed data from the Healthy Brain Network to examine the influence of SES components (occupational prestige, public assistance enrollment, parent education, and household income-to-needs ratio [INR]) on relative brain age (RBA). Analyses included 470 youth (5-17 years; 61.3% men), self-identifying as White (55%), African American (15%), Hispanic (9%), or multiracial (17.2%). Household income was 3.95 ± 2.33 (mean ± SD) times the federal poverty threshold. RBA quantified differences between chronological age and brain age using covariation patterns of morphological features and total volumes. We also examined associations between RBA and psychiatric symptoms (Child Behavior Checklist [CBCL]). Models covaried for sex, scan location, and parent psychiatric diagnoses. In a linear regression, lower RBA is associated with lower parent occupational prestige (p = .01), lower public assistance enrollment (p = .03), and more parent psychiatric diagnoses (p = .01), but not parent education or INR. Lower parent occupational prestige (p = .02) and lower RBA (p = .04) are associated with higher CBCL anxious/depressed scores. Our findings underscore the importance of including SES components in developmental brain research. Delayed brain aging may represent a potential biological pathway from SES to psychiatric risk. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
- Jacob W. Cohen
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University
| | - Bruce Ramphal
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University
- T.H. Chan School of Public Health, Harvard Medical School
| | - Mariah DeSerisy
- Department of Epidemiology, Mailman School of Public Health, Columbia University
| | - Yihong Zhao
- Columbia University School of Nursing
- Center for Biological Imaging and Neuromodulation, Nathan S. Kline Institute, Orangeburg, New York, United States
| | - David Pagliaccio
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University
| | - Stan Colcombe
- Center for Biological Imaging and Neuromodulation, Nathan S. Kline Institute, Orangeburg, New York, United States
| | - Michael P. Milham
- Child Mind Institute, New York, New York, United States
- Nathan S. Kline Institute, Orangeburg, New York, United States
| | - Amy E. Margolis
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University
| |
Collapse
|
24
|
Mummaneni A, Kardan O, Stier AJ, Chamberlain TA, Chao AF, Berman MG, Rosenberg MD. Functional brain connectivity predicts sleep duration in youth and adults. Hum Brain Mapp 2023; 44:6293-6307. [PMID: 37916784 PMCID: PMC10681648 DOI: 10.1002/hbm.26488] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 11/03/2023] Open
Abstract
Sleep is critical to a variety of cognitive functions and insufficient sleep can have negative consequences for mood and behavior across the lifespan. An important open question is how sleep duration is related to functional brain organization which may in turn impact cognition. To characterize the functional brain networks related to sleep across youth and young adulthood, we analyzed data from the publicly available Human Connectome Project (HCP) dataset, which includes n-back task-based and resting-state fMRI data from adults aged 22-35 years (task n = 896; rest n = 898). We applied connectome-based predictive modeling (CPM) to predict participants' mean sleep duration from their functional connectivity patterns. Models trained and tested using 10-fold cross-validation predicted self-reported average sleep duration for the past month from n-back task and resting-state connectivity patterns. We replicated this finding in data from the 2-year follow-up study session of the Adolescent Brain Cognitive Development (ABCD) Study, which also includes n-back task and resting-state fMRI for adolescents aged 11-12 years (task n = 786; rest n = 1274) as well as Fitbit data reflecting average sleep duration per night over an average duration of 23.97 days. CPMs trained and tested with 10-fold cross-validation again predicted sleep duration from n-back task and resting-state functional connectivity patterns. Furthermore, demonstrating that predictive models are robust across independent datasets, CPMs trained on rest data from the HCP sample successfully generalized to predict sleep duration in the ABCD Study sample and vice versa. Thus, common resting-state functional brain connectivity patterns reflect sleep duration in youth and young adults.
Collapse
Affiliation(s)
| | - Omid Kardan
- Department of PsychologyThe University of ChicagoChicagoIllinoisUSA
- Department of PsychiatryUniversity of MichiganAnn ArborMichiganUSA
| | - Andrew J. Stier
- Department of PsychologyThe University of ChicagoChicagoIllinoisUSA
| | - Taylor A. Chamberlain
- Department of PsychologyThe University of ChicagoChicagoIllinoisUSA
- Department of PsychologyColumbia UniversityNew YorkNew YorkUSA
| | - Alfred F. Chao
- Department of PsychologyThe University of ChicagoChicagoIllinoisUSA
| | - Marc G. Berman
- Department of PsychologyThe University of ChicagoChicagoIllinoisUSA
- Neuroscience InstituteThe University of ChicagoChicagoIllinoisUSA
| | - Monica D. Rosenberg
- Department of PsychologyThe University of ChicagoChicagoIllinoisUSA
- Neuroscience InstituteThe University of ChicagoChicagoIllinoisUSA
| |
Collapse
|
25
|
Michael C, Tillem S, Sripada CS, Burt SA, Klump KL, Hyde LW. Neighborhood poverty during childhood prospectively predicts adolescent functional brain network architecture. Dev Cogn Neurosci 2023; 64:101316. [PMID: 37857040 PMCID: PMC10587714 DOI: 10.1016/j.dcn.2023.101316] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/14/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023] Open
Abstract
Family poverty has been associated with altered brain structure, function, and connectivity in youth. However, few studies have examined how disadvantage within the broader neighborhood may influence functional brain network organization. The present study leveraged a longitudinal community sample of 538 twins living in low-income neighborhoods to evaluate the prospective association between exposure to neighborhood poverty during childhood (6-10 y) with functional network architecture during adolescence (8-19 y). Using resting-state and task-based fMRI, we generated two latent measures that captured intrinsic brain organization across the whole-brain and network levels - network segregation and network segregation-integration balance. While age was positively associated with network segregation and network balance overall across the sample, these associations were moderated by exposure to neighborhood poverty. Specifically, these positive associations were observed only in youth from more, but not less, disadvantaged neighborhoods. Moreover, greater exposure to neighborhood poverty predicted reduced network segregation and network balance in early, but not middle or late, adolescence. These effects were detected both across the whole-brain system as well as specific functional networks, including fronto-parietal, default mode, salience, and subcortical systems. These findings indicate that where children live may exert long-reaching effects on the organization and development of the adolescent brain.
Collapse
Affiliation(s)
- Cleanthis Michael
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Scott Tillem
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Chandra S Sripada
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - S Alexandra Burt
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Kelly L Klump
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Luke W Hyde
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Survey Research Center at the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
26
|
Michael C, Taxali A, Angstadt M, Kardan O, Weigard A, Molloy MF, McCurry KL, Hyde LW, Heitzeg MM, Sripada C. Socioeconomic resources in youth are linked to divergent patterns of network integration and segregation across the brain's transmodal axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.565517. [PMID: 38014302 PMCID: PMC10680554 DOI: 10.1101/2023.11.08.565517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Socioeconomic resources (SER) calibrate the developing brain to the current context, which can confer or attenuate risk for psychopathology across the lifespan. Recent multivariate work indicates that SER levels powerfully influence intrinsic functional connectivity patterns across the entire brain. Nevertheless, the neurobiological meaning of these widespread alterations remains poorly understood, despite its translational promise for early risk identification, targeted intervention, and policy reform. In the present study, we leverage the resources of graph theory to precisely characterize multivariate and univariate associations between household SER and the functional integration and segregation (i.e., participation coefficient, within-module degree) of brain regions across major cognitive, affective, and sensorimotor systems during the resting state in 5,821 youth (ages 9-10 years) from the Adolescent Brain Cognitive Development (ABCD) Study. First, we establish that decomposing the brain into profiles of integration and segregation captures more than half of the multivariate association between SER and functional connectivity with greater parsimony (100-fold reduction in number of features) and interpretability. Second, we show that the topological effects of SER are not uniform across the brain; rather, higher SER levels are related to greater integration of somatomotor and subcortical systems, but greater segregation of default mode, orbitofrontal, and cerebellar systems. Finally, we demonstrate that the effects of SER are spatially patterned along the unimodal-transmodal gradient of brain organization. These findings provide critical interpretive context for the established and widespread effects of SER on brain organization, indicating that SER levels differentially configure the intrinsic functional architecture of developing unimodal and transmodal systems. This study highlights both sensorimotor and higher-order networks that may serve as neural markers of environmental stress and opportunity, and which may guide efforts to scaffold healthy neurobehavioral development among disadvantaged communities of youth.
