1
|
Xin J, Zhang H, Li Y, Dai Y, Chen X, Zou J, Wang R, Liu Z, Wang B. Effect of cold atmospheric plasma on common oral pathogenic microorganisms: a narrative review. Ann Med 2025; 57:2457518. [PMID: 39865862 PMCID: PMC11774187 DOI: 10.1080/07853890.2025.2457518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND The oral microbiota is a diverse and complex community that maintains a delicate balance. When this balance is disturbed, it can lead to acute and chronic infectious diseases such as dental caries and periodontitis, significantly affecting people's quality of life. Developing a new antimicrobial strategy to deal with the increasing microbial variability and resistance is important. Cold atmospheric plasma (CAP), as the fourth state of matter, has gradually become a hot topic in the field of biomedicine due to its good antibacterial, anti-inflammatory, and anti-tumor capabilities. It is expected to become a major asset in the regulation of oral microbiota. METHODS We conducted a search in PubMed, Medline, and Wiley databases, focusing on studies related to CAP and oral pathogenic microorganisms. We explored the biological effects of CAP and summarized the antimicrobial mechanisms behind it. RESULTS Numerous articles have shown that CAP has a potent antimicrobial effect against common oral pathogens, including bacteria, fungi, and viruses, primarily due to the synergy of various factors, especially reactive oxygen and nitrogen species. CONCLUSIONS CAP is effective against various oral pathogenic microorganisms, and it is anticipated to offer a new approach to treating oral infectious diseases. The future objective is to precisely adjust the parameters of CAP to ensure safety and efficacy, and subsequently develop a comprehensive CAP treatment protocol. Achieving this objective is crucial for the clinical application of CAP, and further research is necessary.
Collapse
Affiliation(s)
- Jiajun Xin
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Hao Zhang
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Yushen Li
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Yifei Dai
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Xiantao Chen
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Jiatong Zou
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Rui Wang
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Zhihui Liu
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Bowei Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
2
|
Zhu Y, Zhai Z, Jiao T, Sun J. Shear bond strength of vat photopolymerization additive-manufactured zirconia to veneering ceramic. J Prosthodont 2025. [PMID: 39871468 DOI: 10.1111/jopr.14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/10/2025] [Indexed: 01/29/2025] Open
Abstract
PURPOSE To evaluate the shear bond strength (SBS) of stereolithography (SLA), digital light processing (DLP) manufactured, and computer numerical control (CNC) milled zirconia to veneering ceramic. MATERIALS AND METHODS Rectangular shaped zirconia substrates (10 × 5 × 5 mm3) were manufactured through SLA, DLP, and CNC technology separately. Their surface roughness was measured and the surface topography was analyzed by atomic force microscope (AFM). Then the veneering ceramic (5 × 5 × 5 mm3) was applied to carry out the SBS test. Failure modes were examined by a scanning electron microscope (SEM). The data of SBS and roughness were statistically analyzed with one-way ANOVA followed by S-N-K post hoc comparisons (a = 0.05). RESULTS The surface roughness of the SLA group (0.38 ± 0.03 µm) and the DLP group (0.37 ± 0.04 µm) were both significantly higher than the CNC group (0.16 ± 0.00 µm) (p < 0.001). AFM results revealed irregular surface of SLA and DLP zirconia. No significant difference was found in SBS value of the three groups (p = 0.253). SEM image showed different failure modes including cohesive, adhesive, and mixed failure. CONCLUSION The bonding ability of SLA and DLP zirconia to veneering ceramic were comparable with that of CNC zirconia.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Zidi Zhai
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Ting Jiao
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Jian Sun
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, PR China
| |
Collapse
|
3
|
Ma Y, Wang H, Xiang Y, Li M, Shen D, Zhang S, Zhou X, An J, Shi Y, Fu B. The effects of optimized microstructured surfaces on bond strength and durability of NPJ-printed zirconia. Dent Mater 2024; 40:1991-1999. [PMID: 39322445 DOI: 10.1016/j.dental.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/16/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVES This study was to investigate the effects of optimized microstructured surfaces on bond strength and bond durability of the latest nanoparticle jetting (NPJ)-printed zirconia. METHODS Zirconia microstructured surfaces with different geometries and void volume were analyzed through three-dimensional finite element analysis for surface micromorphology optimization. Zirconia disks and cylinders were additively manufactured by an NPJ 3D printer (N = 128). They were randomly divided into four groups based on surface micromorphology optimization and airborne-particle abrasion (APA) treatment before they were bonded using 10-methacryloloxydecyl dihydrogen phosphate (MDP) containing resin cement (Clearfil SA luting cement). The shear bond strengths (SBSs) were tested before and after 10,000 thermocycles and were analyzed by one-way ANOVA analysis. Failure modes were determined by optical microscopy. Zirconia surfaces were analyzed with X-ray diffraction, scanning electron microscopy, and three-dimensional interference microscopy. RESULTS The optimized microstructured surface was characterized by circular microstructures with 60 % void volume, about 20 µm of depths, about 10 µm of undercuts, and consistent beam widths. The optimized microstructured surface combined with APA treatment and MDP-containing resin cement possessed the highest SBSs both before and after thermocycling aging (P<0.05). The greater reductions of zirconia bond strengths occurred when the zirconia were not treated with APA (P<0.05). SIGNIFICANCE The optimized microstructured zirconia surface with circular microstructures and 60 % void volume fabricated by the latest NPJ printing technology could greatly enhance the zirconia bond strength and durability in combination with APA treatment and application of MDP-containing resin cement, which might be promising for adhesively bonded indirect restorations of NPJ-printed zirconia.
Collapse
Affiliation(s)
- Yuhan Ma
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Huihua Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Yang Xiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Mingxing Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Dongni Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Sisi Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Xiaojian Zhou
- Thales Medical Technology, Hangzhou, Zhejiang, China
| | - Jun An
- Thales Medical Technology, Hangzhou, Zhejiang, China
| | - Ying Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China.
