1
|
Ersöz B, Aydin N, Oktay EA, Çal İK, Karaoğlanoğlu S. Effects of universal adhesives on dentin matrix proteins, matrix metalloproteinases and cytokine release of human pulp cells. Odontology 2025:10.1007/s10266-025-01107-3. [PMID: 40249477 DOI: 10.1007/s10266-025-01107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/02/2025] [Indexed: 04/19/2025]
Abstract
The potential toxicity of universal adhesives, which contain various monomers, solvents and fillers is a significant research topic. This study aims to investigate the toxicity and effects of universal adhesives on dentin matrix proteins (DMP-1), matrix metalloproteinases (MMP-2, MMP-8), tissue inhibitors of metalloproteinase-1 (TIMP-1), and cytokines [tumor necrosis factor-alpha (TNF-α) and interleukin-1 (IL-1)] in pulp cell lines. Six universal adhesives [Gluma Bond Universal (GBU), Prime&Bond Universal (PBU), Clearfil S3 Universal Bond (CS3UB), OptiBond Universal (OBU), G-2 Bond Universal (G2BU) and Bond Force II (BFII)] were assessed using MTT and ELISA cytotoxicity tests. The data obtained from MTT and ELISA tests were analyzed using two-way analysis of variance (ANOVA). The 1:1 extracts of BFII and GBU showed higher cell viability at 24 and 48 h compared to PBU, CS3B, OBU, and G2B adhesives (p < 0.001), and furthermore, the 1:1 extracts of GBU showed statistically the highest cell viability at 72 h (p < 0.001). The universal adhesives tested showed a significant decrease in TIMP-1 in pulp cells (p < 0.05), while TNF-α, IL-1, DMP-1, MMP-2 and MMP-8 levels did not change significantly. The tested adhesives exhibited varying degrees of cytotoxic effects depending on time and dose. The results indicate that the composition of these adhesives plays a crucial role in their cytotoxicity and impact on pulp cell viability. The amount and duration of adhesive application should be carefully regulated to maintain biocompatibility and ensure safe usage.
Collapse
Affiliation(s)
- Bilge Ersöz
- Gulhane Faculty of Dentistry, Department of Restorative Dental Treatment, University of Health Sciences, 06018, Ankara, Turkey
| | - Numan Aydin
- Gulhane Faculty of Dentistry, Department of Restorative Dental Treatment, University of Health Sciences, 06018, Ankara, Turkey
| | - Elif Aybala Oktay
- Gulhane Faculty of Dentistry, Department of Restorative Dental Treatment, University of Health Sciences, 06018, Ankara, Turkey
| | - İrem Kübra Çal
- Gulhane Faculty of Dentistry, Department of Restorative Dental Treatment, University of Health Sciences, 06018, Ankara, Turkey
| | - Serpil Karaoğlanoğlu
- Gulhane Faculty of Dentistry, Department of Restorative Dental Treatment, University of Health Sciences, 06018, Ankara, Turkey.
| |
Collapse
|
2
|
Fu X, Kim HS. Dentin Mechanobiology: Bridging the Gap between Architecture and Function. Int J Mol Sci 2024; 25:5642. [PMID: 38891829 PMCID: PMC11171917 DOI: 10.3390/ijms25115642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
It is remarkable how teeth maintain their healthy condition under exceptionally high levels of mechanical loading. This suggests the presence of inherent mechanical adaptation mechanisms within their structure to counter constant stress. Dentin, situated between enamel and pulp, plays a crucial role in mechanically supporting tooth function. Its intermediate stiffness and viscoelastic properties, attributed to its mineralized, nanofibrous extracellular matrix, provide flexibility, strength, and rigidity, enabling it to withstand mechanical loading without fracturing. Moreover, dentin's unique architectural features, such as odontoblast processes within dentinal tubules and spatial compartmentalization between odontoblasts in dentin and sensory neurons in pulp, contribute to a distinctive sensory perception of external stimuli while acting as a defensive barrier for the dentin-pulp complex. Since dentin's architecture governs its functions in nociception and repair in response to mechanical stimuli, understanding dentin mechanobiology is crucial for developing treatments for pain management in dentin-associated diseases and dentin-pulp regeneration. This review discusses how dentin's physical features regulate mechano-sensing, focusing on mechano-sensitive ion channels. Additionally, we explore advanced in vitro platforms that mimic dentin's physical features, providing deeper insights into fundamental mechanobiological phenomena and laying the groundwork for effective mechano-therapeutic strategies for dentinal diseases.
Collapse
Affiliation(s)
- Xiangting Fu
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea;
- Mechanobiology Dental Medicine Research Center, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Hye Sung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea;
- Mechanobiology Dental Medicine Research Center, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
3
|
Li M, Qiu Y, Wang Y, Zhang S, Duan L, Zhao W, Shi Y, Zhang Z, Tay FR, Fu B. A glycol chitosan derivative with extrafibrillar demineralization potential for self-etch dentin bonding. Dent Mater 2024; 40:327-339. [PMID: 38065798 DOI: 10.1016/j.dental.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 02/12/2024]
Abstract
OBJECTIVES Extrafibrillar demineralization is an etching technique that removes only minerals from around the collagen fibrils for resin infiltration. The intrafibrillar minerals are left intact to avoid their replacement by water that is hard for adhesive resin monomers to displace. The present work reported the synthesis of a water-soluble methacryloyloxy glycol chitosan-EDTA conjugate (GCE-MA) and evaluated its potential as an extrafibrillar demineralization agent for self-etch dentin bonding. METHODS Glycol chitosan-EDTA was functionalized with a methacryloyloxy functionality. Conjugation was confirmed using Fourier transform-infrared spectroscopy. The GCE-MA was used to prepare experimental self-etch primers. Extrafibrillar demineralization of the primers was evaluated with scaning electron microscopy and transmission electron microscopy. The feasibility of this new self-etch bonding approach was evaluated using microtensile bond strength testing and inhibition of dentin gelatinolytic activity. The antibacterial activity and cytotoxicity of GCE-MA were also analyzed. RESULTS Conjugation of EDTA and the methacryloyloxy functionality to glycol chitosan was successful. The functionalized conjugate was capable of extrafibrillar demineralization of mineralized collagen fibrils. Tensile bond strength of the experimental self-etch primer to dentin was comparable to that of phosphoric acid-etched dentin and the commercial self-etch primer Clearfil SE Bond 2. The GCE-MA also inhibited soluble rhMMP-9. In-situ zymography detected minimal fluorescence in hybrid layers conditioned with the experimental primer. The GCE-MA was noncytotoxic and possessed antibacterial activities against planktonic bacteria. SIGNIFICANCE Synthesis of GCE-MA brought into fruition a self-etch conditioner that selectively demineralizes the extrafibrillar mineral component of dentin. A self-etch primer prepared with GCE-MA achieved bond strengths comparable to commercial reference adhesive systems.
Collapse
Affiliation(s)
- Mingxing Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yuan Qiu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yinlin Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Sisi Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Lian Duan
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Weijia Zhao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Ying Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Zhengyi Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Wiertelak-Makała K, Szymczak-Pajor I, Bociong K, Śliwińska A. Considerations about Cytotoxicity of Resin-Based Composite Dental Materials: A Systematic Review. Int J Mol Sci 2023; 25:152. [PMID: 38203323 PMCID: PMC10778595 DOI: 10.3390/ijms25010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The dental material industry is rapidly developing resin-based composites (RBCs), which find widespread use in a variety of clinical settings. As such, their biocompatibility has gained increasing interest. This literature review presents a summary of research into the cytotoxicity of methacrylate-based composites published from 2017 to 2023. Subject to analysis were 14 in vitro studies on human and murine cell lines. Cytotoxicity in the included studies was measured via MTT assay, LDH assay, and WST-1 assay. The QUIN Risk of Bias Tool was performed to validate the included studies. Included studies (based entirely on the results of in vitro studies) provide evidence of dose- and time-dependent cytotoxicity of dental resin-based composites. Oxidative stress and the depletion of cellular glutathione (GSH) were suggested as reasons for cytotoxicity. Induction of apoptosis by RBCs was indicated. While composites remain the golden standard of dental restorative materials, their potential cytotoxicity cannot be ignored due to direct long-term exposure. Further in vitro investigations and clinical trials are required to understand the molecular mechanism of cytotoxicity and produce novel materials with improved safety profiles.
Collapse
Affiliation(s)
- Kacper Wiertelak-Makała
- Student Scientific Society of Civilization Diseases, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | - Izabela Szymczak-Pajor
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | - Kinga Bociong
- Department of General Dentistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| |
Collapse
|
5
|
Isil T, Ozlem K, Defne BH, Eray GM, Abdurrahim K. Toxicity evaluation of indocyanine green mediated photodynamic therapy. Photodiagnosis Photodyn Ther 2023; 44:103754. [PMID: 37595656 DOI: 10.1016/j.pdpdt.2023.103754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND The aim of the study is to determine the cytotoxic, genotoxic and inflammatory effects of indocyanine green (ICG) mediated photodynamic therapy (PDT) in direct contact with L-929 mouse fibroblast cells and over a dentin barrier. METHODS Eight groups were evaluated; control (C), group with a dentin barrier (D), ICG applied directly on the cells (ICG), ICG applied over a dentin barrier (D-ICG), only laser applied (L), laser applied over a dentin barrier (D-L), ICG and laser applied directly on the cells (ICG-L), ICG and laser applied over a dentin barrier (D-ICG-L). Cell viability was evaluated via ATP Assay, DNA damage was evaluated via Comet Assay, and inflammatory markers IL-1β and TNF-α were assessed via ELISA test. RESULTS Cell viability decreased in group ICG (p<0.001). Cell viability decrease was higher in Group ICG-L (p<0.001). Cell viability decrease was lower in group D-ICG-L (p>0.05). Group L caused an increase in cell number (p<0.001). DNA damage was observed in ICG, D-ICG, and ICG-L groups (p<0.05). None of the groups displayed an increase of inflammatory markers IL-1β and TNF-α (p>0.05). CONCLUSIONS The presence of dentin between ICG and cells acted as a barrier and protected the cells. ICG-mediated PDT did not cause any cytotoxic, genotoxic or inflammatory effect. The use of ICG-mediated PDT for cavity disinfection is acceptable, but at this concentration its use in periodontal pocket disinfection is not recommended due to its cytotoxic and genotoxic properties.
