1
|
Guo Y, Chen X, Fang G, Cao X, Wan J. A Convenient Strategy for Studying Antibody Aggregation and Inhibition of Aggregation: Characterization and Simulation. Pharmaceutics 2025; 17:534. [PMID: 40284529 PMCID: PMC12030238 DOI: 10.3390/pharmaceutics17040534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Protein aggregation, particularly the aggregation of antibody-based drugs, has long been a significant challenge in downstream processes and formulation. While the inhibitory effects of excipients on aggregation have been extensively studied using early experimental characterization methods, complete formulation research requires significant amounts of antibodies and time, resulting in high research costs. Methods: This study proposed a quick and small-scale position-restrained simulation method which elucidated the mechanism of the reversible self-association (RSA) of antibodies and the influence of excipients on RSA under different conditions. We also validated the rationality of rapid and small-scale simulations through long-term (>1 μs) and large-scale (>1,000,000 atoms) simulations. Results: Through combing with simple stability characterization, the effects of different excipients on monomer residual content and the trend shown with concentration changes after thermal incubation were found to be similar to those observed in the simulations. Additionally, the formulation proposed by the simulations was validated using experimental characterization. Conclusions: Simulations and experiments revealed the mechanism and showed consistent trends, providing better understanding for aggregation research.
Collapse
Affiliation(s)
| | | | | | | | - Junfen Wan
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; (Y.G.); (X.C.); (G.F.); (X.C.)
| |
Collapse
|
2
|
Prass TM, Lindorff-Larsen K, Garidel P, Blech M, Schäfer LV. Optimized Protein-Excipient Interactions in the Martini 3 Force Field. J Chem Inf Model 2025; 65:3581-3592. [PMID: 40129029 DOI: 10.1021/acs.jcim.4c02338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
The high doses of drugs required for biotherapeutics, such as monoclonal antibodies (mAbs), and the small volumes that can be administered to patients by subcutaneous injections pose challenges due to high-concentration formulations. The addition of excipients, such as arginine and glutamate, to high-concentration protein formulations can increase solubility and reduce the tendency of protein particle formation. Molecular dynamics (MD) simulations can provide microscopic insights into the mode of action of excipients in mAb formulations but require large system sizes and long time scales that are currently beyond reach at the fully atomistic level. Computationally efficient coarse-grained models such as the Martini 3 force field can tackle this challenge but require careful parametrization, testing, and validation. This study extends the popular Martini 3 force field toward realistic protein-excipient interactions of arginine and glutamate excipients, using the Fab domains of the therapeutic mAbs trastuzumab and omalizumab as model systems. A novel all-atom to coarse-grained mapping of the amino acid excipients is introduced, which explicitly captures the zwitterionic character of the backbone. The Fab-excipient interactions of arginine and glutamate are characterized concerning molecular contacts with the Fabs at the single-residue level. The Martini 3 simulations are compared with results from all-atom simulations as a reference. Our findings reveal an overestimation of Fab-excipient contacts with the default interaction parameters of Martini 3, suggesting a too strong attraction between protein residues and excipients. Therefore, we reparametrized the protein-excipient interaction parameters in Martini 3 against all-atom simulations. The excipient interactions obtained with the new Martini 3 mapping and Lennard-Jones (LJ) interaction parameters, coined Martini 3-exc, agree closely with the all-atom reference data. This work presents an improved parameter set for mAb-arginine and mAb-glutamate interactions in the Martini 3 coarse-grained force field, a key step toward large-scale coarse-grained MD simulations of high-concentration mAb formulations and the stabilizing effects of excipients.
Collapse
Affiliation(s)
- Tobias M Prass
- Center for Theoretical Chemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Patrick Garidel
- Innovation Unit, Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, D-88397 Biberach an der Riss, Germany
| | - Michaela Blech
- Innovation Unit, Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, D-88397 Biberach an der Riss, Germany
| | - Lars V Schäfer
- Center for Theoretical Chemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| |
Collapse
|
3
|
Li X, Orr AA, Sajadi MM, DeVico AL, Deredge DJ, MacKerell AD, Hoag SW. Investigating the Interaction between Excipients and Monoclonal Antibodies PGT121 and N49P9.6-FR-LS: A Comprehensive Analysis. Mol Pharm 2025; 22:1831-1846. [PMID: 40029670 PMCID: PMC11975482 DOI: 10.1021/acs.molpharmaceut.4c00973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
N49P9.6-FR-LS and PGT121 are promising antibodies with significant therapeutic potential against HIV infection, but they are prone to precipitation at concentrations greater than 12 to 13 mg/mL. This study evaluates the influence of six excipients─arginine, alanine, sucrose, trehalose, methionine, and glutamate─on the biophysical stability of antibodies. We employed a comprehensive approach, combining computational mAb-excipient interaction analysis via the site-identification by ligand competitive saturation (SILCS) method with extensive experimental characterization. Our experimental matrix included viscosity measurements across temperature gradients, particle size distribution, zeta potential, pH value, and solution appearance, alongside a short-term stability product study at 30 °C and 65% relative humidity, with assessments at t0 (initial), t1 (14 days), and t2 (28 days). Results indicated that sucrose, arginine, alanine, and trehalose provided varying degrees of stabilization for both antibodies. Conversely, glutamate destabilized PGT121 but stabilized N49P9.6-FR-LS, while methionine had a negative effect on N49P9.6-FR-LS but a positive one on PGT121. SILCS-Biologics analysis suggested that stabilization by these excipients is linked to their ability to occupy regions involved in self-protein interactions. Debye-Hückel-Henry charge calculations further indicated that neutral excipients like sucrose and trehalose could alter mAb charges by affecting buffer binding, influencing aggregation propensity. These findings offer valuable insights for optimizing antibody formulations, ensuring enhanced product stability and therapeutic efficacy for HIV treatment.