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China.
| |
Collapse
|
4
|
Kim SH, Lim YJ, Kim DJ, Kim MJ, Kwon HB, Baek YW. Impact of Different Surface Treatments on Shear Bond Strength between Two Zirconia Ceramics and a Composite Material. Bioengineering (Basel) 2024; 11:1003. [PMID: 39451379 PMCID: PMC11505044 DOI: 10.3390/bioengineering11101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
The purpose of this study was to compare the surface changes and shear bond strength between a resin composite and two zirconia ceramics subjected to sandblasting and forming gas (5% H2 in N2) plasma surface treatment. Two types of zirconia ceramic specimens (3Y-TZP and (Y,Nb)-TZP) were divided into groups based on the following surface treatment methods: polishing (Control), sandblasting (SB), sandblasting and plasma (SB-P), and plasma treatment (P). Subsequently, chemical surface modification was performed using Clearfil SE Bond (Kuraray, Tokyo, Japan), and the Filtek Z-250 (3M, Maplewood, MN, USA) resin composite was applied. Shear bond strengths (SBS) and surface characteristics were determined. Plasma treatment was effective in increasing the wettability. For SBS, there were significant differences among the groups, and the (Y,Nb)-TZP and SB-P groups showed the highest bond strength. Similarly, for the 3Y-TZP specimens, the shear bond strength increased with both plasma and sandblasting treatments, although no statistically significant change was observed. In the P group, both (Y,Nb)-TZP and 3Y-TZP showed a significant decrease in shear bond strength with the resin composite compared to the control group.
Collapse
Affiliation(s)
- Se-Hyoun Kim
- Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03085, Republic of Korea; (S.-H.K.); (M.-J.K.)
| | - Young-Jun Lim
- Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03085, Republic of Korea; (S.-H.K.); (M.-J.K.)
| | - Dae-Joon Kim
- VASIC Research Center, Department of Dentistry, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03085, Republic of Korea
| | - Myung-Joo Kim
- Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03085, Republic of Korea; (S.-H.K.); (M.-J.K.)
| | - Ho-Boem Kwon
- Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03085, Republic of Korea; (S.-H.K.); (M.-J.K.)
| | - Yeon-Wha Baek
- Department of Prosthodontics, Gwanak Center, Seoul National University Dental Hospital, Seoul 08826, Republic of Korea;
| |
Collapse
|
5
|
Miura S, Fujisawa M, Vallittu P, Lassila L. Effects of plasma surface treatment on the bond strength of zirconia with an adhesive resin luting agent. Dent Mater J 2024; 43:582-590. [PMID: 38960667 DOI: 10.4012/dmj.2024-051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The purpose of this study was to evaluate the effect of the atmospheric pressure plasma treatment as a surface treatment method on the contact angle and shear bond strength (SBS) of zirconia ceramics and the failure mode between the self-adhesive resin luting agent and zirconia. The zirconia specimens were divided into eight groups based on the surface treatment method: alumina blasting, air plasma, argon plasma (AP), Katana cleaner, ozonated water, ozonated water+AP, Katana cleaner+AP, and tap water+AP. The contact angles, SBS, and fracture modes were tested. AP treatment significantly reduced the contact angle (p<0.0001). The combination of AP and other cleaning methods showed a higher bond strength and more mixed fractures. Our findings indicate that using atmospheric pressure plasma with argon gas, combined with other cleaning methods, results in a stronger bond than when using alumina blasting alone.
Collapse
Affiliation(s)
- Shoko Miura
- Division of Fixed Prosthodontics, Department of Restorative and Biomaterials Sciences, Meikai University School of Dentistry
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku
| | - Masanori Fujisawa
- Division of Fixed Prosthodontics, Department of Restorative and Biomaterials Sciences, Meikai University School of Dentistry
| | - Pekka Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku
- Department of Prosthetic Dentistry and Biomaterials Science, Institute of Dentistry, University of Turku
- Welfare District of County of Southwest Finland
| | - Lippo Lassila
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku
| |
Collapse
|
6
|
Zicari F, Monaco C, Vivan Cardoso M, Silvestri D, Van Meerbeek B. Bonding Effectiveness of Veneering Ceramic to Zirconia after Different Grit-Blasting Treatments. Dent J (Basel) 2024; 12:219. [PMID: 39057005 PMCID: PMC11275620 DOI: 10.3390/dj12070219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Objective: To determine the effect of grit-blasting before and after sintering on the surface roughness of zirconia and the micro-tensile bond strength of a pressable veneering ceramic to zirconia. Methods: Pre-sintered zirconia blocks (IPS e.max ZirCAD, Ivoclar) were divided into four test groups of three specimens each and a control group ('CTR'; no surface treatment). Pre-S-30, Pre-S-50, and Pre-S-110 were grit-blasted with 30-µm SiO2-coated Al2O3, 50-µm Al2O3 and 110-µm Al2O3 particles, respectively, before sintering. Post-S-30 was grit-blasted with 30-µm SiO2-coated Al2O3 after sintering. For each treatment, the surface roughness was measured (Ra, Perthometer M4P, Mahr Perthen). After sintering the zirconia blocks, a liner was applied and a pressable ceramic (IPS e.max ZirPress, Ivoclar) was heat-pressed. Sixteen microbars were obtained from each block and submitted to micro-tensile bond-strength (µTBS) testing. Data were analyzed with one-way ANOVA. Any correlation between Ra and µTBS was evaluated (Sperman test). Results: Grit-blasting before sintering with 110-µm Al2O3 (RaPre-S-110 = 3.4 ± 0.4 µm), 50-µm Al2O3 (RaPre-S-50 = 2.3 ± 0.5 µm), and 30-µm SiO2-coated Al2O3 (RaPre-S-30 = 1.2 ± 0.2 µm) resulted in significantly higher roughness than grit-blasting after sintering with 30-µm SiO2-coated Al2O3 (RaPost-S-30 = 0.5 ± 0.1 µm). The highest µTBS was measured when the sintered zirconia was grit-blasted with 30-μm SiO2-coated Al2O3 (µTBSPost-S-30 = 28.5 ± 12.6 MPa), which was significantly different from that of specimens that were grit-blasted before sintering (µTBSPre-S-30 = 21.8 ± 10.4; µTBSPre-S-50 = 24.1 ± 12.6; µTBSPre-S-110 = 26.4 ± 14.1) or were not grit-blasted (µTBSCTR = 20.2 ± 11.2). Conclusions: Grit-blasting zirconia before sintering enhanced the surface roughness proportionally to the particle size of the sand used. Grit-blasting with 30-µm SiO2-coated Al2O3 after sintering improved bonding of the veneering ceramic to zirconia. Clinical Significance: As grit-blasting with 30-µm SiO2-coated Al2O3 after sintering improved bonding of the veneering ceramic to zirconia, it may reduce veneering ceramic fractures/chipping.
