1
|
Treleaven S, Rubsam S, Sheppard M, Yaruss JS, Chang SE. Assessing Childhood Stuttering Recovery: Incorporating Self-Identification and Caregiver/Clinician Reports Through Adolescence. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2025:1-18. [PMID: 40268734 DOI: 10.1044/2025_jslhr-24-00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
PURPOSE Investigating stuttering recovery rates can be challenging, as recovery status can change based on self-report, later recovery, or relapse. In this study, we contacted previous child participants from our longitudinal studies (now older children to young adults) who were originally assigned persistence/recovery status guided by clinician and caregiver reports only. Their stuttering status as adolescents and young adults was re-evaluated based on currently assessed clinician and caregiver reports, observable stuttering severity assessments, and self-reports. METHOD Seventy-nine participants were contacted based on their current age and time since their last longitudinal study visit (> 2 years). Of these, 23 participated in this follow-up investigation. Participants and caregivers completed follow-up questionnaires, and participants' speech samples were recorded for offline stuttering disfluency ratings by a speech-language pathologist. RESULTS When considering participant and caregiver reports as well as clinician report based on stuttering severity ratings, recovery status changed for nine of the 23 participants (39.13%). All nine self-identified as recovered, although four of the nine were judged to exhibit very mild stuttering. Five of the nine were viewed to be late recovery cases, occurring after the conclusion of the prior longitudinal study. The presence of stuttering behaviors was often reported consistently across clinician and participant/caregiver reports (the basis for "persistence" judgments by the clinician), but in eight cases (34.78%), participants did not self-identify as stutterers despite reported presence of stuttering. CONCLUSIONS Our results highlight the importance of assessing stuttering beyond early childhood to examine recovery rates. Furthermore, self-reports on stuttering status reveal that the concept of recovery is nuanced: The presence of overt stuttering does not necessarily correlate with self-identification of stuttering. These findings have implications on how best to define stuttering persistence and recovery for future research and clinical practice. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.28654565.
Collapse
Affiliation(s)
| | - Saralyn Rubsam
- Department of Communicative Sciences and Disorders, Michigan State University, East Lansing
| | - Megan Sheppard
- Department of Psychiatry, University of Michigan, Ann Arbor
| | - J Scott Yaruss
- Department of Communicative Sciences and Disorders, Michigan State University, East Lansing
| | - Soo-Eun Chang
- Department of Psychiatry, University of Michigan, Ann Arbor
- Department of Communication Disorders, Ewha Womans University, Seoul, Korea
| |
Collapse
|
2
|
Chang SE, Below JE, Chow HM, Guenther FH, Hampton Wray AM, Jackson ES, Max L, Neef NE, SheikhBahaei S, Shekim L, Tichenor SE, Walsh B, Watkins KE, Yaruss JS, Bernstein Ratner N. Stuttering: Our Current Knowledge, Research Opportunities, and Ways to Address Critical Gaps. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2025; 6:nol_a_00162. [PMID: 40201450 PMCID: PMC11977836 DOI: 10.1162/nol_a_00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 01/28/2025] [Indexed: 04/10/2025]
Abstract
Our understanding of the neurobiological bases of stuttering remains limited, hampering development of effective treatments that are informed by basic science. Stuttering affects more than 5% of all preschool-age children and remains chronic in approximately 1% of adults worldwide. As a condition that affects a most fundamental human ability to engage in fluid and spontaneous verbal communication, stuttering can have substantial psychosocial, occupational, and educational impacts on those who are affected. This article summarizes invited talks and breakout sessions that were held in June 2023 as part of a 2-day workshop sponsored by the US National Institute on Deafness and Other Communication Disorders. The workshop encompassed topics including neurobiology, genetics, speech motor control, cognitive, social, and emotional impacts, and intervention. Updates on current research in these areas were summarized by each speaker, and critical gaps and priorities for future research were raised, and then discussed by participants. Research talks were followed by smaller, moderated breakout sessions intended to elicit diverse perspectives, including on the matter of defining therapeutic targets for stuttering. A major concern that emerged following participant discussion was whether priorities for treatment in older children and adults should focus on targeting core speech symptoms of stuttering, or on embracing effective communication regardless of whether the speaker exhibits overt stuttering. This article concludes with accumulated convergent points endorsed by most attendees on research and clinical priorities that may lead to breakthroughs with substantial potential to contribute to bettering the lives of those living with this complex speech disorder.