Collapse
Affiliation(s)
- Turp Isil
- BezmialemVakif University, Faculty of Dentistry, Department of Prosthodontics, Istanbul, Turkey
| | - Kara Ozlem
- BezmialemVakif University, Faculty of Dentistry, Department of Prosthodontics, Istanbul, Turkey.
| | | | - Guler Metin Eray
- University of Health Sciences Turkey, Hamidiye School of Medicine, Department of Medical Biochemistry, Istanbul, Turkey; University of Health Sciences Turkey, Hamidiye Faculty of Medicine, Haydarpasa Numune Health Application and Research Center, Department of Medical Biochemistry, Istanbul, Turkey
| | - Kocyigit Abdurrahim
- BezmialemVakif University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| |
Collapse
|
6
|
Paiva Barbosa V, Bastos Silveira B, Amorim Dos Santos J, Monteiro MM, Coletta RD, De Luca Canto G, Stefani CM, Guerra ENS. Critical appraisal tools used in systematic reviews of in vitro cell culture studies: A methodological study. Res Synth Methods 2023; 14:776-793. [PMID: 37464457 DOI: 10.1002/jrsm.1657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/21/2023] [Accepted: 07/01/2023] [Indexed: 07/20/2023]
Abstract
Systematic reviews (SRs) of preclinical studies are marked with poor methodological quality. In vitro studies lack assessment tools to improve the quality of preclinical research. This methodological study aimed to identify, collect, and analyze SRs based on cell culture studies to highlight the current appraisal tools utilized to support the development of a validated critical appraisal tool for cell culture in vitro research. SRs, scoping reviews, and meta-analyses that included cell culture studies and used any type of critical appraisal tool were included. Electronic search, study selection, data collection and methodological quality (MQ) assessment tool were realized. Further, statistical analyses regarding possible associations and correlations between MQ and collected data were performed. After the screening process, 82 studies remained for subsequent analysis. A total of 32 different appraisal tools were identified. Approximately 60% of studies adopted pre-structured tools not designed for cell culture studies. The most frequent instruments were SYRCLE (n = 14), OHAT (n = 9), Cochrane Collaboration's tool (n = 7), GRADE (n = 6), CONSORT (n = 5), and ToxRTool (n = 5). The studies were divided into subgroups to perform statistical analyses. A significant association (OR = 5.00, 95% CI = 1.54-16.20, p = 0.008) was found between low MQ and chronic degenerative disorders as topic of SR. Several challenges in collecting information from the included studies led to some modifications related to the previously registered protocol. These results may serve as a basis for further development of a critical appraisal tool for cell culture studies capable of capturing all the essential factors related to preclinical research, therefore enhancing the practice of evidence-based.
Collapse
Affiliation(s)
- Victor Paiva Barbosa
- University of Brasília, Laboratory of Oral Histopathology, Department of Dentistry, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
| | - Bruna Bastos Silveira
- University of Brasília, Laboratory of Oral Histopathology, Department of Dentistry, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
| | - Juliana Amorim Dos Santos
- University of Brasília, Laboratory of Oral Histopathology, Department of Dentistry, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
| | - Mylene Martins Monteiro
- University of Brasília, Laboratory of Oral Histopathology, Department of Dentistry, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
| | - Ricardo D Coletta
- University of Campinas, Department of Oral Diagnosis and Graduate Program in Oral Biology, School of Dentistry, University of Campinas, Piracicaba, Brazil
| | - Graziela De Luca Canto
- Federal University of Santa Catarina, Department of Dentistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Cristine Miron Stefani
- University of Brasilia, Department of Dentistry, School of Health Sciences, University of Brasilia, Brasília, Brazil
| | - Eliete Neves Silva Guerra
- University of Brasília, Laboratory of Oral Histopathology, Department of Dentistry, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
| |
Collapse
|
7
|
An J, Song Y, Zhao J, Xu B. Antifungal efficiency and cytocompatibility of polymethyl methacrylate modified with zinc dimethacrylate. Front Cell Infect Microbiol 2023; 13:1138588. [PMID: 36998636 PMCID: PMC10045475 DOI: 10.3389/fcimb.2023.1138588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/27/2023] [Indexed: 03/15/2023] Open
Abstract
Objectives Considering the high incidence rates of denture stomatitis, research that providing dental biomaterials with antifungal property are essential for clinical dentistry. The objectives of the present study were to investigate the effect of zinc dimethacrylate (ZDMA) modification on the antifungal and cytotoxic properties, as well as the variance in surface characteristics and other physicochemical properties of polymethyl methacrylate (PMMA) denture base resin. Methods PMMA with various mass fraction of ZDMA (1 wt%, 2.5 wt% and 5 wt%) were prepared for experimental groups, and unmodified PMMA for the control. Fourier-transform infrared spectroscopy (FTIR) was applied for characterization. Thermogravimetric analysis, atomic force microscopy and water contact angle were performed to investigate the thermal stability and surface characteristics (n=5). Antifungal capacities and cytocompatibility were evaluated with Candida albicans (C. albicans) and human oral fibroblasts (HGFs), respectively. Colony-forming unit counting, crystal violet assay, live/dead biofilm staining and scanning electron microscopy observation were performed to assess antifungal effects, and the detection of intracellular reactive oxygen species production was applied to explore the possible antimicrobial mechanism. Finally, the cytotoxicity of ZDMA modified PMMA resin was evaluated by the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay and live/dead double staining. Results The FTIR analyses confirmed some variation in chemical bonding and physical blend of the composites. Incorporation of ZDMA significantly enhanced the thermal stability and hydrophilicity compared with unmodified PMMA (p < 0.05). The surface roughness increased with the addition of ZDMA while remained below the suggested threshold (≤ 0.2 µm). The antifungal activity significantly improved with ZDMA incorporation, and cytocompatibility assays indicated no obvious cytotoxicity on HGFs. Conclusions In the present study, the ZDMA mass fraction up to 5 wt% in PMMA performed better thermal stability, and an increase in surface roughness and hydrophilicity without enhancing microbial adhesion. Moreover, the ZDMA modified PMMA showed effective antifungal activity without inducing any cellular side effects.
Collapse
Affiliation(s)
| | | | - Jing Zhao
- Dental Medical Center, China-Japan Friendship Hospital, Beijing, China
| | - Baohua Xu
- Dental Medical Center, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
8
|
Effect of Different Application Modalities on the Bonding Performance of Adhesive Systems to Dentin: A Systematic Review and Meta-Analysis. Cells 2023; 12:cells12010190. [PMID: 36611983 PMCID: PMC9818277 DOI: 10.3390/cells12010190] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/11/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Diverse types of dental adhesives exhibit different cytotoxic outcomes on cells in vitro. Currently, no standard adhesive application technique has so far been decisive for clinicians for better durability of resin-dentin bonds of adhesive systems. The purpose of this study was to systematically review the literature to evaluate the bonding performance of adhesive systems to dentin by using different application modalities. The systematic research strategy was conducted by two reviewers among multiple databases: PubMed, Scopus, Web of Science, Embase, and Scielo. In vitro studies reporting the effects of additional steps for the application of adhesive systems on the bond strength to dentin were selected. Meta-analysis was performed using Review Manager Software version 5.3.5 using the random effects model. The methodological quality of each in vitro study was assessed according to the parameters of a previous systematic review. The electronic research through different databases generated a total of 8318 references. After the examination of titles and abstracts, a total of 106 potentially relevant studies accessed the full-text evaluation phase. After full-text examination, 78 publications were included for the qualitative analysis, and 68 studies were included in the meta-analysis. Regarding the etch-and-rinse adhesive systems, the application modalities that improved the overall bond strength were the application of a hydrophobic resin layer (p = 0.005), an extended application time (p < 0.001), an application assisted by an electric current (p < 0.001), a double-layer application (p = 0.05), the agitation technique (p = 0.02), and the active application of the adhesive (p < 0.001). For self-etch adhesive systems, the techniques that improved the overall bond strength were the application of a hydrophobic resin layer (p < 0.001), an extended application time (p = 0.001), an application assisted by an electric current (p < 0.001), a double-layer application (p < 0.001), the agitation technique (p = 0.01), and the active application of the adhesive (p < 0.001). The in vitro evidence suggests that the application of adhesive systems using alternative techniques or additional strategies may be beneficial for improving their bond strength to dentin. The application modalities that favored the overall bond strength to dentin were an extended application time, a double-layer application, an application assisted by an electric current, the active application of the adhesive, and the application of a hydrophobic resin layer. Worth mentioning is that some techniques are intended to increase the degree of the conversion of the materials, and therefore, improvements in the biocompatibility of the materials can be expected.
Collapse
|
9
|
Matsuura T, Komatsu K, Ogawa T. N-Acetyl Cysteine-Mediated Improvements in Dental Restorative Material Biocompatibility. Int J Mol Sci 2022; 23:ijms232415869. [PMID: 36555541 PMCID: PMC9781091 DOI: 10.3390/ijms232415869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The fibroblast-rich gingival tissue is usually in contact with or adjacent to cytotoxic polymer-based dental restoration materials. The objective of this study was to determine whether the antioxidant amino acid, N-acetyl cysteine (NAC), reduces the toxicity of dental restorative materials. Human oral fibroblasts were cultured with bis-acrylic, flowable composite, bulk-fill composite, self-curing acrylic, and titanium alloy test specimens. Cellular behavior and function were analyzed on and around the materials. Impregnation of the bulk-fill composite and self-curing acrylic with NAC reduced their toxicity, improving the attachment, growth, and function of human oral fibroblasts on and around the materials. These mitigating effects were NAC dose dependent. However, NAC impregnation of the bis-acrylic and flowable composite was ineffective, with no cells attaching to nor around the materials. Although supplementing the culture medium with NAC also effectively improved fibroblast behaviors, direct impregnation of materials with NAC was more effective than supplementing the cultures. NAC-mediated improvements in fibroblast behavior were associated with reduced production of reactive oxygen species and oxidized glutathione together with increased glutathione reserves, indicating that NAC effectively directly scavenged ROS from materials and reinforced the cellular antioxidant defense system. These results establish a proof of concept of NAC-mediated improvements in biocompatibility in the selected dental restorative materials.
Collapse
Affiliation(s)
| | | | - Takahiro Ogawa
- Correspondence: ; Tel.: +1-310-794-7653; Fax: +1-310-825-6345
| |
Collapse
|
10
|
A Pilot Study on Monomer and Bisphenol A (BPA) Release from UDMA-Based and Conventional Indirect Veneering Composites. Polymers (Basel) 2022; 14:polym14214580. [PMID: 36365574 PMCID: PMC9656414 DOI: 10.3390/polym14214580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 12/01/2022] Open
Abstract
This study aimed to investigate the release of common monomers from conventional (Dialog Vario, Enamel Plus HFO) and UDMA-based indirect veneering composites (VITA VM LC, GC Gradia). Ten cylindrical samples of each material were prepared (n = 40), immersed in HPLC grade water, and incubated for 24 h in an incubation shaker at 37 °C and 112 rpm. Extraction was performed following ISO 10993-12 and monomers were detected and quantified by HPLC-MS/MS. In all the samples, urethane dimethacrylate (UDMA) and bisphenol A (BPA) were quantifiable. Compared to water blanks, BPA levels were only elevated in the eluates from conventional composites. In all other samples, concentrations were in the range of extraneous BPA and were therefore clinically irrelevant. Low concentrations of Bisphenol A-glycidyl methacrylate (BisGMA) were found in one BPA-free composite and in both conventional materials. Statistical analyses showed that BPA-free materials released significantly less BisGMA and no BPA, while UDMA elution was comparable to elution from conventional materials. All measured concentrations were below reported effective cytotoxic concentrations. Considering these results, the substitution of BPA-derivatives with UDMA might be beneficial since BPA-associated adverse effects are ruled out. Further studies should be enrolled to test the biocompatibility of UDMA on cells of the oral environment.