Collapse
Affiliation(s)
- Cleanthis Michael
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Aman Taxali
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Mike Angstadt
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Omid Kardan
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Weigard
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - M. Fiona Molloy
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | | | - Luke W. Hyde
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center at the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Mary M. Heitzeg
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Chandra Sripada
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
27
|
Zhang L, Rakesh D, Cropley V, Whittle S. Neurobiological correlates of resilience during childhood and adolescence - A systematic review. Clin Psychol Rev 2023; 105:102333. [PMID: 37690325 DOI: 10.1016/j.cpr.2023.102333] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/09/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023]
Abstract
Research examining the neurobiological mechanisms of resilience has grown rapidly over the past decade. However, there is vast heterogeneity in research study design, methods, and in how resilience is operationalized, making it difficult to gauge what we currently know about resilience biomarkers. This preregistered systematic review aimed to review and synthesize the extant literature to identify neurobiological correlates of resilience to adversity during childhood and adolescence. Literature searches on MEDLINE and PsycINFO yielded 3834 studies and a total of 49 studies were included in the final review. Findings were synthesized based on how resilience was conceptualized (e.g., absence of psychopathology, trait resilience), and where relevant, the type of outcome examined (e.g., internalizing symptoms, post-traumatic stress disorder). Our synthesis showed that findings were generally mixed. Nevertheless, some consistent findings suggest that resilience neural mechanisms may involve prefrontal and subcortical regions structure/activity, as well as connectivity between these regions. Given substantial heterogeneity in the definition and operationalization of resilience, more methodological consistency across studies is required for advancing knowledge in this field.
Collapse
Affiliation(s)
- Lu Zhang
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Australia.
| | - Divyangana Rakesh
- Neuroimaging Department, Institute of Psychology, Psychiatry & Neuroscience, King's College London, London, UK; Department of Psychology, Harvard University, MA, USA
| | - Vanessa Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Australia
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Australia
| |
Collapse
|
28
|
Thomas M, Rakesh D, Whittle S, Sheridan M, Upthegrove R, Cropley V. The neural, stress hormone and inflammatory correlates of childhood deprivation and threat in psychosis: A systematic review. Psychoneuroendocrinology 2023; 157:106371. [PMID: 37651860 DOI: 10.1016/j.psyneuen.2023.106371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
Childhood adversity increases the risk of developing psychosis, but the biological mechanisms involved are unknown. Disaggregating early adverse experiences into core dimensions of deprivation and threat may help to elucidate these mechanisms. We therefore systematically searched the literature investigating associations between deprivation and threat, and neural, immune and stress hormone systems in individuals on the psychosis spectrum. Our search yielded 74 articles, from which we extracted and synthesized relevant findings. While study designs were heterogeneous and findings inconsistent, some trends emerged. In psychosis, deprivation tended to correlate with lower global cortical volume, and some evidence supported threat-related variation in prefrontal cortex morphology. Greater threat exposure was also associated with higher C-reactive protein, and higher and lower cortisol measures. When examined, associations in controls were less evident. Overall, findings indicate that deprivation and threat may associate with partially distinct biological mechanisms in the psychosis spectrum, and that associations may be stronger than in controls. Dimensional approaches may help disentangle the biological correlates of childhood adversity in psychosis, but more studies are needed.
Collapse
Affiliation(s)
- Megan Thomas
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Australia.
| | - Divyangana Rakesh
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Australia; Neuroimaging Department, Institute of Psychology, Psychiatry & Neuroscience, King's College London, London, United Kingdom
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Australia
| | - Margaret Sheridan
- Department of Psychology & Neuroscience, University of North Carolina, United States
| | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, United Kingdom; Early Intervention Service, Birmingham Women's and Children's NHS Foundation Trust, United Kingdom
| | - Vanessa Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Australia
| |
Collapse
|
29
|
Polemiti E, Hese S, Schepanski K, Yuan J, Schumann G. How does the macroenvironment influence brain and behaviour - a review of current status and future perspectives. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.09.23296785. [PMID: 37873310 PMCID: PMC10593044 DOI: 10.1101/2023.10.09.23296785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The environment influences mental health, both detrimentally and beneficially. Current research has emphasized the individual psychosocial 'microenvironment'. Less attention has been paid to 'macro-environmental' challenges including climate change, pollution, urbanicity and socioeconomic disparity. With the advent of large-scale big-data cohorts and an increasingly dense mapping of macroenvironmental parameters, we are now in a position to characterise the relation between macroenvironment, brain, and behaviour across different geographic and cultural locations globally. This review synthesises findings from recent epidemiological and neuroimaging studies, aiming to provide a comprehensive overview of the existing evidence between the macroenvironment and the structure and functions of the brain, with a particular emphasis on its implications for mental illness. We discuss putative underlying mechanisms and address the most common exposures of the macroenvironment. Finally, we identify critical areas for future research to enhance our understanding of the aetiology of mental illness and to inform effective interventions for healthier environments and mental health promotion.
Collapse
Affiliation(s)
- Elli Polemiti
- Centre of Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience, Charité, Universitätsmedizin Berlin, Germany
| | - Soeren Hese
- Institute of Geography, Friedrich Schiller University Jena, Germany
| | | | - Jiacan Yuan
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences & CMA-FDU Joint Laboratory of Marine Meteorology & IRDR-ICOE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Gunter Schumann
- Centre of Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience, Charité, Universitätsmedizin Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | | |
Collapse
|
30
|
Rakesh D, Whittle S, Sheridan MA, McLaughlin KA. Childhood socioeconomic status and the pace of structural neurodevelopment: accelerated, delayed, or simply different? Trends Cogn Sci 2023; 27:833-851. [PMID: 37179140 PMCID: PMC10524122 DOI: 10.1016/j.tics.2023.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 05/15/2023]
Abstract
Socioeconomic status (SES) is associated with children's brain and behavioral development. Several theories propose that early experiences of adversity or low SES can alter the pace of neurodevelopment during childhood and adolescence. These theories make contrasting predictions about whether adverse experiences and low SES are associated with accelerated or delayed neurodevelopment. We contextualize these predictions within the context of normative development of cortical and subcortical structure and review existing evidence on SES and structural brain development to adjudicate between competing hypotheses. Although none of these theories are fully consistent with observed SES-related differences in brain development, existing evidence suggests that low SES is associated with brain structure trajectories more consistent with a delayed or simply different developmental pattern than an acceleration in neurodevelopment.