Collapse
Affiliation(s)
- Xun Li
- School of Pharmacy, University of Maryland Baltimore, Baltimore, MD, USA
| | - Asuka A. Orr
- School of Pharmacy, University of Maryland Baltimore, Baltimore, MD, USA
| | - Mohammad M. Sajadi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anthony L. DeVico
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Daniel J. Deredge
- School of Pharmacy, University of Maryland Baltimore, Baltimore, MD, USA
| | | | - Stephen W. Hoag
- School of Pharmacy, University of Maryland Baltimore, Baltimore, MD, USA
| |
Collapse
|
4
|
Xin L, Prorok M, Zhang Z, Barboza G, More R, Bonfiglio M, Cheng L, Robbie K, Ren S, Li Y. Rapid Development of High Concentration Protein Formulation Driven by High-Throughput Technologies. Pharm Res 2025; 42:151-171. [PMID: 39824982 DOI: 10.1007/s11095-024-03801-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/01/2024] [Indexed: 01/20/2025]
Abstract
BACKGROUND High concentration protein formulation (HCPF) development needs to balance protein stability attributes such as conformational/colloidal stability, chemical stability, and solution properties such as viscosity and osmolality. METHODOLOGY A three-phase design is established in this work. In Phase 1, conformational and colloidal stability are measured by 384-well-based high-throughput (HT) biophysical screening while viscosity reduction screening is performed with HT viscosity screening. Collectively, the biophysical and viscosity screening data are leveraged to design the phase 2 of short-term stability study, executed using 96-well plates under thermal and freeze/thaw stresses. In phase 2, samples are analyzed by stability-indicating assays and processed with pair-wise Student's t-test analyses to choose the final formulations. In phase 3, the final formulations are then confirmed through a one-month accelerated stability in glass vials. RESULTS Using a model antibody A (mAb-A), the initial HT screening successfully established the 384-well based platform. A lead formulation was chosen from the second round based on statistical analyses and subsequently tested against the commercial formulation of mAb-A as a control. Compared to the control, the lead formulation reduced the viscosity of mAb-A by 30% and decreased subvisible particles after thermal stress by 80%. CONCLUSIONS HT biophysical screening in 384-well plates was demonstrated to effectively guide the rational design of a high-throughput stability screening study using 96-well plates. This platform enables the identification of a high concentration formulation within seven weeks within the first two phases of study that strategically balance stability with solution properties, thus achieving a rapid development of HCPF.
Collapse
Affiliation(s)
- Lun Xin
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | - Monika Prorok
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | - Zhe Zhang
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | - Guilherme Barboza
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | - Rahul More
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | - Michael Bonfiglio
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | - Lv Cheng
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | - Kevin Robbie
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | - Steven Ren
- CMC Management, WuXi Biologics, Cranbury, NJ, USA
| | - Yunsong Li
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA.
| |
Collapse
|
5
|
McKeage JW, Tan AZH, Taberner AJ. Jet injection through microneedles for large volume subcutaneous delivery. Int J Pharm 2024; 667:124887. [PMID: 39471887 DOI: 10.1016/j.ijpharm.2024.124887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/08/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
Subcutaneous (SC) drug delivery offers several advantages over intravenous (IV) delivery including: self-administration, improved patient experience, and reduced treatment costs. Unfortunately, each SC delivery is currently limited to ∼ 2.25 mL with IV administration required when the delivery volume exceeds this value. In this work, we explore a new technique for large volume subcutaneous drug delivery that uses microneedles to break through the epidermis then forms the liquid drug into many small jets that penetrate past the ends of the microneedles and into the subcutaneous (or muscle) tissue. By performing multiple simultaneous injections, this delivery approach avoids the volume limitations of SC delivery, and thus may be able to greatly increase the volume we can deliver to this space. Here, we present a novel multi-jet prototype that forms seven simultaneous jets through 30G needles that have been shortened to have an exposed length of just ∼ 1mm. The jet speed, shape, and volume of jets formed through these microneedles are measured to assess the consistency of jet production through the microneedles. We then perform jet injections of volumes up to 3.9 mL into ex vivo porcine tissue. The results demonstrate the successful delivery (>95 %) of 3.9 mL in just 0.3 s using jet injection performed through microneedles. This volume is almost double the maximum volume of current autoinjectors and the perceived limit for subcutaneous injection (2.25 mL). We also find that jet speeds of 70 m/s and below do not achieve complete delivery of 3.9 mL with our prototype system, and that the addition of microneedles leads to more consistent large volume delivery than equivalent needle-free injections. These results demonstrate the promise of multi-jet injection through microneedles to accommodate volumes much greater than current autoinjectors, and thus potentially allow patient self-administration in many more delivery applications.