Collapse
|
11
|
Zaniboni JF, de Souza V, Escalante-Otárola WG, Porto TS, Godoy EF, Kuga MC. Impact of cleansing protocols to remove endodontic sealer residues on the adhesive interface: Bonding with universal adhesive systems. J ESTHET RESTOR DENT 2022; 34:1077-1084. [PMID: 35567506 DOI: 10.1111/jerd.12924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the effectiveness of cleansing protocols to remove sealer residues using different cleaning strategies and the effect of bond strength of two universal adhesives to dentin impregnated with epoxy resin-based sealer. MATERIALS AND METHODS Fifty bovine dentin specimens were impregnated with epoxy resin-based sealer containing calcium hydroxide (Sealer Plus) and submitted to cleansing protocols (n = 10): negative control (NC), positive control (PC), 95% ethanol (ET), xylol (XI), and amyl acetate (AA). Specimens were evaluated by scanning electron microscope (SEM). Other 100 specimens were submitted to the same protocols (n = 20). Each protocol was divided into subgroups (n = 10) according to the universal adhesive system used: Scotchbond Universal (SU); Ambar Universal (AU). Bond strength was evaluated by micro-shear bond test (μSBT). Persistence of residues data were assessed with Kruskal-Wallis and Dunn's tests. μSBT data were analyzed with two-way ANOVA (α = 5%). RESULTS ET presented higher persistence of residues compared to AA and XI (p < 0.05). AA and XI were similar from each other (p > 0.05). AU and SU presented similar μSBT values, regardless of the cleansing solution (p > 0.05). SU-NC presented the highest μSBT among all conditions (p < 0.05). CONCLUSION The bond strength of universal adhesives was not affected by different amounts of sealer residues after different cleaning protocols. CLINICAL SIGNIFICANCE Non-polar substances such as amyl acetate and xylol are effective for removing residues from epoxy resin-based endodontic sealers.
Collapse
Affiliation(s)
- Joissi Ferrari Zaniboni
- Department of Restorative Dentistry, School of Dentistry of Araraquara, São Paulo State University, Araraquara, SP, Brazil
| | - Vitor de Souza
- Department of Restorative Dentistry, School of Dentistry of Araraquara, São Paulo State University, Araraquara, SP, Brazil
| | | | - Thiago Soares Porto
- Department of Restorative Dentistry, School of Dentistry of Araraquara, São Paulo State University, Araraquara, SP, Brazil
| | - Eduardo Fernandez Godoy
- Department of Restorative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Providencia, Chile
| | - Milton Carlos Kuga
- Department of Restorative Dentistry, School of Dentistry of Araraquara, São Paulo State University, Araraquara, SP, Brazil
| |
Collapse
|
12
|
Caldas IP, da Silva EM, Lourenço ES, Martins do Nascimento JC, Leite PEC, Leão MP, Alves G, Scelza MZ. The influence of methodology on the comparison of cytotoxicity of total-etch and self-etch adhesive systems. J Dent 2022; 122:104158. [PMID: 35550400 DOI: 10.1016/j.jdent.2022.104158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVES The present study aimed to compare the in vitro cytocompatibility of two etch-and-rinse (Adper Scothbond, Optibond) and two self-etch (Clearfill SE Bond and Single Bond Universal) dental adhesives through a dentin-barrier model with human pulp fibroblasts. METHODS Human fibroblasts were placed on a plastic device containing 500μm human dentin discs treated with each adhesive or without treatment (control). Other groups were directly exposed to media conditioned with adhesive samples according to ISO 10993-5:2009. After 24h exposure, cell viability was assessed by XTT, and released inflammatory mediators were detected with a multiparametric immunoassay. RESULTS The standardized test without barrier indicated both etch-and-rinse adhesives and self-etch as cytotoxic, promoting viabilities under 70% of the control group (p<0.05). The dentin-barrier model identified increased cell viability for self-etch adhesives, with Clearfill SE Bond identified as non-cytotoxic. The immunoassay evidenced high rates of cytokines by cells exposed to the conditioned media of Adper Scotchbond, Optibond S, and Single Bond Universal. CONCLUSIONS The use of a dentin-barrier in vitro model detected a better biocompatibility for self-etching adhesives and, in the case of Clearfill SE Bond, with a reversion from cytotoxic to biocompatible when compared to the indirect standardized test. CLINICAL SIGNIFICANCE The use of a dentin-barrier in vitro model was able to detect a better biocompatibility for self-etching adhesives when compared to the indirect standardized test and presents itself as a predictive in vitro method for assessing the cytotoxicity of dental restorative materials that may simulate the clinical condition more accurately.
Collapse
Affiliation(s)
- Isleine Portal Caldas
- Geriatric Dentistry Department, School of Dentistry, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Eduardo Moreira da Silva
- Analytical Laboratory of Restorative Biomaterials - LABiom-R, School of Dentistry, Fluminense Federal University, Niterói, RJ, Brazil
| | | | | | - Paulo Emilio Correa Leite
- Clinical Research Unit of the Antonio Pedro Hospital, Fluminense Federal University, Niteroi, RJ, Brazil
| | | | - Gutemberg Alves
- Clinical Research Unit of the Antonio Pedro Hospital, Fluminense Federal University, Niteroi, RJ, Brazil; Cell and Molecular Biology Department, Institute of Biology, Fluminense Federal University, Niteroi, Brazil
| | - Miriam Zaccaro Scelza
- Laboratory of Experimental Culture Cell (LECCel), School of Dentistry, Fluminense Federal University (UFF), Niteroi, RJ, Brazil; Endodontics Department, School of Dentistry, Fluminense Federal University (UFF), Niteroi, RJ, Brazil.
| |
Collapse
|
13
|
Alkattan R, Banerji S, Deb S. A multi-functional dentine bonding system combining a phosphate monomer with eugenyl methacrylate. Dent Mater 2022; 38:1030-1043. [PMID: 35473789 DOI: 10.1016/j.dental.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The tooth-resin composite interface is frequently associated with failure because of microbial contamination, hydrolytic and collagenolytic degradation. Thus, designing a dentine bonding system (DBS) with an intrinsically antimicrobial polymerisable monomer is of significance especially if it can be used with self-etching primers enabling resistance to degradation of the interface. METHODS Experimental adhesives were developed incorporating eugenyl methacrylate (EgMA) at concentrations of 0,10 or 20 wt%, designated as EgMA0, EgMA10 and EgMA20, respectively, for use as a two-step self-etch DBS with the functional monomer bis[2-(methacryloyloxy) ethyl] phosphate (BMEP) in the primer. The curing, thermal and wettability properties of the adhesives were determined, and hybrid layer formation was characterised by confocal laser scanning microscopy, microtensile bond strengths (µTBS) and nanoleakage by back-scattered SEM. In situ zymography was used to assess MMP inhibitory activity of the BMEP-EgMA DBS. RESULTS EgMA in the adhesives lowered the polymerisation exotherm and resulted in higher Tg, without negatively affecting degree of conversion. Water sorption and solubility were significantly lower with higher concentrations of EgMA in the adhesive. The formation of a distinct hybrid layer was evident from confocal images with the different adhesives, whilst EgMA20 yielded the highest µTBS post water storage challenges and lowest nanoleakage after 6 months. The experimental DBS exhibited minimal to no MMP activity at 3 months. SIGNIFICANCE The hydrophobic nature of EgMA and high cross-link density exerts considerable benefits in lowering water uptake and polymerisation exotherm. The application of EgMA, adhesives in conjunction with BMEP in a multi-functional self-etching DBS can resist MMP activity, hence, enhance longevity of the dentine-resin composite interface.
Collapse
Affiliation(s)
- Rana Alkattan
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK; Department of Restorative Dental Science, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Subir Banerji
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK; Department of Prosthodontics, University of Melbourne, Melbourne, Australia
| | - Sanjukta Deb
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK.
| |
Collapse
|
14
|
Kashi F, Abbasi M, Ahmadi E, Omrani LR, Rafeiee N, Kharazifard MJ. Cytotoxicity Comparison of a Calcium Silicate-Based Resin Cement versus Conventional Self-Adhesive Resin Cement and a Resin-Modified Glass Ionomer: Cell Viability Analysis. PESQUISA BRASILEIRA EM ODONTOPEDIATRIA E CLÍNICA INTEGRADA 2022. [DOI: 10.1590/pboci.2022.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
15
|
Halder AK, Delgado AHS, Cordeiro MNDS. First multi-target QSAR model for predicting the cytotoxicity of acrylic acid-based dental monomers. Dent Mater 2021; 38:333-346. [PMID: 34955234 DOI: 10.1016/j.dental.2021.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/17/2021] [Accepted: 12/08/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Acrylic acid derivatives are frequently used as dental monomers and their cytotoxicity towards various cell lines is well documented. This study aims to probe the structural and physicochemical attributes responsible for higher toxicity of dental monomers, using quantitative structure-activity relationships (QSAR) modeling approaches. METHODS A regression-based linear single-target QSAR (st-QSAR) model was developed with a comparatively small dataset containing 39 compounds, the cytotoxicity of which has been assessed over the Hela S3 cell line. By contrast, a classification-based multi-target QSAR model was developed with 138 compounds, the cytotoxicity of which has been reported against 18 different cell lines. Both models were set up following rigorous validation protocols confirming their statistical significance and robustness. RESULTS The performance of the linear mt-QSAR model, developed with various feature selection and post-selection similarity searching-based schemes, superseded that of all non-linear models produced with six machine learning methods by hyperparameter optimization. The final derived st-QSAR and mt-QSAR linear models are shown to be highly predictive, as well as revealing the crucial structural and physicochemical factors responsible for higher cytotoxicity of the dental monomers. SIGNIFICANCE This study is the first attempt on unveiling the cytotoxicity of dental monomers over several cell lines by means of a single multi-target QSAR model. Further, such a model is ready to get widespread applicability in the screening of new monomers, judging from its almost accurate predictions over diverse experimental assay conditions.
Collapse
Affiliation(s)
- Amit Kumar Halder
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal; Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur 713212, West Bengal, India
| | - António H S Delgado
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK; Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Monte de Caparica, Portugal.
| | - M Natália D S Cordeiro
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
16
|
Hampe T, Wiessner A, Frauendorf H, Alhussein M, Karlovsky P, Bürgers R, Krohn S. A comparative in vitro study on monomer release from bisphenol A-free and conventional temporary crown and bridge materials. Eur J Oral Sci 2021; 129:e12826. [PMID: 34879174 DOI: 10.1111/eos.12826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/02/2021] [Indexed: 11/25/2022]
Abstract
This study aimed to investigate the release of common monomers from two conventional and two bisphenol A (BPA)-free temporary crown and bridge materials. Cylindrical samples of all materials were prepared (N = 90; five samples for each material and cycle of analysis). All samples were immersed in high-performance liquid chromatography (HPLC)-grade water and incubated for 1 h, 12 h, 24 h, and 7 days in an incubation shaker at 37°C and 112 rpm. Extraction was performed in accordance with ISO 10993-12. Eluted monomers were detected and quantified by HPLC coupled with ultraviolet-visible spectroscopy and mass spectrometry (HPLC-UV/Vis-MS). Analysis of BPA was performed by HPLC coupled with ultraviolet-visible spectroscopy (HPLC-UV/Vis) and positive results were verified by HPLC-tandem mass spectrometry (HPLC-MS/MS). Neither bisphenol A-glycidyl methacrylate (Bis-GMA) nor BPA was quantifiable in any of the crown and bridge samples investigated in the present study. However, all samples contained triethylene glycol dimethacrylate (TEGDMA) and/or urethane dimethacrylate (UDMA) after 24 h of incubation. Statistical analysis showed that significantly more UDMA was released from the BPA-free materials than from the conventional materials. All concentrations of UDMA measured were below the effective cytotoxic concentrations previously reported. However, for a few materials, especially BPA-free temporary crown and bridge materials, the levels of UDMA were above previously reported potentially harmful concentrations for local cells. As BPA-free materials were introduced as being more biocompatible than materials containing BPA, substitution of Bis-GMA with UDMA should be further investigated.