Collapse
Affiliation(s)
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia
| | - Margaret A Sheridan
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
31
|
Wang C, Hayes R, Roeder K, Jalbrzikowski M. Neurobiological Clusters Are Associated With Trajectories of Overall Psychopathology in Youth. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:852-863. [PMID: 37121399 PMCID: PMC10792597 DOI: 10.1016/j.bpsc.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/22/2023] [Accepted: 04/13/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Integrating multiple neuroimaging modalities to identify clusters of individuals and then associating these clusters with psychopathology is a promising approach for understanding neurobiological mechanisms that underlie psychopathology and the extent to which these features are associated with clinical symptoms. METHODS We leveraged neuroimaging data from T1-weighted, diffusion-weighted, and resting-state functional magnetic resonance images from the Adolescent Brain Cognitive Development (ABCD) Study (N = 8035) and used similarity network fusion and spectral clustering to identify subgroups of participants. We examined neuroimaging measures as a function of clustering profiles using 1, 2, or 3 imaging modalities (i.e., data combinations), calculated the stability of the clustering assignment in each respective data combination, and compared the consistency of clusters across different data combinations. We then compared the extent to which clusters were associated with overall psychopathology at the baseline assessment and at 2 yearly follow-up visits. RESULTS Each data combination resulted in optimal clusters ranging from 2 to 4 subgroups for each data combination. Clusters were stable across subsampling of the ABCD Study cohort. Widespread structural measures (surface area, fractional anisotropy, and mean diffusivity) were important features contributing to clustering across different data combinations. Five of the seven data combinations were associated with overall psychopathology, both at baseline and over time (d = 0.08-0.41). Generally, lower global cortical volume and surface area, widespread reduced fractional anisotropy, and increased radial diffusivity were associated with increased overall psychopathology. CONCLUSIONS Profiles constructed from neuroimaging data combinations are associated with concurrent and future psychopathology trajectories.
Collapse
Affiliation(s)
- Catherine Wang
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Rebecca Hayes
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, Massachusetts
| | - Kathryn Roeder
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania; Department of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Maria Jalbrzikowski
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
32
|
Delaney SW, Hidalgo APC, White T, Haneuse S, Ressler KJ, Tiemeier H, Kubzansky LD. Behavioral and neurostructural correlates of childhood physical violence victimization: Interaction with family functioning. Dev Psychobiol 2023; 65:e22398. [PMID: 37338254 PMCID: PMC11012107 DOI: 10.1002/dev.22398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 03/15/2023] [Accepted: 04/06/2023] [Indexed: 06/21/2023]
Abstract
Violence victimization may cause child behavior problems and neurostructural differences associated with them. Healthy family environments may buffer these effects, but neural pathways explaining these associations remain inadequately understood. We used data from 3154 children (x̅age = 10.1) to test whether healthy family functioning moderated possible associations between violence victimization, behavior problems, and amygdala volume (a threat-responsive brain region). Researchers collected data on childhood violence victimization, family functioning (McMaster Family Assessment Device, range 0-3, higher scores indicate healthier functioning), and behavior problems (Achenbach Child Behavior Checklist [CBCL] total problem score, range 0-117), and they scanned children with magnetic resonance imaging. We standardized amygdala volumes and fit confounder-adjusted models with "victimization × family functioning" interaction terms. Family functioning moderated associations between victimization, behavior problems, and amygdala volume. Among lower functioning families (functioning score = 1.0), victimization was associated with a 26.1 (95% confidence interval [CI]: 9.9, 42.4) unit higher CBCL behavior problem score, yet victimized children from higher functioning families (score = 3.0) exhibited no such association. Unexpectedly, victimization was associated with higher standardized amygdala volume among lower functioning families (ŷ = 0.5; 95% CI: 0.1, 1.0) but lower volume among higher functioning families (ŷ = -0.4; 95% CI: -0.7, -0.2). Thus, healthy family environments may mitigate some neurobehavioral effects of childhood victimization.
Collapse
Affiliation(s)
- Scott W. Delaney
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Child and Adolescent Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
- Lee Kum Sheung Center for Health and Happiness, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Andrea P. Cortes Hidalgo
- Department of Child and Adolescent Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tonya White
- Department of Child and Adolescent Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sebastien Haneuse
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kerry J. Ressler
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Henning Tiemeier
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Child and Adolescent Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Laura D. Kubzansky
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Lee Kum Sheung Center for Health and Happiness, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Qiu A, Liu C. Pathways link environmental and genetic factors with structural brain networks and psychopathology in youth. Neuropsychopharmacology 2023; 48:1042-1051. [PMID: 36928354 PMCID: PMC10209108 DOI: 10.1038/s41386-023-01559-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023]
Abstract
Adolescence is a period of significant brain development and maturation, and it is a time when many mental health problems first emerge. This study aimed to explore a comprehensive map that describes possible pathways from genetic and environmental risks to structural brain organization and psychopathology in adolescents. We included 32 environmental items on developmental adversity, maternal substance use, parental psychopathology, socioeconomic status (SES), school and family environment; 10 child psychopathological scales; polygenic risk scores (PRS) for 10 psychiatric disorders, total problems, and cognitive ability; and structural brain networks in the Adolescent Brain Cognitive Development study (ABCD, n = 9168). Structural equation modeling found two pathways linking SES, brain, and psychopathology. Lower SES was found to be associated with lower structural connectivity in the posterior default mode network and greater salience structural connectivity, and with more severe psychosis and internalizing in youth (p < 0.001). Prematurity and birth weight were associated with early-developed sensorimotor and subcortical networks (p < 0.001). Increased parental psychopathology, decreased SES and school engagement was related to elevated family conflict, psychosis, and externalizing behaviors in youth (p < 0.001). Increased maternal substance use predicted increased developmental adversity, internalizing, and psychosis (p < 0.001). But, polygenic risks for psychiatric disorders had moderate effects on brain structural connectivity and psychopathology in youth. These findings suggest that a range of genetic and environmental factors can influence brain structural organization and psychopathology during adolescence, and that addressing these risk factors may be important for promoting positive mental health outcomes in young people.
Collapse
Affiliation(s)
- Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore.
- NUS (Suzhou) Research Institute, National University of Singapore, Suzhou, China.
- Institute of Data Science, National University of Singapore, Singapore, Singapore.
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA.