Collapse
Affiliation(s)
- James William McKeage
- Auckland Bioengineering Institute, the University of Auckland, Auckland, New Zealand.
| | - Andrew Zheng Hao Tan
- Auckland Bioengineering Institute, the University of Auckland, Auckland, New Zealand
| | - Andrew James Taberner
- Auckland Bioengineering Institute, the University of Auckland, Auckland, New Zealand; Department of Engineering Science, Faculty of Engineering, the University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Chen Q, Wang C, Wang T, Lei B, Wang J, Guo J. Impact of surface tension, viscosity, pump settings, and nozzle size on filling process capability and accuracy in high-concentration biopharmaceuticals. J Pharm Sci 2024; 114:103565. [PMID: 39424196 DOI: 10.1016/j.xphs.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Filling is the final critical unit operation in the manufacturing process of liquid biological drug products. This paper thoroughly investigates the influence and mechanisms of peristaltic pump settings, nozzle size, product surface tension and viscosity on the biopharmaceutical filling processes based on the established filling process model of surrogates. Our study highlights the significant role of pump settings in influencing filling process capability indexes, in addition to their primary function of regulating flow rate. Surface tension minimally impacts flow behavior but significantly regulates the final drop's behavior, with lower surface tension increasing dripping tendencies. Viscosity proves crucial; higher viscosity intensifies friction and head loss of filling flow in tube/nozzle, causing pressure and flow rate losses, more pronounced dripping, and worse filling accuracy. Furthermore, nozzle size moderates the impact of pump settings, surface tension, and viscosity on filling performance. Larger nozzles help mitigate these effects, contributing to enhanced stability in filling performance under challenging conditions. For high-concentration biopharmaceuticals with elevated viscosity during filling, utilizing larger nozzles and reducing pump speed could achieve enhanced Cpk values and improved filling accuracy. Understanding the complex interactions among these factors is vital for optimizing the biopharmaceutical industry, promoting cost-effective practices, and enhancing production efficiency.
Collapse
Affiliation(s)
- Qizhou Chen
- WuXi Biologics, 190 Hedan Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Chenxi Wang
- WuXi Biologics, 190 Hedan Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Tingting Wang
- WuXi Biologics, 190 Hedan Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China.
| | - Bin Lei
- WuXi Biologics, 190 Hedan Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jing Wang
- WuXi Biologics, 190 Hedan Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jeremy Guo
- WuXi Biologics, 190 Hedan Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China.
| |
Collapse
|
7
|
Hobson AD. The medicinal chemistry evolution of antibody-drug conjugates. RSC Med Chem 2024; 15:809-831. [PMID: 38516594 PMCID: PMC10953486 DOI: 10.1039/d3md00674c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Antibody-drug conjugates (ADCs) comprise 3 components of wildly differing sizes: antibody (150 000 Da), linker (typically <500 Da) and payload (typically <500 Da). While the drug-linker makes up only a small percent of the ADC it has a disproportionately massive impact on all aspects of the ADC. Replacing maleimide with bromoacetamide (BrAc) affords stable attachment of the linker to the antibody cysteine, supports total flexibility for linker design and affords a more homogenous ADC. Optimisation of the protease cleavable dipeptide reduces aggregation, facilitates moderation of the physicochemical properties of the ADC and enables long-term stability to facilitate subcutaneous self-administration. Payloads are designed specifically to afford the optimal ADC. Structural information and SAR guide design to improve both potency and selectivity to the small molecule target improving the therapeutic index of resulting ADCs. Minimising the solvent exposed hydrophobic surface area improves the drug-like properties of the ADC, the realisation that the attachment heteroatom can be more than just the site for linker attachment as it can also drive potency and selectivity of the payload and the adoption of a prodrug strategy at project initiation are key areas that medicinal chemistry drives. For an optimal ADC the symbiotic relationship of the three structurally disparate components requires they all function in unison and medicinal chemistry has a huge role to ensure this happens.