Collapse
Affiliation(s)
- Francesca Zicari
- KU Leuven, Department of Oral Health Sciences, Biomaterials—BIOMAT & UZ Leuven, 3000 Leuven, Belgium
- University of Modena and Reggio Emilia, Department of Surgery, Medical, Dentistry and Morphological Sciences with Transplant Interest, Oncology and Regenerative Medicine (CHIMOMO), 41121 Modena, Italy
| | - Carlo Monaco
- University of Modena and Reggio Emilia, Department of Surgery, Medical, Dentistry and Morphological Sciences with Transplant Interest, Oncology and Regenerative Medicine (CHIMOMO), 41121 Modena, Italy
| | - Marcio Vivan Cardoso
- KU Leuven, Department of Oral Health Sciences, Biomaterials—BIOMAT & UZ Leuven, 3000 Leuven, Belgium
| | - Davide Silvestri
- University of Modena and Reggio Emilia, Department of Surgery, Medical, Dentistry and Morphological Sciences with Transplant Interest, Oncology and Regenerative Medicine (CHIMOMO), 41121 Modena, Italy
| | - Bart Van Meerbeek
- KU Leuven, Department of Oral Health Sciences, Biomaterials—BIOMAT & UZ Leuven, 3000 Leuven, Belgium
| |
Collapse
|
7
|
Sevilla P, Gseibat M, Peláez J, Suárez MJ, López-Suárez C. Effect of Surface Treatments with Low-Pressure Plasma on the Adhesion of Zirconia. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6055. [PMID: 37687747 PMCID: PMC10488541 DOI: 10.3390/ma16176055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
The purpose of this study was to investigate the effect of low-pressure plasma on the contact angle, shear bond strength (SBS), and the failure mode of zirconia ceramic. Zirconia specimens were divided into three groups according to the surface treatment methods as follows: sandblasting with aluminum oxide (ZR-C), sandblasting with aluminum oxide and oxygen plasma (ZR-CP), and argon plasma (ZR-P). The contact angle, SBS, and surface characteristics were tested after thermocycling. Data analysis was made using the Kruskal-Wallis test and one-way analysis of variance. Plasma treatment significantly reduced the contact angle (p < 0.001) with the lowest value for the Zr-P group. An increase in oxygen and a decrease in carbon was observed on the zirconia surface in both plasma groups. For the SBS, there were significant differences among the groups (p < 0.018), the Zr-CP group showing the highest bond strength. Mixed failures were the most frequent. Plasma treatment was effective in increasing the wettability, increasing the oxygen/carbon ratio without changing zirconia surface morphology. The sandblasting plus plasma with oxygen group exhibited the highest bond strength.
Collapse
Affiliation(s)
| | | | - Jesús Peláez
- Department of Conservative Dentistry and Buco-facial Prosthesis, Faculty of Odontology, University Complutense of Madrid, 28040 Madrid, Spain; (P.S.); (M.G.); (C.L.-S.)
| | - María J. Suárez
- Department of Conservative Dentistry and Buco-facial Prosthesis, Faculty of Odontology, University Complutense of Madrid, 28040 Madrid, Spain; (P.S.); (M.G.); (C.L.-S.)
| | | |
Collapse
|
8
|
Seyedi D, Valizadeh S, Ghodsi S, Salimi K, Atri F. Effect of Nonthermal Plasma on Shear Bond Strength of Translucent Zirconia in Layering Ceramic. Int J Dent 2023; 2023:6639030. [PMID: 37223394 PMCID: PMC10202598 DOI: 10.1155/2023/6639030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/26/2023] [Accepted: 04/24/2023] [Indexed: 05/25/2023] Open
Abstract
Background Today, various methods are used to increase the bond strength of zirconia in layering ceramics. This study evaluated the effects of nonthermal argon plasma on zirconia shear bond strength to layering porcelain. Materials and Method. In this experimental study, 42 square blocks of zirconia were prepared and randomly divided into three groups (n = 14) according to the applying surface treatment: (1) the control group (without any surface treatment), (2) the plasma-treated group with argon nonthermal plasma, and (3) the air abrasion group with 50 µm Al2O3 particles. All samples were layered with porcelain. One sample from each group was evaluated by electron microscopy (SEM) to examine the cross-sectional area of the zirconia-ceramic bond. The rest of the specimens were subjected to thermocycling with 5,000 baths to imitate the aging process in the mouth and then were tested for shear bond strength. The failure pattern of the samples was examined by stereomicroscope. Bond strength data were analyzed by one-way ANOVA test in three groups and Tamhane post hoc test in pairs. The significance level of p-value was considered 0.05. Results The shear bond strength of the plasma-treated group was significantly higher than the control group (p = 0.032) but the shear bond strength between the sandblast and the plasma-treated group was not significantly different (p = 0.656). The shear bond strength between the sandblast and the control group was also not significant (p = 0.202). Regarding the mode of failure, failures were mostly adhesive and then mixed. Examination of the samples under SEM showed that the bond area is the thickest in the sandblast group and also the surface roughness is the highest in the sandblast group and the lowest in the control group. Conclusion This study demonstrated that the use of nonthermal argon plasma treatment is an effective way to enhance the quality and quantity of shear bond strength between layering porcelain and zirconia.
Collapse
Affiliation(s)
- Dorsa Seyedi
- Department of Prosthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Valizadeh
- Department of Operative Dentistry, Dental Research Center, School of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Safoura Ghodsi
- Department of Prosthodontics, Dental Research Center, School of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kimia Salimi
- Department of Prosthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Atri
- Department of Prosthodontics, Dental Research Center, School of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Worpenberg C, Stiesch M, Eisenburger M, Breidenstein B, Busemann S, Greuling A. The effect of surface treatments on the adhesive bond in all-ceramic dental crowns using four-point bending and dynamic loading tests. J Mech Behav Biomed Mater 2023; 139:105686. [PMID: 36706651 DOI: 10.1016/j.jmbbm.2023.105686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
The aim of this study was to determine the effect of sandblasting, grinding and plasma treatment on the adhesive bond strength between framework ceramic (Y-TZP) and veneering ceramic (feldspar ceramic). Therefore, four-point bending specimens (n = 180) were cut from densely sintered 3Y-TZP blanks. Subsequently, 80 of these samples received surface treatment by sandblasting and 80 samples by grinding. A reference group (20 samples) was not processed. Half of the specimens that received a surface treatment were additionally exposed to an oxygen plasma treatment. After processing, all specimens were manually veneered with feldspar ceramic and examined with a four-point bending test to evaluate the strain energy release rate G. The surface treatment parameters that achieved the highest and lowest G were transferred to real geometries of a posterior crown (n = 45). The crowns' ceramic framework was sandblasted and veneered by hand. The all-ceramic crowns were tested in a dynamic loading test and Wöhler curves were evaluated. Four-point bending samples blasted at an angle of 90° at 6 bar and a working distance of 1.5 cm without plasma treatment achieved the highest energy release rate. Samples blasted at an angle of 90° at 2 bar and a working distance of 1 cm with plasma treatment achieved the lowest energy release rate. Overall, plasma treatment did not improve bond strength. In the dynamic loading test, the group blasted with 2 bar showed the best results.