| | - Chaoqiang Liu
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
34
|
Li ZA, Cai Y, Taylor RL, Eisenstein SA, Barch DM, Marek S, Hershey T. Associations Between Socioeconomic Status, Obesity, Cognition, and White Matter Microstructure in Children. JAMA Netw Open 2023; 6:e2320276. [PMID: 37368403 DOI: 10.1001/jamanetworkopen.2023.20276] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Importance Lower neighborhood and household socioeconomic status (SES) are associated with negative health outcomes and altered brain structure in children. It is unclear whether such findings extend to white matter and via what mechanisms. Objective To assess whether and how neighborhood and household SES are independently associated with children's white matter microstructure and examine whether obesity and cognitive performance (reflecting environmental cognitive and sensory stimulation) are plausible mediators. Design, Setting, and Participants This cross-sectional study used baseline data from participants in the Adolescent Brain Cognitive Development (ABCD) study. Data were collected at 21 US sites, and school-based recruitment was used to represent the US population. Children aged 9 to 11 years and their parents or caregivers completed assessments between October 1, 2016, and October 31, 2018. After exclusions, 8842 of 11 875 children in the ABCD study were included in the analyses. Data analysis was conducted from July 11 to December 19, 2022. Exposures Neighborhood disadvantage was derived from area deprivation indices at participants' primary residence. Household SES factors were total income and highest parental educational attainment. Main Outcomes and Measures A restriction spectrum imaging (RSI) model was used to quantify restricted normalized directional (RND; reflecting oriented myelin organization) and restricted normalized isotropic (RNI; reflecting glial and neuronal cell bodies) diffusion in 31 major white matter tracts. The RSI measurements were scanner harmonized. Obesity was assessed through body mass index (BMI; calculated as weight in kilograms divided by height in meters squared), age- and sex-adjusted BMI z scores, and waist circumference, and cognition was assessed through the National Institutes of Health Toolbox Cognition Battery. Analyses were adjusted for age, sex, pubertal development stage, intracranial volume, mean head motion, and twin or siblingship. Results Among 8842 children, 4543 (51.4%) were boys, and the mean (SD) age was 9.9 (0.7) years. Linear mixed-effects models revealed that greater neighborhood disadvantage was associated with lower RSI-RND in the left superior longitudinal fasciculus (β = -0.055; 95% CI, -0.081 to -0.028) and forceps major (β = -0.040; 95% CI, -0.067 to -0.013). Lower parental educational attainment was associated with lower RSI-RND in the bilateral superior longitudinal fasciculus (eg, right hemisphere: β = 0.053; 95% CI, 0.025-0.080) and bilateral corticospinal or pyramidal tract (eg, right hemisphere: β = 0.042; 95% CI, 0.015-0.069). Structural equation models revealed that lower cognitive performance (eg, lower total cognition score and higher neighborhood disadvantage: β = -0.012; 95% CI, -0.016 to -0.009) and greater obesity (eg, higher BMI and higher neighborhood disadvantage: β = -0.004; 95% CI, -0.006 to -0.001) partially accounted for the associations between SES and RSI-RND. Lower household income was associated with higher RSI-RNI in most tracts (eg, right inferior longitudinal fasciculus: β = -0.042 [95% CI, -0.073 to -0.012]; right anterior thalamic radiations: β = -0.045 [95% CI, -0.075 to -0.014]), and greater neighborhood disadvantage had similar associations in primarily frontolimbic tracts (eg, right fornix: β = 0.046 [95% CI, 0.019-0.074]; right anterior thalamic radiations: β = 0.045 [95% CI, 0.018-0.072]). Lower parental educational attainment was associated with higher RSI-RNI in the forceps major (β = -0.048; 95% CI, -0.077 to -0.020). Greater obesity partially accounted for these SES associations with RSI-RNI (eg, higher BMI and higher neighborhood disadvantage: β = 0.015; 95% CI, 0.011-0.020). Findings were robust in sensitivity analyses and were corroborated using diffusion tensor imaging. Conclusions and Relevance In this cross-sectional study, both neighborhood and household contexts were associated with white matter development in children, and findings suggested that obesity and cognitive performance were possible mediators in these associations. Future research on children's brain health may benefit from considering these factors from multiple socioeconomic perspectives.
Collapse
Affiliation(s)
- Zhaolong Adrian Li
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, Missouri
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, Missouri
| | - Yuqi Cai
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, Missouri
- Now with Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rita L Taylor
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, Missouri
| | - Sarah A Eisenstein
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University in St Louis School of Medicine, St Louis, Missouri
| | - Deanna M Barch
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, Missouri
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University in St Louis School of Medicine, St Louis, Missouri
| | - Scott Marek
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University in St Louis School of Medicine, St Louis, Missouri
| | - Tamara Hershey
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, Missouri
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University in St Louis School of Medicine, St Louis, Missouri
- Department of Neurology, Washington University in St Louis School of Medicine, St Louis, Missouri
| |
Collapse
|
35
|
Dehestani N, Whittle S, Vijayakumar N, Silk TJ. Developmental brain changes during puberty and associations with mental health problems. Dev Cogn Neurosci 2023; 60:101227. [PMID: 36933272 PMCID: PMC10036507 DOI: 10.1016/j.dcn.2023.101227] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Our understanding of the mechanisms relating pubertal timing to mental health problems via brain development remains rudimentary. METHOD Longitudinal data was sourced from ∼11,500 children from the Adolescent Brain Cognitive Development (ABCD) Study (age 9-13years). We built models of "brain age" and "puberty age" as indices of brain and pubertal development. Residuals from these models were used to index individual differences in brain development and pubertal timing, respectively. Mixed-effects models were used to investigate associations between pubertal timing and regional and global brain development. Mediation models were used to investigate the indirect effect of pubertal timing on mental health problems via brain development. RESULTS Earlier pubertal timing was associated with accelerated brain development, particularly of subcortical and frontal regions in females and subcortical regions in males. While earlier pubertal timing was associated with elevated mental health problems in both sexes, brain age did not predict mental health problems, nor did it mediate associations between pubertal timing and mental health problems. CONCLUSION This study highlights the importance of pubertal timing as a marker associated with brain maturation and mental health problems.
Collapse
Affiliation(s)
- Niousha Dehestani
- School of Psychology, Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, VIC, Australia.
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, VIC, Australia
| | - Nandita Vijayakumar
- School of Psychology, Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia; Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Timothy J Silk
- School of Psychology, Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia; Developmental Imaging, Murdoch Children's Research Institute, Parkville 3052, Australia.
| |
Collapse
|
36
|
Kalantar-Hormozi H, Patel R, Dai A, Ziolkowski J, Dong HM, Holmes A, Raznahan A, Devenyi GA, Chakravarty MM. A cross-sectional and longitudinal study of human brain development: The integration of cortical thickness, surface area, gyrification index, and cortical curvature into a unified analytical framework. Neuroimage 2023; 268:119885. [PMID: 36657692 DOI: 10.1016/j.neuroimage.2023.119885] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
Brain maturation studies typically examine relationships linking a single morphometric feature with cognition, behavior, age, or other demographic characteristics. However, the coordinated spatiotemporal arrangement of morphological features across development and their associations with behavior are unclear. Here, we examine covariation across multiple cortical features (cortical thickness [CT], surface area [SA], local gyrification index [GI], and mean curvature [MC]) using magnetic resonance images from the NIMH developmental cohort (ages 5-25). Neuroanatomical covariance was examined using non-negative matrix factorization (NMF), which decomposes covariance resulting in a parts-based representation. Cross-sectionally, we identified six components of covariation which demonstrate differential contributions of CT, GI, and SA in hetero- vs. unimodal areas. Using this technique to examine covariance in rates of change to identify longitudinal sources of covariance highlighted preserved SA in unimodal areas and changes in CT and GI in heteromodal areas. Using behavioral partial least squares (PLS), we identified a single latent variable (LV) that recapitulated patterns of reduced CT, GI, and SA related to older age, with limited contributions of IQ and SES. Longitudinally, PLS revealed three LVs that demonstrated a nuanced developmental pattern that highlighted a higher rate of maturational change in SA and CT in higher IQ and SES females. Finally, we situated the components in the changing architecture of cortical gradients. This novel characterization of brain maturation provides an important understanding of the interdependencies between morphological measures, their coordinated development, and their relationship to biological sex, cognitive ability, and the resources of the local environment.