Collapse
Affiliation(s)
- Adrian D Hobson
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester Massachusetts 01605 USA
| |
Collapse
|
8
|
Polimeni M, Zaccarelli E, Gulotta A, Lund M, Stradner A, Schurtenberger P. A multi-scale numerical approach to study monoclonal antibodies in solution. APL Bioeng 2024; 8:016111. [PMID: 38425712 PMCID: PMC10902793 DOI: 10.1063/5.0186642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Developing efficient and robust computational models is essential to improve our understanding of protein solution behavior. This becomes particularly important to tackle the high-concentration regime. In this context, the main challenge is to put forward coarse-grained descriptions able to reduce the level of detail, while retaining key features and relevant information. In this work, we develop an efficient strategy that can be used to investigate and gain insight into monoclonal antibody solutions under different conditions. We use a multi-scale numerical approach, which connects information obtained at all-atom and amino-acid levels to bead models. The latter has the advantage of reproducing the properties of interest while being computationally much faster. Indeed, these models allow us to perform many-protein simulations with a large number of molecules. We can, thus, explore conditions not easily accessible with more detailed descriptions, perform effective comparisons with experimental data up to very high protein concentrations, and efficiently investigate protein-protein interactions and their role in phase behavior and protein self-assembly. Here, a particular emphasis is given to the effects of charges at different ionic strengths.
Collapse
Affiliation(s)
- Marco Polimeni
- Division of Physical Chemistry, Lund University, Lund, Sweden
| | - Emanuela Zaccarelli
- Institute for Complex Systems, National Research Council (ISC-CNR), Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | - Mikael Lund
- Division of Computational Chemistry, Lund University, Lund, Sweden
| | - Anna Stradner
- Division of Physical Chemistry, Lund University, Lund, Sweden
| | | |
Collapse
|
9
|
Pang MJ, Wang MW, Mao LF, Guo Z, Qian C, Zheng XH, Fang WJ. The Osmolality and Hemolysis of High-Concentration Monoclonal Antibody Formulations. Pharm Res 2024; 41:281-291. [PMID: 38172366 DOI: 10.1007/s11095-023-03650-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
PURPOSES Highly concentrated monoclonal antibody (mAb) formulations for subcutaneous administration are becoming increasingly preferred within the biopharmaceutical industry for ease of use and improved patient compliance. A common phenomenon observed in the industry is that osmolality detected via freezing-point depression (FPD) in high-concentration mAb formulations is much higher than the theoretical concentrations, yet the occurrence of this phenomenon and its possible safety issues have been rarely reported. METHODS The current study summarized theoretical osmolality of U.S. Food and Drug Administration approved high-concentration mAb formulations and evaluated effects of high osmolality on safety using hemolysis experiments for the first time. Two mAbs formulated at 150 mg/mL were used as models and configured into two isotonic solutions: a, a theoretically calculated molarity in the isotonic range (H) and b, an osmolality value measured via the FPD in the isotonic range (I). The H and I formulations of each mAb were individually subjected to hemolysis experiments, and the hemolysis rates of the two formulations of the same mAb were compared. Besides, the effect of mAb concentration on osmolality detected by FPD was explored as well. RESULTS The results indicated that the hemolysis rates were similar between the H and I formulations of mAbs at the same sample addition volume, and the osmolality values increased approximately linearly with the increase in mAb concentration. CONCLUSIONS High osmolality for high-concentration mAb formulations would not affect product safety and the excipients could be added at relatively high levels to maintain product stability, especially for labile products.
Collapse
Affiliation(s)
- Meng-Juan Pang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Meng-Wen Wang
- Zhejiang Bioray Biopharmaceutical Co., Taizhou, 317000, China
| | - Li-Fei Mao
- Zhejiang Hisun Pharmaceutical Co., Taizhou, 317000, China
| | - Ze Guo
- Zhejiang Hisun Pharmaceutical Co., Taizhou, 317000, China
| | - Ci Qian
- Zhejiang Bioray Biopharmaceutical Co., Taizhou, 317000, China
| | - Xiao-He Zheng
- Zhejiang Hisun Pharmaceutical Co., Taizhou, 317000, China
| | - Wei-Jie Fang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China.
- Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua, 321000, China.
- Taizhou Institute of Zhejiang University, Taizhou, 317000, China.
| |
Collapse
|
10
|
Jin MJ, Ge XZ, Huang Q, Liu JW, Ingle RG, Gao D, Fang WJ. The Effects of Excipients on Freeze-dried Monoclonal Antibody Formulation Degradation and Sub-Visible Particle Formation during Shaking. Pharm Res 2024; 41:321-334. [PMID: 38291165 DOI: 10.1007/s11095-024-03657-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024]
Abstract
PURPOSES We previously reported an unexpected phenomenon that shaking stress could cause more protein degradation in freeze-dried monoclonal antibody (mAb) formulations than liquid ones (J Pharm Sci, 2022, 2134). The main purposes of the present study were to investigate the effects of shaking stress on protein degradation and sub-visible particle (SbVP) formation in freeze-dried mAb formulations, and to analyze the factors influencing protein degradation during production and transportation. METHODS The aggregation behavior of mAb-X formulations during production and transportation was simulated by shaking at a rate of 300 rpm at 25°C for 24 h. The contents of particles and monomers were analyzed by micro-flow imaging, dynamic light scattering, size exclusion chromatography, and ultraviolet - visible (UV-Vis) spectroscopy to compare the protective effects of excipients on the aggregation of mAb-X. RESULTS Shaking stress could cause protein degradation in freeze-dried mAb-X formulations, while surfactant, appropriate pH, polyol mannitol, and high protein concentration could impact SbVP generation. Water content had little effect on freeze-dried protein degradation during shaking, as far as the water content was controlled in the acceptable range as recommended by mainstream pharmacopoeias (i.e., less than 3%). CONCLUSIONS Shaking stress can reduce the physical stability of freeze-dried mAb formulations, and the addition of surfactants, polyol mannitol, and a high protein concentration have protective effects against the degradation of model mAb formulations induced by shaking stress. The experimental results provide new insight for the development of freeze-dried mAb formulations.