Collapse
Affiliation(s)
- Tristan Hampe
- Department of Prosthodontics, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas Wiessner
- Department of Prosthodontics, University Medical Center Göttingen, Göttingen, Germany
| | - Holm Frauendorf
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Mohammad Alhussein
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, Göttingen, Germany
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, Göttingen, Germany
| | - Ralf Bürgers
- Department of Prosthodontics, University Medical Center Göttingen, Göttingen, Germany
| | - Sebastian Krohn
- Department of Prosthodontics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
17
|
Dai Z, Xie X, Zhang N, Li S, Yang K, Zhu M, Weir MD, Xu HHK, Zhang K, Zhao Z, Bai Y. Novel nanostructured resin infiltrant containing calcium phosphate nanoparticles to prevent enamel white spot lesions. J Mech Behav Biomed Mater 2021; 126:104990. [PMID: 34871957 DOI: 10.1016/j.jmbbm.2021.104990] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The objective of this study was to develop a novel nanostructured resin infiltrant containing nanoparticles of amorphous calcium phosphate (NACP) to treat enamel white spot lesions (WSLs). Physical properties and the therapeutic effect of the new resin infiltrant were investigated for the first time. METHODS NACP was incorporated into ICON (Icon caries infiltrant, DMG, Germany) with different mass fractions. Cytotoxicity, degree of conversion, surface hardness, calcium (Ca) and phosphorus (P) ions release concentrations were tested. After application to the demineralized enamel samples, the color changes were determined. Surface and cross-sectional hardness were measured, scanning electron microscopy (SEM) images were taken on the cross-section of samples to observe microstructure changes after 14-day pH cycling. RESULTS Incorporating 10%-30% of NACP did not compromise the biocompatibility and physical properties of the resin infiltrant. ICON + 30% NACP group had long-lasting and high level of Ca and P ion release. After 14-day pH cycling, enamel surface hardness of ICON + 30% NACP group was 1.83 ± 0.21 GPa, significantly higher than the control group (1.32 ± 0.18 GPa) (p < 0.05). ICON + 30NACP group had the highest cross-sectional enamel hardness among all groups (p < 0.05), especially at 50 μm and 100 μm depth. SEM images showed that apparent enamel prism and inter-prism gaps in negative control were masked by mineral deposition in ICON + 30% NACP group. SIGNIFICANCE The novel ICON+30% NACP infiltrant is promising to inhibit enamel WSLs, protect the enamel and increase its hardness.
Collapse
Affiliation(s)
- Zixiang Dai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Xianju Xie
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Ning Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Song Li
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Kai Yang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Minjia Zhu
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Michael D Weir
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Hockin H K Xu
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Ke Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China.
| | - Zeqing Zhao
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China.
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China.
| |
Collapse
|
18
|
Cardoso M, Coelho A, Marto CM, Gonçalves AC, Paula A, Ribeiro ABS, Ferreira MM, Botelho MF, Laranjo M, Carrilho E. Effects of Adper ™ Scotchbond ™ 1 XT, Clearfil ™ SE Bond 2 and Scotchbond ™ Universal in Odontoblasts. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6435. [PMID: 34771964 PMCID: PMC8585417 DOI: 10.3390/ma14216435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/03/2022]
Abstract
This study aimed to assess the cytotoxicity of commercially available adhesive strategies-etch-and-rinse (Adper™ Scotchbond™ 1 XT, 3M ESPE, St. Paul, MN, USA, SB1), self-etch (Clearfil™ SE Bond 2, Kuraray Noritake Dental Inc., Tokyo, Japan, CSE), and universal (Scotchbond™ Universal, 3M Deutschland GmbH, Neuss, Germany, SBU). MDPC-23 cells were exposed to adhesives extracts in different concentrations and exposure times. To access cell metabolic activity, viability, types of cell death, and cell cycle, the MTT assay, SRB assay, double labeling with annexin V and propidium iodide, and labeling with propidium iodide/RNAse were performed, respectively. Cultures were stained with May-Grünwald Giemsa for qualitative cytotoxicity assessment. The SB1, CSE, and SBU extracts determined a significant reduction in cell metabolism and viability. This reduction was higher for prolonged exposures, even for less concentrated extracts. CSE extracts significantly reduced the cell's metabolic activity at higher concentrations (50% and 100%) from 2 h of exposure. After 24 and 96 h, a metabolic activity reduction was verified for all adhesives, even at lower concentrations. These changes were dependent on the adhesive, its concentration, and the incubation time. Regarding cell viability, SBU extracts were the least cytotoxic, and CSE was significantly more cytotoxic than SB1 and SBU. The adhesives determined a reduction in viable cells and an increase in apoptotic, late apoptosis/necrosis, and necrotic cells. Moreover, on cultures exposed to SB1 and CSE extracts, a decrease in the cells in S and G2/M phases and an increase in the cells in G0/G1 phase was observed. Exposure to SBU led to an increase of cells in the S phase. In general, all adhesives determined cytotoxicity. CSE extracts were the most cytotoxic and were classified as having a higher degree of reactivity, leading to more significant inhibition of cell growth and destruction of the cell's layers.
Collapse
Affiliation(s)
- Miguel Cardoso
- Institute of Integrated Clinical Practice, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal; (A.C.); (C.M.M.); (A.P.); (E.C.)
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (M.F.B.); (M.L.)
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (A.B.S.R.); (M.M.F.)
| | - Ana Coelho
- Institute of Integrated Clinical Practice, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal; (A.C.); (C.M.M.); (A.P.); (E.C.)
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (A.B.S.R.); (M.M.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Carlos Miguel Marto
- Institute of Integrated Clinical Practice, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal; (A.C.); (C.M.M.); (A.P.); (E.C.)
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (M.F.B.); (M.L.)
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (A.B.S.R.); (M.M.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Institute of Experimental Pathology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cristina Gonçalves
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (A.B.S.R.); (M.M.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Laboratory of Oncobiology and Hematology (LOH), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Anabela Paula
- Institute of Integrated Clinical Practice, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal; (A.C.); (C.M.M.); (A.P.); (E.C.)
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (A.B.S.R.); (M.M.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Ana Bela Sarmento Ribeiro
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (A.B.S.R.); (M.M.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Laboratory of Oncobiology and Hematology (LOH), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Manuel Marques Ferreira
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (A.B.S.R.); (M.M.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Maria Filomena Botelho
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (M.F.B.); (M.L.)
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (A.B.S.R.); (M.M.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Institute of Experimental Pathology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Mafalda Laranjo
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (M.F.B.); (M.L.)
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (A.B.S.R.); (M.M.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Eunice Carrilho
- Institute of Integrated Clinical Practice, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal; (A.C.); (C.M.M.); (A.P.); (E.C.)
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (A.B.S.R.); (M.M.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| |
Collapse
|
19
|
Zimmer R, Leite ML, de Souza Costa CA, Hebling J, Anovazzi G, Klein CA, Hosaka K, Reston ED. Effect of Time and Temperature of Air Jet on the Mechanical and Biological Behavior of a Universal Adhesive System. Oper Dent 2021; 47:87-96. [PMID: 34624102 DOI: 10.2341/20-038-l] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVES To evaluate the influence of heat application on the degree of conversion (DC) of the 3M Single Bond Universal Adhesive System, as well as its transdentinal cytotoxicity and microtensile bond strength to dentin. METHODS Experimental groups were established according to the time and temperature of the air jet: G1: 5 seconds-25°C; G2: 10 seconds-25°C; G3: 20 seconds-25°C; G4: 5 seconds-50°C; G5: 10 seconds-50°C; G6: 20 seconds-50°C. In control group (G7), no treatment was performed. The DC was assessed using the Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) technique. For the transdentinal cytotoxicity test, dentin discs fitted in artificial pulp chambers (APC) received the application of the adhesive system and the air jets. For the microtensile bond strength, healthy molars were restored and submitted to the microtensile test after 24 hours and 6 months, respectively. RESULTS Significant reduction in viability of Mouse Dental Papilla Cell-23 (MDPC-23), which exhibited morphological changes, was observed in all experimental groups compared to control (p<0.05). Although all tested protocols resulted in transdentinal diffusion of 2-hydroxyethyl methacrylate (HEMA), the group G6 presented the highest degree of monomeric conversion and the lowest cytotoxic effect, with higher dentin bond strength values in comparison to group G1 (p<0.05). CONCLUSIONS Applying an air blast at 50°C for 20 seconds increases the DC and microtensile bond strength of the 3M Single Bond Universal Adhesive System to dentin, as well as reduces the transdentinal cytotoxicity of the material to pulp cells.
Collapse
Affiliation(s)
- R Zimmer
- Roberto Zimmer, DDS, MS, Department of Operative Dentistry, School of Dentistry, Lutheran University of Brazil (Ulbra), Canoas, Brazil
| | - M L Leite
- Maria Luisa Leite, DDS, MS, PhD, Department of Physiology and Pathology, Araraquara School of Dentistry, São Paulo State University (Unesp), Araraquara, Brazil
| | - C A de Souza Costa
- Carlos Alberto de Souza Costa, DDS, MS, PhD, Department of Physiology and Pathology, Araraquara School of Dentistry, São Paulo State University (Unesp), Araraquara, Brazil
| | - J Hebling
- Josimeri Hebling, DDS, MS, PhD, Department of Orthodontics and Pediatric Dentistry, Araraquara School of Dentistry, São Paulo State University (Unesp), Araraquara, Brazil
| | - G Anovazzi
- Giovana Anovazzi, DDS, MS, PhD, Department of Orthodontics and Pediatric Dentistry, Araraquara School of Dentistry, São Paulo State University (Unesp), Araraquara, Brazil
| | - C A Klein
- Celso Afonso Klein-Junior, DDS, MS, PhD, Department of Operative Dentistry, School of Dentistry, Lutheran University of Brazil (Ulbra), Canoas, Brazil
| | - K Hosaka
- Keiichi Hosaka, DDS, MS, PhD, Department of Cariology and Operative Dentistry,Graduate School of Medical and Dental Sciences,Tokyo Medical and Dental University, Tokyo, Japan
| | - E D Reston
- *Eduardo Galia Reston, DDS, MSD, PhD, Department of Operative Dentistry, School of Dentistry, Lutheran University of Brazil (Ulbra), Canoas, Brazil
| |
Collapse
|
20
|
Surface Characteristics, Fluoride Release and Bond Strength Evaluation of Four Orthodontic Adhesives. MATERIALS 2021; 14:ma14133578. [PMID: 34206852 PMCID: PMC8269644 DOI: 10.3390/ma14133578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 01/04/2023]
Abstract
Orthodontic adhesives have similar properties in terms of fluoride release, roughness, shear bond strength or cement debris for specific clinical conditions. Three commercial consecrated orthodontic adhesives (Opal Seal®, Blugloo®, Light Bond®) were compared with an experimental orthodontic material (C1). Brackets were bonded to enamel using a self-etch technique followed by adhesive application and then de-bonded 60 days later. Share bond strength evaluation, scanning electron microscopy, atomic force microscopy and fluoride release analysis were performed. The highest amount of daily and cumulative fluoride release was obtained for the experimental material, while the lowest value was observed for Opal Seal®. The materials evaluated in the current study presented adequate shear bond strength, with the experimental material having a mean value higher than Opal Seal and Blugloo. The atomic force microscopy measurements indicated that the smoothest initial sample is Opal Seal® followed by Light Bond®. Scanning electron microscopy evaluation indicated different aspects of cement debris on the enamel and/or bracket surface, according to the type of adhesive. The experimental material C1 presented adequate properties in terms of shear bond strength, fluoride release, roughness and enamel characteristics after de-bonding, compared to the commercial materials. Under these circumstances, it can be considered for clinical testing.