Collapse
Affiliation(s)
- Hadis Kalantar-Hormozi
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, QC, Canada.
| | - Raihaan Patel
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, QC, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Alyssa Dai
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, QC, Canada
| | - Justine Ziolkowski
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, QC, Canada
| | - Hao-Ming Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Department of Psychology, Yale University, New Haven, USA
| | - Avram Holmes
- Department of Psychology, Yale University, New Haven, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, National Institute of Mental Health (NIMH), Bethesda, MD, USA
| | - Gabriel A Devenyi
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - M Mallar Chakravarty
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, QC, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
37
|
Li ZA, Cai Y, Taylor RL, Eisenstein SA, Barch DM, Marek S, Hershey T. Associations between socioeconomic status and white matter microstructure in children: indirect effects via obesity and cognition. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.09.23285150. [PMID: 36798149 PMCID: PMC9934783 DOI: 10.1101/2023.02.09.23285150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Importance Both neighborhood and household socioeconomic disadvantage relate to negative health outcomes and altered brain structure in children. It is unclear whether such findings extend to white matter development, and via what mechanisms socioeconomic status (SES) influences the brain. Objective To test independent associations between neighborhood and household SES indicators and white matter microstructure in children, and examine whether body mass index and cognitive function (a proxy of environmental cognitive/sensory stimulation) may plausibly mediate these associations. Design This cross-sectional study used baseline data from the Adolescent Brain Cognitive Development (ABCD) Study, an ongoing 10-year cohort study tracking child health. Setting School-based recruitment at 21 U.S. sites. Participants Children aged 9 to 11 years and their parents/caregivers completed baseline assessments between October 1 st , 2016 and October 31 st , 2018. Data analysis was conducted from July to December 2022. Exposures Neighborhood disadvantage was derived from area deprivation indices at primary residence. Household SES indicators were total income and the highest parental education attainment. Main Outcomes and Measures Thirty-one major white matter tracts were segmented from diffusion-weighted images. The Restriction Spectrum Imaging (RSI) model was implemented to measure restricted normalized directional (RND; reflecting oriented myelin organization) and isotropic (RNI; reflecting glial/neuronal cell bodies) diffusion in each tract. Obesity-related measures were body mass index (BMI), BMI z -scores, and waist circumference, and cognitive performance was assessed using the NIH Toolbox Cognition Battery. Linear mixed-effects models tested the associations between SES indicators and scanner-harmonized RSI metrics. Structural equation models examined indirect effects of obesity and cognitive performance in the significant associations between SES and white mater microstructure summary principal components. Analyses were adjusted for age, sex, pubertal development stage, intracranial volume, and head motion. Results The analytical sample included 8842 children (4299 [48.6%] girls; mean age [SD], 9.9 [0.7] years). Greater neighborhood disadvantage and lower parental education were independently associated with lower RSI-RND in forceps major and corticospinal/pyramidal tracts, and had overlapping associations in the superior longitudinal fasciculus. Lower cognition scores and greater obesity-related measures partially accounted for these SES associations with RSI-RND. Lower household income was related to higher RSI-RNI in almost every tract, and greater neighborhood disadvantage had similar effects in primarily frontolimbic tracts. Lower parental education was uniquely linked to higher RSI-RNI in forceps major. Greater obesity-related measures partially accounted for these SES associations with RSI-RNI. Findings were robust in sensitivity analyses and mostly corroborated using traditional diffusion tensor imaging (DTI). Conclusions and Relevance These cross-sectional results demonstrate that both neighborhood and household contexts are relevant to white matter development in children, and suggest cognitive performance and obesity as possible pathways of influence. Interventions targeting obesity reduction and improving cognition from multiple socioeconomic angles may ameliorate brain health in low-SES children. Key Points Question: Are neighborhood and household socioeconomic levels associated with children’s brain white matter microstructure, and if so, do obesity and cognitive performance (reflecting environmental stimulation) mediate the associations?Findings: In a cohort of 8842 children, higher neighborhood disadvantage, lower household income, and lower parental education had independent and overlapping associations with lower restricted directional diffusion and greater restricted isotropic diffusion in white matter. Greater body mass index and poorer cognitive performance partially mediated these associations.Meaning: Both neighborhood and household poverty may contribute to altered white matter development in children. These effects may be partially explained by obesity incidence and poorer cognitive performance.
Collapse
Affiliation(s)
- Zhaolong Adrian Li
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63130, USA
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yuqi Cai
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Rita L. Taylor
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Sarah A. Eisenstein
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63130, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Deanna M. Barch
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63130, USA
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Scott Marek
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Tamara Hershey
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63130, USA
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
38
|
Allen CH, Shold J, Michael Maurer J, Reynolds BL, Anderson NE, Harenski CL, Harenski KA, Calhoun VD, Kiehl KA. Aberrant resting-state functional connectivity associated with childhood trauma among juvenile offenders. Neuroimage Clin 2023; 37:103343. [PMID: 36764058 PMCID: PMC9929859 DOI: 10.1016/j.nicl.2023.103343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Individuals with history of childhood trauma are characterized by aberrant resting-state limbic and paralimbic functional network connectivity. However, it is unclear whether specific subtypes of trauma (i.e., experienced vs observed or community) showcase differential effects. This study examined whether subtypes of childhood trauma (assessed via the Trauma Checklist [TCL] 2.0) were associated with aberrant intra-network amplitude of fluctuations and connectivity (i.e., functional coherence within a network), and inter-network connectivity across resting-state networks among incarcerated juvenile males (n = 179). Subtypes of trauma were established via principal component analysis of the TCL 2.0 and resting-state networks were identified by applying group independent component analysis to resting-state fMRI scans. We tested the association of subtypes of childhood trauma (i.e., TCL Factor 1 measuring experienced trauma and TCL Factor 2 assessing community trauma), and TCL Total scores to the aforementioned functional connectivity measures. TCL Factor 2 scores were associated with increased high-frequency fluctuations and increased intra-network connectivity in cognitive control, auditory, and sensorimotor networks, occurring primarily in paralimbic regions. TCL Total scores exhibited similar neurobiological patterns to TCL Factor 2 scores (with the addition of aberrant intra-network connectivity in visual networks), and no significant associations were found for TCL Factor 1. Consistent with previous analyses of community samples, our results suggest that childhood trauma among incarcerated juvenile males is associated with aberrant intra-network amplitude of fluctuations and connectivity across multiple networks including predominately paralimbic regions. Our results highlight the importance of accounting for traumatic loss, observed trauma, and community trauma in assessing neurobiological aberrances associated with adverse experiences in childhood, as well as the value of trained-rater trauma assessments compared to self-report.
Collapse
Affiliation(s)
- Corey H Allen
- The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106-4188, USA.
| | - Jenna Shold
- The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106-4188, USA
| | - J Michael Maurer
- The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106-4188, USA
| | - Brooke L Reynolds
- The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106-4188, USA; School of Graduate Psychology, Pacific University, Hillsboro, OR, USA
| | | | - Carla L Harenski
- The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106-4188, USA
| | - Keith A Harenski
- The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106-4188, USA
| | - Vince D Calhoun
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA; Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, 55 Park Place NE, 18th Floor, Atlanta, GA 30303, USA; Department of Computer Science, Georgia State University, Atlanta, USA
| | - Kent A Kiehl
- The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106-4188, USA; Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
39
|
Rakesh D, Zalesky A, Whittle S. The Role of School Environment in Brain Structure, Connectivity, and Mental Health in Children: A Multimodal Investigation. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:32-41. [PMID: 35123109 DOI: 10.1016/j.bpsc.2022.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/05/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Much work has been dedicated to understanding the effects of adverse home environments on brain development. While the school social and learning environment plays a role in child development, little work has been done to investigate the impact of the school environment on the developing brain. The goal of the present study was to examine associations between the school environment, brain structure and connectivity, and mental health. METHODS In this preregistered study we investigated these questions in a large sample of adolescents (9-10 years of age) from the Adolescent Brain Cognitive Development (ABCD) Study. We examined the association between school environment and gray matter (n = 10,435) and white matter (n = 10,770) structure and functional connectivity (n = 9528). We then investigated multivariate relationships between school-associated brain measures and mental health. RESULTS School environment was associated with connectivity of the auditory and retrosplenial temporal network as well as of higher-order cognitive networks like the cingulo-opercular, default mode, ventral attention, and frontoparietal networks. Multivariate analyses revealed that connectivity of the cingulo-opercular and default mode networks was also associated with mental health. CONCLUSIONS Findings shed light on the neural mechanisms through which favorable school environments may contribute to positive mental health outcomes in children. Our findings have implications for interventions targeted at promoting positive youth functioning through improving school environments.