Collapse
Affiliation(s)
- Christin Worpenberg
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Michael Eisenburger
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Bernd Breidenstein
- Institute of Production Engineering and Machine Tools, Leibniz University Hannover, An der Universität 2, 30823, Garbsen, Germany
| | - Sarah Busemann
- Institute of Production Engineering and Machine Tools, Leibniz University Hannover, An der Universität 2, 30823, Garbsen, Germany
| | - Andreas Greuling
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| |
Collapse
|
10
|
Etibarlı N, Üstün Ö, Akan T. Effect of nonthermal argon plasma treatment on the surface properties and phase transformation of zirconia. J Oral Sci 2023; 65:136-140. [PMID: 36990759 DOI: 10.2334/josnusd.22-0420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
PURPOSE This study aims to evaluate the effect of applying different parameters of nonthermal argon plasma (NTAP) on the surface roughness and phase transformation of yttrium-stabilized tetragonal zirconia polycrystalline (Y-TZP) ceramics. METHODS A total of 60 zirconia samples were prepared and randomly divided into six groups according to their surface treatments (n = 10). Group 1: control group; Group 2: argon plasma with a flow rate of 5 lt/min for 4 min; Group 3: 8 lt/min for 4 min; Group 4: 8 lt/min for 2 min; Group 5: 5 l/min for 2 min; Group 6: air abrasion with Al2O3 particle. The surface roughness was measured with a profilometer, and surface topography was observed using scanning electron microscopy (SEM). X-ray diffraction (XRD) analysis was performed to investigate the phase transformation. RESULTS The air abrasion group showed the highest surface roughness. The lowest relative monoclinic phase amount (Xm) was observed in the control group (0.4%), and the highest Xm value was observed in group 6 (7.8%). CONCLUSION While the air abrasion group showed the highest average surface roughness, it also caused the highest phase transformation. With a flow rate of 8 lt/min for 2 min NTAP treatment increased the surface roughness without causing significant phase transformation.
Collapse
Affiliation(s)
| | - Özlem Üstün
- Department of Prosthodontics, Faculty of Dentistry, Akdeniz University
| | - Tamer Akan
- Department of Physics, Faculty of Science and Letters, Osmangazi University
| |
Collapse
|
11
|
Innovation Glass-Ceramic Spray Deposition Technology Improving the Adhesive Performance for Zirconium-Based Dental Restorations. Int J Mol Sci 2022; 23:ijms232112783. [PMID: 36361575 PMCID: PMC9657378 DOI: 10.3390/ijms232112783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 12/04/2022] Open
Abstract
Glass-ceramic spray deposition (GCSD) is a novel technique for coating lithium disilicate (LD) glass-ceramics onto zirconia through simple tempering steps. GCSD has been proven to improve the bonding of zirconia to resin cement, but the effect of etching time on GCSD and the long-term durability of the bond achieved remain unknown. The effects of air abrasion with aluminum particles (ABB) and air abrasion (GAB) or etching with 5.0% hydrogen fluoride (HF) for 20, 60, 90, and 120 s (G20, G60, G90, and G120) on the resin cement−zirconia bond were studied. LD was included as a control (LDG). The microstructure, sub-micron roughness, wettability, and phase changes of samples were analyzed. After resin cement was bonded to zirconia, half of the samples were subjected to thermocycling (5000 cycles at 5−55 °C). The bond strengths of the samples were determined in shear bond strength (SBS) tests (n = 10 per group). An LD structure can be formed on zirconia after GCSD and proper etching processes, which result in high roughness and a hydrophilic nature. GCSD and HF etching significantly improved SBS, with G90 and G120 samples with pre- or post-thermocycling exhibiting SBS values comparable to those of LDG (p > 0.760). The surface characteristics of the LD layer are influenced by the etching time and affect the SBS of the bond of zirconia to resin cement. HF etching for 90−120 s after GCSD results in zirconia with SBS and bond durability comparable to LD.
Collapse
|
12
|
Kang LL, Chuang SF, Li CL, Lin JC, Lai TW, Wang CC. Enhancing Resin Cement Adhesion to Zirconia by Oxygen Plasma-Aided Silicatization. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15165568. [PMID: 36013706 PMCID: PMC9412317 DOI: 10.3390/ma15165568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 06/06/2023]
Abstract
The combinations of alumina particle air abrasion (AA) and a 10-methacryloyloxyidecyl-dihyidrogenphosphate (MDP) primer and a tribochemical silica coating (TSC) and a silane-base primer are contemporary pre-cementation treatments for zirconia restorations for bonding with resin cements. However, the stability of zirconia resists the mechanical or chemical preparations. The purpose of this study was to develop an atmospheric-pressure oxygen plasma (OP)-aided silicatization method to enhance the adhesion of resin cements to zirconia. Zirconia discs were prepared to receive surface treatments of different combinations: (1) AA or TSC (2) with or without OP treatment, and (3) a chemical primer (no primer, silane, or a silane-MDP mixture). The surface morphology, hydrophilicity, and chemical compositions were characterized, and the resin-zirconia bond strengths were examined either after 24 h or a thermocycling test. The results indicated that the OP treatment after the TSC facilitated the homogeneous distribution of silane and crosslinking of silica particles, and effectively improved the hydrophilicity. The OP increased the O and Si and reduced the C elemental contents, while the combination of TSC, OP, and silane induced SiOx generation. Among the groups, only the TSC-OP-silane treatment effectively enhanced the bond strength and maintained the adhesion after thermocycling. With these results, the OP aided the silicatization protocol effectively, generated silane crosslinking, and resulted in superior resin-zirconia bond strength and durability compared to the current treatments.