Collapse
Affiliation(s)
- Soo-Eun Chang
- Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Communication Disorders, Ewha Womans University, Seoul, South Korea
| | - Jennifer E. Below
- The Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ho Ming Chow
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE, USA
| | - Frank H. Guenther
- Departments of Speech, Language, & Hearing Sciences and Biomedical Engineering, Boston University, Boston, MA, USA
| | - Amanda M. Hampton Wray
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric S. Jackson
- Department of Communicative Sciences and Disorders, New York University, New York, NY, USA
| | - Ludo Max
- Department of Speech & Hearing Sciences, University of Washington, Seattle, WA, USA
| | - Nicole E. Neef
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Shahriar SheikhBahaei
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA
| | - Lana Shekim
- National Institute on Deafness and other Communication Disorders (NIDCD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Seth E. Tichenor
- Department of Speech-Language Pathology, Duquesne University, Pittsburgh, PA, USA
| | - Bridget Walsh
- Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, MI, USA
| | - Kate E. Watkins
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - J. Scott Yaruss
- Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, MI, USA
| | - Nan Bernstein Ratner
- Department of Hearing and Speech Sciences & Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| |
Collapse
|
3
|
Liu W, Ma D, Cao C, Liu S, Ma X, Jia F, Li P, Zhang H, Liao Y, Qu H. Abnormal cerebral blood flow in children with developmental stuttering. Pediatr Res 2024; 96:1759-1764. [PMID: 38914760 DOI: 10.1038/s41390-024-03359-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 03/30/2024] [Accepted: 04/09/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Stuttering affects approximately 5% of children; however, its neurological basis remains unclear. Identifying imaging biomarkers could aid in early detection. Accordingly, we investigated resting-state cerebral blood flow (CBF) in children with developmental stuttering. METHODS Pulsed arterial spin labelling magnetic resonance imaging was utilised to quantify CBF in 35 children with developmental stuttering and 27 healthy controls. We compared normalised CBF between the two groups and evaluated the correlation between abnormal CBF and clinical indicators. RESULTS Compared with healthy controls, the stuttering group exhibited decreased normalised CBF in the cerebellum lobule VI bilaterally, right cuneus, and left superior occipital gyrus and increased CBF in the right medial superior frontal gyrus, left rectus, and left dorsolateral superior frontal gyrus. Additionally, normalised CBF in the left cerebellum lobule VI and left superior occipital gyrus was positively correlated with stuttering severity. CONCLUSIONS Children who stutter display decreased normalised CBF primarily in the cerebellum and occipital gyrus, with increased normalised CBF in the frontal gyrus. Additionally, the abnormal CBF in the left cerebellum lobule VI and left superior occipital gyrus was associated with more severe symptoms, suggesting that decreased CBF in these areas may serve as a novel neuroimaging clue for stuttering. IMPACT Stuttering occurs in 5% of children and often extends into adulthood, which may negatively affect quality of life. Early detection and treatment are essential. We used pulsed arterial spin labelling magnetic resonance imaging to visualise the resting-state cerebral blood flow (CBF) in children who stutter and healthy children. Normalised CBF was decreased in stutterers in the cerebellum and occipital gyrus and increased in the frontal gyrus. Stuttering severity was linked to abnormal normalised CBF in the left cerebellum lobule VI and left superior occipital gyrus, suggesting that CBF may serve as a novel neuroimaging clue for stuttering.