Collapse
Affiliation(s)
- Divyangana Rakesh
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia.
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia; Melbourne School of Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia.
| |
Collapse
|
40
|
Sone D, Beheshti I. Neuroimaging-Based Brain Age Estimation: A Promising Personalized Biomarker in Neuropsychiatry. J Pers Med 2022; 12:jpm12111850. [PMID: 36579560 PMCID: PMC9695293 DOI: 10.3390/jpm12111850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 11/10/2022] Open
Abstract
It is now possible to estimate an individual's brain age via brain scans and machine-learning models. This validated technique has opened up new avenues for addressing clinical questions in neurology, and, in this review, we summarize the many clinical applications of brain-age estimation in neuropsychiatry and general populations. We first provide an introduction to typical neuroimaging modalities, feature extraction methods, and machine-learning models that have been used to develop a brain-age estimation framework. We then focus on the significant findings of the brain-age estimation technique in the field of neuropsychiatry as well as the usefulness of the technique for addressing clinical questions in neuropsychiatry. These applications may contribute to more timely and targeted neuropsychiatric therapies. Last, we discuss the practical problems and challenges described in the literature and suggest some future research directions.
Collapse
Affiliation(s)
- Daichi Sone
- Department of Psychiatry, Jikei University School of Medicine, Tokyo 105-8461, Japan
- Correspondence: ; Tel.: +81-03-3433
| | - Iman Beheshti
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
41
|
Cortes Hidalgo AP, Tiemeier H, Metcalf SA, Monninger M, Meyer-Lindenberg A, Aggensteiner PM, Bakermans‑Kranenburg MJ, White T, Banaschewski T, van IJzendoorn MH, Holz NE. No robust evidence for an interaction between early-life adversity and protective factors on global and regional brain volumes. Dev Cogn Neurosci 2022; 58:101166. [PMID: 36327649 PMCID: PMC9636055 DOI: 10.1016/j.dcn.2022.101166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/06/2022] [Accepted: 10/21/2022] [Indexed: 01/13/2023] Open
Abstract
Childhood adversity is associated with brain morphology and poor psychological outcomes, and evidence of protective factors counteracting childhood adversity effects on neurobiology is scarce. We examined the interplay of childhood adversity with protective factors in relation to brain morphology in two independent longitudinal cohorts, the Generation R Study (N = 3008) and the Mannheim Study of Children at Risk (MARS) (N = 179). Cumulative exposure to 12 adverse events was assessed across childhood until age 9 years in Generation R and 11 years in MARS. Protective factors (temperament, cognition, self-esteem, maternal sensitivity, friendship quality) were assessed at various time-points during childhood. Global brain volumes and volumes of amygdala, hippocampus, and the anterior cingulate, medial orbitofrontal and rostral middle frontal cortices were assessed with anatomical scans at 10 years in Generation R and at 25 years in MARS. Childhood adversity was related to smaller cortical grey matter, cerebral white matter, and cerebellar volumes in children. Also, no buffering effects of protective factors on the association between adversity and the brain outcomes survived multiple testing correction. We found no robust evidence for an interaction between protective factors and childhood adversity on broad brain structural measures. Small interaction effects observed in one cohort only warrant further investigation.
Collapse
Affiliation(s)
- Andrea P. Cortes Hidalgo
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, the Netherlands,The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands,Correspondence to: Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, 3000 CB Rotterdam, the Netherlands.
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, the Netherlands,Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Stephen A. Metcalf
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands,Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Maximilian Monninger
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Pascal-M. Aggensteiner
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marian J. Bakermans‑Kranenburg
- Department of Clinical Child and Family Studies, and Amsterdam Public Health, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Tonya White
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, the Netherlands,Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marinus H. van IJzendoorn
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands,Department of Clinical, Educational and Health Psychology, UCL, University of London, London, UK
| | - Nathalie E. Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany,Donders Institute, Radboud University, Nijmegen, the Netherlands,Radboud University Medical Centre, Nijmegen, the Netherlands,Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| |
Collapse
|
42
|
Whittle S, Pozzi E, Rakesh D, Kim JM, Yap MBH, Schwartz OS, Youssef G, Allen NB, Vijayakumar N. Harsh and Inconsistent Parental Discipline Is Associated With Altered Cortical Development in Children. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:989-997. [PMID: 35158076 DOI: 10.1016/j.bpsc.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND A growing body of evidence suggests that parenting behaviors may affect child mental health via altering brain development. There is a scarcity of research, however, that has investigated associations between parenting behavior and brain structure using longitudinal magnetic resonance imaging. This study aimed to investigate associations between parenting behaviors and structural brain development across the transition from childhood to adolescence. METHODS Participants were 246 children who provided 436 magnetic resonance imaging datasets covering the age range from 8 to 13 years. Parents (94% mothers) completed self-report measures of parenting behavior, and both children and parents reported on child mental health. Factor analysis was used to identify dimensions of parental behavior. Linear mixed-effects models investigated associations between parenting behaviors and age-related change in cortical thickness and surface area and subcortical volume. Mediation models tested whether brain changes mediated associations between parenting behaviors and changes in internalizing/externalizing symptoms. RESULTS Hypothesized associations between parenting and amygdala, hippocampal, and frontal trajectories were not supported. Rather, higher levels of parent harsh/inconsistent discipline were associated with decreases in surface area in medial parietal and temporal pole regions and reduced cortical thinning in medial parietal regions. Some effects were present in female but not male children. There were no associations between these neurodevelopmental alterations and symptoms. CONCLUSIONS This study provides insight into the links between parenting behavior and child neurodevelopment. Given the functions of implicated regions, findings may suggest that parental harsh/inconsistent discipline affects the development of neural circuits subserving sensorimotor and social functioning in children.
Collapse
Affiliation(s)
- Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, Victoria, Australia.
| | - Elena Pozzi
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, Victoria, Australia
| | - Divyangana Rakesh
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, Victoria, Australia
| | - Julia Minji Kim
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, Victoria, Australia
| | - Marie B H Yap
- School of Psychological Science, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia; Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Orli S Schwartz
- Department of Psychiatry, University of Melbourne, Parkville, Victoria, Australia; Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, Parkville, Victoria, Australia
| | - George Youssef
- Department of Psychology, Deakin University, Burwood, Victoria, Australia
| | | | | |
Collapse
|
43
|
Ku BS, Aberizk K, Addington J, Bearden CE, Cadenhead KS, Cannon TD, Carrión RE, Compton MT, Cornblatt BA, Druss BG, Mathalon DH, Perkins DO, Tsuang MT, Woods SW, Walker EF. The Association Between Neighborhood Poverty and Hippocampal Volume Among Individuals at Clinical High-Risk for Psychosis: The Moderating Role of Social Engagement. Schizophr Bull 2022; 48:1032-1042. [PMID: 35689540 PMCID: PMC9434451 DOI: 10.1093/schbul/sbac055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reductions in hippocampal volume (HV) have been associated with both prolonged exposure to stress and psychotic illness. This study sought to determine whether higher levels of neighborhood poverty would be associated with reduced HV among individuals at clinical high-risk for psychosis (CHR-P), and whether social engagement would moderate this association. This cross-sectional study included a sample of participants (N = 174, age-range = 12-33 years, 35.1% female) recruited for the second phase of the North American Prodrome Longitudinal Study. Generalized linear mixed models tested the association between neighborhood poverty and bilateral HV, as well as the moderating role of social engagement on this association. Higher levels of neighborhood poverty were associated with reduced left (β = -0.180, P = .016) and right HV (β = -0.185, P = .016). Social engagement significantly moderated the relation between neighborhood poverty and bilateral HV. In participants with lower levels of social engagement (n = 77), neighborhood poverty was associated with reduced left (β = -0.266, P = .006) and right HV (β = -0.316, P = .002). Among participants with higher levels of social engagement (n = 97), neighborhood poverty was not significantly associated with left (β = -0.010, P = .932) or right HV (β = 0.087, P = .473). In this study, social engagement moderated the inverse relation between neighborhood poverty and HV. These findings demonstrate the importance of including broader environmental influences and indices of social engagement when conceptualizing adversity and potential interventions for individuals at CHR-P.
