1
|
Jennes ME, Kriegseis S, Aretz L, Stadie A, Gaertner N, Mewes L, Beuer F, Behbahani M, Schickle K, Schmidt F. The influence of ZnO content in YSZ-ZnO composite ceramics on bacterial growth and cell behaviour for the prevention of peri-implant inflammation. Dent Mater 2025; 41:584-592. [PMID: 40140339 DOI: 10.1016/j.dental.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025]
Abstract
OBJECTIVES Peri-implantitis is a significant complication in dental implant therapy and arises primarily from bacterial colonization. Current preventive strategies show limited long-term efficacy. This study evaluated antibacterial properties and biocompatibility of yttria-stabilized zirconia-zinc oxide (YSZ-ZnO) composite ceramics as implant abutment material for peri-implantitis prevention. METHODS Nine ZnO/YSZ ratios (10-90-90-10 at%), and controls (100 % ZnO, 100 % YSZ, and titanium) were synthesized. Analyses included microstructure and composition by scanning electron microscopy and energy dispersive X-ray spectroscopy, and surface roughness with an Alicona Infinite Focus Variation microscope. Antibacterial properties were assessed against Porphyromonas gingivalis and cell viability of immortalized human gingival fibroblasts (iHGF) was evaluated using the CCK8 assay. Statistical analysis was performed using one-way ANOVA with post-hoc tests (P = 0.05). RESULTS Samples with ZnO > 40 % showed larger inhibition zones than Ti and YSZ (P < 0.05). No CFUs were observed with ≥ 60 % ZnO, while controls showed bacterial growth. Cell viability assays revealed no significant differences between YSZ and 60 % ZnO (P > 0.05), but higher ZnO concentrations reduced viability. Mean roughness (Ra) values ranged from 0.13 μm (66.6 % ZnO) to 0.58 μm (100 % ZnO). SIGNIFICANCE YSZ-ZnO composites could reduce peri-implantitis by inhibiting bacterial colonization. The 60 % ZnO composition exhibited strong antibacterial properties and biocompatibility, suggesting potential solution for improving implant success rates, especially in high-risk patients. Further research is needed to explore long-term stability and interactions with other bacteria.
Collapse
Affiliation(s)
- Marie-Elise Jennes
- Charité, CC 3 Dental and Craniofacial Sciences, Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), Berlin, Germany.
| | - Sven Kriegseis
- Institute of Mineral Engineering, Chair of Ceramics and Refractory Materials, RWTH Aachen University, Aachen, Germany
| | - Lukas Aretz
- Institute of Mineral Engineering, Chair of Ceramics and Refractory Materials, RWTH Aachen University, Aachen, Germany
| | | | - Nora Gaertner
- Charité, CC 3 Dental and Craniofacial Sciences, Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), Berlin, Germany
| | - Louisa Mewes
- Charité, CC 3 Dental and Craniofacial Sciences, Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), Berlin, Germany
| | - Florian Beuer
- Charité, CC 3 Dental and Craniofacial Sciences, Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), Berlin, Germany
| | - Mehdi Behbahani
- Aachen University of Applied Sciences, Jülich Campus, Jülich, Germany
| | - Karolina Schickle
- Department of Restorative Dentistry and Endodontology, Justus-Liebig-University Gießen, Gießen, Germany
| | - Franziska Schmidt
- Charité, CC 3 Dental and Craniofacial Sciences, Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), Berlin, Germany
| |
Collapse
|
2
|
Kheirmand-Parizi M, Doll-Nikutta K, Mikolai C, Wirth D, Menzel H, Stiesch M. Dual Antibacterial and Soft-Tissue-Integrative Effect of Combined Strontium Acetate and Silver Nitrate on Peri-Implant Environment: Insights from Multispecies Biofilms and a 3D Coculture Model. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40263122 DOI: 10.1021/acsami.5c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Creation of a biological seal and efficient antibacterial qualities in the peri-implant environment is essential for the success of dental implants. Therefore, novel multifunctional strategies are being developed to address these issues, aiming at the simultaneous improvement of tissue integration and hindering pathological biofilm formation. In this study, we investigated the effect of tissue-promotive strontium acetate (SrAc), antibacterial silver nitrate (AgNO3), and their combination on oral soft tissue cells and an oral multispecies biofilm not only in monoculture setups but also in a three-dimensional (3D) implant-tissue-oral bacterial-biofilm model (INTERbACT model) that takes the naturally occurring interactions into account. Application of SrAc led to improved fibroblast migration in the monoculture setting, without impairment of metabolic activity, even upon additional AgNO3 administration. Notably, the combined treatment of SrAc and AgNO3 resulted in a synergistic antibacterial effect during biofilm formation as well as on early matured biofilms. Most interestingly, the antibacterial effect of the combined treatment was even further enhanced within the coculture setup leading to increased bacterial death and decreased biofilm volume. The 3D tissue in the coculture setup underwent the combined treatment with a notable rise in CCL20 and IL-1β levels. Histologically, only the AgNO3-treated groups exhibited damage to the integrity of the epithelial barrier. Therefore, the results of this study demonstrated promising dual antibacterial and tissue-integrative characteristics of combined AgNO3 and SrAc in the dental implant environment. Additionally, the study emphasizes the importance of considering naturally occurring tissue-bacteria interactions for reliable in vitro testing of novel implant materials.
Collapse
Affiliation(s)
- Marjan Kheirmand-Parizi
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
| | - Katharina Doll-Nikutta
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
| | - Carina Mikolai
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
| | - Dagmar Wirth
- Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Henning Menzel
- Institute for Technical Chemistry, Braunschweig University of Technology, Hagenring 30, 38106 Braunschweig, Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
| |
Collapse
|
3
|
Hong Y, Wang S, Maimaiti A, Li J, Li D, Wang Q, Teng W. Constructing an Injectable Multifunctional Antibacterial Hydrogel Adhesive to Seal Complex Interfaces Post-Dental Implantation to Improve Soft Tissue Integration. Macromol Biosci 2025; 25:e2400503. [PMID: 39838594 DOI: 10.1002/mabi.202400503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Soft tissue integration (STI) around dental implants determines their long-term success, and the key is to immediately construct a temporary soft tissue-like barrier to prevent bacterial invasion after implantation and then, promote STI. In response to this need, an injectable multi-crosslinked hydrogel (MCH) with abilities of self-healing, anti-swelling, degradability, and dry/wet adhesion to soft tissue/titanium is developed using gallic acid-graft-chitosan, oxidized sodium alginate, gelatin, and Cu2+ with water and borax solution as solvents, whose properties can be controlled by adjusting its composition and ratio. MCH can not only immediately build a sealing barrier to block the bacterial invasion in the oral simulation environment but also deliver outstanding antibacterial efficacy through the synergism of trapping bacteria and releasing bactericidal agents such as chitosan, gallic acid, aldehyde, and Cu2+. Moreover, MCH has an adjustable ROS-scavenging ability imparted by gallic acid, chitosan, and gelatin to reduce inflammation and can control the release of Cu2+. Based on these, it is believed that by injecting MCH around implants (percutaneous/transmucosal) after surgery, a universal non-aggressive strategy to promote STI can be developed for long-term implant success.
Collapse
Affiliation(s)
- Yubing Hong
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510062, China
- Laboratory of Biomaterials, NHC Key Laboratory of Assisted Circulation, Cardiovascular Division, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Siwei Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510062, China
| | - Abudusaimi Maimaiti
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510062, China
| | - Jiarun Li
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510062, China
| | - Dongying Li
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510062, China
| | - Qinmei Wang
- Laboratory of Biomaterials, NHC Key Laboratory of Assisted Circulation, Cardiovascular Division, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wei Teng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510062, China
| |
Collapse
|
4
|
Wang Y, Zhang L, Xie B, Lu Y. The 50 most cited articles on soft tissue integration of dental implants: A bibliometric analysis. J Prosthet Dent 2025; 133:713-723. [PMID: 39152073 DOI: 10.1016/j.prosdent.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/19/2024]
Abstract
STATEMENT OF PROBLEM Soft tissue integration helps prevent the bacterial invasion of dental implants, but bibliometric studies on the top 50 most cited articles in the field of soft tissue integration are lacking. PURPOSE The purpose of this bibliometric study was to analyze the 50 most cited articles since 1999 to explore global trends and research hotspots. MATERIAL AND METHODS A specific search strategy of the Science Citation Index Expanded (Web of Science) was devised, and relevant article-based, journal-based, and author-based parameters were analyzed. Correlation analysis was performed (α=.05). RESULTS The number of citations ranged from 71 to 586. Clinical Oral Implants Research was the most cited journal (1722 citations). Berglundh, Tord was the author with the most publications (6 publications) and citations (957 citations). Dental implants and titanium were the keywords with the highest frequency. Switzerland was the country with the highest number of publications (12 publications). Correlation was found between the publication year and average annual citations (P<.001). CONCLUSIONS This study determined the scientific progress in soft tissue integration. The surface design of dental implant materials is essential for the soft tissue integration of dental implants. Soft tissue integration has been a focus of interest in the past few years, but many experiments still need to be done to improve soft tissue compatibility with innovative materials.