Collapse
Affiliation(s)
- Meng-Jia Jin
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Xin-Zhe Ge
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Qiong Huang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jia-Wei Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Rahul G Ingle
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education & Research, Sawangi, Wardha, India
| | - Dong Gao
- Zhejiang Bioray Biopharmaceutical Co., Taizhou, 317000, China
| | - Wei-Jie Fang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China.
- Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua, 321000, China.
- Taizhou Institute of Zhejiang University, Taizhou, 317000, China.
| |
Collapse
|
11
|
Du Y, Li J, Xu W, Cote A, Lay-Fortenbery A, Suryanarayanan R, Su Y. Solid-State NMR Spectroscopy to Probe State and Phase Transitions in Frozen Solutions. Mol Pharm 2023; 20:6380-6390. [PMID: 37947441 DOI: 10.1021/acs.molpharmaceut.3c00764] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Freezing is commonly encountered during the processing and storage of biomacromolecule products. Therefore, understanding the phase and state transitions in pharmaceutical frozen solutions is crucial for the rational development of biopharmaceuticals. Solid-state nuclear magnetic resonance spectroscopy (ssNMR) was used to analyze solutions containing sodium phosphate buffer, histidine, and trehalose. Upon freezing, crystallization of disodium phosphate hydrogen dodecahydrate (Na2HPO4·12H2O, DPDH) and histidine was identified using 31P and 13C ssNMR, respectively, and confirmed by synchrotron X-ray diffractometry (SXRD). Using histidine as a molecular probe and based on the chemical shifts of atoms of interest, the pH of the freeze concentrate was measured. The unfrozen water content in freeze concentrates was quantified by 1H single pulse experiments. 13C-insensitive nuclei enhancement by polarization transfer (INEPT) and cross-polarization (CP) experiments were used as orthogonal tools to characterize the solutes in a "mobile" and a more "solid-like" state in the freeze-concentrated solutions, respectively. The above analyses were applied to a commercial monoclonal antibody (mAb) formulation of dupilumab. This work further establishes ssNMR spectroscopy as a highly capable biophysical tool to investigate the attributes of biopharmaceuticals and thereby provide insights into process optimization and formulation development.
Collapse
Affiliation(s)
- Yong Du
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jinghan Li
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Wei Xu
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Aaron Cote
- Biologics Process Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Ashley Lay-Fortenbery
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Raj Suryanarayanan
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
12
|
Hobson AD, Xu J, Welch DS, Marvin CC, McPherson MJ, Gates B, Liao X, Hollmann M, Gattner MJ, Dzeyk K, Sarvaiya H, Shenoy VM, Fettis MM, Bischoff AK, Wang L, Santora LC, Wang L, Fitzgibbons J, Salomon P, Hernandez A, Jia Y, Goess CA, Mathieu SL, Bryant SH, Larsen ME, Cui B, Tian Y. Discovery of ABBV-154, an anti-TNF Glucocorticoid Receptor Modulator Immunology Antibody-Drug Conjugate (iADC). J Med Chem 2023; 66:12544-12558. [PMID: 37656698 DOI: 10.1021/acs.jmedchem.3c01174] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Stable attachment of drug-linkers to the antibody is a critical requirement, and for maleimide conjugation to cysteine, it is achieved by ring hydrolysis of the succinimide ring. During ADC profiling in our in-house property screening funnel, we discovered that the succinimide ring open form is in equilibrium with the ring closed succinimide. Bromoacetamide (BrAc) was identified as the optimal replacement, as it affords stable attachment of the drug-linker to the antibody while completely removing the undesired ring open-closed equilibrium. Additionally, BrAc also offers multiple benefits over maleimide, especially with respect to homogeneity of the ADC structure. In combination with a short, hydrophilic linker and phosphate prodrug on the payload, this afforded a stable ADC (ABBV-154) with the desired properties to enable long-term stability to facilitate subcutaneous self-administration.