Collapse
Affiliation(s)
- Benson S Ku
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GAUSA
| | | | - Jean Addington
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Carrie E Bearden
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, USA
| | | | - Tyrone D Cannon
- Department of Psychiatry, Yale University, New Haven, CTUSA
- Department of Psychology, Yale University, New Haven, CTUSA
| | - Ricardo E Carrión
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Michael T Compton
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, and New York State Psychiatric Institute, New York, NY, USA
| | - Barbara A Cornblatt
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Benjamin G Druss
- Department of Health Policy and Management, Rollins School of Public Health, Emory University, Atlanta, GAUSA
| | - Daniel H Mathalon
- Department of Psychiatry, University of California, and San Francisco Veterans Affairs Medical Center, San Francisco, CAUSA
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Ming T Tsuang
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Scott W Woods
- Department of Psychiatry, Yale University, New Haven, CTUSA
| | | |
Collapse
|
44
|
Rakesh D, Zalesky A, Whittle S. Assessment of Parent Income and Education, Neighborhood Disadvantage, and Child Brain Structure. JAMA Netw Open 2022; 5:e2226208. [PMID: 35980639 PMCID: PMC9389347 DOI: 10.1001/jamanetworkopen.2022.26208] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
IMPORTANCE Although different aspects of socioeconomic status (SES) may represent distinct risk factors for poor mental health in children, knowledge of their differential and synergistic associations with the brain is limited. OBJECTIVE To examine the independent associations between distinct SES factors and child brain structure. DESIGN, SETTING, AND PARTICIPANTS We used baseline data from participants aged 9 to 10 years in the Adolescent Brain Cognitive Development (ABCD) study. These data were collected from 21 US sites between September 2017 and August 2018. Study participants were recruited from schools to create a participant sample that closely reflects the US population. EXPOSURES Neighborhood disadvantage was measured using the area deprivation index. We also used data on total parent or caregiver educational attainment (in years) and household income-to-needs ratio. MAIN OUTCOMES AND MEASURES T1-weighted magnetic resonance imaging was used to assess measures of cortical thickness, surface area, and subcortical volume. RESULTS Data from 8862 ABCD participants aged 9 to 10 years were analyzed. The mean (SD) age was 119.1 (7.5) months; there were 4243 girls (47.9%) and 4619 boys (52.1%). Data on race or ethnicity were available for 8857 of 8862 participants: 173 (2.0%) were Asian, 1099 (12.4%) were Black or African American, 1688 (19.1%) were Hispanic, 4967 (56.1%) were White, and 930 (10.5%) reported multiple races or ethnicities. Using 10-fold, within-sample split-half replication, we found that neighborhood disadvantage was associated with lower cortical thickness in the following brain regions (η2 = 0.004-0.009): cuneus (B [SE] = -0.099 [0.013]; P < .001), lateral occipital (B [SE] = -0.088 [0.011]; P < .001), lateral orbitofrontal (B [SE] = -0.072 [0.012]; P < .001), lingual (B [SE] = -0.104 [0.012]; P < .001), paracentral (B [SE] = -0.086 [0.012]; P < .001), pericalcarine (B [SE] = -0.077 [0.012]; P < .001), postcentral (B [SE] = -0.069 [0.012]; P < .001), precentral (B [SE] = -0.059 [0.011]; P < .001), rostral middle frontal (B [SE] = -0.076 [0.011]; P < .001), and superior parietal (B [SE] = -0.060 [0.011]; P < .001). Exploratory analyses showed that the associations of low educational attainment or neighborhood disadvantage and low cortical thickness were attenuated in the presence of a high income-to-needs ratio (η2 = 0.003-0.007). CONCLUSIONS AND RELEVANCE The findings of this cross-sectional study suggest that different SES indicators have distinct associations with children's brain structure. A high income-to-needs ratio may play a protective role in the context of neighborhood disadvantage and low parent or caregiver educational attainment. This study highlights the importance of considering the joint associations of different SES indicators in future work.
Collapse
Affiliation(s)
- Divyangana Rakesh
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne Health, Melbourne, Victoria, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne Health, Melbourne, Victoria, Australia
- Melbourne School of Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne Health, Melbourne, Victoria, Australia
| |
Collapse
|
45
|
Huggins AA, McTeague LM, Davis MM, Bustos N, Crum KI, Polcyn R, Adams ZW, Carpenter LA, Hajcak G, Halliday CA, Joseph JE, Danielson CK. Neighborhood Disadvantage Associated With Blunted Amygdala Reactivity to Predictable and Unpredictable Threat in a Community Sample of Youth. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:242-252. [PMID: 35928141 PMCID: PMC9348572 DOI: 10.1016/j.bpsgos.2022.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Childhood socioeconomic disadvantage is a form of adversity associated with alterations in critical frontolimbic circuits involved in the pathophysiology of psychiatric disorders. Most work has focused on individual-level socioeconomic position, yet individuals living in deprived communities typically encounter additional environmental stressors that have unique effects on the brain and health outcomes. Notably, chronic and unpredictable stressors experienced in the everyday lives of youth living in disadvantaged neighborhoods may impact neural responsivity to uncertain threat. METHODS A community sample of children (N = 254) ages 8 to 15 years (mean = 12.15) completed a picture anticipation task during a functional magnetic resonance imaging scan, during which neutral and negatively valenced photos were presented in a temporally predictable or unpredictable manner. Area Deprivation Index (ADI) scores were derived from participants' home addresses as an index of relative neighborhood disadvantage. Voxelwise analyses examined interactions of ADI, valence, and predictability on neural response to picture presentation. RESULTS There was a significant ADI × valence interaction in the middle temporal gyrus, anterior cingulate cortex, hippocampus, and amygdala. Higher ADI was associated with less amygdala activation to negatively valenced images. ADI also interacted with predictability. Higher ADI was associated with greater activation of lingual and calcarine gyri for unpredictably presented stimuli. There was no three-way interaction of ADI, valence, and predictability. CONCLUSIONS Neighborhood disadvantage may impact how the brain perceives and responds to potential threats. Future longitudinal work is critical for delineating how such effects may persist across the life span and how health outcomes may be modifiable with community-based interventions and policies.