Collapse
Affiliation(s)
- Yanjie Wang
- Resident, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, PR China
| | - Lingling Zhang
- Assistant Professor, Department of Orthodontics, Hunan Engineering Research Center for Oral Digital Intelligence and Personalized Medicine & Hunan Key Laboratory of Oral Health Research & Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, PR China
| | - Bintao Xie
- Resident, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, PR China
| | - Yanqin Lu
- Professor and Department Chair of Orthodontics, Hunan Engineering Research Center for Oral Digital Intelligence and Personalized Medicine & Hunan Key Laboratory of Oral Health Research & Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, PR China.
| |
Collapse
|
5
|
Dong Y, Hu Y, Hu X, Wang L, Shen X, Tian H, Li M, Luo Z, Cai C. Synthetic nanointerfacial bioengineering of Ti implants: on-demand regulation of implant-bone interactions for enhancing osseointegration. MATERIALS HORIZONS 2025; 12:694-718. [PMID: 39480512 DOI: 10.1039/d4mh01237b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Titanium and its alloys are the most commonly used biometals for developing orthopedic implants to treat various forms of bone fractures and defects, but their clinical performance is still challenged by the unfavorable mechanical and biological interactions at the implant-tissue interface, which substantially impede bone healing at the defects and reduce the quality of regenerated bones. Moreover, the impaired osteogenesis capacity of patients under certain pathological conditions such as diabetes and osteoporosis may further impair the osseointegration of Ti-based implants and increase the risk of treatment failure. To address these issues, various modification strategies have been developed to regulate the implant-bone interactions for improving bone growth and remodeling in situ. In this review, we provide a comprehensive analysis on the state-of-the-art synthetic nanointerfacial bioengineering strategies for designing Ti-based biofunctional orthopedic implants, with special emphasis on the contributions to (1) promotion of new bone formation and binding at the implant-bone interface, (2) bacterial elimination for preventing peri-implant infection and (3) overcoming osseointegration resistance induced by degenerative bone diseases. Furthermore, a perspective is included to discuss the challenges and potential opportunities for the interfacial engineering of Ti implants in a translational perspective. Overall, it is envisioned that the insights in this review may guide future research in the area of biometallic orthopedic implants for improving bone repair with enhanced efficacy and safety.
Collapse
Affiliation(s)
- Yilong Dong
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325016, China.
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Xinqiang Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Lingshuang Wang
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Xinkun Shen
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325016, China.
| | - Hao Tian
- Kairui Stomatological Hospital, Chengdu 610211, China
| | - Menghuan Li
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Zhong Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Chunyuan Cai
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325016, China.
| |
Collapse
|
6
|
Han J, Leeuwenburgh SCG, Jansen JA, Yang F, van Oirschot BAJA. Biological Processes in Gingival Tissue Integration Around Dental Implants. TISSUE ENGINEERING. PART B, REVIEWS 2025; 31:1-19. [PMID: 38526353 DOI: 10.1089/ten.teb.2023.0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Peri-implant gingival tissue integration (GTI) is pivotal in determining the long-term success and functionality of dental implants. To enhance GTI, researchers have increasingly focused during the past decade on unraveling the response of gingival tissues to implant surfaces. This increased focus on soft instead of hard tissue integration has led to the development of various models, including in vitro cell culture systems and in vivo animal models, designed to predict and assess GTI around dental implants. However, inconsistent study outcomes between the different models have created confusion, highlighting the need for a comprehensive review. Therefore, the main objective of this review is to present a comprehensive overview of existing in vitro models, ranging from 2D to 3D, specifically designed to investigate cellular behavior relevant to peri-implant GTI. To facilitate a better comprehension of the utility of these models, the review initiates an elucidation of the histological characteristics of gingival tissues surrounding natural dentition, offering insights into the healing dynamics and histological adaptation processes occurring in gingival tissues adjacent to dental implants. In addition, through a critical evaluation of the strengths and limitations inherent in each model, our aim is to contribute to a more profound understanding of their applicability and effectiveness in GTI research.
Collapse
Affiliation(s)
- Jing Han
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Sander C G Leeuwenburgh
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - John A Jansen
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Fang Yang
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Bart A J A van Oirschot
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Alevizakos V, Mosch R, Platte A, von See C. Effects of Repeated Use and Sterilization on the Wear of Zirconia Implant Drills: A SEM-Based Analysis. Clin Exp Dent Res 2025; 11:e70088. [PMID: 39940099 PMCID: PMC11821549 DOI: 10.1002/cre2.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/14/2025] Open
Abstract
OBJECTIVES This study evaluated the effects of repeated use and sterilization on the wear and cutting-edge integrity of zirconia implant drills. MATERIALS AND METHODS Sixty zirconium dioxide drills (Z-Systems AG) with diameters of 2.3, 3.75, and 4.25 mm were tested. Drilling was performed in porcine mandibular bone under standardized conditions: 800 rpm, 50 Ncm torque, and 20 N axial pressure. Drills were divided into two groups: Group 1 (sterilized but unused) and Group 2 (30 drilling cycles with reprocessing). Wear was assessed using scanning electron microscopy (SEM) at 1000x magnification, applying a three-grade scoring system. Statistical analysis was performed using the Mann-Whitney U test (p < 0.05). RESULTS Drills subjected to 30 cycles showed significantly higher wear grades (Grade 2-3) compared to unused drills (Grade 0-1) (p < 0.001). The mean wear grades increased from 0.3 to 2.6 for 2.3 mm, from 0.4 to 2.7 for 3.75 mm, and from 0.2 to 2.7 for 4.25 mm drills. Effect sizes (r = 0.88-0.90) confirmed a strong relationship between repeated use and wear. CONCLUSIONS Zirconia drills show significant wear after 30 cycles. Although they offer potential as an alternative to steel drills, further research is needed to optimize cost-effectiveness and clinical durability. CLINICAL TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Vasilios Alevizakos
- Research Center for Digital Technologies in Dentistry and CAD/CAMDanube Private UniversityKrems an der DonauAustria
| | - Richard Mosch
- Research Center for Digital Technologies in Dentistry and CAD/CAMDanube Private UniversityKrems an der DonauAustria
| | - Ann‐Christin Platte
- Research Center for Digital Technologies in Dentistry and CAD/CAMDanube Private UniversityKrems an der DonauAustria
| | - Constantin von See
- Research Center for Digital Technologies in Dentistry and CAD/CAMDanube Private UniversityKrems an der DonauAustria
| |
Collapse
|
8
|
Li Q, Yao M, Yang Y, Lin B, Chen H, Luo H, Zhang C, Huang Y, Jian Y, Zhao K, Wang X. Gingival Soft Tissue Integrative Zirconia Abutments with High Fracture Toughness and Low-Temperature Degradation Resistance. Biomater Res 2025; 29:0137. [PMID: 39850809 PMCID: PMC11756602 DOI: 10.34133/bmr.0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/14/2024] [Accepted: 12/29/2024] [Indexed: 01/25/2025] Open
Abstract
Low fracture toughness, low-temperature degradation (LTD) susceptibility, and inadequate soft tissue integration greatly limit the application of zirconia ceramic abutment. Integrating the "surface" of hard all-ceramic materials into the gingival soft tissue and simultaneously promoting the "inner" LTD resistance and fracture toughness is challenging. Composite ceramics are effective in improving the comprehensive properties of materials. In this study, we aim to develop a zirconia composite abutment with high "inner" structure stability and "surface" bioactivities simultaneously and to explore the mechanism of performance improvement. Therefore, elongated SrAl12O19 and equiaxed Al2O3 were introduced into the zirconia matrix by using the Pechini method. Reinforcements of different shapes can promote the density, reduce the grain size, and increase the phase stability of composite ceramics, which improves the fracture toughness and LTD susceptibility. In addition, the released strontium ions (Sr2+), without sacrificing the mechanical properties of the material, could activate the biological capacity of the zirconia surface by activating the M2 polarization of macrophages through the Sr2+/calcium-sensing receptor/SH3 domain-binding protein 5 axis, thereby promoting the collagen matrix synthesis of fibroblasts and the angiogenesis of vascular endothelial cells. This successful case proposes a novel strategy for the development of advanced high-strength and bioactive all-ceramic materials by introducing reinforcements containing biofunctional elements into the ceramic matrix. The approach paves the way for the widespread application of such all-ceramic materials in soft-tissue-related areas.
Collapse
Affiliation(s)
- Qiulan Li
- Hospital of Stomatology,
Sun Yat-Sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Mianfeng Yao
- School and Hospital of Stomatology,
Guangzhou Medical University, Guangzhou 510182, China
| | - Yunxu Yang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen 518104, China
| | - Bixiao Lin
- Hospital of Stomatology,
Sun Yat-Sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Hongio Chen
- Hospital of Stomatology,
Sun Yat-Sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Huixia Luo
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Key Lab of Polymer Composite & Functional Materials,
Sun Yat-Sen University, Guangzhou 510275, China
| | - Chao Zhang
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Key Lab of Polymer Composite & Functional Materials,
Sun Yat-Sen University, Guangzhou 510275, China
| | - Yanhao Huang
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Key Lab of Polymer Composite & Functional Materials,
Sun Yat-Sen University, Guangzhou 510275, China
| | - Yutao Jian
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Institute of Stomatology,
Sun Yat-Sen University, Guangzhou 510055, China
| | - Ke Zhao
- Hospital of Stomatology,
Sun Yat-Sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Xiaodong Wang
- Hospital of Stomatology,
Sun Yat-Sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| |
Collapse
|
9
|
Sharma P, Mishra V, Murab S. Unlocking Osseointegration: Surface Engineering Strategies for Enhanced Dental Implant Integration. ACS Biomater Sci Eng 2025; 11:67-94. [PMID: 39620938 DOI: 10.1021/acsbiomaterials.4c01178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Tooth loss is a prevalent problem faced by individuals of all ages across the globe. Various biomaterials, such as metals, bioceramics, polymers, composites of ceramics and polymers, etc., have been used for the manufacturing of dental implants. The success of a dental implant primarily depends on its osseointegration rate. The current surface modification techniques fail to imbibe the basics of tooth development, which can impart better mineralization and osseointegration. This can be improved by developing an understanding of the developmental pathways of dental tissue. Stimulating the correct signaling pathways through inductive material systems can bring about a paradigm shift in dental implant materials. The current review focuses on the developmental pathway and mineralization process that happen during tooth formation and how surface modifications can help in biomimetic mineralization, thereby enhancing osseointegration. We further describe the effect of dental implant surface modifications on mineralization, osteoinduction, and osseointegration; both in vitro and in vivo. The review will help us to understand the natural process of teeth development and mineralization and how the surface properties of dental implants can be further improved to mimic teeth development, in turn increasing osseointegration.