Collapse
Affiliation(s)
- Wanqing Liu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Dan Ma
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Rehabilitation Medicine, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Chuanlong Cao
- The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Sai Liu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - XinMao Ma
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Fenglin Jia
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Pei Li
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Hui Zhang
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yi Liao
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| | - Haibo Qu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| |
Collapse
|
4
|
Pasculli G, Busan P, Jackson ES, Alm PA, De Gregorio D, Maguire GA, Goodwin GM, Gobbi G, Erritzoe D, Carhart-Harris RL. Psychedelics in developmental stuttering to modulate brain functioning: a new therapeutic perspective? Front Hum Neurosci 2024; 18:1402549. [PMID: 38962146 PMCID: PMC11221540 DOI: 10.3389/fnhum.2024.1402549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Developmental stuttering (DS) is a neurodevelopmental speech-motor disorder characterized by symptoms such as blocks, repetitions, and prolongations. Persistent DS often has a significant negative impact on quality of life, and interventions for it have limited efficacy. Herein, we briefly review existing research on the neurophysiological underpinnings of DS -specifically, brain metabolic and default mode/social-cognitive networks (DMN/SCN) anomalies- arguing that psychedelic compounds might be considered and investigated (e.g., in randomized clinical trials) for treatment of DS. The neural background of DS is likely to be heterogeneous, and some contribution from genetically determinants of metabolic deficiencies in the basal ganglia and speech-motor cortical regions are thought to play a role in appearance of DS symptoms, which possibly results in a cascade of events contributing to impairments in speech-motor execution. In persistent DS, the difficulties of speech are often linked to a series of associated aspects such as social anxiety and social avoidance. In this context, the SCN and DMN (also influencing a series of fronto-parietal, somato-motor, and attentional networks) may have a role in worsening dysfluencies. Interestingly, brain metabolism and SCN/DMN connectivity can be modified by psychedelics, which have been shown to improve clinical evidence of some psychiatric conditions (e.g., depression, post-traumatic stress disorder, etc.) associated with psychological constructs such as rumination and social anxiety, which also tend to be present in persistent DS. To date, while there have been no controlled trials on the effects of psychedelics in DS, anecdotal evidence suggests that these agents may have beneficial effects on stuttering and its associated characteristics. We suggest that psychedelics warrant investigation in DS.
Collapse
Affiliation(s)
- Giuseppe Pasculli
- Department of Computer, Control, and Management Engineering (DIAG), La Sapienza University, Rome, Italy
- Italian Society of Psychedelic Medicine (Società Italiana di Medicina Psichedelica–SIMePsi), Bari, Italy
| | | | - Eric S. Jackson
- Department of Communicative Sciences and Disorders, New York University, New York, NY, United States
| | - Per A. Alm
- Department of Communicative Sciences and Disorders, New York University, New York, NY, United States
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Danilo De Gregorio
- IRCCS, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Gerald A. Maguire
- School of Medicine, American University of Health Sciences, Signal Hill, CA, United States
- CenExel CIT Research, Riverside, CA, United States
| | - Guy M. Goodwin
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - David Erritzoe
- Department of Medicine, Centre for Psychedelic Research, Imperial College London, London, United Kingdom
| | - Robin L. Carhart-Harris
- Department of Medicine, Centre for Psychedelic Research, Imperial College London, London, United Kingdom
- Psychedelics Division, Neuroscape, University of California, San Francisco, CA, United States
| |
Collapse
|
5
|
Theys C, Jaakkola E, Melzer TR, De Nil LF, Guenther FH, Cohen AL, Fox MD, Joutsa J. Localization of stuttering based on causal brain lesions. Brain 2024; 147:2203-2213. [PMID: 38797521 PMCID: PMC11146419 DOI: 10.1093/brain/awae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 05/29/2024] Open
Abstract
Stuttering affects approximately 1 in 100 adults and can result in significant communication problems and social anxiety. It most often occurs as a developmental disorder but can also be caused by focal brain damage. These latter cases may lend unique insight into the brain regions causing stuttering. Here, we investigated the neuroanatomical substrate of stuttering using three independent datasets: (i) case reports from the published literature of acquired neurogenic stuttering following stroke (n = 20, 14 males/six females, 16-77 years); (ii) a clinical single study cohort with acquired neurogenic stuttering following stroke (n = 20, 13 males/seven females, 45-87 years); and (iii) adults with persistent developmental stuttering (n = 20, 14 males/six females, 18-43 years). We used the first two datasets and lesion network mapping to test whether lesions causing acquired stuttering map to a common brain network. We then used the third dataset to test whether this lesion-based network was relevant to developmental stuttering. In our literature dataset, we found that lesions causing stuttering occurred in multiple heterogeneous brain regions, but these lesion locations were all functionally connected to a common network centred around the left putamen, including the claustrum, amygdalostriatal transition area and other adjacent areas. This finding was shown to be specific for stuttering (PFWE < 0.05) and reproducible in our independent clinical cohort of patients with stroke-induced stuttering (PFWE < 0.05), resulting in a common acquired stuttering network across both stroke datasets. Within the common acquired stuttering network, we found a significant association between grey matter volume and stuttering impact for adults with persistent developmental stuttering in the left posteroventral putamen, extending into the adjacent claustrum and amygdalostriatal transition area (PFWE < 0.05). We conclude that lesions causing acquired neurogenic stuttering map to a common brain network, centred to the left putamen, claustrum and amygdalostriatal transition area. The association of this lesion-based network with symptom severity in developmental stuttering suggests a shared neuroanatomy across aetiologies.