Collapse
Affiliation(s)
- Ashley A. Huggins
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, North Carolina
| | - Lisa M. McTeague
- Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina
| | - Megan M. Davis
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nicholas Bustos
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Kathleen I. Crum
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana
| | - Rachel Polcyn
- Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina
| | - Zachary W. Adams
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana
| | - Laura A. Carpenter
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Greg Hajcak
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | - Colleen A. Halliday
- Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina
| | - Jane E. Joseph
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Carla Kmett Danielson
- Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
46
|
Wade M, Wright L, Finegold KE. The effects of early life adversity on children's mental health and cognitive functioning. Transl Psychiatry 2022; 12:244. [PMID: 35688817 PMCID: PMC9187770 DOI: 10.1038/s41398-022-02001-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 11/09/2022] Open
Abstract
Emerging evidence suggests that partially distinct mechanisms may underlie the association between different dimensions of early life adversity (ELA) and psychopathology in children and adolescents. While there is minimal evidence that different types of ELA are associated with specific psychopathology outcomes, there are partially unique cognitive and socioemotional consequences of specific dimensions of ELA that increase transdiagnostic risk of mental health problems across the internalizing and externalizing spectra. The current review provides an overview of recent findings examining the cognitive (e.g., language, executive function), socioemotional (e.g., attention bias, emotion regulation), and mental health correlates of ELA along the dimensions of threat/harshness, deprivation, and unpredictability. We underscore similarities and differences in the mechanisms connecting different dimensions of ELA to particular mental health outcomes, and identify gaps and future directions that may help to clarify inconsistencies in the literature. This review focuses on childhood and adolescence, periods of exquisite neurobiological change and sensitivity to the environment. The utility of dimensional models of ELA in better understanding the mechanistic pathways towards the expression of psychopathology is discussed, with the review supporting the value of such models in better understanding the developmental sequelae associated with ELA. Integration of dimensional models of ELA with existing models focused on psychiatric classification and biobehavioral mechanisms may advance our understanding of the etiology, phenomenology, and treatment of mental health difficulties in children and youth.
Collapse
Affiliation(s)
- Mark Wade
- Department of Applied Psychology and Human Development, University of Toronto, Toronto, ON, Canada.
| | - Liam Wright
- Department of Applied Psychology and Human Development, University of Toronto, Toronto, ON, Canada
| | - Katherine E Finegold
- Department of Applied Psychology and Human Development, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
47
|
Early life circadian rhythm disruption in mice alters brain and behavior in adulthood. Sci Rep 2022; 12:7366. [PMID: 35513413 PMCID: PMC9072337 DOI: 10.1038/s41598-022-11335-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/15/2022] [Indexed: 11/08/2022] Open
Abstract
Healthy sleep supports robust development of the brain and behavior. Modern society presents a host of challenges that can impair and disrupt critical circadian rhythms that reinforce optimal physiological functioning, including the proper timing and consolidation of sleep. While the acute effects of inadequate sleep and disrupted circadian rhythms are being defined, the adverse developmental consequences of disrupted sleep and circadian rhythms are understudied. Here, we exposed mice to disrupting light–dark cycles from birth until weaning and demonstrate that such exposure has adverse impacts on brain and behavior as adults. Mice that experience early-life circadian disruption exhibit more anxiety-like behavior in the elevated plus maze, poorer spatial memory in the Morris Water Maze, and impaired working memory in a delayed match-to-sample task. Additionally, neuron morphology in the amygdala, hippocampus and prefrontal cortex is adversely impacted. Pyramidal cells in these areas had smaller dendritic fields, and pyramidal cells in the prefrontal cortex and hippocampus also exhibited diminished branching orders. Disrupted mice were also hyperactive as adults, but otherwise exhibited no alteration in adult circadian locomotor rhythms. These results highlight that circadian disruption early in life may have long lasting and far-reaching consequences for the development of behavior and the brain.
Collapse
|
48
|
Noppert GA, Martin CL, Zivich PN, Aiello AE, Harris KM, O'Rand A. Adolescent neighborhood disadvantage and memory performance in young adulthood. Health Place 2022; 75:102793. [PMID: 35367864 PMCID: PMC9721118 DOI: 10.1016/j.healthplace.2022.102793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 01/28/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Using data from the National Longitudinal Study of Adolescent to Adult Health, we estimated the average causal effect of neighborhood disadvantage in adolescence on memory performance in young adulthood. We contrasted several different ways of operationalizing a continuous measure of neighborhood disadvantage including a continuous neighborhood disadvantage score and ordinal measures. RESULTS Neighborhood disadvantage was measured in Wave I when participants were a mean age of 15.41 years (SE: 0.12) and memory performance was measured in Wave IV when participants were a mean age of 28.24 years (SE: 0.12). We found that adolescent neighborhood disadvantage was associated with decreased memory performance in young adulthood. Notably, we observed a linear decline in word recall score among those in the less disadvantaged tail of the distribution (neighborhood disadvantage <1), a finding not observed using traditional ordinal variable classifications of disadvantage. CONCLUSION Experiencing neighborhood disadvantage in adolescence may have lasting impacts on cognitive health throughout the life course.
Collapse
Affiliation(s)
| | - Chantel L Martin
- Carolina Population Center, University of North Carolina at Chapel Hill, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, USA
| | - Paul N Zivich
- Carolina Population Center, University of North Carolina at Chapel Hill, USA
| | - Allison E Aiello
- Carolina Population Center, University of North Carolina at Chapel Hill, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, USA
| | | | - Angela O'Rand
- Duke University Population Research Institute, Duke University, USA
| |
Collapse
|
49
|
Morris MC, Bruehl S, Stone AL, Garber J, Smith C, Palermo TM, Walker LS. Place and Pain: Association Between Neighborhood SES and Quantitative Sensory Testing Responses in Youth With Functional Abdominal Pain. J Pediatr Psychol 2022; 47:446-455. [PMID: 34757421 PMCID: PMC9308448 DOI: 10.1093/jpepsy/jsab113] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Neighborhood socioeconomic status (SES) is linked to self-reported pain severity and disability but its association with evoked pain responsiveness in individuals with chronic pain remains unclear. The present study examined relations between neighborhood SES, assessed through the area deprivation index (ADI), and static and dynamic pain response indices. It was hypothesized that youth with functional abdominal pain (FAP) living in lower SES neighborhoods would exhibit lower pain threshold, lower pain tolerance, and reduced conditioned pain modulation (CPM) compared to youth living in higher SES neighborhoods. METHODS Participants were 183 youth with FAP and their parents. Youth completed a quantitative sensory testing protocol. Family addresses were used to compute ADI scores. Thermal stimuli for pain threshold and tolerance were delivered to participants' forearms using thermodes. CPM, an index of descending pain inhibition, was determined using a thermode as test stimulus and a hot water bath as conditioning stimulus. RESULTS As hypothesized, youth with FAP living in lower SES neighborhoods exhibited weaker CPM. Contrary to hypotheses, lower neighborhood SES was associated with neither pain thresholds nor with pain tolerance. CONCLUSIONS These findings demonstrated the independent contribution of place of residence-an often neglected component of the biopsychosocial model-to efficiency of descending pain inhibition. Understanding the mechanisms that account for such associations between place and pain could guide the development of public health and policy initiatives designed to mitigate chronic pain risk in underserved and economically marginalized communities.
Collapse
Affiliation(s)
- Matthew C Morris
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Stephen Bruehl
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Amanda L Stone
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Judy Garber
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
| | - Craig Smith
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
| | - Tonya M Palermo
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Lynn S Walker
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
50
|
Miller JG, López V, Buthmann JL, Garcia JM, Gotlib IH. A Social Gradient of Cortical Thickness in Adolescence: Relations With Neighborhood Socioeconomic Disadvantage, Family Socioeconomic Status, and Depressive Symptoms. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:253-262. [PMID: 36032055 PMCID: PMC9410503 DOI: 10.1016/j.bpsgos.2022.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Jonas G. Miller
- Department of Psychology, Stanford University, Stanford, California
- Address correspondence to Jonas G. Miller, Ph.D.
| | - Vanessa López
- Department of Psychology, Stanford University, Stanford, California
| | | | - Jordan M. Garcia
- Department of Psychology, Stanford University, Stanford, California
| | - Ian H. Gotlib
- Department of Psychology, Stanford University, Stanford, California
| |
Collapse
|