Collapse
Affiliation(s)
- Pankaj Sharma
- School of Biosciences & Bioengineering, Indian Institute of Technology Mandi, Kamand HP-175075, India
| | - Vedante Mishra
- School of Biosciences & Bioengineering, Indian Institute of Technology Mandi, Kamand HP-175075, India
| | - Sumit Murab
- School of Biosciences & Bioengineering, Indian Institute of Technology Mandi, Kamand HP-175075, India
- Indian Knowledge System and Mental Health Applications Centre, Indian Institute of Technology Mandi, Kamand HP-175075, India
- BioX Centre, Indian Institute of Technology Mandi, Kamand HP-175075, India
- Advanced Materials Research Centre, Indian Institute of Technology Mandi, Kamand HP-175075, India
- Technology Innovation Hub in Human-Computer Interaction (iHub), Kamand HP-175075, India
| |
Collapse
|
10
|
Tardelli JDC, Otani LB, Batalha RL, Alves F, Pereira-da-Siva MA, Bagnato VS, Gargarella P, Bolfarini C, Dos Reis AC. Atomic Interaction S. aureus/Machined and Additive Manufacturing Ti-6Al-4V and Ti-35Nb-7Zr-5Ta Disks for Dental Implants. J Biomed Mater Res B Appl Biomater 2024; 112:e35508. [PMID: 39578114 DOI: 10.1002/jbm.b.35508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 08/28/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024]
Abstract
The adhesion strength of a bacterial strain on a substrate influences colonization and biofilm development, so the biomolecular analysis of this interaction is a step that allows insights into the development of antifouling surfaces. As peri-implantitis is the main cause of failure of implant-supported oral rehabilitations and the dental literature presents gaps in the atomic bacteria/surface interaction, this study aimed to correlate the qualitative variation of roughness, wettability, chemical composition, and electrical potential of Ti-6Al-4V and Ti-35Nb-7Zr-5Ta (TNZT) disks obtained by machining (M) and additive manufacturing (AM) on the colonization and adhesion strength of S. aureus quantified by atomic force microscopy (AFM). The samples were evaluated for roughness, electrical potential, and S. aureus colonization and adhesion strength by specific methods in the AFM with subsequent analysis in the NanoScope software analysis, wettability by sessile drop method, and chemical composition by energy dispersive x-ray spectroscopy (EDX). Qualitative data were correlated with bacterial adhesion strength. The greater adhesion strength of S. aureus was observed in descending order for TNZT AM, TNZT M, Ti-6Al-4V AM, and Ti-6Al-4V M. This experimental in vitro study allowed us to conclude that for the evaluated groups, the strength adhesion of S. aureus showed a linear relationship with roughness, and nonlinear for wettability, electrical potential, and S. aureus colonization on the surfaces evaluated. As for the two variation factors, type of alloy and manufacturing method, those that promoted the lowest bacterial adhesion strength were Ti-6Al-4V and M, possibly attributed to the synergistic modification of the evaluated surface properties. Thus, this study suggests S. aureus preferences for rough, hydrophilic surfaces with a greater electrical potential difference.
Collapse
Affiliation(s)
- Juliana Dias Corpa Tardelli
- Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Lucas Barcelos Otani
- Department of Materials Engineering, Federal University of São Carlos (UFSCAR), São Carlos, São Paulo, Brazil
| | - Rodolfo Lisboa Batalha
- Department of Research, Development and Innovation, Instituto de Soldadura e Qualidade, Oeiras, Portugal
| | - Fernanda Alves
- Optics Group From São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil
| | - Marcelo A Pereira-da-Siva
- Optics Group From São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil
| | - Vanderlei Salvador Bagnato
- Optics Group From São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil
| | - Piter Gargarella
- Department of Materials Engineering, Federal University of São Carlos (UFSCAR), São Carlos, São Paulo, Brazil
| | - Claudemiro Bolfarini
- Department of Materials Engineering, Federal University of São Carlos (UFSCAR), São Carlos, São Paulo, Brazil
| | - Andréa Cândido Dos Reis
- Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
11
|
Jin S, Yu Y, Zhang T, Xie D, Zheng Y, Wang C, Liu Y, Xia D. Surface modification strategies to reinforce the soft tissue seal at transmucosal region of dental implants. Bioact Mater 2024; 42:404-432. [PMID: 39308548 PMCID: PMC11415887 DOI: 10.1016/j.bioactmat.2024.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Soft tissue seal around the transmucosal region of dental implants is crucial for shielding oral bacterial invasion and guaranteeing the long-term functioning of implants. Compared with the robust periodontal tissue barrier around a natural tooth, the peri-implant mucosa presents a lower bonding efficiency to the transmucosal region of dental implants, due to physiological structural differences. As such, the weaker soft tissue seal around the transmucosal region can be easily broken by oral pathogens, which may stimulate serious inflammatory responses and lead to the development of peri-implant mucositis. Without timely treatment, the curable peri-implant mucositis would evolve into irreversible peri-implantitis, finally causing the failure of implantation. Herein, this review has summarized current surface modification strategies for the transmucosal region of dental implants with improved soft tissue bonding capacities (e.g., improving surface wettability, fabricating micro/nano topographies, altering the surface chemical composition and constructing bioactive coatings). Furthermore, the surfaces with advanced soft tissue bonding abilities can be incorporated with antibacterial properties to prevent infections, and/or with immunomodulatory designs to facilitate the establishment of soft tissue seal. Finally, we proposed future research orientations for developing multifunctional surfaces, thus establishing a firm soft tissue seal at the transmucosal region and achieving the long-term predictability of dental implants.
Collapse
Affiliation(s)
- Siqi Jin
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yameng Yu
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Ting Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Daping Xie
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-2 Kumamoto, 860-8555, Japan
| | - Chunming Wang
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Dandan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| |
Collapse
|
12
|
Jayasree A, Liu C, Salomon C, Ivanovski S, Gulati K, Han P. Microvesicle-eluting nano-engineered implants influence inflammatory response of keratinocytes. Drug Deliv Transl Res 2024; 14:3371-3384. [PMID: 37985540 PMCID: PMC11499444 DOI: 10.1007/s13346-023-01457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/22/2023]
Abstract
Besides enhancing osseo- and soft tissue integration, modulating inflammation at the implant site is also crucial for dental implant success. Uncontrolled peri-implant inflammation can cause significant loss of surrounding tissue and implant failure. It was recently shown that microvesicles (MVs), a less-studied type of extracellular vesicles, play a crucial role in cell-to-cell communication and may modulate angiogenesis and inflammatory response. The effect of MVs on regulating inflammation at an implant site, however, remains unexplored. In the current study, MVs were isolated and characterised from human primary gingival fibroblasts (hGFs) and loaded within titania nanotubes (TNTs, fabricated via anodisation on 3D Ti wire implants) towards their local release. The modified implants were characterised using SEM and confocal imaging to confirm the loading and local release of MVs from TNTs. In vitro studies demonstrated the internalisation of hGFs-MVs by human gingival keratinocytes (OKF6/TERT2 cell line), which caused a significant reduction in the production of pro-inflammatory cytokines. The results support MVs-releasing TNTs as a promising implant surface modification strategy to reduce inflammation, paving the way for further advancements in therapeutic dental implants.
Collapse
Affiliation(s)
- Anjana Jayasree
- School of Dentistry, The University of Queensland, Herston, QLD, 4006, Australia
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), Herston, QLD, 4006, Australia
| | - Chun Liu
- School of Dentistry, The University of Queensland, Herston, QLD, 4006, Australia
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), Herston, QLD, 4006, Australia
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Sašo Ivanovski
- School of Dentistry, The University of Queensland, Herston, QLD, 4006, Australia.
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), Herston, QLD, 4006, Australia.
| | - Karan Gulati
- School of Dentistry, The University of Queensland, Herston, QLD, 4006, Australia.
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), Herston, QLD, 4006, Australia.
| | - Pingping Han
- School of Dentistry, The University of Queensland, Herston, QLD, 4006, Australia.
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), Herston, QLD, 4006, Australia.
| |
Collapse
|
13
|
Sari C, Akgul S, Bala O. Does different application modes of universal adhesives with universal resin composites affect the microleakage in class V cavities? An in vitro study. BMC Oral Health 2024; 24:1367. [PMID: 39533286 PMCID: PMC11559148 DOI: 10.1186/s12903-024-05138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
AIM Composite restorations often have gingival margins near the cemento-enamel junction (CEJ), where the microleakage of these margins can significantly contribute to the restoration failure, especially in the cervical lesions. It is important to determine the microleakage is crucial, as it typically occurs through the interfacial gap between the tooth and the restoration. Various resin composites and techniques have been developed to minimize this gap and reduce the risk of microleakage. The aim of this in vitro study was to evaluate the levels of microleakage of different modes of a universal adhesive and two novel resin composites in restoring class V cavities in the central incisors. METHODS Sixty-six freshly extracted sound human central incisors of the similar size were randomly assigned to 2 groups (n = 33 per group) according to the brand of resin composite. Each group was further divided into 3 subgroups based on the Scotch Bond Universal (3 M ESPE, Saint Paul, MN, USA) application protocol used: (a) total etch, (b) self-etch and (c) selective etch. After composite restoration completed with Omnichroma (Tokuyama Dental Corp., Tokyo, Japan) and Filtek Universal Restorative (3 M ESPE, Saint Paul, MN, USA), each tooth was immersed in a 0.5% basic fuchsin dye solution at 37C0 for 24 h. After dye penetration, teeth were sectioned and evaluated with conventional (scoring) and digital methods (ImageJ). The intra- and inter-examiner agreement was estimated according to the Kappa statistics and the results were analyzed with the one-way ANNOVA and the Kruskal-Wallis test (p < 0.05). RESULTS The rates of microleakage of the gingival and incisal margins are statistically similar, regardless of the composite brand and the method of application of the universal adhesive. CONCLUSION The microleakage exhibited by current adhesives and resins is independent of the adhesive application mode and measurement method.