Collapse
Affiliation(s)
- Catherine Theys
- School of Psychology, Speech and Hearing, University of Canterbury, 8140 Christchurch, New Zealand
- New Zealand Institute of Language, Brain and Behaviour, University of Canterbury, 8140 Christchurch, New Zealand
- New Zealand Brain Research Institute, 8011 Christchurch, New Zealand
| | - Elina Jaakkola
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, 20014 Turku, Finland
- Department of Psychiatry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
| | - Tracy R Melzer
- School of Psychology, Speech and Hearing, University of Canterbury, 8140 Christchurch, New Zealand
- New Zealand Brain Research Institute, 8011 Christchurch, New Zealand
- Department of Medicine, University of Otago, 8011 Christchurch, New Zealand
- RHCNZ—Pacific Radiology Canterbury, 8031 Christchurch, New Zealand
| | - Luc F De Nil
- Department of Speech-Language Pathology, University of Toronto, Toronto, ON M5G 1V7, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON M5G 1V7, Canada
| | - Frank H Guenther
- Departments of Speech, Language and Hearing Sciences and Biomedical Engineering, Boston University, Boston, MA 02215, USA
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexander L Cohen
- Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Juho Joutsa
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, 20014 Turku, Finland
- Turku PET Centre, Neurocenter, Turku University Hospital, 20014 Turku, Finland
| |
Collapse
|
6
|
Franken MC, Oonk LC, Bast BJEG, Bouwen J, De Nil L. Erasmus clinical model of the onset and development of stuttering 2.0. JOURNAL OF FLUENCY DISORDERS 2024; 80:106040. [PMID: 38493582 DOI: 10.1016/j.jfludis.2024.106040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/25/2023] [Accepted: 02/11/2024] [Indexed: 03/19/2024]
Abstract
A clinical, evidence-based model to inform clients and their parents about the nature of stuttering is indispensable for the field. In this paper, we propose the Erasmus Clinical Model of Stuttering 2.0 for children who stutter and their parents, and adult clients. It provides an up-to-date, clinical model summary of current insights into the genetic, neurological, motoric, linguistic, sensory, temperamental, psychological and social factors (be it causal, eliciting, or maintaining) related to stuttering. First a review is presented of current insights in these factors, and of six scientific theories or models that have inspired the development of our current clinical model. Following this, we will propose the model, which has proven to be useful in clinical practice. The proposed Erasmus Clinical Model of Stuttering visualizes the onset and course of stuttering, and includes scales for stuttering severity and impact, to be completed by the (parent of) the person who stutters. The pathway of the model towards stuttering onset is based on predisposing and mediating factors. In most children with an onset of stuttering, stuttering is transient, but if stuttering continues, its severity and impact vary widely. The model includes the circle of Engel (1977), which visualizes unique interactions of relevant biological, psychological, and social factors that determine the speaker's experience of stuttering severity and its impact. Discussing these factors and their interaction with an individual client can feed into therapeutic targets. The model is supplemented by a lifeline casus.