Collapse
Affiliation(s)
- Adrian D Hobson
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Jianwen Xu
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Dennie S Welch
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | | | - Michael J McPherson
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Bradley Gates
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Xiaoli Liao
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Markus Hollmann
- AbbVie Deutschland GmbH & Co KG, Knollstrasse 50, 67061 Ludwigshafen, Germany
| | - Michael J Gattner
- AbbVie Deutschland GmbH & Co KG, Knollstrasse 50, 67061 Ludwigshafen, Germany
| | - Kristina Dzeyk
- AbbVie Deutschland GmbH & Co KG, Knollstrasse 50, 67061 Ludwigshafen, Germany
| | - Hetal Sarvaiya
- AbbVie Inc., 1000 Gateway Blvd, South San Francisco, California 94080, United States
| | - Vikram M Shenoy
- AbbVie Inc., 1000 Gateway Blvd, South San Francisco, California 94080, United States
| | - Margaret M Fettis
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Agnieszka K Bischoff
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Lu Wang
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Ling C Santora
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Lu Wang
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Julia Fitzgibbons
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Paulin Salomon
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Axel Hernandez
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Ying Jia
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Christian A Goess
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Suzanne L Mathieu
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Shaughn H Bryant
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Mary E Larsen
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Baoliang Cui
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Yu Tian
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| |
Collapse
|
13
|
Hobson AD, Xu J, Marvin CC, McPherson MJ, Hollmann M, Gattner M, Dzeyk K, Fettis MM, Bischoff AK, Wang L, Fitzgibbons J, Wang L, Salomon P, Hernandez A, Jia Y, Sarvaiya H, Goess CA, Mathieu SL, Santora LC. Optimization of Drug-Linker to Enable Long-term Storage of Antibody-Drug Conjugate for Subcutaneous Dosing. J Med Chem 2023. [PMID: 37379257 DOI: 10.1021/acs.jmedchem.3c00794] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
To facilitate subcutaneous dosing, biotherapeutics need to exhibit properties that enable high-concentration formulation and long-term stability in the formulation buffer. For antibody-drug conjugates (ADCs), the introduction of drug-linkers can lead to increased hydrophobicity and higher levels of aggregation, which are both detrimental to the properties required for subcutaneous dosing. Herein we show how the physicochemical properties of ADCs could be controlled through the drug-linker chemistry in combination with prodrug chemistry of the payload, and how optimization of these combinations could afford ADCs with significantly improved solution stability. Key to achieving this optimization is the use of an accelerated stress test performed in a minimal formulation buffer.
Collapse
Affiliation(s)
- Adrian D Hobson
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Jianwen Xu
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Christopher C Marvin
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Michael J McPherson
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Markus Hollmann
- AbbVie Deutschland GmbH & Co KG, Knollstrasse 50, 67061 Ludwigshafen, Germany
| | - Michael Gattner
- AbbVie Deutschland GmbH & Co KG, Knollstrasse 50, 67061 Ludwigshafen, Germany
| | - Kristina Dzeyk
- AbbVie Deutschland GmbH & Co KG, Knollstrasse 50, 67061 Ludwigshafen, Germany
| | - Margaret M Fettis
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Agnieszka K Bischoff
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Lu Wang
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Julia Fitzgibbons
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Lu Wang
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Paulin Salomon
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Axel Hernandez
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Ying Jia
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Hetal Sarvaiya
- AbbVie Inc., 1000 Gateway Blvd., South San Francisco, California 94080, United States
| | - Christian A Goess
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Suzanne L Mathieu
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Ling C Santora
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| |
Collapse
|
14
|
Guo Y, Chen X, Yu X, Wan J, Cao X. Prediction and validation of monoclonal antibodies separation in aqueous two-phase system using molecular dynamic simulation. J Chromatogr A 2023; 1694:463921. [PMID: 36940643 DOI: 10.1016/j.chroma.2023.463921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/19/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
In order to predict how mAbs partition in 20% ethylene oxide/80% propylene oxide (v/v) random copolymer (EO20PO80)/water aqueous two-phase system (ATPS), a molecular dynamic simulation model was developed using Gromacs and then validated by experiments. The ATPS was applied with seven kinds of salt, including buffer salt and strong dissociation salt that were commonly employed in the purification of protein. Na2SO4 was shown to have the best effects on lowering EO20PO80 content in the aqueous phase and enhancing recovery. The content of EO20PO80 in the sample solution was decreased to 0.62%±0.25% and the recovery of rituximab increased to 97.88%±0.95% by adding 300 mM Na2SO4 into back extraction ATPS. The viability determined by ELISA was 95.57% at the same time. A strategy for constructing a prediction model for the distribution of mAbs in ATPS was proposed in consideration of this finding. Partition of trastuzumab in ATPS was predicted by the model created using this method and the prediction result was further validated by experiments. The recovery of trastuzumab reached 95.63%±2.86% under the ideal extraction conditions suggested by the prediction model.
Collapse
Affiliation(s)
- Yibo Guo
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| | - Xi Chen
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| | - Xue Yu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, P.R. China
| | - Junfen Wan
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China.
| | - Xuejun Cao
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China.