Collapse
Affiliation(s)
- Ceyda Sari
- Faculty of Dentistry, Restorative Dentistry Department, İstanbul Medipol University, TEM Avrupa Otoyolu Goztepe Cikisi No:1, Bagcilar-Istanbul, 34214, Turkey.
| | - Sinem Akgul
- Faculty of Dentistry, Restorative Dentistry Department, Gazi University, Emek-Ankara, Turkey
| | - Oya Bala
- Faculty of Dentistry, Restorative Dentistry Department, Gazi University, Emek-Ankara, Turkey
| |
Collapse
|
14
|
Alghamdi H, Leventis M, Deliberador T. Management of Infected Tissues Around Dental Implants: A Short Narrative Review. Braz Dent J 2024; 35:e246160. [PMID: 39476118 PMCID: PMC11506315 DOI: 10.1590/0103-6440202406160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/06/2024] [Indexed: 11/03/2024] Open
Abstract
Dental implants have become the most effective treatment option for replacing missing teeth, worldwide. The popularity and demand for dental implants are continually increasing. Nevertheless, its complications are undeniable. Peri-implant diseases, including peri-implant mucositis and peri-implantitis, are a multifaceted clinical condition. Therefore, it is in the best interest to optimize the management of peri-implantitis, and there are still numerous methods to treat and manage infections in the vicinity of dental implants. The main goal of peri-implantitis treatment is to arrest disease progression, eliminate infection, and reconstruct damaged tissues around the implant. The clinical evidence on treating peri-implantitis that is available in PubMed was reviewed. Additionally, we presented the most comprehensive management strategies. As a result, numerous clinical trials recommended mechanical debridement and local administration of antimicrobial agents as well as topical oxygen therapy to mitigate bacterial biofilm and manage infection. The regenerative (bone grafting) approach for the treatment of peri-implantitis is another effective method. Finally, implant surface engineering can address high antibacterial efficacy and site-specific biofilm reduction.
Collapse
Affiliation(s)
- Hamdan Alghamdi
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia. H.A
| | - Minas Leventis
- Department of Oral and Maxillofacial Surgery, Dental School, National and Kapodistrian University of Athens, Greece
| | - Tatiana Deliberador
- Latin American Institute of Dental Research and Education - ILAPEO, Curitiba/PR, Brazil
| |
Collapse
|
15
|
Zhou M, Li G, Yu J, Zhou Q, Wang K, Kang J, Wang T, Li P, Wei H. Interfacial delivery of carbon monoxide via smart titanium implant coating for enhanced soft tissue integration with switchable antibacterial and immunomodulatory properties. Bioact Mater 2024; 40:318-333. [PMID: 38978805 PMCID: PMC11228469 DOI: 10.1016/j.bioactmat.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
Soft tissue integration around titanium (Ti) implants is weaker than that around natural teeth, compromising long-term success of Ti implants. Carbon monoxide (CO) possesses distinctive therapeutic properties, rendering it as a highly promising candidate for enhancing STI. However, achieving controlled CO generation at the STI interface remains challenging. Herein, a controlled CO-releasing dual-function coating was constructed on Ti surfaces. Under near-infrared (NIR) irradiation, the designed surface could actively accelerate CO generation for antibiosis against both aerobic and anaerobic bacteria. More importantly, in the absence of NIR, the slow release of CO induces macrophage polarization from pro-inflammatory phenotype towards pro-regenerative phenotype. In a rat implantation model with induced infection, the designed surface effectively controlled the bacterial infection, alleviates accompanying inflammation and modulated immune microenvironment, leading to enhanced STI. Single-cell sequencing revealed that the coating alters the cytokine profile within the soft tissue, thereby influencing cellular functions. Differentially expressed genes in macrophages are highly enriched in the PIK3-Akt pathway. Furthermore, the cellular communication between fibroblasts and macrophages was significantly enhanced through the CXCL12/CXCL14/CXCR4 and CSF1-CSF1R ligand-receptor pair. These findings indicate that our coating showed an appealing prospect for enhancing STI around Ti implants, which would ultimately contribute to the improved long-term success of Ti implants.
Collapse
Affiliation(s)
- Minghao Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Gangfeng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE) & Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, Shaanxi, PR China
| | - Jingwei Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Qian Zhou
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE) & Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, Shaanxi, PR China
| | - Kun Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE) & Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, Shaanxi, PR China
| | - Jiaxin Kang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE) & Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, Shaanxi, PR China
- School of Flexible Electronics, Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou, 450046, PR China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing, 401135, PR China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE) & Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, Shaanxi, PR China
- School of Flexible Electronics, Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou, 450046, PR China
| | - Hongbo Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| |
Collapse
|
16
|
Rabel K, Nath AJ, Nold J, Spies BC, Wesemann C, Altmann B, Adolfsson E, Witkowski S, Tomakidi P, Steinberg T. Analysis of soft tissue integration-supportive cell functions in gingival fibroblasts cultured on 3D printed biomaterials for oral implant-supported prostheses. J Biomed Mater Res A 2024; 112:1376-1387. [PMID: 38251807 DOI: 10.1002/jbm.a.37675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
To date, it is unknown whether 3D printed fixed oral implant-supported prostheses can achieve comparable soft tissue integration (STI) to clinically established subtractively manufactured counterparts. STI is mediated among others by gingival fibroblasts (GFs) and is modulated by biomaterial surface characteristics. Therefore, the aim of the present work was to investigate the GF response of a 3D printed methacrylate photopolymer and a hybrid ceramic-filled methacrylate photopolymer for fixed implant-supported prostheses in the sense of supporting an STI. Subtractively manufactured samples made from methacrylate polymer and hybrid ceramic were evaluated for comparison and samples from yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP), comprising well documented biocompatibility, served as control. Surface topography was analyzed by scanning electron microscopy and interferometry, elemental composition by energy-dispersive x-ray spectroscopy, and wettability by contact angle measurement. The response of GFs obtained from five donors was examined in terms of membrane integrity, adhesion, morphogenesis, metabolic activity, and proliferation behavior by a lactate-dehydrogenase assay, fluorescent staining, a resazurin-based assay, and DNA quantification. The results revealed all surfaces were smooth and hydrophilic. GF adhesion, metabolic activity and proliferation were impaired by 3D printed biomaterials compared to subtractively manufactured comparison surfaces and the 3Y-TZP control, whereas membrane integrity was comparable. Within the limits of the present investigation, it was concluded that subtractively manufactured surfaces are superior compared to 3D printed surfaces to support STI. For the development of biologically optimized 3D printable biomaterials, consecutive studies will focus on the improvement of cytocompatibility and the synthesis of STI-relevant extracellular matrix constituents.
Collapse
Affiliation(s)
- Kerstin Rabel
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Amélie Joséphine Nath
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julian Nold
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Benedikt C Spies
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Wesemann
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Brigitte Altmann
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- G.E.R.N Research Center for Tissue Replacement, Regeneration and Neogenesis, Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Erik Adolfsson
- Division Materials and Production-RISE Research Institutes of Sweden, Mölndal, Sweden
| | - Siegbert Witkowski
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pascal Tomakidi
- Department of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thorsten Steinberg
- Department of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Wang Y, Zhang J, Yu H, Ding N, Ma P, Zeng B. Photothermal modulation of gingival fibroblasts via polydopamine-coated zirconia: A novel approach for promoting peri-implant soft tissue integration. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101925. [PMID: 38815725 DOI: 10.1016/j.jormas.2024.101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Achieving robust soft tissue integration around dental implants is crucial for long-term clinical success, as it forms a protective biological seal against bacterial invasion. However, the soft tissue attachment to implants is relatively deficient compared to natural teeth, particularly in the connective tissue region lacking sufficient gingival fibroblasts and collagen fiber alignment. This study proposed an innovative strategy to enhance peri‑implant soft tissue integration by modulating gingival fibroblast behavior via photothermal conversion. Zirconia surfaces were coated with polydopamine (PDA), a melanin-like polymer exhibiting near-infrared (NIR) absorption for photothermal conversion. Under NIR irradiation, the PDA coating enabled mild hyperthermia (42-43 °C) on the zirconia surface. Remarkably, this mild photothermal stimulation significantly promoted human gingival fibroblast proliferation, adhesion, and collagen production compared to unmodified zirconia in vitro. By utilizing the photothermal properties of PDA coatings to modulate cellular behaviors beneficial for connective tissue formation, this approach provides a promising avenue to achieve improved soft tissue integration and long-term stability of dental implants. The findings highlight the innovative potential of combining biomaterial surface engineering with photothermal therapy for applications in implant dentistry.