Collapse
|
21
|
Hardan L, Bourgi R, Cuevas-Suárez CE, Zarow M, Kharouf N, Mancino D, Villares CF, Skaba D, Lukomska-Szymanska M. The Bond Strength and Antibacterial Activity of the Universal Dentin Bonding System: A Systematic Review and Meta-Analysis. Microorganisms 2021; 9:1230. [PMID: 34204100 PMCID: PMC8227198 DOI: 10.3390/microorganisms9061230] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
Streptococcus mutans (S. mutans) is a group of viridans mostly located in oral flora among the wide and biodiverse biofilm. It plays a significant role not only in caries formation but also triggering intracerebral haemorrhage. The durable and stable bond interface, besides bacteria elimination, is one of the crucial factors influencing the resin composite restoration performance. This study aimed to evaluate universal adhesives (UAs) with regard to in vitro bond strength to dentin, and the inhibition of the S. mutans growth and compare them with UAs modified with antimicrobial agents through a systematic review and meta-analysis. Two reviewers performed a literature search up to April 2021 in 5 electronic databases: PubMed MedLine, Scielo, ISI Web of Science, Scopus, and EMBASE. Only in vitro studies reporting the effect of modifying UAs with antimicrobial agents on the bond strength to dentin and/or on the inhibition of the S. mutans were included. Analyses were carried out using Review Manager Software version 5.3.5 (The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, Denmark). The methodological quality of each in vitro study was evaluated following the parameters of a previous systematic review. A total of 1716 potentially relevant publications were recognized. After reviewing the title and abstract, 16 studies remained in the systematic review. From these, a total of 3 studies were included in the meta-analysis. Since data from the studies included in the antimicrobial outcome included zero values, they could not be meta-analysed. Including 0 values in the analysis will lead to several biases in the analysis, so these data were discarded. The antibacterial effect against S. mutans of UAs modified with antimicrobial agents was higher than the non-modified adhesive systems. Within the limitations of the present study, the bond strength of UAs to dentin could be improved by using antimicrobial agents. The UAs modified with antibacterial agents showed a decrease in the viability of S. mutans biofilm, among the adhesives tested. However, there are not enough valid data on antibacterial properties of modified UAs; therefore, more well-designed research on these materials is needed.
Collapse
Affiliation(s)
- Louis Hardan
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon; (L.H.); (R.B.)
| | - Rim Bourgi
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon; (L.H.); (R.B.)
| | - Carlos Enrique Cuevas-Suárez
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, Circuito Ex Hacienda La Concepción S/N, San Agustín Tlaxiaca 42160, Mexico;
| | - Maciej Zarow
- Private Practice, “NZOZ SPS Dentist” Dental Clinic and Postgraduate Course Centre—pl. Inwalidow 7/5, 30-033 Cracow, Poland;
| | - Naji Kharouf
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France; (N.K.); (D.M.)
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
| | - Davide Mancino
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France; (N.K.); (D.M.)
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
| | | | - Dariusz Skaba
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | | |
Collapse
|
22
|
Detection of Inflammatory and Homeostasis Biomarkers after Selective Removal of Carious Dentin-An In Vivo Feasibility Study. J Clin Med 2021; 10:jcm10051003. [PMID: 33801317 PMCID: PMC7958315 DOI: 10.3390/jcm10051003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 11/20/2022] Open
Abstract
Deep carious dentin lesions induce an immune reaction within the pulp-dentin complex, leading to the release of cytokines, which might be suitable biomarkers in pulp diagnostics. This in vivo feasibility study determines the concentration of different cytokines after selective removal of carious infected dentin (SCR). In our methodology, paired samples are obtained from 21 patients—each of them with two deep carious lesions at posterior teeth without clinical symptoms. After SCR, lesions are randomly assigned to treatment strategy: Group 1 (11 patients): Carious dentin is covered either with BiodentineTM (n = 11) or gutta-percha (n = 11) before using the adhesive OptibondTM FL. Group 2 (10 patients): The adhesives ClearfilTM SE Protect Bond (n = 10) or ClearfilTM SE Bond 2 (n = 10) are directly applied. Prepared cavities are rinsed with phosphate buffered saline containing 0.05% Tween 20 (10X) for five minutes immediately after SCR (visit 1) and eight weeks later (visit 2). Rinsing liquid is regained. Concentrations of IL-1β, IL-6, IL-10, C-reactive protein (CRP), TNF-α, IFN-γ, TIMP-1, -2, and MMP-7, -8, -9 are assessed by customized multiplex assays, evaluated with fluorescence analyzer. Non-parametric statistical analysis (Wilcoxon, Mann–Whitney U Test, p < 0.05) is performed (SPSS 25). Our results show that concentrations of CRP, IL-1β, IL-6, TIMP-1, -2, and MMPs were detectable. Median concentrations of CRP, IL-1β und IL-6 were significantly higher in visit 1 (304.9, 107.4, 3.8 pg/mL), compared to visit 2 (67.8, 2.3, 0.0 pg/mL; pi < 0.001). The study revealed that the non-invasive determination of cytokines from prepared dental cavities is possible.
Collapse
|
23
|
de Almeida SA, Ferracane JL, da Silva EM, Mushashe AM, Merritt J, Rocha AA, Noronha-Filho JD, de Almeida RV, Poskus LT. Antimicrobial potential of resin matrices loaded with coffee compounds. J Biomed Mater Res B Appl Biomater 2021; 109:428-435. [PMID: 32964641 PMCID: PMC8244821 DOI: 10.1002/jbm.b.34711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 11/05/2022]
Abstract
This study evaluated the biological behavior of the coffee compounds Trigonelline (T), chlorogenic acid (C), and nicotinic acid (N), correlating with their release from a resin matrix. Minimum inhibitory concentration (MIC) was evaluated against Streptococcus mutans UA159, and cytotoxicity was assessed by methyl tetrazolium salt on OD-21 cells. Resin matrices (bisphenol A-glycidyl-dimethacrylate/triethylene glycol-dimethacrylate 70/30 wt%, camphorquinone/ethyl 4-dimethyl aminobenzoate 0.5/1 wt%) were doped with coffee compounds in different concentrations (10/20/30/40/50 wt%), performing 15 groups (T10-T50, C10-C50, N10-N50), and a control group with no coffee compound. Degree of conversion (DC%) was analyzed by Fourier transform infrared spectroscopy. Antimicrobial properties were evaluated by bioluminescence (Luciferase assay). The release from loaded matrices was analyzed over time (24 hr, 6, 14, 21 and 28 days), using high-performance liquid chromatography (HPLC). Data were submitted to ANOVA/Tukey's test (α = 0.05). MIC for T and C was 6 mg/ml, and 4 mg/ml for N. None of them were cytotoxic. Only T50 and C50 showed lower DC% than control (α < 0.05). Some groups (T30/T40/T50/C40/C50/N50) were strongly antimicrobial, reducing bacterial activity approximately five times compared to control (α < 0.05). For T30, T40, T50, C40, and C50, the HPLC showed a release above or closer to MIC values mainly in 24 hr, but for N50, up to 28 days. In conclusion, the coffee compounds presented antimicrobial activity, depending on their concentration when added in resin matrices, being found a correlation with their release.
Collapse
Affiliation(s)
- Sarah A de Almeida
- Labiom-R (Analytical Laboratory of Restorative Biomaterials), Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Jack L Ferracane
- Department of Restorative Dentistry, Division of Biomaterials and Biomechanics, Oregon Health and Science University, Portland, Oregon, USA
| | - Eduardo M da Silva
- Labiom-R (Analytical Laboratory of Restorative Biomaterials), Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Amanda M Mushashe
- School of Health Sciences, Universidade Positivo, Curitiba, Puerto Rico, Brazil
| | - Justin Merritt
- Department of Restorative Dentistry, Division of Biomaterials and Biomechanics, Oregon Health and Science University, Portland, Oregon, USA
| | - Anderson A Rocha
- Department of Chemistry, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Jaime D Noronha-Filho
- Labiom-R (Analytical Laboratory of Restorative Biomaterials), Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Rayane V de Almeida
- Labiom-R (Analytical Laboratory of Restorative Biomaterials), Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Laiza T Poskus
- Labiom-R (Analytical Laboratory of Restorative Biomaterials), Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
An Oral-mucosa-on-a-chip sensitively evaluates cell responses to dental monomers. Biomed Microdevices 2021; 23:7. [PMID: 33426594 DOI: 10.1007/s10544-021-00543-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
Knowledge of human gingival cell responses to dental monomers is critical for the development of new dental materials. Testing standards have been developed to provide guidelines to evaluate biological functionality of dental materials and devices. However, one shortcoming of the traditional testing platforms is that they do not recapitulate the multi-layered configuration of gingiva, and thus cannot evaluate the layer-specific cellular responses. An oral mucosa-chip with two cell layers was previously developed as an alternative platform to assess the oral mucosa responses to dental biomaterials. The mucosa-chip consists of an apical keratinocyte layer attached to a fibroblast-embedded collagen hydrogel through interconnecting pores in a three-microchannel network. Here, cell responses in the mucosa-chip were evaluated against 2-hydroxyethyl methacrylate (HEMA), a common monomer used in restorative and aesthetic dentistry. The response of mucosal cell viability was evaluated by exposing the chip to HEMA of concentrations ranging from 1.56 to 25 mM and compared to cells in conventional well-plate monoculture. The co-cultured cells were then stained and imaged with epifluorescence and confocal microscopy to determine the layer-specific responses to the treatment. Mucosa-chips were demonstrated to be more sensitive to assess HEMA-altered cell viability than well-plate cultures, especially at lower doses (1.56 and 6.25 mM). The findings suggest that the mucosa-chip is a promising alternative to traditional platforms or assays to test a variety of biomaterials by offering a multi-layered tissue geometry, accessible layer-specific information, and higher sensitivity in detecting cellular responses.