Collapse
Affiliation(s)
- Li-Li Kang
- Institute of Manufacturing Information and Systems, National Cheng Kung University, No. 1 Universal Road, Tainan 70101, Taiwan
- School of Dentistry, Institute of Oral Medicine, National Cheng Kung University, No. 1 Universal Road, Tainan 70101, Taiwan
| | - Shu-Fen Chuang
- School of Dentistry, Institute of Oral Medicine, National Cheng Kung University, No. 1 Universal Road, Tainan 70101, Taiwan
- Department of Stomatology, National Cheng Kung University Hospital, 138 ShengLi Road, Tainan 70403, Taiwan
| | - Chia-Ling Li
- School of Dentistry, Institute of Oral Medicine, National Cheng Kung University, No. 1 Universal Road, Tainan 70101, Taiwan
| | - Jui-Che Lin
- Department of Chemical Engineering, National Cheng Kung University, No. 1 Universal Road, Tainan 70101, Taiwan
| | - Ting-Wen Lai
- School of Dentistry, Institute of Oral Medicine, National Cheng Kung University, No. 1 Universal Road, Tainan 70101, Taiwan
- Department of Stomatology, National Cheng Kung University Hospital, 138 ShengLi Road, Tainan 70403, Taiwan
| | - Ching-Cheng Wang
- Institute of Manufacturing Information and Systems, National Cheng Kung University, No. 1 Universal Road, Tainan 70101, Taiwan
| |
Collapse
|
13
|
Zhou W, Wang X, Huang X. Cold atmospheric pressure plasmas applications in dentistry. PLASMA PROCESSES AND POLYMERS 2022; 19. [DOI: 10.1002/ppap.202200024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/13/2022] [Indexed: 01/05/2025]
Abstract
AbstractCold atmospheric pressure plasmas (CAP) is widely used for various therapeutic applications in health care. With the enormous progress in the understanding of plasma physics and development of plasma devices, the application of CAP is greatly promoted in dentistry. The reactive chemical species and electromagnetic radiation generated by CAP can activate and control various biochemical procedures. Therefore, CAP showed promising usage in surface modification of dental materials, biofilm removal, disinfection, endodontic therapy, periodontitis treatment, wound healing, and head and neck cancer control. Therefore, the objective of the present review is to present recently published studies on CAP in dentistry.
Collapse
Affiliation(s)
- Wen Zhou
- Postdoctoral Workstation, School and Hospital of Stomatology Fujian Medical University Fuzhou China
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology Fujian Medical University Fuzhou China
| | - Xiuqing Wang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology Fujian Medical University Fuzhou China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology Fujian Medical University Fuzhou China
| |
Collapse
|
14
|
Effect of Helium Plasma Exposure on Wettability and Shear Bond Strength between the Zirconia Core and Feldspathic Veneering Ceramic: An In Vitro Study. Int J Dent 2022; 2022:6831864. [PMID: 35783687 PMCID: PMC9249525 DOI: 10.1155/2022/6831864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/20/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction. The present study aimed to evaluate the effect of helium plasma treatment on the wettability of zirconia surface and on the shear bond strength between the dental zirconia core and feldspathic veneering ceramic. Methods. 128 zirconia specimens were prepared, polished, and then divided into four groups: control, Zr, FC, and Zr/FC. In Zr and Zr/FC groups, the zirconia blocks were treated by helium plasma for 60 s. In FC and Zr/FC, the feldspathic ceramic powder received 60 s of plasma treatment. Then, the feldspathic powder was applied on the zirconia blocks. Half of the specimens in each group were sintered in a tube furnace, and the contact angle between the zirconia core and feldspathic ceramic was measured at different time intervals. The other half were sintered in a ceramic furnace and then subjected to thermocycling. The shear bond strength was measured using a universal testing machine. The failure mode was assessed using a stereomicroscope. Data were analyzed by one-way ANOVA test, and the statistical significance was considered less than 0.05. Results. There was no significant difference in the mean contact angle and the shear bond strength values of the experimental groups (
). The mean contact angle decreased significantly in all groups over time (
). The modes of failure were predominantly mixed in all groups. Conclusion. The helium plasma applied on either dental zirconia core or feldspathic ceramic powder could not improve the zirconia surface wettability and the shear bond strength between the two ceramics.
Collapse
|
15
|
Effectiveness of different cleaning measures on the bonding of resin cement to saliva-contaminated or blood-contaminated zirconia. J Dent 2022; 120:104084. [DOI: 10.1016/j.jdent.2022.104084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 11/19/2022] Open
|
16
|
Yoda N, Abe Y, Suenaga Y, Matsudate Y, Hoshino T, Sugano T, Nakamura K, Okino A, Sasaki K. Resin Cement-Zirconia Bond Strengthening by Exposure to Low-Temperature Atmospheric Pressure Multi-Gas Plasma. MATERIALS 2022; 15:ma15020631. [PMID: 35057349 PMCID: PMC8778450 DOI: 10.3390/ma15020631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/10/2022]
Abstract
The purpose of this study was to investigate the effect of gas species used for low-temperature atmospheric pressure plasma surface treatment, using various gas species and different treatment times, on zirconia surface state and the bond strength between zirconia and dental resin cement. Three groups of zirconia specimens with different surface treatments were prepared as follows: untreated group, alumina sandblasting treatment group, and plasma treatment group. Nitrogen (N2), carbon dioxide (CO2), oxygen (O2), argon (Ar), and air were employed for plasma irradiation. The bond strength between each zirconia specimen and resin cement was compared using a tension test. The effect of the gas species for plasma irradiation on the zirconia surface was investigated using a contact angle meter, an optical interferometer, an X-ray diffractometer, and X-ray photoelectric spectroscopy. Plasma irradiation increased the wettability and decreased the carbon contamination on the zirconia surface, whereas it did not affect the surface topography and crystalline phase. The bond strength varied depending on the gas species and irradiation time. Plasma treatment with N2 gas significantly increased bond strength compared to the untreated group and showed a high bond strength equivalent to that of the sandblasting treatment group. The removal of carbon contamination from the zirconia surface and an increase in the percentage of Zr-O2 on the zirconia surface by plasma irradiation might increase bond strength.
Collapse
Affiliation(s)
- Nobuhiro Yoda
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (Y.M.); (T.S.); (K.S.)