| |
Collapse
|
15
|
Homšek A, Spasić J, Nikolić N, Stanojković T, Jovanović M, Miljković B, Vučićević KM. Pharmacokinetic characterization, benefits and barriers of subcutaneous administration of monoclonal antibodies in oncology. J Oncol Pharm Pract 2023; 29:431-440. [PMID: 36349366 DOI: 10.1177/10781552221137702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Therapeutic monoclonal antibodies in oncology are slowly becoming the dominant treatment option for many different cancer types. The main route of administration, infusion, requires extensive product preparations, patient hospitalization and close monitoring. Patient comfort improvement, staff workload reduction and cost savings dictated the development of subcutaneous formulations. The aim of this review is to present pharmacokinetic characteristics of subcutaneous products, discuss the differences between intravenous and subcutaneous routes and to point out the advantages as well as challenges of administration route shift from the formulation development and pharmacometric angle. DATA SOURCES Food and Drug administration's Purple book database and electronic medicines compendium were used to identify monoclonal antibodies in oncology approved as subcutaneous forms. Using keywords subcutaneous, monoclonal antibodies, pharmacokinetics, model, as well as specific drugs previously identified, both PubMed and ScienceDirect databases were researched. DATA SUMMARY There are currently six approved subcutaneous onco-monoclonal antibodies on the market. For each of them, exposure to the drug was similar in relation to infusion, treatment effectiveness was the same, administration was well tolerated by the patients and costs of the medical service were reduced. CONCLUSION Development of subcutaneous forms for existing and emerging new monoclonal antibodies for cancer treatment as well as shifting from administration via infusion should be encouraged due to patient preference, lower costs and overall lack of substantial differences in efficacy and safety between the two routes.
Collapse
Affiliation(s)
- Ana Homšek
- Department of Pharmacokinetics and Clinical Pharmacy, 186111University of Belgrade - Faculty of Pharmacy, Belgrade, Republic of Serbia
| | - Jelena Spasić
- Clinic for Medical Oncology, 119083Institute for Oncology and Radiology of Serbia, Belgrade, Republic of Serbia
| | - Neda Nikolić
- Clinic for Medical Oncology, 119083Institute for Oncology and Radiology of Serbia, Belgrade, Republic of Serbia
| | - Tatjana Stanojković
- Department of Experimental Oncology, 119083Institute for Oncology and Radiology of Serbia, Belgrade, Republic of Serbia
| | - Marija Jovanović
- Department of Pharmacokinetics and Clinical Pharmacy, 186111University of Belgrade - Faculty of Pharmacy, Belgrade, Republic of Serbia
| | - Branislava Miljković
- Department of Pharmacokinetics and Clinical Pharmacy, 186111University of Belgrade - Faculty of Pharmacy, Belgrade, Republic of Serbia
| | - Katarina M Vučićević
- Department of Pharmacokinetics and Clinical Pharmacy, 186111University of Belgrade - Faculty of Pharmacy, Belgrade, Republic of Serbia
| |
Collapse
|
16
|
Ibrahim M, Wallace I, Ghazvini S, Manetz S, Cordoba-Rodriguez R, Patel SM. Protein Aggregates in Inhaled Biologics: Challenges and Considerations. J Pharm Sci 2023; 112:1341-1344. [PMID: 36796636 PMCID: PMC9927828 DOI: 10.1016/j.xphs.2023.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Pulmonary delivery is the main route of administration for treatment of local lung diseases. Recently, the interest in delivery of proteins through the pulmonary route for treatment of lung diseases has significantly increased, especially after Covid-19 pandemic. The development of an inhalable protein combines the challenges of inhaled as well as biologic products since protein stability may be compromised during manufacture or delivery. For instance, spray drying is the most common technology for manufacture of inhalable biological particles, however, it imposes shear and thermal stresses which may cause protein unfolding and aggregation post drying. Therefore, protein aggregation should be evaluated for inhaled biologics as it could impact the safety and/or efficacy of the product. While there is extensive knowledge and regulatory guidance on acceptable limits of particles, which inherently include insoluble protein aggregates, in injectable proteins, there is no comparable knowledge for inhaled ones. Moreover, the poor correlation between in vitro setup for analytical testing and the in vivo lung environment limits the predictability of protein aggregation post inhalation. Thus, the purpose of this article is to highlight the major challenges facing the development of inhaled proteins compared to parenteral ones, and to share future thoughts to resolve them.
Collapse
Affiliation(s)
- Mariam Ibrahim
- Dosage Form Design & Development, Early-Stage Formulation Sciences, Biopharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, USA
| | - Ian Wallace
- Clinical Pharmacology & Safety Sciences, Respiratory & Immunology, Neuroscience, Vaccines & Immune Therapies Safety, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Saba Ghazvini
- Dosage Form Design & Development, Early-Stage Formulation Sciences, Biopharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, USA
| | - Scott Manetz
- Clinical Pharmacology & Safety Sciences, Respiratory & Immunology, Neuroscience, Vaccines & Immune Therapies Safety, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, USA
| | - Ruth Cordoba-Rodriguez
- Regulatory Affairs, Chemistry, Manufacturing and Controls Regulatory Affairs, Oncology R&D, AstraZeneca, Gaithersburg, USA
| | - Sajal M. Patel
- Dosage Form Design & Development, Early-Stage Formulation Sciences, Biopharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, USA,Corresponding author
| |
Collapse
|
17
|
Doe E, Hayth HL, Khisamutdinov EF. Bioconjugation of Functionalized Oligodeoxynucleotides with Fluorescence Reporters for Nanoparticle Assembly. Methods Mol Biol 2023; 2709:105-115. [PMID: 37572275 DOI: 10.1007/978-1-0716-3417-2_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
In the field of nucleic acid nanotechnology and therapeutics, there is an imperative need to improve the oligodeoxynucleotides' (ODNs) properties by either chemical modification of the oligonucleotides' structure or to covalently link them to a reporter or therapeutic moieties that possess biologically relevant properties. The chemical conjugation can thus significantly improve the intrinsic properties not only of ODNs but also reporter/therapeutic molecules. Bioconjugation of nucleic acids to small molecules also serves as a nano-delivery facility to transport various functionalities to specific targets. Herein, we describe a generalized methodology that deploys azide-alkyne cycloaddition, a click reaction to conjugate a cyanine-3 alkyne moiety to an azide-functionalized ODN 12-mer, as well as 3-azido 7-hydroxycoumarin to an alkyne functionalized ODN 12-mer.