Collapse
Affiliation(s)
- Marie-Christine Franken
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Leonoor C Oonk
- StotterFonds, Nijkerk, the Netherlands; University of Applied Sciences, Department of Speech-Language Therapy, Utrecht, the Netherlands
| | | | - Jan Bouwen
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Luc De Nil
- Department of Speech-Language Pathology, University of Toronto, Canada; Rehabilitation Sciences Institute, University of Toronto, Canada.
| |
Collapse
|
7
|
Rowe HP, Tourville JA, Nieto-Castanon A, Garnett EO, Chow HM, Chang SE, Guenther FH. Evidence for planning and motor subtypes of stuttering based on resting state functional connectivity. BRAIN AND LANGUAGE 2024; 253:105417. [PMID: 38703523 PMCID: PMC11147703 DOI: 10.1016/j.bandl.2024.105417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/20/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
We tested the hypothesis, generated from the Gradient Order Directions Into Velocities of Articulators (GODIVA) model, that adults who stutter (AWS) may comprise subtypes based on differing connectivity within the cortico-basal ganglia planning or motor loop. Resting state functional connectivity from 91 AWS and 79 controls was measured for all GODIVA model connections. Based on a principal components analysis, two connections accounted for most of the connectivity variability in AWS: left thalamus - left posterior inferior frontal sulcus (planning loop component) and left supplementary motor area - left ventral premotor cortex (motor loop component). A k-means clustering algorithm using the two connections revealed three clusters of AWS. Cluster 1 was significantly different from controls in both connections; Cluster 2 was significantly different in only the planning loop; and Cluster 3 was significantly different in only the motor loop. These findings suggest the presence of planning and motor subtypes of stuttering.
Collapse
Affiliation(s)
| | | | | | | | | | - Soo-Eun Chang
- University of Michigan, Ann Arbor, MI, USA; Ewha Womans University, Seoul, South Korea.
| | | |
Collapse
|
8
|
Neef NE, Chang SE. Knowns and unknowns about the neurobiology of stuttering. PLoS Biol 2024; 22:e3002492. [PMID: 38386639 PMCID: PMC10883586 DOI: 10.1371/journal.pbio.3002492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Stuttering occurs in early childhood during a dynamic phase of brain and behavioral development. The latest studies examining children at ages close to this critical developmental period have identified early brain alterations that are most likely linked to stuttering, while spontaneous recovery appears related to increased inter-area connectivity. By contrast, therapy-driven improvement in adults is associated with a functional reorganization within and beyond the speech network. The etiology of stuttering, however, remains enigmatic. This Unsolved Mystery highlights critical questions and points to neuroimaging findings that could inspire future research to uncover how genetics, interacting neural hierarchies, social context, and reward circuitry contribute to the many facets of stuttering.
Collapse
Affiliation(s)
- Nicole E. Neef
- Institute for Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Göttingen, Germany
| | - Soo-Eun Chang
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Communication Disorders, Ewha Womans University, Seoul, Korea
| |
Collapse
|
9
|
Matsuhashi K, Itahashi T, Aoki R, Hashimoto RI. Meta-analysis of structural integrity of white matter and functional connectivity in developmental stuttering. Brain Res Bull 2023; 205:110827. [PMID: 38013029 DOI: 10.1016/j.brainresbull.2023.110827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
Developmental stuttering is a speech disfluency disorder characterized by repetitions, prolongations, and blocks of speech. While a number of neuroimaging studies have identified alterations in localized brain activation during speaking in persons with stuttering (PWS), it is unclear whether neuroimaging evidence converges on alterations in structural integrity of white matter and functional connectivity (FC) among multiple regions involved in supporting fluent speech. In the present study, we conducted coordinate-based meta-analyses according to the PRISMA guidelines for available publications that studied fractional anisotropy (FA) using tract-based spatial statistics (TBSS) for structural integrity and the seed-based voxel-wise FC analyses. The search retrieved 11 publications for the TBSS FA studies, 29 seed-based FC datasets from 6 publications for the resting-state, and 29 datasets from 6 publications for the task-based studies. The meta-analysis of TBSS FA revealed that PWS exhibited FA reductions in the middle and posterior segments of the left superior longitudinal fasciculus. Furthermore, the analysis of resting-state FC demonstrated that PWS had reduced FC in the right supplementary motor area and inferior parietal cortex, whereas an increase in FC was observed in the left cerebellum crus I. Conversely, we observed increased FC for task-based FC in regions implicated in speech production or sequential movements, including the anterior cingulate cortex, posterior insula, and bilateral cerebellum crus I in PWS. Functional network characterization of the altered FCs revealed that the sets of reduced resting-state and increased task-based FCs were largely distinct, but the somatomotor and striatum/thalamus networks were foci of alterations in both conditions. These observations indicate that developmental stuttering is characterized by structural and functional alterations in multiple brain networks that support speech fluency or sequential motor processes, including cortico-cortical and subcortical connections.