- Correspondence: ; Tel.: +81-22-717-8369
| | - Yuri Abe
- FIRST, Tokyo Institute of Technology, Yokohama 226-8502, Japan; (Y.A.); (Y.S.); (A.O.)
| | - Yuma Suenaga
- FIRST, Tokyo Institute of Technology, Yokohama 226-8502, Japan; (Y.A.); (Y.S.); (A.O.)
| | - Yoshiki Matsudate
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (Y.M.); (T.S.); (K.S.)
| | - Tomohiro Hoshino
- Joint Research Department of Next-Generation Dental Material Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan;
| | - Takehiko Sugano
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (Y.M.); (T.S.); (K.S.)
| | - Keisuke Nakamura
- Department of Advanced Free Radical Science, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan;
| | - Akitoshi Okino
- FIRST, Tokyo Institute of Technology, Yokohama 226-8502, Japan; (Y.A.); (Y.S.); (A.O.)
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (Y.M.); (T.S.); (K.S.)
- Joint Research Department of Next-Generation Dental Material Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan;
| |
Collapse
|
17
|
YE XY, LIU MY, LI J, LIU XQ, LIAO Y, ZHAN LL, ZHU XM, LI HP, TAN J. Effects of cold atmospheric plasma treatment on resin bonding to high-translucency zirconia ceramics. Dent Mater J 2022; 41:896-904. [DOI: 10.4012/dmj.2022-068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Xin-Yi YE
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology
| | - Ming-Yue LIU
- First Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology
| | - Jing LI
- Department of Engineering Physics, Tsinghua University
| | - Xiao-Qiang LIU
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology
| | - Yu LIAO
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology
| | - Ling-Lu ZHAN
- Department of Prosthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration
| | - Xiao-Ming ZHU
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology
| | - He-Ping LI
- Department of Engineering Physics, Tsinghua University
| | - Jianguo TAN
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology
| |
Collapse
|
18
|
Shelar P, Abdolvand H, Butler S. On the behaviour of zirconia-based dental materials: A review. J Mech Behav Biomed Mater 2021; 124:104861. [PMID: 34600431 DOI: 10.1016/j.jmbbm.2021.104861] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/28/2022]
Abstract
Zirconia-based dental materials are extensively used in clinical practice due to their tooth-like appearance, biofunctionality, biocompatibility, and affordability. However, premature clinical failures of veneering porcelains raise a concern about their integrity. Extensive studies have been performed over a decade to resolve this issue, but it is challenging to reference all information effectively. A single source identifying the significance of potential parameters on material performance has not previously been available. An evidence-based meta-narrative review technique was used to review the characteristic parameters that can affect the overall behaviour of zirconia-based materials. Keywords were chosen to assess manuscripts based on scientific coherence with this paper's research objective. Online keyword searches were carried out on ScienceDirect, PubMed, and SAGE databases for relevant published manuscripts from year 1985-2020.261 out of 3170 identified manuscripts were included. A total of 10 parameters were identified and classified into the material, manufacturing, and geometric aspects. The effect of every parameter was reviewed on the performance of the material. A discrepancy in findings was observed and is attributed to the fact that there is no standard methodology. This review acts as a single source that summarizes various parameters' contribution to zirconia-based dental materials' performance. This review facilitates manufacturing improvements by accounting for every parameter's effect on overall performance.
Collapse
Affiliation(s)
- Prashant Shelar
- Department of Mechanical & Materials Engineering, Western University, London, Ontario, Canada
| | - Hamidreza Abdolvand
- Department of Mechanical & Materials Engineering, Western University, London, Ontario, Canada
| | - Sheila Butler
- Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.
| |
Collapse
|
19
|
Hodásová Ľ, Quintana R, Czuba U, Del Valle LJ, Fargas G, Alemán C, Armelin E. Atmospheric pressure plasma liquid assisted deposition of polydopamine/acrylate copolymer on zirconia (Y-TZP) ceramics: a biocompatible and adherent nanofilm. RSC Adv 2021; 11:17360-17368. [PMID: 35479696 PMCID: PMC9033174 DOI: 10.1039/d1ra02054d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/06/2021] [Indexed: 11/28/2022] Open
Abstract
Polydopamine-ethylene glycol dimethacrylate copolymer is a biocompatible coating with cell adhesion promotion and antibiofilm properties. This copolymer has been successfully applied on metallic implants, such as stainless steel and titanium implants, using several deposition techniques (e.g. layer-by-layer, silane activation, chemical vapor deposition, or liquid-assisted plasma polymerization). However, its application in zirconia ceramic materials, which are widely used in dentistry and medicine, has never been described. In this work, polydopamine-ethylene glycol dimethacrylate copolymer has been deposited on ultra-smooth surfaces of yttria-stabilized zirconia discs (average roughness = 2.08 ± 0.08 nm) by using liquid-assisted atmospheric-pressure plasma-induced polymerization (LA-APPiP). After the polymerization, the nanometric coating (250 nm, measured by ellipsometry) had an average roughness of 79.85 ± 13.71 nm and water contact angle of 57.8 ± 2.2 degrees, consistent with the highly hydrophilic nature of the biocompatible copolymer, if compared to the pristine zirconia (72.7 ± 2.0 degrees). The successful covalent bonding of the copolymer with the zirconia surface, thanks to the previous activation of the substrate with oxygen plasma, was proved by X-ray photoelectron spectroscopy (XPS). The polymer composition has been investigated by XPS and Raman spectroscopies. The LA-APPiP technique has been proved to be an excellent method to produce homogenous films without the need to employ solvents and further purification steps. The new copolymer film allows the uniform growth of human osteoblast-like MG-63 cells, after 7 days of cell culture, as observed by fluorescence microscopy.