Collapse
|
25
|
Pagano S, Lombardo G, Costanzi E, Balloni S, Bruscoli S, Flamini S, Coniglio M, Valenti C, Cianetti S, Marinucci L. Morpho-functional effects of different universal dental adhesives on human gingival fibroblasts: an in vitro study. Odontology 2020; 109:524-539. [PMID: 33211211 PMCID: PMC7954759 DOI: 10.1007/s10266-020-00569-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/26/2020] [Indexed: 01/09/2023]
Abstract
To analyze the effects of four universal adhesives (Optibond Solo Plus—OB, Universal Bond—UB, Prime&Bond Active—PBA, FuturaBond M + —FB) on human gingival fibroblasts in terms of cytotoxicity, morphology and function. After in vitro exposure for up to 48 h, fibroblast viability was determined by the MTT assay determined, morphology by phase-contrast microscopy and migration by the scratch wound assay. Expression levels of IL1β, IL6, IL8, IL10, TNFα and VEGF genes were assessed by RT-PCR and their protein production by Western blot analysis. Apoptosis and cell cycle were analyzed by flow cytometry. OB and UB induced early morphological changes on fibroblasts (3 h) with extended cell death at 24 h/48 h. Gene expression of collagen type I and fibronectin increased fivefold compared with controls, elastin disappeared and elastase increased threefold, indicating gingival tissue tended to become fibrotic. Only UB and OB increased gene expression of inflammatory markers: IL1β at 3 and 48 h (up to about three times), IL6 and IL8 at 3 h (up to almost four times) which corresponded to the increase of the activated form NF-kB. All adhesives showed an effect on the functionality of fibroblasts with cytotoxic effect time and concentration dependent. Among all the OB and UB adhesives, they showed the greatest cell damage. The in-depth analysis of the effects of universal adhesives and possible functional effects represents an important information for the clinician towards choosing the most suitable adhesive system.
Collapse
Affiliation(s)
- Stefano Pagano
- School of Medicine, Department of Biomedical and Surgical Sciences, Odontostomatological University Centre: Chair Prof. Stefano Cianetti, University of Perugia, S. Andrea Delle Fratte, 06156, Perugia, Italy
| | - Guido Lombardo
- School of Medicine, Department of Biomedical and Surgical Sciences, Odontostomatological University Centre: Chair Prof. Stefano Cianetti, University of Perugia, S. Andrea Delle Fratte, 06156, Perugia, Italy
| | - Egidia Costanzi
- Department of Experimental Medicine, Section of Biosciences and Medical Embriology, University of Perugia, S. Andrea Delle Fratte, 06156, Perugia, Italy
| | - Stefania Balloni
- Department of Experimental Medicine, Section of Biosciences and Medical Embriology, University of Perugia, S. Andrea Delle Fratte, 06156, Perugia, Italy
| | - Stefano Bruscoli
- Department of Medicine, Section of Pharmacology, University of Perugia, S. Andrea Delle Fratte, 06156, Perugia, Italy
| | - Sara Flamini
- Department of Medicine, Section of Pharmacology, University of Perugia, S. Andrea Delle Fratte, 06156, Perugia, Italy
| | - Maddalena Coniglio
- School of Medicine, Department of Biomedical and Surgical Sciences, Odontostomatological University Centre: Chair Prof. Stefano Cianetti, University of Perugia, S. Andrea Delle Fratte, 06156, Perugia, Italy
| | - Chiara Valenti
- School of Medicine, Department of Biomedical and Surgical Sciences, Odontostomatological University Centre: Chair Prof. Stefano Cianetti, University of Perugia, S. Andrea Delle Fratte, 06156, Perugia, Italy
| | - Stefano Cianetti
- School of Medicine, Department of Biomedical and Surgical Sciences, Odontostomatological University Centre: Chair Prof. Stefano Cianetti, University of Perugia, S. Andrea Delle Fratte, 06156, Perugia, Italy
| | - Lorella Marinucci
- Department of Experimental Medicine, Section of Biosciences and Medical Embriology, University of Perugia, S. Andrea Delle Fratte, 06156, Perugia, Italy.
| |
Collapse
|
26
|
Kovač V, Poljšak B, Primožič J, Jamnik P. Are Metal Ions That Make up Orthodontic Alloys Cytotoxic, and Do They Induce Oxidative Stress in a Yeast Cell Model? Int J Mol Sci 2020; 21:ijms21217993. [PMID: 33121155 PMCID: PMC7662645 DOI: 10.3390/ijms21217993] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
Compositions of stainless steel, nickel-titanium, cobalt-chromium and β-titanium orthodontic alloys were simulated with mixtures of Fe, Ni, Cr, Co, Ti and Mo metal ions as potential oxidative stress-triggering agents. Wild-type yeast Saccharomyces cerevisiae and two mutants ΔSod1 and ΔCtt1 were used as model organisms to assess the cytotoxicity and oxidative stress occurrence. Metal mixtures at concentrations of 1, 10, 100 and 1000 µM were prepared out of metal chlorides and used to treat yeast cells for 24 h. Every simulated orthodontic alloy at 1000 µM was cytotoxic, and, in the case of cobalt-chromium alloy, even 100 µM was cytotoxic. Reactive oxygen species and oxidative damage were detected for stainless steel and both cobalt-chromium alloys at 1000 µM in wild-type yeast and 100 µM in the ΔSod1 and ΔCtt1 mutants. Simulated nickel-titanium and β-titanium alloy did not induce oxidative stress in any of the tested strains.
Collapse
Affiliation(s)
- Vito Kovač
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia; (V.K.); (B.P.)
| | - Borut Poljšak
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia; (V.K.); (B.P.)
| | - Jasmina Primožič
- Medical Faculty, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia;
| | - Polona Jamnik
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-3203-729
| |
Collapse
|
27
|
Zaharia C, Duma VF, Sinescu C, Socoliuc V, Craciunescu I, Turcu RP, Marin CN, Tudor A, Rominu M, Negrutiu ML. Dental Adhesive Interfaces Reinforced with Magnetic Nanoparticles: Evaluation and Modeling with Micro-CT versus Optical Microscopy. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3908. [PMID: 32899605 PMCID: PMC7557443 DOI: 10.3390/ma13183908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 01/13/2023]
Abstract
Dental adhesives are used in a wide range of applications, including to place direct composite restorations in frontal or posterior teeth. One of the most frequent causes for the failure of composite resin restorations is microleakages. The first aim of this work is to introduce a new type of self-etched dental adhesive doped with magnetic nanoparticles (MPs) synthetized in the laboratory. The scope is to produce adhesives with a minimized width/thickness to decrease the risk of microleakages. The second aim is to assess the width/thickness of the adhesive layer in all the characteristic areas of the teeth using both the less precise but most common optical microscopy and the more accurate and volumetric micro-Computed Tomography (CT) investigations. Twenty extracted teeth have been divided into four groups: Group 1 includes 'blank' samples with adhesives that are not doped with MPs; Group 2 includes samples with adhesives doped with MPs; Groups 3 and 4 include samples with adhesives doped with MPs that are subjected to an active magnetic field for 5 and 10 min, respectively. Microscopy investigations followed by micro-CT and EDAX are performed on the adhesive. While a rather good agreement is obtained between the microscopy and micro-CT results, the capability of the latter to offer a full volumetric reconstruction of the layer is exploited to analyze the adhesion of the four considered dental materials. Thus, from micro-CT results the graphs of the surface areas as functions of the adhesive layer width are modeled mathematically, as well as the volume of sealants, for each of the four groups. To our knowledge, it is the first time that such a methodology is used. Characteristic parameters are extracted and the ascertainment of the optimal parameter that should be utilized for such assessments is discussed. The study demonstrates the adhesion improvement produced for Groups 3 and 4, where MPs are used. It also concludes that the magnetic field should be applied to the adhesive material for the longest possible exposure time (with a trade-off with the clinical duration of the treatment).
Collapse
Affiliation(s)
- Cristian Zaharia
- School of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300070 Timisoara, Romania; (C.Z.); (A.T.); (M.R.); (M.-L.N.)
| | - Virgil-Florin Duma
- 3OM Optomechatronics Group, Faculty of Engineering, “Aurel Vlaicu” University of Arad, 310130 Arad, Romania
- Doctoral School, Polytechnic University of Timisoara, 300222 Timisoara, Romania
| | - Cosmin Sinescu
- School of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300070 Timisoara, Romania; (C.Z.); (A.T.); (M.R.); (M.-L.N.)
| | - Vlad Socoliuc
- Centre for Fundamental and Advanced Technical Research, Laboratory of Magnetic Fluids, Romanian Academy—Timisoara Branch, 300223 Timisoara, Romania;
| | - Izabell Craciunescu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania; (I.C.); (R.P.T.)
| | - Rodica Paula Turcu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania; (I.C.); (R.P.T.)
| | | | - Anca Tudor
- School of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300070 Timisoara, Romania; (C.Z.); (A.T.); (M.R.); (M.-L.N.)
| | - Mihai Rominu
- School of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300070 Timisoara, Romania; (C.Z.); (A.T.); (M.R.); (M.-L.N.)
| | - Meda-Lavinia Negrutiu
- School of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300070 Timisoara, Romania; (C.Z.); (A.T.); (M.R.); (M.-L.N.)
| |
Collapse
|
28
|
Esteban Florez FL, Kraemer H, Hiers RD, Sacramento CM, Rondinone AJ, Silvério KG, Khajotia SS. Sorption, solubility and cytotoxicity of novel antibacterial nanofilled dental adhesive resins. Sci Rep 2020; 10:13503. [PMID: 32782299 PMCID: PMC7421579 DOI: 10.1038/s41598-020-70487-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/20/2020] [Indexed: 02/05/2023] Open
Abstract
Dental adhesives hydrolyze in the mouth. This study investigated the water sorption (SOR), solubility (SOL) and cytotoxicity (CYTO) of experimental adhesives containing nitrogen-doped titanium dioxide nanoparticles (N_TiO2). Specimens (n = 15/group [SOR, SOL]; n = 10/group [CYTO]) of unaltered Clearfil SE Protect (CSP), OptiBond Solo Plus (OSP), Adper Scotchbond (ASB) and experimental adhesives (OSP + 25% or 30% of N_TiO2) were fabricated, desiccated (37 °C) and tested for SOR and SOL according to ISO Specification 4049 (2009). CYTO specimens were UV-sterilized (8 J/cm2) and monomer extracted in growth medium (1, 3 or 7 days). Human pulp cells were isolated and seeded (0.5 × 104) for MTT assay. SOR and SOL data was analyzed using GLM and SNK (α = 0.05) and CYTO data was analyzed with Kruskal–Wallis and SNK tests (α = 0.05). SOR and SOL values ranged from 25.80 μg/mm3 (30% N_TiO2) to 28.01 μg/mm3 (OSP) and 23.88 μg/mm3 (30% N_TiO2) to 25.39 μg/mm3 (25% N_TiO2). CYTO results indicated that pulp cells exposed to experimental materials displayed comparable viabilities (p > 0.05) to those of OSP. Experimental materials displayed comparable SOR, SOL and CYTO values (p > 0.05) when compared to unaltered materials. N_TiO2 incorporation have not adversely impacted SOR, SOL and CYTO properties of unaltered adhesives.