Collapse
Affiliation(s)
- Yijia Wang
- School of Stomatology, Capital Medical University, Tiantan Xili No.4, Beijing 100050, PR China
| | - Jiebing Zhang
- School of Stomatology, Capital Medical University, Tiantan Xili No.4, Beijing 100050, PR China
| | - Haoyan Yu
- The First Clinical Faculty, Guangxi University of Chinese Medicine, Mingxiu East Road NO.179, Nanning 530000, PR China
| | - Ning Ding
- School of Stomatology, Capital Medical University, Tiantan Xili No.4, Beijing 100050, PR China
| | - Ping Ma
- School of Stomatology, Capital Medical University, Tiantan Xili No.4, Beijing 100050, PR China
| | - Baijin Zeng
- School of Stomatology, Capital Medical University, Tiantan Xili No.4, Beijing 100050, PR China.
| |
Collapse
|
18
|
Bressan E, Zucchelli G, Tommasato G, Pesce P, Canullo L, Grusovin MG. Consensus Report by the Italian Academy of Osseointegration on the Importance of Peri-Implant Soft Tissues. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1393. [PMID: 39336434 PMCID: PMC11433715 DOI: 10.3390/medicina60091393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: The influence of the quantity and quality of peri-implant soft tissue on implant health and long-term maintenance is controversial. This consensus aimed to assess the importance of peri-implant soft tissue by analyzing four aspects: the role of keratinized mucosa (KM), the efficacy of specific collagen matrix, the influence of abutment material, and soft-tissue thickness. Materials and Methods: Active members of the Italian Academy of Osseointegration (IAO) participated in the consensus. Four systematic reviews were conducted, and their results were discussed to provide guidelines on the importance of soft tissue around implants. The first review evaluated the effect of KM on soft-tissue health, peri-implant bone loss, and patient-related variables. The second one analyzed if there was a specific type of matrix that provided better results in terms of peri-implant buccal soft-tissue thickness and keratinized mucosa width compared to autogenous soft-tissue graft. The third review evaluated the influence of different abutment materials on the soft tissues, and the fourth assessed the effect of soft-tissue thickness on peri-implant marginal bone loss (MBL). Results and Conclusions: The agreements reached by the assembly were as follows: the presence of supra-periosteal keratinized tissue is considered to favorably influence peri-implant health and aesthetics but had no relation to preventing bone crest resorption unrelated to infection. It facilitates patient cleaning around implants and reduces patient-reported pain. The free gingival graft (FGG) is considered the best in terms of supra-periosteal KM increase. Connective tissue grafts (CTG) perform better than volume-stable collagen matrices to increase soft-tissue thickness. Collagen matrices reduce surgical time and patient morbidity and can give better camouflaging. The influence of abutment material (titanium or zirconia) on MBL remains controversial, and no conclusion could be reached on this issue. Peri-implant soft-tissue health and recession seem not to be influenced by abutment material, but data are limited to zirconia and titanium. Although this systematic review highlighted the absence of a correlation between soft-tissue thickness and MBL, the assembly failed to find a consensus on this issue.
Collapse
Affiliation(s)
- Eriberto Bressan
- Department of Neurosciences, School of Dentistry, University of Padova, Via Giustiniani 2, 35100 Padova, Italy;
| | - Giovanni Zucchelli
- Periodontology Unit, Department of Biomedical and Neuromotor Sciences, Bologna University, 40126 Bologna, Italy;
- Department of Biomedical, Surgical, and Dental Sciences, University of Milano, 20122 Milan, Italy
- Division of Prosthodontics and Implant Prosthodontics, Department of Surgical Sciences, University of Genova, Largo R. Benzi 10, 16132 Genova, Italy; (P.P.); (L.C.)
| | - Grazia Tommasato
- Department of Biomedical, Surgical, and Dental Sciences, University of Milano, 20122 Milan, Italy
| | - Paolo Pesce
- Division of Prosthodontics and Implant Prosthodontics, Department of Surgical Sciences, University of Genova, Largo R. Benzi 10, 16132 Genova, Italy; (P.P.); (L.C.)
| | - Luigi Canullo
- Division of Prosthodontics and Implant Prosthodontics, Department of Surgical Sciences, University of Genova, Largo R. Benzi 10, 16132 Genova, Italy; (P.P.); (L.C.)
| | | | | |
Collapse
|
19
|
Aktı A, Cengiz ZO, Gürses G, Serin H. Investigation of Absorbable and Non-Absorbable Multifilament Suture Materials in Terms of Strength Changes Using Chlorhexidine Mouthwash and Thermal Cycling: An In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3862. [PMID: 39124526 PMCID: PMC11314026 DOI: 10.3390/ma17153862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Sutures are natural or synthetic biomaterials utilized to hold tissues together. Following oral surgery, the surgical site and sutures are physically affected by many different factors. This study was conducted to evaluate the effect of artificial saliva (AS) and chlorhexidine mouthwash on the tensile strength of absorbable multifilament PGLA (polyglycolide-co-l-lactide) and non-absorbable multifilament silk sutures. PGLA and silk sutures, which are commonly used in oral surgery, were used to evaluate the change in strength of the sutures. A total of 352 suture samples were divided into eight equal groups (n = 44) and used for the experiments. Tensile strength was tested on days 0, 3, 7, and 14. For the silk sutures, there was a significant decrease in tensile strength in all groups at time T3 compared to T0, T1, and T2, and at times T1 and T2 compared to T0. For PGLA sutures, there was a significant decrease in all groups at time T3 compared to T0, T1, and T2. This study shows that chlorhexidine mouthwash significantly reduces suture resistance for 14 days after surgery.
Collapse
Affiliation(s)
- Ahmet Aktı
- Oral and Maxillofacial Department, Faculty of Dentistry, Selcuk University, Konya 42250, Turkey; (A.A.); (G.G.)
| | - Ziya Ozan Cengiz
- Oral and Maxillofacial Department, Faculty of Dentistry, Selcuk University, Konya 42250, Turkey; (A.A.); (G.G.)
| | - Gökhan Gürses
- Oral and Maxillofacial Department, Faculty of Dentistry, Selcuk University, Konya 42250, Turkey; (A.A.); (G.G.)
| | - Hakan Serin
- Department of Biostatistics, Selcuk University of Veterinary Medicine, Konya 42250, Turkey;
| |
Collapse
|
20
|
Yan Y, Yan Q, Cai K, Wang Z, Li Q, Zhao K, Jian Y, Jia X. Silk fibroin microgrooved zirconia surfaces improve connective tissue sealing through mediating glycolysis of fibroblasts. Mater Today Bio 2024; 27:101158. [PMID: 39081464 PMCID: PMC11287005 DOI: 10.1016/j.mtbio.2024.101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
The use of zirconia has significantly enhanced the aesthetic outcomes of implant restorations. However, peri-implantitis remains a challenge to long-term functionality of implants. Unlike the perpendicularly arranged collagen fibers in periodontal tissue, those in peri-implant tissue lie parallel to the abutment surface and contain fewer fibroblasts, making them more prone to inflammation. Studies have shown that microgroove structures on implant abutments could improve surrounding soft tissue structure. However, creating precise microgrooves on zirconia without compromising its mechanical integrity is technically challenging. In this study, we applied inkjet printing, an additive manufacturing technique, to create stable silk fibroin microgroove (SFMG) coatings of various dimensions on zirconia substrates. SFMG significantly improved the hydrophilicity of zirconia and showed good physical and chemical stability. The SFMG with 90 μm interval and 10 μm depth was optimal in promoting the proliferation, alignment, and extracellular matrix production of human gingival fibroblasts (HGFs). Moreover, the in vitro results revealed that SFMG stimulated key glycolytic enzyme gene expression in HGFs via the PI3K-AKT-mTOR pathway. Additionally, the in vivo results of histological staining of peri-abutments soft tissue showed that SFMG promoted the vertical alignment of collagen fibers relative to the abutment surface, improving connective tissue sealing around the zirconia abutment. Our results indicated that SFMG on zirconia can enhance HGF proliferation, migration and collagen synthesis by regulating glycolysis though PI3K-AKT-mTor pathway, thereby improving connective tissue sealing.
Collapse
Affiliation(s)
- Yinuo Yan
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56 Lingyuan West Road, Guangzhou, Guangdong, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Qiqian Yan
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56 Lingyuan West Road, Guangzhou, Guangdong, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Kexin Cai
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56 Lingyuan West Road, Guangzhou, Guangdong, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zhihan Wang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56 Lingyuan West Road, Guangzhou, Guangdong, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Qiulan Li
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56 Lingyuan West Road, Guangzhou, Guangdong, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ke Zhao
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56 Lingyuan West Road, Guangzhou, Guangdong, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yutao Jian
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56 Lingyuan West Road, Guangzhou, Guangdong, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaoshi Jia
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56 Lingyuan West Road, Guangzhou, Guangdong, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
21
|
Romero-Gavilán F, Arias-Mainer C, Cerqueira A, Peñarrocha-Oltra D, Bernabeu-Mira JC, García-Arnáez I, Elortza F, Muriach M, Gurruchaga M, Goñi I, Suay J. Roughness affects the response of human fibroblasts and macrophages to sandblasted abutments. Biomed Eng Online 2024; 23:68. [PMID: 39020369 PMCID: PMC11253364 DOI: 10.1186/s12938-024-01264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/03/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND A strong seal of soft-tissue around dental implants is essential to block pathogens from entering the peri-implant interface and prevent infections. Therefore, the integration of soft-tissue poses a challenge in implant-prosthetic procedures, prompting a focus on the interface between peri-implant soft-tissues and the transmucosal component. The aim of this study was to analyse the effects of sandblasted roughness levels on in vitro soft-tissue healing around dental implant abutments. In parallel, proteomic techniques were applied to study the interaction of these surfaces with human serum proteins to evaluate their potential to promote soft-tissue regeneration. RESULTS Grade-5 machined titanium discs (MC) underwent sandblasting with alumina particles of two sizes (4 and 8 μm), resulting in two different surface types: MC04 and MC08. Surface morphology and roughness were characterised employing scanning electron microscopy and optical profilometry. Cell adhesion and collagen synthesis, as well as immune responses, were assessed using human gingival fibroblasts (hGF) and macrophages (THP-1), respectively. The profiles of protein adsorption to the surfaces were characterised using proteomics; samples were incubated with human serum, and the adsorbed proteins analysed employing nLC-MS/MS. hGFs exposed to MC04 showed decreased cell area compared to MC, while no differences were found for MC08. hGF collagen synthesis increased after 7 days for MC08. THP-1 macrophages cultured on MC04 and MC08 showed a reduced TNF-α and increased IL-4 secretion. Thus, the sandblasted topography led a reduction in the immune/inflammatory response. One hundred seventy-six distinct proteins adsorbed on the surfaces were identified. Differentially adsorbed proteins were associated with immune response, blood coagulation, angiogenesis, fibrinolysis and tissue regeneration. CONCLUSIONS Increased roughness through MC08 treatment resulted in increased collagen synthesis in hGF and resulted in a reduction in the surface immune response in human macrophages. These results correlate with the changes in protein adsorption on the surfaces observed through proteomics.