Collapse
Affiliation(s)
- Ľudmila Hodásová
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Campus Diagonal Besòs (EEBE) C/ Eduard Maristany, 10-14, Building I, 2nd Floor Barcelona 08019 Spain
- Departament de Ciència i Enginyeria de Materials, Universitat Politècnica de Catalunya, Campus Diagonal Besòs - EEBE C/ Eduard Maristany, 10-14, Building I, 1st Floor Barcelona 08019 Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal Besòs (EEBE) C/ Eduard Maristany, 10-14, Building I, Basement Floor Barcelona 08019 Spain
| | - Robert Quintana
- Luxembourg Institute of Science and Technology (LIST), Materials Research and Technology Department L-4422 Belvaux Luxembourg
| | - Urszula Czuba
- Luxembourg Institute of Science and Technology (LIST), Materials Research and Technology Department L-4422 Belvaux Luxembourg
| | - Luis J Del Valle
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Campus Diagonal Besòs (EEBE) C/ Eduard Maristany, 10-14, Building I, 2nd Floor Barcelona 08019 Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal Besòs (EEBE) C/ Eduard Maristany, 10-14, Building I, Basement Floor Barcelona 08019 Spain
| | - Gemma Fargas
- Departament de Ciència i Enginyeria de Materials, Universitat Politècnica de Catalunya, Campus Diagonal Besòs - EEBE C/ Eduard Maristany, 10-14, Building I, 1st Floor Barcelona 08019 Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal Besòs (EEBE) C/ Eduard Maristany, 10-14, Building I, Basement Floor Barcelona 08019 Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Campus Diagonal Besòs (EEBE) C/ Eduard Maristany, 10-14, Building I, 2nd Floor Barcelona 08019 Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal Besòs (EEBE) C/ Eduard Maristany, 10-14, Building I, Basement Floor Barcelona 08019 Spain
| | - Elaine Armelin
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Campus Diagonal Besòs (EEBE) C/ Eduard Maristany, 10-14, Building I, 2nd Floor Barcelona 08019 Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal Besòs (EEBE) C/ Eduard Maristany, 10-14, Building I, Basement Floor Barcelona 08019 Spain
| |
Collapse
|
20
|
Influence of Non-Thermal Atmospheric Pressure Plasma Treatment on Retentive Strength between Zirconia Crown and Titanium Implant Abutment. MATERIALS 2021; 14:ma14092352. [PMID: 34062734 PMCID: PMC8125100 DOI: 10.3390/ma14092352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/02/2022]
Abstract
The aim of this study is to investigate the effect of non-thermal atmospheric pressure plasma (NTP) on retentive strength (RS) between the zirconia crown and the titanium implant abutment using self-adhesive resin cement. Surface free energy (SFE) was calculated on 24 cube-shaped zirconia blocks, and RS was measured on 120 zirconia crown-titanium abutment assemblies bonded with G-CEM LinkAce. The groups were categorized according to the zirconia surface treatment as follows: Control (no surface treatment), NTP, Si (Silane), NTP + Si, Pr (Z-Prime Plus), and NTP + Pr. Half of the RS test assemblies were aged by thermocycling for 5000 cycles at 5–55 °C. The SFE was calculated using the Owens-Wendt method, and the RS was measured using a universal testing machine at the maximum load until failure. One-way analysis of variance (ANOVA) with post-hoc Tukey honestly significant difference (HSD) was performed to evaluate the effect of surface treatments on the SFE and RS. Independent sample t-test was used to compare the RS according to thermocycling (p < 0.05). For the SFE analysis, the NTP group had a significantly higher SFE value than the Control group (p < 0.05). For the RS test, in non-thermocycling, the NTP group showed a significantly higher RS value than the Control group (p < 0.05). However, in thermocycling, there was no significant difference between the Control and NTP groups (p > 0.05). In non-thermocycling, comparing with the NTP + Si or NTP + Pr group, there was no significant difference from the Si or Pr group, respectively (p > 0.05). Conversely, in thermocycling, the NTP + Si and NTP + Pr group had significantly lower RS than the Si and Pr group, respectively (p < 0.05). These results suggest that NTP single treatment for the zirconia crown increases the initial RS but has little effect on the long-term RS. Applied with Silane or Z-Prime Plus, NTP pre-treatment has no positive effect on the RS.
Collapse
|
21
|
Effect of cementation delay on bonding of self-adhesive resin cement to yttria-stabilized tetragonal zirconia polycrystal ceramic treated with nonthermal argon plasma. J Prosthet Dent 2021; 125:693.e1-693.e7. [PMID: 33431178 DOI: 10.1016/j.prosdent.2020.11.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
STATEMENT OF PROBLEM Nonthermal argon plasma (NTAP) has been reported to improve the bond strength of resin cements to yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramics. However, the effect of the inevitable delay before cementation and after treating Y-TZP ceramics with NTAP is unclear. PURPOSE The purpose of this in vitro study was to investigate whether delays of 8, 12, and 24 hours between the Y-TZP ceramic treatment with NTAP and the cementation would affect the surface energy and the bond strength of a self-adhesive resin cement to Y-TZP ceramic. MATERIAL AND METHODS Sixty plates and 50 blocks of 3Y-TZP ceramic were divided into 2 groups (n=30 and n=25): as-sintered (AS) and airborne-particle abraded with 50-μm Al2O3 (APA). These groups were further divided into 5 subgroups (n=6 and n=5) according to the delay between the NTAP treatment and the measurement of surface energy and microtensile bond strength (μTBS) evaluation: (0, 8, 12, and 24 hours). For both 3Y-TZP surface conditions (AS and APA), a control group without NTAP treatment was used (ASC and APAC). The surface energy (SE) was evaluated with a goniometer and the 3Y-TZP elemental composition with X-ray photoelectron spectroscopy (XPS). For the μTBS test, the 3Y-TZP ceramic blocks were cemented to composite resin blocks with a self-adhesive resin cement. After storage in distilled water at 37 °C for 24 hours, the 3Y-TZP-composite resin blocks were sectioned into beams and submitted to a μTBS test. Data were submitted to 2-way ANOVA and the Tukey HSD test (α=.05). RESULTS For the AS group, NTAP increased the SE irrespective of the delay before measurement: ASC<0 hour=8 hours=12 hours=24 hours (P<.05). For the APA group, except after 12 hours, NTAP also increased the surface energy (P<.05). XPS analysis showed an increase in the oxygen/carbon ratio after NTAP treatment for both groups. For the AS group, NTAP increased the μTBS after 0, 8, and 12 hours (P<.05), whereas for the APA group this occurred only after 8 hours (P<.05). For the AS and APA groups, the highest μTBS was reached after 8 hours (P<.05). CONCLUSIONS Treatment of 3Y-TZP ceramic with NTAP improved the SE and increased the μTBS of self-adhesive resin cement to 3Y-TZP ceramic. These effects were time dependent, with better results at 8 hours after NTAP treatment.