Collapse
Affiliation(s)
- Fernando Luis Esteban Florez
- Division of Dental Biomaterials, Department of Restorative Sciences, College of Dentistry, The University of Oklahoma Health Sciences Center, 1201 North Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| | - Hannah Kraemer
- Division of Dental Biomaterials, Department of Restorative Sciences, College of Dentistry, The University of Oklahoma Health Sciences Center, 1201 North Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Rochelle Denise Hiers
- Division of Dental Biomaterials, Department of Restorative Sciences, College of Dentistry, The University of Oklahoma Health Sciences Center, 1201 North Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Catharina Marques Sacramento
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Av. Limeira, 901-Bairro Areião, Piracicaba, São Paulo, 13414-903, Brazil.,Department of Prosthodontics and Periodontics, Piracicaba Dental School, State University of Campinas, Av. Limeira, 901-Bairro Areião, Piracicaba, São Paulo, 13414-903, Brazil
| | - Adam Justin Rondinone
- Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, TN, 37831, USA
| | - Karina Gonzales Silvério
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Av. Limeira, 901-Bairro Areião, Piracicaba, São Paulo, 13414-903, Brazil.,Department of Prosthodontics and Periodontics, Piracicaba Dental School, State University of Campinas, Av. Limeira, 901-Bairro Areião, Piracicaba, São Paulo, 13414-903, Brazil
| | - Sharukh S Khajotia
- Division of Dental Biomaterials, Department of Restorative Sciences, College of Dentistry, The University of Oklahoma Health Sciences Center, 1201 North Stonewall Avenue, Oklahoma City, OK, 73117, USA
| |
Collapse
|
29
|
Leyva Del Rio D, Sartori N, Tomblin NB, Phark JH, Pardi V, Murata RM, Duarte S. Bioactive Dental Adhesive System With tt-Farnesol: Effects on Dental Biofilm and Bonding Properties. Front Bioeng Biotechnol 2020; 8:865. [PMID: 32793584 PMCID: PMC7390972 DOI: 10.3389/fbioe.2020.00865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/06/2020] [Indexed: 11/16/2022] Open
Abstract
Background Composite dental restorations are commonly used to restore cavitated carious lesions. Unfortunately, the main reason for failure is the development of secondary caries adjacent to the restoration. To improve the long-term survival of restorations, antibacterial agents have been added into dental materials. In this study, we assessed the antibacterial and bonding capacity of a commercial universal dental adhesive incorporated with the antibacterial agent tt-farnesol creating 3 experimental adhesives: 0.38% (v/v), 1.90% (v/v), and 3.80% (v/v), plus a control (no incorporation of tt-farnesol). Methods The antibacterial activity was evaluated by assessing colony-forming units (CFU), biofilm dry weight (DW) and production of extracellular insoluble polysaccharides (EIP) at day 2, 3, and 5 of biofilm growth post surface treatment on the surface of composite disks. The effect of tt-farnesol on the chemical and bonding capacity of the adhesive system was assessed via pH analysis, degree of conversion (DC), and microtensile bond strengths to human dentin in both self-etch and etch-and-rinse application modes. A qualitative analysis of the effects of tt-farnesol on biofilm formation was evaluated using scanning electron microscopy (SEM). The sealing capacity of all adhesive systems tested was evaluated using confocal laser scanning microscopy (CLSM). Results The 3.80% (v/v) experimental adhesive exhibited the lowest CFU count and lowest production of EIP at day 5. DW and pH values did no exhibit statistical differences among all tested groups. Bond strengths and DC decreased with the incorporation of the antibacterial agent into the adhesive system regardless of the concentration of tt-farnesol. Conclusion The incorporation of tt-farnesol into the adhesive system significantly reduced bacterial viability and production of EIP; however, the bonding properties of the experimental dental adhesives were altered.
Collapse
Affiliation(s)
- Diana Leyva Del Rio
- Advanced Program in Operative and Adhesive Dentistry, Division of Restorative Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States
| | - Neimar Sartori
- Advanced Program in Operative and Adhesive Dentistry, Division of Restorative Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States
| | - Nichole Barton Tomblin
- Division of Periodontology Diagnostic Sciences, Dental Hygiene & Biomedical Science, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States
| | - Jin-Ho Phark
- Advanced Program in Operative and Adhesive Dentistry, Division of Restorative Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States
| | - Vanessa Pardi
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, United States
| | - Ramiro M Murata
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, United States
| | - Sillas Duarte
- Advanced Program in Operative and Adhesive Dentistry, Division of Restorative Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
30
|
Pedano MS, Li X, Yoshihara K, Landuyt KV, Van Meerbeek B. Cytotoxicity and Bioactivity of Dental Pulp-Capping Agents towards Human Tooth-Pulp Cells: A Systematic Review of In-Vitro Studies and Meta-Analysis of Randomized and Controlled Clinical Trials. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2670. [PMID: 32545425 PMCID: PMC7345102 DOI: 10.3390/ma13122670] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
Background. In the era of biology-driven endodontics, vital pulp therapies are regaining popularity as a valid clinical option to postpone root-canal treatment. In this sense, many different materials are available in the market for pulp-capping purposes. Objectives. The main aim of this systematic review and meta-analysis was to examine literature regarding cytotoxicity and bioactivity of pulp-capping agents by exposure of human dental pulp cells of primary origin to these materials. A secondary objective was to evaluate the inflammatory reaction and reparative dentin-bridge formation induced by the different pulp-capping agents on human pulp tissue. Data sources. A literature search strategy was carried out on PubMed, EMBASE and the Web of Science databases. The last search was done on 1 May 2020. No filters or language restrictions were initially applied. Two researchers independently selected the studies and extracted the data. Study selection included eligibility criteria, participants and interventions, study appraisal and synthesis methods. In vitro studies were included when human dental pulp cells of primary origin were (in)directly exposed to pulp-capping agents. Parallel or split-mouth randomized or controlled clinical trials (RCT or CCT) were selected to investigate the effects of different pulp-capping agents on the inflammation and reparative bridge-formation capacity of human pulp tissue. Data were synthesized via odds ratios (95% confidence interval) with fixed or random effects models, depending on the homogeneity of the studies. The relative risks (95% confidence interval) were presented for the sake of interpretation. Results. In total, 26 in vitro and 30 in vivo studies were included in the systematic review and meta-analysis, respectively. The qualitative analysis of in vitro data suggested that resin-free hydraulic calcium-silicate cements promote cell viability and bioactivity towards human dental pulp cells better than resin-based calcium-silicate cements, glass ionomers and calcium-hydroxide cements. The meta-analysis of the in vivo studies indicated that calcium-hydroxide powder/saline promotes reparative bridge formation better than the popular commercial resin-free calcium-silicate cement Pro-Root MTA (Dentsply-Sirona), although the difference was borderline non-significant (p = 0.06), and better than calcium-hydroxide cements (p < 0.0001). Moreover, resin-free pulp-capping agents fostered the formation of a complete reparative bridge better than resin-based materials (p < 0.001). On the other hand, no difference was found among the different materials tested regarding the inflammatory effect provoked at human pulp tissue. Conclusions. Calcium-hydroxide (CH) powder and Pro-Root MTA (Dentsply-Sirona) have shown excellent biocompatibility in vitro and in vivo when tested on human cells and teeth. Their use after many years of research and clinical experience seems safe and proven for vital pulp therapy in healthy individuals, given that an aseptic environment (rubber dam isolation) is provided. Although in vitro evidence suggests that most modern hydraulic calcium-silicate cements promote bioactivity when exposed to human dental pulp cells, care should be taken when these new materials are clinically applied in patients, as small changes in their composition might have big consequences on their clinical efficacy. Key findings (clinical significance). Pure calcium-hydroxide powder/saline and the commercial resin-free hydraulic calcium-silicate cement Pro-Root MTA (Dentsply-Sirona) are the best options to provide a complete reparative bridge upon vital pulp therapy. Systematic review registration number. PROSPERO registration number: CRD42020164374.
Collapse
Affiliation(s)
- Mariano S. Pedano
- Department of Oral Health Sciences, KU Leuven (University of Leuven), BIOMAT—Biomaterials Research Group & UZ Leuven, University Hospitals Leuven, 3000 Leuven, Belgium; (M.S.P.); (X.L.); (K.V.L.)
| | - Xin Li
- Department of Oral Health Sciences, KU Leuven (University of Leuven), BIOMAT—Biomaterials Research Group & UZ Leuven, University Hospitals Leuven, 3000 Leuven, Belgium; (M.S.P.); (X.L.); (K.V.L.)
| | - Kumiko Yoshihara
- National Institute of Advanced Industrial Science and Technology (AIST), Health Research Institute, 2217-14 Hayashi-Cho, Takamaysu, Kagawa 761-0395, Japan;
- Department of Pathology & Experimental Medicine, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kirsten Van Landuyt
- Department of Oral Health Sciences, KU Leuven (University of Leuven), BIOMAT—Biomaterials Research Group & UZ Leuven, University Hospitals Leuven, 3000 Leuven, Belgium; (M.S.P.); (X.L.); (K.V.L.)
| | - Bart Van Meerbeek
- Department of Oral Health Sciences, KU Leuven (University of Leuven), BIOMAT—Biomaterials Research Group & UZ Leuven, University Hospitals Leuven, 3000 Leuven, Belgium; (M.S.P.); (X.L.); (K.V.L.)
| |
Collapse
|
31
|
Wawrzynkiewicz A, Rozpedek-Kaminska W, Galita G, Lukomska-Szymanska M, Lapinska B, Sokolowski J, Majsterek I. The Cytotoxicity and Genotoxicity of Three Dental Universal Adhesives-An In Vitro Study. Int J Mol Sci 2020; 21:ijms21113950. [PMID: 32486393 PMCID: PMC7312029 DOI: 10.3390/ijms21113950] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/23/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
Dental universal adhesives are considered an useful tool in modern dentistry as they can be used in different etching techniques, allow for simplified protocol and provide sufficient bond strength. However, there is still no consensus as to their toxicity towards pulp. Thus, the present study aimed to evaluate the cytotoxicity and genotoxicity of three universal adhesives: OptiBond Universal, Prime&Bond Universal and Adhese in an in vitro experimental model, monocyte/macrophage cell line SC (ATCC CRL-9855). The cytotoxicity was measured by means of XTT assay, whereas the genotoxicity (comet assay) was evaluated based on the percentage of DNA present in the comet tail. Furthermore, the ability of the adhesives to induce apoptosis was analyzed using flow cytometry (FC) with the FITC annexin V/propidium iodide (PI) double staining. The analysis of the cell cycle progression was performed with FC using PI staining. OptiBond Universal presented significant, while Prime&Bond Universal and Adhese Universal had minimal cytotoxicity and genotoxicity towards human SC cells. Moreover, only OptiBond Universal increased the level of apoptosis in SC cell line. None of the adhesives showed significant cell cycle arrest, as revealed by FC analysis. Due to substantial differences in toxicity in in vitro studies of dental adhesives, there is a great need for further research in order to establish more reliable test protocols allowing for standardized methodology.
Collapse
Affiliation(s)
- Adam Wawrzynkiewicz
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (A.W.); (W.R.-K.); (G.G.)
| | - Wioletta Rozpedek-Kaminska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (A.W.); (W.R.-K.); (G.G.)
| | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (A.W.); (W.R.-K.); (G.G.)
| | - Monika Lukomska-Szymanska
- Department of General Dentistry, Medical University of Lodz, 90-419 Lodz, Poland; (M.L.-S.); (B.L.); (J.S.)
| | - Barbara Lapinska
- Department of General Dentistry, Medical University of Lodz, 90-419 Lodz, Poland; (M.L.-S.); (B.L.); (J.S.)
| | - Jerzy Sokolowski
- Department of General Dentistry, Medical University of Lodz, 90-419 Lodz, Poland; (M.L.-S.); (B.L.); (J.S.)
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (A.W.); (W.R.-K.); (G.G.)