Collapse
Affiliation(s)
- Francisco Romero-Gavilán
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain.
| | - Carlos Arias-Mainer
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Andreia Cerqueira
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - David Peñarrocha-Oltra
- Oral Surgery Unit, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, C/Gascó Oliag 1, Valencia, Spain
| | - Juan Carlos Bernabeu-Mira
- Oral Surgery Unit, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, C/Gascó Oliag 1, Valencia, Spain
| | - Iñaki García-Arnáez
- Departament of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - María Muriach
- Unidad Pre-Departmental de Medicina, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Mariló Gurruchaga
- Departament of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - Isabel Goñi
- Departament of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - Julio Suay
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| |
Collapse
|
22
|
Morsy MS, Hassan AAHAA, Alshawkani HA, Mattoo KA, Mathur A, Fiorillo L. Effect of Repeated Moist Heat Sterilization on Titanium Implant-Abutment Interface-An In Vitro Study. Eur J Dent 2024; 18:860-868. [PMID: 38198814 PMCID: PMC11290932 DOI: 10.1055/s-0043-1776314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
OBJECTIVES Sterilization eliminates microbial viability by decreasing the biological load, but likewise have the ability to deteriorate the mechanical properties of an implant material. This study intended to evaluate the effect of repeated moist heat sterilization on implant-abutment interface using two different implant systems. MATERIALS AND METHODS Forty screw-retained titanium implant-abutment combinations (fixture 3.5 ×10 mm, abutment 2 mm diameter), twenty each from Genesis (Aktiv Implant Systems, United States) and Bredent (SKY, Germany), were divided into four different groups (n = 10) and placed in a computer-aided diagnostic model. The abutments from each group were exposed to first and second autoclave cycle (121°C for 30 minutes), connected back to the fixture and analyzed under scanning electron microscope for marginal gap and surface roughness. RESULTS Genesis group showed higher marginal gaps on both sides (buccal/mesial [2.8 ± 0.47]; lingual/distal [2.8 ± 0.33]), while Bredent implant-abutment system (IAS) did not show any changes in marginal gaps after autoclaving. Differences within and between the group were found to be statistically significant. Surface roughness for Genesis (243.7 ± 70.30) and Bredent groups (528.9 ± 213.19) was highest at second autoclave, with Bredent implant-abutment showing higher values for surface roughness than Genesis IAS. CONCLUSION Marginal vertical gap increased with autoclaving for Genesis IAS, while Bredent implant abutments were more stable. Surface roughness increases with autoclaving for both Genesis and Bredent group of IAS.
Collapse
Affiliation(s)
- Mohamed S.M. Morsy
- Department of Prosthetic Dental Sciences, College of Dentistry, Jazan University, Jazan, KSA
| | | | - Hamed A. Alshawkani
- Department of Restorative Dental Science, College of Dentistry, Jazan University, Jazan, KSA
| | - Khurshid A. Mattoo
- Department of Prosthetic Dental Sciences, College of Dentistry, Jazan University, Jazan, KSA
| | - Ankita Mathur
- Department of Periodontology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Luca Fiorillo
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, Messina, Italy
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, Second University of Naples, Naples, Italy
| |
Collapse
|
23
|
Rogala A, Zaytseva-Zotova D, Oreja E, Barrantes A, Tiainen H. Combining QCM-D with live-cell imaging reveals the impact of serum proteins on the dynamics of fibroblast adhesion on tannic acid-functionalised surfaces. Biomater Sci 2024; 12:3345-3359. [PMID: 38767599 DOI: 10.1039/d4bm00184b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Nanocoatings based on plant polyphenols have been recently suggested as a potent strategy for modification of implant surfaces for enhancing host cell attachment and reducing bacterial colonisation. In this study we aimed to investigate how serum proteins impact the early adhesion dynamics of human gingival fibroblasts onto titanium surfaces coated with tannic acid (TA). Silicate-TA nanocoatings were formed on titanium and pre-conditioned in medium supplemented with 0, 0.1, 1 or 10% FBS for 1 hour. Dynamics of fibroblasts adhesion was studied using quartz crystal microbalance with dissipation (QCM-D). Time-lapse imaging was employed to assess cell area and motility, while immunofluorescence microscopy was used to examine cell morphology and focal adhesion formation. Our results showed that in serum-free medium, fibroblasts demonstrated enhanced and faster adhesion to TA coatings compared to uncoated titanium. Increasing the serum concentration reduced cell adhesion to nanocoatings, resulting in nearly complete inhibition at 10% FBS. This inhibition was not observed for uncoated titanium at 10% FBS, although cell adhesion was delayed and progressed slower compared to serum-free conditions. In addition, 1% FBS dramatically reduced cell adhesion on uncoated titanium. We revealed a positive relationship between changes in dissipation and changes in cell spreading area, and a negative relationship between dissipation and cell motility. In conclusion, our study demonstrated that serum decreases fibroblasts interaction with surfaces coated with TA in a concentration dependent manner. This suggests that controlling serum concentration can be used to regulate or potentially prevent fibroblasts adhesion onto TA-coated titanium surfaces.
Collapse
Affiliation(s)
- Agnes Rogala
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Postboks 1109 Blindern, 0317 Oslo, Norway.
| | - Daria Zaytseva-Zotova
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Postboks 1109 Blindern, 0317 Oslo, Norway.
| | - Enrique Oreja
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Postboks 1109 Blindern, 0317 Oslo, Norway.
| | - Alejandro Barrantes
- Clinical Oral Research Laboratory, Institute of Clinical Dentistry, University of Oslo, Norway
| | - Hanna Tiainen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Postboks 1109 Blindern, 0317 Oslo, Norway.
| |
Collapse
|
24
|
Safaei M, Mohammadi H, Beddu S, Mozaffari HR, Rezaei R, Sharifi R, Moradpoor H, Fallahnia N, Ebadi M, Md Jamil MS, Md Zain AR, Yusop MR. Surface Topography Steer Soft Tissue Response and Antibacterial Function at the Transmucosal Region of Titanium Implant. Int J Nanomedicine 2024; 19:4835-4856. [PMID: 38828200 PMCID: PMC11141758 DOI: 10.2147/ijn.s461549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/10/2024] [Indexed: 06/05/2024] Open
Abstract
Metallic dental implants have been extensively used in clinical practice due to their superior mechanical properties, biocompatibility, and aesthetic outcomes. However, their integration with the surrounding soft tissue at the mucosal region remains challenging and can cause implant failure due to the peri-implant immune microenvironment. The soft tissue integration of dental implants can be ameliorated through different surface modifications. This review discussed and summarized the current knowledge of topography-mediated immune response and topography-mediated antibacterial activity in Ti dental implants which enhance soft tissue integration and their clinical performance. For example, nanopillar-like topographies such as spinules, and spikes showed effective antibacterial activity in human salivary biofilm which was due to the lethal stretching of bacterial membrane between the nanopillars. The key findings of this review were (I) cross-talk between surface nanotopography and soft tissue integration in which the surface nanotopography can guide the perpendicular orientation of collagen fibers into connective tissue which leads to the stability of soft tissue, (II) nanotubular array could shift the macrophage phenotype from pro-inflammatory (M1) to anti-inflammatory (M2) and manipulate the balance of osteogenesis/osteoclasia, and (III) surface nanotopography can provide specific sites for the loading of antibacterial agents and metallic nanoparticles of clinical interest functionalizing the implant surface. Silver-containing nanotubular topography significantly decreased the formation of fibrous encapsulation in per-implant soft tissue and showed synergistic antifungal and antibacterial properties. Although the Ti implants with surface nanotopography have shown promising in targeting soft tissue healing in vitro and in vivo through their immunomodulatory and antibacterial properties, however, long-term in vivo studies need to be conducted particularly in osteoporotic, and diabetic patients to ensure their desired performance with immunomodulatory and antibacterial properties. The optimization of product development is another challenging issue for its clinical translation, as the dental implant with surface nanotopography must endure implantation and operation inside the dental microenvironment. Finally, the sustainable release of metallic nanoparticles could be challenging to reduce cytotoxicity while augmenting the therapeutic effects.