Collapse
|
22
|
Influence of Low-Pressure Plasma on the Surface Properties of CAD-CAM Leucite-Reinforced Feldspar and Resin Matrix Ceramics. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10248856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The introduction of new ceramic materials for dental restorations is currently a reality; however, little information is available on their surface treatment for the bonding process. Furthermore, surface treatment with plasma on ceramic materials has been recently introduced, although not many studies are available. The aim of this study was to evaluate the surface properties of a leucite-reinforced feldspar ceramic (LIC) and resin matrix ceramic (RMC) after low-pressure plasma treatment. From each material, 48 discs were prepared and subject to surface treatment. The LIC group was treated by hydrofluoric acid (HF) (LIC-HF), plasma with oxygen (LIC-O2), and plasma with argon (LIC-Ar). The RMC group was treated by sandblasting with alumina (RMC-SB), plasma with oxygen (RMC-O2), and plasma with argon (RMC-Ar). The groups whose surfaces were not subjected to treatment were considered as the control group. Surface wettability and roughness was analyzed. The results showed significant differences among the treatments for both ceramics regarding wettability and roughness. Plasma treatments increased the wettability and had a very low effect on the roughness. Plasma treatments achieved similar values for both surface properties in each ceramic group with no differences between both treatments. Plasma treatment seems to be a promising alternative for ceramic surface treatments since it increased the surface energy of the ceramics analyzed and hardly affects the roughness. Further studies are necessary to evaluate the effect of plasma treatment on the bond strength of ceramics.
Collapse
|
23
|
Hirano M, Yamane M, Ohtsu N. Effects of discharge mode and gas composition for plasma‐hydrophilized titanium surface on hydrophilic sustainability. SURF INTERFACE ANAL 2020. [DOI: 10.1002/sia.6880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mitsuhiro Hirano
- School of Earth, Energy and Environmental Engineering Kitami Institute of Technology Kitami Japan
| | - Misao Yamane
- School of Earth, Energy and Environmental Engineering Kitami Institute of Technology Kitami Japan
| | - Naofumi Ohtsu
- School of Earth, Energy and Environmental Engineering Kitami Institute of Technology Kitami Japan
| |
Collapse
|
24
|
Effect of Non-Thermal Atmospheric Pressure Plasma (NTP) and Zirconia Primer Treatment on Shear Bond Strength between Y-TZP and Resin Cement. MATERIALS 2020; 13:ma13183934. [PMID: 32899546 PMCID: PMC7559763 DOI: 10.3390/ma13183934] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to investigate the effect of non-thermal atmospheric pressure plasma (NTP) treatment on the sandblasting of mechanical method and zirconia primer of chemical method used to increase the bond strength between zirconia and resin cement. In this study, Y-TZP was divided into 4 groups according to the surface treatment methods as follows: Zirconia primer (Pr), NTP + Zirconia primer (NTP + Pr), Sandblasting + Zirconia primer (Sb + Pr), Sandblasting + NTP + Zirconia primer (Sb + NTP + Pr). Then, two types of resin cement (G-CEM LinkAce and Rely X-U200) were used to measure the shear bond strength (SBS) and they were divided into non-thermal cycling group and thermal cycling group for aging effect. Statistical analyses were performed using the Kruskal-Wallis test and Mann-Whitney U test. The result of the surface energy (SE), there was no significant difference among the groups (p > 0.05). As a result of the SBS test, the Sb + Pr group had a significantly higher SBS value than the other groups regardless of the resin cement type (p < 0.05), and the decrease rate after thermal cycling treatment was the lowest. On the other hand, the NTP + Pr group showed significantly lower SBS values than the other groups except for the case of using Rely X-U200 (p < 0.05), and the reduction rate after thermal cycling was the highest. The Sb + NTP + Pr group did not differ significantly from the Pr group (p > 0.05). Within the limitations of two successive studies, treatment with NTP after sandblasting used for mechanical bond strength showed a positive effect on initial SBS. However, when NTP was treated before the zirconia primer used for the chemical bond strength, it showed a negative effect on SBS compared to other treatment methods, which was noticeable after the thermal cycling treatment.
Collapse
|
25
|
Komagata Y, Ikeda H, Fujio Y, Nagamatsu Y, Shimizu H. Surface modification of feldspar porcelain by corona discharge and its effect on bonding to resin cement with silane coupling agent. J Mech Behav Biomed Mater 2020; 105:103708. [DOI: 10.1016/j.jmbbm.2020.103708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/24/2022]
|
26
|
Chen Z, Hu S, Duan X, Dan M, Song X, Long W, Feng J. Study of ion bombardment of SiC ceramics: Surface and interfacial reaction modification. Ann Ital Chir 2020. [DOI: 10.1016/j.jeurceramsoc.2019.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Kim DS, Ahn JJ, Bae EB, Kim GC, Jeong CM, Huh JB, Lee SH. Influence of Non-Thermal Atmospheric Pressure Plasma Treatment on Shear Bond Strength between Y-TZP and Self-Adhesive Resin Cement. MATERIALS 2019; 12:ma12203321. [PMID: 31614730 PMCID: PMC6829206 DOI: 10.3390/ma12203321] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/28/2019] [Accepted: 10/11/2019] [Indexed: 01/08/2023]
Abstract
The purpose of this study was to evaluate the effect of non-thermal atmospheric pressure plasma (NTP) on shear bond strength (SBS) between yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) and self-adhesive resin cement. For this study, surface energy (SE) was calculated with cube-shaped Y-TZP specimens, and SBS was measured on disc-shaped Y-TZP specimens bonded with G-CEM LinkAce or RelyX U200 resin cylinder. The Y-TZP specimens were classified into four groups according to the surface treatment as follows: Control (no surface treatment), NTP, Sb (Sandblasting), and Sb + NTP. The results showed that the SE was significantly higher in the NTP group than in the Control group (p < 0.05). For the SBS test, in non-thermocycling, the NTP group of both self-adhesive resin cements showed significantly higher SBS than the Control group (p < 0.05). However, regardless of the cement type in thermocycling, there was no significant increase in the SBS between the Control and NTP groups. Comparing the two cements, regardless of thermocycling, the NTP group of G-CEM LinkAce showed significantly higher SBS than that of RelyX U200 (p < 0.05). Our study suggests that NTP increases the SE. Furthermore, NTP increases the initial SBS, which is higher when using G-CEM LinkAce than when using RelyX U200.
Collapse
Affiliation(s)
- Dae-Sung Kim
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Jong-Ju Ahn
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Eun-Bin Bae
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Gyoo-Cheon Kim
- Department of Oral Anatomy and Cell Biology, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
- Research & Development Center, FEAGLE Corporation, Yangsan 50614, Korea.
| | - Chang-Mo Jeong
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Jung-Bo Huh
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - So-Hyoun Lee
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| |
Collapse
|