- Correspondence: ; Tel.: +48-42-272-53-00
| |
Collapse
|
32
|
França CM, Tahayeri A, Rodrigues NS, Ferdosian S, Puppin Rontani RM, Sereda G, Ferracane JL, Bertassoni LE. The tooth on-a-chip: a microphysiologic model system mimicking the biologic interface of the tooth with biomaterials. LAB ON A CHIP 2020; 20:405-413. [PMID: 31854401 PMCID: PMC7395925 DOI: 10.1039/c9lc00915a] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The tooth has a unique configuration with respect to biomaterials that are used for its treatment. Cells inside of the dental pulp interface indirectly with biomaterials via a calcified permeable membrane, formed by the dentin matrix and several thousands of dentinal tubules (∼2 μm in diameter). Although the cytotoxic response of the dental pulp to biomaterials has been extensively studied, there is a shortage of in vitro model systems that mimic the dentin-pulp interface and enable an improved understanding of the morphologic, metabolic and functional influence of biomaterials on live dental pulp cells. To address this shortage, here we developed an organ-on-a-chip model system which integrates cells cultured directly on a dentin wall within a microfluidic device that replicates some of the architecture and dynamics of the dentin-pulp interface. The tooth-on-a-chip is made out of molded polydimethylsiloxane (PDMS) with a design consisting of two chambers separated by a dentin fragment. To characterize pulp cell responses to dental materials on-chip, stem cells from the apical papilla (SCAPs) were cultured in odontogenic medium and seeded onto the dentin surface, and observed using live-cell microscopy. Next, to evaluate the tooth-on-a-chip as a platform for materials testing, standard dental materials used clinically (2-hydroxyethylmethacrylate - HEMA, phosphoric acid - PA, and Adper-Scotchbond - SB) were tested for cytotoxicity, cell morphology, and metabolic activity on-chip, and compared against standardized off-chip controls. All dental materials had cytotoxic effects in both on-chip and off-chip systems in the following order: HEMA > SB > PA (p < 0.05), and cells presented consistently higher metabolic activity on-chip than off-chip (p < 0.05). Furthermore, the tooth-on-a-chip enabled real-time tracking of gelatinolytic activity in a model hybrid layer (HL) formed in the microdevice, which suggests that dental pulp cells may contribute to the proteolytic activity in the HL more than endogenous proteases. In conclusion, the tooth-on-a-chip is a novel platform that replicates near-physiologic conditions of the pulp-dentin interface and enables live-cell imaging to study dental pulp cell response to biomaterials.
Collapse
Affiliation(s)
- Cristiane Miranda França
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA.
| | - Anthony Tahayeri
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA.
| | - Nara Sousa Rodrigues
- Post-Graduation Program in Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Shirin Ferdosian
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA.
| | | | - Grigoriy Sereda
- Department of Chemistry, University of South Dakota, Vermillion, SD, USA
| | - Jack L Ferracane
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA.
| | - Luiz E Bertassoni
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA. and Center for Regenerative Medicine, School of Medicine, Oregon Health & Science University, Portland, OR, USA and Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA and Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Portland, OR, USA
| |
Collapse
|
33
|
Cytotoxicity of Self-Etch Versus Etch-and-Rinse Dentin Adhesives: A Screening Study. MATERIALS 2020; 13:ma13020452. [PMID: 31963535 PMCID: PMC7013582 DOI: 10.3390/ma13020452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 11/17/2022]
Abstract
Six dentin adhesives were tested in vitro regarding their cytotoxicity on human fibroblasts. The adhesives Hybrid Bond, One-up Bond F Plus, AdheSE, Clearfil SE Bond, Optibond Solo Plus and Syntac were eluted with culture medium as single or sequentially applied adhesive part for 24 h. 75 Petri dishes were produced per group. They were evaluated triangulated, comprising the quantitative evaluation (105 ones) to determine “viable”, “dead” and “debris” cells with the use of a cell-counter and the reactivity index was also identified based on the qualitative assessment (420 ones). One-up Bond F Plus, AdheSE and Clearfil SE Bond showed a statistical difference of viable cells to the cell control. For One-up Bond F Plus, statistically, differences compared to hybrid bond and Syntac were also found. All the adhesives except One-up Bond F Plus showed significant differences between single and sequentially applied adhesive part regarding the quantitative evaluation. The test material showed a moderate grade of cytotoxicity. As a result, a statistically significant difference of the cytotoxicity between the self-etch and etch-and-rinse adhesives cannot be demonstrated regarding the qualitative evaluation and the reactivity index, but the differences between sequentially applied and single applied components can be proved.
Collapse
|
34
|
The Influence of Application Protocol of Simplified and Universal Adhesives on the Dentin Bonding Performance. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app10010124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Contemporary adhesives use etch-and-rinse, self-etch, and multimode adhesive strategies. Simplified and universal adhesives present lower bond strength to dentin than conventional, two-bottle etch-and-rinse adhesives. The purpose of this study was to evaluate bonding performance of simplified and universal adhesives to dentin after modifying their application protocol (multiplying applications and extending application time). Adhesive layer thickness (ALT) and shear bond strength (SBS), as well as the correlation between these parameters was calculated. Two universal (Single Bond Universal and Prime & Bond One Select) and two self-etch adhesives (Adper Easy One and Xeno V) were tested. Significant differences in ALT were detected between the adhesives, as well as within the same adhesive between study groups. Tested adhesives presented the thinnest adhesive layer when applied 2 times in 20 s. Single Bond Universal obtained the highest SBS results of all adhesives. Most adhesives (except for Prime & Bond One Select) obtained the highest SBS, when applied two or three times in 40 or 60 s, respectively. No correlation between the ALT and SBS was found. The study showed that increasing the number of applications and extending the application time of self-etch and universal adhesives can be recommended to improve their performance.
Collapse
|
35
|
Park JH, Lee H, Kang SY, Kim J, Kim JH. Effect of core materials for core fabrication for dental implants on in-vitro cytocompatibility of MC3T3-E1 cells. BMC Oral Health 2019; 19:284. [PMID: 31849322 PMCID: PMC6918698 DOI: 10.1186/s12903-019-0985-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/10/2019] [Indexed: 11/14/2022] Open
Abstract
Background Despite the wide use of dental materials for CAD/CAM system in prosthetic treatment, the effect of the materials, which are used as dental implants core fabricated, on cells involved in dental implant osseointegration is uncertain. This study aimed to investigate and compare the effect of single core materials used for dental implants fabricated by the dental prostheses fabrication process and the CAD/CAM milling method on MC3T3-E1 cells. Methods The materials used for prostheses restoration in this experiment were Porcelain Fused Gold (P.F.G), Lithium disilicate glass ceramic (LiSi2), Zirconia (ZrO2), Nickel-Chromium (Ni-Cr) and Cobalt-Chromium (Co-Cr). MC3T3-E1 cells were cultured and used, the cell adhesion and morphology were observed and analyzed using confocal laser scanning microscopy (CLSM). Methoxyphenyl tetrazolium salt (MTS) and alkaline phosphatase (ALP) assay were used to observe the cell proliferation and differentiation. Results CLSM revealed irregular cell adhesion and morphology and the filopodia did not spread in the Ni-Cr specimen group. Significantly high cell proliferation was observed in the ZrO2 specimen group. The LiSi2 specimen group presented significantly high cell differentiation. Intergroup comparison of cell proliferation and differentiation between the Ni-Cr specimen group and all other specimen groups showed significant differences (p < .05). Conclusion Cell proliferation and differentiation were observed from the cores, which were fabricated with all specimen groups on cytocompatibility except the Ni-Cr specimen group.
Collapse
Affiliation(s)
- Jung-Hyun Park
- Department of Dental Laboratory Science and Engineering, Hana Sciences Hall B #375, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hyun Lee
- Department of Materials Science and Engineering, Hana Sciences Hall B #473, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seen-Young Kang
- Department of Dental Laboratory Science and Engineering, Hana Sciences Hall B #375, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Junesun Kim
- Department of Physical Therapy, College of Health Science, Hana Sciences Hall B #666, Korea University, 145, Anam-dong, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Ji-Hwan Kim
- Department of Dental Laboratory Science and Engineering, Hana Sciences Hall B #374, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
36
|
Yi L, Yu J, Han L, Li T, Yang H, Huang C. Combination of baicalein and ethanol-wet-bonding improves dentin bonding durability. J Dent 2019; 90:103207. [PMID: 31586587 DOI: 10.1016/j.jdent.2019.103207] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES This study aimed to investigate the potential of baicalein combined with ethanol-wet bonding (EWB) in improving dentin bonding durability. METHODS Sixty caries-free human third molars were randomly allocated into four groups and pretreated with solutions after sectioning and polishing. The pretreatments were prepared via dissolving baicalein in ethanol at concentrations of 0, 0.01%, 0.05% and 0.1% (w/v). Microtensile bond strength (MTBS) test, failure mode analysis and interfacial nanoleakage evaluation were conducted immediately or after thermocycling or 1 month of collagenase aging. In situ zymography, contact angle, antibacterial activity and bioactivity were comprehensively assessed. RESULTS Results demonstrated that the three experimental groups exhibited higher MTBS and lower nanoleakage expression regardless of aging. MMP activity within hybrid layer and Streptococcus. mutans biofilm formation were inhibited in the experimental groups in a dose-dependent manner. Baicalein also reduced reactive oxygen species (ROS) expression in human dental pulp cells and resisted adhesive-induced cytotoxicity. Baicalein exhibited remarkable capabilities at concentrations higher than 0.05% (w/v). CONCLUSION Baicalein is a prospective candidate as bioactive dentin bonding agent. Combined with EWB, baicalein may form a functional bonding interface, thereby enhancing dentin bond strength and durability. SIGNIFICANCE Joint efforts by baicalein and EWB provides a novel therapeutic strategy for obtaining ideal adhesive-dentin interface and prolonging the longevity of restorations.
Collapse
Affiliation(s)
- Luyao Yi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jian Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lin Han
- CR&WISCO General Hospital, Wuhan, China
| | - Tingting Li
- Lanzhou Hospital of Stomatology, Lanzhou, China
| | - Hongye Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
37
|
Bactericidal and Biocompatible Properties of Plasma Chemical Oxidized Titanium (TiOB ®) with Antimicrobial Surface Functionalization. MATERIALS 2019; 12:ma12060866. [PMID: 30875882 PMCID: PMC6470708 DOI: 10.3390/ma12060866] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 12/15/2022]
Abstract
Coating of plasma chemical oxidized titanium (TiOB®) with gentamicin-tannic acid (TiOB® gta) has proven to be efficient in preventing bacterial colonization of implants. However, in times of increasing antibiotic resistance, the development of alternative antimicrobial functionalization strategies is of major interest. Therefore, the aim of the present study is to evaluate the antibacterial and biocompatible properties of TiOB® functionalized with silver nanoparticles (TiOB® SiOx Ag) and ionic zinc (TiOB® Zn). Antibacterial efficiency was determined by agar diffusion and proliferation test on Staphylocuccus aureus. Cytocompatibility was analyzed by direct cultivation of MC3T3-E1 cells on top of the functionalized surfaces for 2 and 4 d. All functionalized surfaces showed significant bactericidal effects expressed by extended lag phases (TiOB® gta for 5 h, TiOB® SiOx Ag for 8 h, TiOB® Zn for 10 h). While TiOB® gta (positive control) and TiOB® Zn remained bactericidal for 48 h, TiOB® SiOx Ag was active for only 4 h. After direct cultivation for 4 d, viable MC3T3-E1 cells were found on all surfaces tested with the highest biocompatibility recorded for TiOB® SiOx Ag. The present study revealed that functionalization of TiOB® with ionic zinc shows bactericidal properties that are comparable to those of a gentamicin-containing coating.
Collapse
|