Collapse
Affiliation(s)
- Mohsen Safaei
- Division of Dental Biomaterials, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Advanced Dental Sciences and Technology Research Center, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Mohammadi
- Biomaterials Research Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, Penang, 14300, Malaysia
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional, Jalan IKRAM UNITEN, Kajang, Selangor, 43000, Malaysia
| | - Salmia Beddu
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional, Jalan IKRAM UNITEN, Kajang, Selangor, 43000, Malaysia
| | - Hamid Reza Mozaffari
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Razieh Rezaei
- Advanced Dental Sciences and Technology Research Center, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roohollah Sharifi
- Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hedaiat Moradpoor
- Department of Prosthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nima Fallahnia
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mona Ebadi
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| | - Mohd Suzeren Md Jamil
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| | - Ahmad Rifqi Md Zain
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, 43600, Malaysia
| | - Muhammad Rahimi Yusop
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| |
Collapse
|
25
|
Shrivas S, Samaur H, Yadav V, Boda SK. Soft and Hard Tissue Integration around Percutaneous Bone-Anchored Titanium Prostheses: Toward Achieving Holistic Biointegration. ACS Biomater Sci Eng 2024; 10:1966-1987. [PMID: 38530973 DOI: 10.1021/acsbiomaterials.3c01555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A holistic biointegration of percutaneous bone-anchored metallic prostheses with both hard and soft tissues dictates their longevity in the human body. While titanium (Ti) has nearly solved osseointegration, soft tissue integration of percutaneous metallic prostheses is a perennial problem. Unlike the firm soft tissue sealing in biological percutaneous structures (fingernails and teeth), foreign body response of the skin to titanium (Ti) leads to inflammation, epidermal downgrowth and inferior peri-implant soft tissue sealing. This review discusses various implant surface treatments/texturing and coatings for osseointegration, soft tissue integration, and against bacterial attachment. While surface microroughness by SLA (sandblasting with large grit and acid etched) and porous calcium phosphate (CaP) coatings improve Ti osseointegration, smooth and textured titania nanopores, nanotubes, microgrooves, and biomolecular coatings encourage soft tissue attachment. However, the inferior peri-implant soft tissue sealing compared to natural teeth can lead to peri-implantitis. Toward this end, the application of smart multifunctional bioadhesives with strong adhesion to soft tissues, mechanical resilience, durability, antibacterial, and immunomodulatory properties for soft tissue attachment to metallic prostheses is proposed.
Collapse
Affiliation(s)
- Sangeeta Shrivas
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Harshita Samaur
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Vinod Yadav
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Sunil Kumar Boda
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| |
Collapse
|
26
|
Rabel K, Blankenburg A, Steinberg T, Kohal RJ, Spies BC, Adolfsson E, Witkowski S, Altmann B. Gingival fibroblast response to (hybrid) ceramic implant reconstruction surfaces is modulated by biomaterial type and surface treatment. Dent Mater 2024; 40:689-699. [PMID: 38395737 DOI: 10.1016/j.dental.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/11/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVES Surface characteristics of implant reconstructions determine the gingival fibroblast (GF) response and thus soft tissue integration (STI). However, for monolithic implant reconstructions it is unknown whether the (hybrid) ceramic biomaterial type and its surface treatment affect GF response. Therefore, this investigation examined the influence of the implant reconstruction biomaterials hybrid ceramic (HC), lithium disilicate ceramic (LS), 4 and 5 mol% yttria partially stabilized zirconiumdioxide ceramics (4/5Y-PSZ) and their surface treatment - machining, polishing or glazing - on surface characteristics and GF response. METHODS After characterization of surface topography and wettability by scanning electron microscopy, interferometry and contact angle measurement, the adhesion, morphology, metabolic activity and proliferation of GFs from six donors was investigated by fluorescent staining and a resazurin-based assay at days 1, 3 and 7. Titanium (Ti) served as control. RESULTS Biomaterial type and surface treatment affected the GF response in a topography-dependent manner. Smooth polished and glazed surfaces demonstrated enhanced GF adhesion and earlier proliferation onset compared to rough machined surfaces. Due to minor differences in surface topography of polished and glazed surfaces, however, the GF response was similar for polished and glazed HC, LS, 4- and 5Y-PSZ as well as Ti. SIGNIFICANCE Within the limits of the present investigation, polishing and glazing of machined HC, LS and 4/5Y-PSZ can be recommended to support STI-relevant cell functions in GF. Since the GF response on polished and glazed HC, LS, 4- and 5Y-PSZ surfaces and the Ti control was comparable, this investigation proofed equal cytocompatibility of these surfaces in vitro.
Collapse
Affiliation(s)
- Kerstin Rabel
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center ‑ University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany.
| | - Andrea Blankenburg
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center ‑ University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Thorsten Steinberg
- Department of Oral Biotechnology, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Ralf J Kohal
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center ‑ University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Benedikt C Spies
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center ‑ University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Erik Adolfsson
- Division Materials and Production, RISE Research Institutes of Sweden, Argongatan 30, 43153 Mölndal, Sweden
| | - Siegbert Witkowski
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center ‑ University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Brigitte Altmann
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center ‑ University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; G.E.R.N Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center ‑ University of Freiburg, Faculty of Medicine, University of Freiburg, Engesserstr. 4, 79108 Freiburg, Germany
| |
Collapse
|
27
|
Omatsu K, Yamawaki I, Taguchi Y, Tsumori N, Hashimoto Y, Umeda M. Surface modification affects human gingival epithelial cell behavior on polyetheretherketone surfaces. Dent Mater J 2024; 43:191-199. [PMID: 38246630 DOI: 10.4012/dmj.2023-196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Gingival epithelial attachment to the abutment is important for the prevention of peri-implantitis. Polyetheretherketone (PEEK) has recently gained attention as an alternative material to titanium; however, it is biologically inert, which is disadvantageous for obtaining soft tissue sealing of the transmucosal part of the implant abutment. Therefore, ultraviolet (UV) irradiation, argon plasma irradiation, and buffing were selected as treatments to modify the PEEK surface. None of the treatments had any effect on the material's mechanical strength. The UV and plasma treatments did not significantly affect the surface morphology. Surface elemental analysis showed a decrease in carbon content and an increase in oxygen content and wettability for all treatments. Human gingival epithelial cell adhesion, proliferation, and the expression of adhesion proteins integrin β4 and laminin 332, were increased. Surface modification to PEEK was suggested to enhance cell activity on PEEK.
Collapse
Affiliation(s)
- Keiju Omatsu
- Department of Periodontology, School of Dentistry, Osaka Dental University
| | - Isao Yamawaki
- Department of Periodontology, School of Dentistry, Osaka Dental University
| | - Yoichiro Taguchi
- Department of Periodontology, School of Dentistry, Osaka Dental University
| | - Norimasa Tsumori
- Department of Periodontology, School of Dentistry, Osaka Dental University
| | - Yoshiya Hashimoto
- Department of Biomaterials, School of Dentistry, Osaka Dental University
| | - Makoto Umeda
- Department of Periodontology, School of Dentistry, Osaka Dental University
| |
Collapse
|
28
|
Areid N, Abushahba F, Riivari S, Närhi T. Effect of TiO 2 Abutment Coatings on Peri-Implant Soft Tissue Behavior: A Systematic Review of In Vivo Studies. Int J Dent 2024; 2024:9079673. [PMID: 38533472 PMCID: PMC10965279 DOI: 10.1155/2024/9079673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Establishing a proper soft tissue adhesion around the implant abutment is essential to prevent microbial invasion, inhibit epithelial downgrowth, and obtain an optimal healing process. This systematic review aims to evaluate the real potential of TiO2 coating on the behavior of peri-implant soft tissue health and maintenance. A specific aim was to evaluate clinically and histologically the effect of TiO2 abutment coating on epithelial and connective tissue attachment. Electronic database searches were conducted from 1990 to 2023 in MEDLINE/PubMed and the Web of Science databases. In total, 15 out of 485 publications were included. Eight studies involved humans, and seven were animal studies. Exposure time ranges from 2 days to 5 years. The peri-implant soft tissue evaluations included clinical assessment (plaque index (PI), peri-implant probing pocket depth (PPD), and bleeding on probing (BoP)), histological as well as histomorphometric analysis. The Office of Health Assessment and Translation (OHAT) Risk of Bias Rating Tool for Human and Animal Studies was used to evaluate the overall quality of the studies included in the review. The results showed some variation but remained within acceptable limits. Within the limitations of this systematic review, the present findings suggest that TiO2 coatings seem to influence soft tissue healing. TiO2-coated abutments with a roughness value between 0.2 and 0.5 μm enhance soft tissue health. Sol-gel-derived TiO2 coatings induced better soft tissue attachment than noncoated machined abutment surfaces. The anodized titanium abutments demonstrate comparable clinical and histological outcomes to conventional machined abutments. However, there was variation among the included studies concerning TiO2 coating characteristics and the measured outcomes used to evaluate the soft tissue response, and therefore, quantitative analysis was not feasible. Long-term in vivo studies with standardized soft tissue analysis and coating surface parameters are necessary before a definitive conclusion can be drawn. OSF Registration No.: 10.17605/OSF.IO/E5RQV.
Collapse
Affiliation(s)
- Nagat Areid
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku FI-20520, Finland
| | - Faleh Abushahba
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku FI-20520, Finland
- Department of Biomaterials Science and Turku Clinical Biomaterial Center-TCBC, Institute of Dentistry, University of Turku, Turku FI-20520, Finland
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Libyan International Medical University (LIMU), Benghazi 339P+62Q, Libya
| | - Sini Riivari
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku FI-20520, Finland
| | - Timo Närhi
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku FI-20520, Finland
- Wellbeing Services County of South-West Finland, Turku FI-20521, Finland
| |
Collapse
|
29
|
Deng Z, Yu L, Kuang Y, Zhou Z, Li X. Highly Ordered Nanotube-Like Microstructure on Titanium Dental Implant Surface Fabricated via Anodization Enhanced Cell Adhesion and Migration of Human Gingival Fibroblasts. Int J Nanomedicine 2024; 19:2469-2485. [PMID: 38476279 PMCID: PMC10929655 DOI: 10.2147/ijn.s448743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Background Titanium (Ti) surface with nanotubes array via anodization has been used in dental implants to enhance bone regeneration but little research was carried out to evaluate whether the presence of highly ordered or disorderly distributed nanotubes array on titanium surface would have an effect on cell behaviors of gingival fibroblasts. Methods The present study fabricated nanotubes arrays with varied topography under different constant voltage of electrochemical anodization in fluorine-containing electrolyte. Human gingival fibroblasts (HGFs) from extracted third molar were harvested and co-cultured with titanium disks with different nanotubes topography. Then cell behaviors of gingival fibroblasts including cell proliferation, adhesive morphology and cell migration were estimated to investigate the influence of titanium nanotubes on cell biology. Besides, gene and protein expression of adhesion molecule (integrin β1/β4/α6, fibronectin, intracellular adhesion molecule-1 and collagen type I) were detected to evaluate the influence of different surfaces on cell adhesion. Results Highly ordered arrays of nanotubes with pore diameter of 60 nm and 100 nm were fabricated under 30 and 40 V of anodization (TNT-30 and TNT-40) while disorderedly distributed nanotube arrays formed on the titanium surface under 50 V of anodization (TNT-50). Our results demonstrated that compared with raw titanium surface and disorderly nanotubes, surface with orderly nanotubes array increased cell area and aspect ratio, as well as cell migration ability in the early phase of cell adhesion (p<0.05). Besides, compared with raw titanium surface, gene and protein expression of adhesion molecules were upregulated in nanotubes groups to different extents, no matter whether in an orderly or disorderly array. Conclusion Within the limitations of our study, we conclude that compared with raw titanium surface, the presence of nanotubes array on titanium surface could enhance cells adhesion and cell migration in the early phase. And compared with disorderly distributed nanotubes, highly ordered nanotubes array might provide a much more favorable surface for gingival fibroblasts to achieve a tight adhesion on the materials.