Collapse
Affiliation(s)
- Erwin Doe
- Department of Chemistry, Ball State University, Muncie, IN, USA
| | - Hannah L Hayth
- Department of Chemistry, Ball State University, Muncie, IN, USA
| | | |
Collapse
|
18
|
Virk SS, Underhill PT. Application of a Simple Short-Range Attraction and Long-Range Repulsion Colloidal Model toward Predicting the Viscosity of Protein Solutions. Mol Pharm 2022; 19:4233-4240. [PMID: 36129361 DOI: 10.1021/acs.molpharmaceut.2c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Some hard-sphere colloidal models have been criticized for inaccurately predicting the solution viscosity of complex biological molecules like proteins. Competing short-range attractions and long-range repulsions, also known as short-range attraction and long-range repulsion (SALR) interactions, have been thought to affect the microstructure of a protein solution at low to moderate ionic strength. However, such interactions have been implicated primarily in causing phase transition, protein gelation, or reversible cluster formation, and their effect on protein solution viscosity change is not fully understood. In this work, we show the application of a hard-sphere colloidal model with SALR interactions toward predicting the viscosity of dilute to semi-dilute protein solutions. The comparison is performed for a globular-shaped albumin and Y-shaped therapeutic monoclonal antibody that are not explained by previous colloidal models. The model predictions show that it is the coupling between attractions and repulsions that gives rise to the observed experimental trends in solution viscosity as a function of pH, concentration, and ionic strength. The parameters of the model are obtained from measurements of the second virial coefficient and net surface charge/zeta-potential, without additional fitting of the viscosity.
Collapse
Affiliation(s)
- Sabitoj Singh Virk
- Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Patrick T Underhill
- Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| |
Collapse
|
19
|
Ayalew L, Chan P, Hu Z, Shen A, Duenas E, Kirschbrown W, Schick AJ, Chen Y, Kim MT. C-Terminal Lysine Processing of IgG in Human Suction Blister Fluid: Implications for Subcutaneous Administration. Mol Pharm 2022; 19:4043-4054. [DOI: 10.1021/acs.molpharmaceut.2c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Luladey Ayalew
- Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
| | - Phyllis Chan
- Clinical Pharmacology, Genentech, South San Francisco, California 94080, United States
| | - Zhilan Hu
- Cell Culture and Bioprocess Operations, Genentech, South San Francisco, California 94080, United States
| | - Amy Shen
- Cell Culture and Bioprocess Operations, Genentech, South San Francisco, California 94080, United States
| | - Eileen Duenas
- Purification Development, Genentech, South San Francisco, California 94080, United States
| | - Whitney Kirschbrown
- Clinical Pharmacology, Genentech, South San Francisco, California 94080, United States
| | - Arthur J. Schick
- Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
| | - Yan Chen
- Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
| | - Michael T. Kim
- Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
| |
Collapse
|
20
|
Goli VAR, Butreddy A. Biosimilar monoclonal antibodies: Challenges and approaches towards formulation. Chem Biol Interact 2022; 366:110116. [PMID: 36007632 DOI: 10.1016/j.cbi.2022.110116] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/03/2022]
Abstract
Many biologic drug products, particularly monoclonal antibodies (mAbs), were off-patented between 2015 and 2020, and this process is continuing as the number of biologics approvals has increased. However, the availability of affordable biosimilars is delayed by secondary patents related to the formulation and manufacturing process. Therefore, an alternative formulation development is required to avoid infringement of formulation related patents. Several variables must be considered while developing alternative non-infringement formulations, including the time gap between the expiration of the molecule patent and the formulation patent, the ability not to infringe other secondary patents (process-related), and project timelines. As a part of life cycle management, innovator companies are adopting multiple strategies to delay biosimilar competition. Biosimilar companies could use the innovator formulation knowledge space to develop alternative formulations at the expense of time and cost. The present review discusses the key approaches in biosimilar formulation development, and further summarizes the use of innovator formulation knowledge space for biosimilar mAbs product development.
Collapse
Affiliation(s)
- Venkata Appa Reddy Goli
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S, Nagar, Punjab, 160062, India
| | - Arun Butreddy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|