Collapse
Affiliation(s)
- Kengo Matsuhashi
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Takashi Itahashi
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Ryuta Aoki
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan; Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | | |
Collapse
|
10
|
Miller HE, Garnett EO, Heller Murray ES, Nieto-Castañón A, Tourville JA, Chang SE, Guenther FH. A comparison of structural morphometry in children and adults with persistent developmental stuttering. Brain Commun 2023; 5:fcad301. [PMID: 38025273 PMCID: PMC10653153 DOI: 10.1093/braincomms/fcad301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/07/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
This cross-sectional study aimed to differentiate earlier occurring neuroanatomical differences that may reflect core deficits in stuttering versus changes associated with a longer duration of stuttering by analysing structural morphometry in a large sample of children and adults who stutter and age-matched controls. Whole-brain T1-weighted structural scans were obtained from 166 individuals who stutter (74 children, 92 adults; ages 3-58) and 191 controls (92 children, 99 adults; ages 3-53) from eight prior studies in our laboratories. Mean size and gyrification measures were extracted using FreeSurfer software for each cortical region of interest. FreeSurfer software was also used to generate subcortical volumes for regions in the automatic subcortical segmentation. For cortical analyses, separate ANOVA analyses of size (surface area, cortical thickness) and gyrification (local gyrification index) measures were conducted to test for a main effect of diagnosis (stuttering, control) and the interaction of diagnosis-group with age-group (children, adults) across cortical regions. Cortical analyses were first conducted across a set of regions that comprise the speech network and then in a second whole-brain analysis. Next, separate ANOVA analyses of volume were conducted across subcortical regions in each hemisphere. False discovery rate corrections were applied for all analyses. Additionally, we tested for correlations between structural morphometry and stuttering severity. Analyses revealed thinner cortex in children who stutter compared with controls in several key speech-planning regions, with significant correlations between cortical thickness and stuttering severity. These differences in cortical size were not present in adults who stutter, who instead showed reduced gyrification in the right inferior frontal gyrus. Findings suggest that early cortical anomalies in key speech planning regions may be associated with stuttering onset. Persistent stuttering into adulthood may result from network-level dysfunction instead of focal differences in cortical morphometry. Adults who stutter may also have a more heterogeneous neural presentation than children who stutter due to their unique lived experiences.
Collapse
Affiliation(s)
- Hilary E Miller
- Department of Speech, Language, & Hearing Sciences, Boston University, Boston, MA 02215, USA
| | - Emily O Garnett
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elizabeth S Heller Murray
- Department of Speech, Language, & Hearing Sciences, Boston University, Boston, MA 02215, USA
- Department of Communication Sciences & Disorders, Temple University, Philadelphia, PA 19122, USA
| | - Alfonso Nieto-Castañón
- Department of Speech, Language, & Hearing Sciences, Boston University, Boston, MA 02215, USA
| | - Jason A Tourville
- Department of Speech, Language, & Hearing Sciences, Boston University, Boston, MA 02215, USA
| | - Soo-Eun Chang
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Communication Disorders, Ewha Womans University, Seoul 03760, Korea
- Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, MI 48824, USA
| | - Frank H Guenther
- Department of Speech, Language, & Hearing Sciences, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|