Collapse
Affiliation(s)
- Zhaoming Deng
- Department of Stomatology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai City, 519000, People’s Republic of China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai City, 519000, People’s Republic of China
| | - Lerong Yu
- Department of Stomatology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai City, 519000, People’s Republic of China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai City, 519000, People’s Republic of China
| | - Yishen Kuang
- Department of Stomatology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai City, 519000, People’s Republic of China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai City, 519000, People’s Republic of China
| | - Ziyao Zhou
- Department of Stomatology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai City, 519000, People’s Republic of China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai City, 519000, People’s Republic of China
| | - Xiangwei Li
- Department of Stomatology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai City, 519000, People’s Republic of China
| |
Collapse
|
30
|
Chopra D, Guo T, Gulati K, Ivanovski S. Load, unload and repeat: Understanding the mechanical characteristics of zirconia in dentistry. Dent Mater 2024; 40:e1-e17. [PMID: 37891132 DOI: 10.1016/j.dental.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/11/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023]
Abstract
OBJECTIVES Zirconia-based dental restorations and implants are gaining attention due to their bioactivity, corrosion resistance and mechanical stability. Further, surface modification of zirconia implants has been performed at the macro-, micro- and nanoscale to augment bioactivity. While zirconia's physical and chemical characteristics have been documented, its relation to mechanical performance still needs to be explored. This extensive review aims to address this knowledge gap. METHODS This review critically compares and contrasts the findings from articles published in the domain of 'mechanical stability of zirconia\ in dentistry' based on a literature survey (Web of Science, Medline/PubMed and Scopus databases) and a review of the relevant publications in international peer-reviewed journals. Reviewing the published data, the mechanical properties of zirconia, such as fracture resistance, stress/tension, flexural strength, fatigue, and wear are detailed and discussed to understand the biomechanical compatibility of zirconia with the mechanical performance of modified zirconia in dentistry also explored. RESULTS A comprehensive insight into dental zirconia's critical fundamental mechanical characteristics and performance is presented. Further, research challenges and future directions in this domain are recommended. SIGNIFICANCE This review extends existing knowledge of zirconia's biomechanical performance and it they can be modulated to design the next generation of zirconia dental restorations and implants to withstand long-term constant loading.
Collapse
Affiliation(s)
- Divya Chopra
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia; Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), Herston, QLD 4006, Australia
| | - Tianqi Guo
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia; Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), Herston, QLD 4006, Australia
| | - Karan Gulati
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia; Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), Herston, QLD 4006, Australia.
| | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia; Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), Herston, QLD 4006, Australia.
| |
Collapse
|
31
|
Zandinejad A, Khurana S, Liang Y, Liu X. Comparative evaluation of gingival fibroblast growth on 3D-printed and milled zirconia: An in vitro study. J Prosthodont 2024; 33:54-60. [PMID: 36693242 DOI: 10.1111/jopr.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
PURPOSE The purpose of this study was to analyze the fibroblast growth and proliferation on 3D-printed zirconia in presence and absence of porosities. MATERIAL AND METHODS A total of 40 bars (8 × 4 × 3) were included in this study. Thirty 3D-printed and 10 milled zirconia samples were prepared. The 3D-printed samples had different porosities, 0% (PZ0), 20% (PZ20), and 40% (PZ40) with 10 specimens in each group. Milled zirconia samples were used as the control (MZ). Rat gingival fibroblasts were cultured for 48 h, and the proliferation of fibroblasts on each sample in each group (n = 10) was determined by MTT assays. The differences among the four groups were compared by one-way ANOVA. To test the significance of the observed differences between two groups, an unpaired Student's t-test was applied. The significance level was set at p < 0.05. Qualitative analysis for the cell culture was performed using scanning electron microscopy. RESULTS One-way ANOVA showed that the numbers of the fibroblasts among the four groups had a statistical difference. Post hoc Bonferroni test revealed that there was no significant difference between PZ0 and MZ; however, all other groups and among groups were significantly different. CONCLUSIONS Fibroblasts had a better affinity toward the MZ and PZ0 in a short period of cell culture time.
Collapse
Affiliation(s)
- Amirali Zandinejad
- Implant Dentistry Associations of Arlington, Arlington, Texas, USA
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, Texas, USA
| | - Saumya Khurana
- Department of Biomedical Science, College of Dentistry, Texas A&M University, Dallas, Texas, USA
| | - Yongxi Liang
- Department of Biomedical Science, College of Dentistry, Texas A&M University, Dallas, Texas, USA
| | - Xiaohua Liu
- Department of Biomedical Science, College of Dentistry, Texas A&M University, Dallas, Texas, USA
| |
Collapse
|
32
|
Shen L, Hu J, Yuan Y, Wang X, Jiang Q. Photothermal-promoted multi-functional gallic acid grafted chitosan hydrogel containing tannic acid miniaturized particles for peri-implantitis. Int J Biol Macromol 2023; 253:127366. [PMID: 37827419 DOI: 10.1016/j.ijbiomac.2023.127366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Peri-implantitis, a leading cause of implant failure, currently lacks effective therapeutic strategies. Given that bacterial infection and reactive oxygen species overabundance serve as primary pathogenic and triggering factors, respectively, an adhesive hydrogel has been created for in-situ injection. The hydrogel is a gallic acid-grafted chitosan (CS-GA) hydrogel containing tannic acid miniaturized particles (TAMP). This provides antibacterial and antioxidant properties. Therefore, this study aims to evaluate the potential role of this hydrogel in preventing and treating peri-implantitis via several experiments. It undergoes rapid formation within a span of over 20 s via an oxidative crosslinking reaction catalyzed by horseradish peroxidase and hydrogen peroxide, demonstrating robust adhesion, superior cell compatibility, and a sealing effect. Furthermore, the incorporation of TAMP offer photothermal properties to the hydrogel, enabling it to enhance the viability, migration, and antioxidant activity of co-cultured human gingival fibroblasts when subjected 0.5 W/cm2 808 nm near-infrared (NIR) irradiation. At higher irradiation power, the hydrogel exhibits progressive improvements in its antibacterial efficacy against Porphyromonas gingivalis and Fusobacterium nucleatum. It attains rates of 83.11 ± 5.42 % and 83.48 ± 6.855 %, respectively, under 1 W/cm2 NIR irradiation. In summary, the NIR-controlled CS-GA/TAMP hydrogel, exhibiting antibacterial and antioxidant properties, represents a promising approach for the prophylaxis and management of peri-implantitis.
Collapse
Affiliation(s)
- Lipei Shen
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Jiangqi Hu
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Yafei Yuan
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Xiaoyu Wang
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Qingsong Jiang
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
33
|
Borges GA, Costa RC, Nagay BE, Sacramento CM, Ruiz KGS, Solano de Almeida L, Rossino LS, Fortulan CA, Rangel EC, Barão VAR, Mesquita MF. Targeting Biomechanical Endurance of Dental-Implant Abutments Using a Diamond-Like Carbon Coating. ACS APPLIED BIO MATERIALS 2023; 6:5630-5643. [PMID: 38052058 DOI: 10.1021/acsabm.3c00802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Abutment components (i.e., fixtures associated with oral implants) are essentially made of titanium (Ti), which is continuously exposed to the hash oral environment, resulting in scratching. Thus, such components need to be protected, and surface treatments are viable methods for overcoming long-term damage. Diamond-like carbon (DLC), an excellent protective material, is an alternative surface-treatment material for Ti abutments. Here, we demonstrate that a silicon interlayer for DLC film growth and the pulsed-direct current plasma-enhanced chemical vapor deposition (DC-PECVD) method enables the deposition of an enhanced protective DLC film. As a result, the DLC film demonstrated a smooth topography with a compact surface. Furthermore, the DLC film enhanced the mechanical (load-displacement, hardness, and elastic modulus) and tribological properties of Ti as well as increased its corrosion resistance (16-fold), which surpassed that of a bare Ti substrate. The biofilm formed (Streptococcus sanguinis) after 24 h exhibited an equal bacterial load (∼7 Log colony-forming units) for both the groups (Ti and DLC). In addition, the DLC film exhibited good cytocompatibility, owing to its noncytotoxicity toward human gingival fibroblast cells. Therefore, DLC deposition via DC-PECVD can be considered to be a promising protective and cytocompatible alternative for developing implant abutments with enhanced mechanical, tribological, and electrochemical properties.
Collapse
Affiliation(s)
- Guilherme Almeida Borges
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontics, Avenida Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Raphael Cavalcante Costa
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontics, Avenida Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna Egumi Nagay
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontics, Avenida Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Catharina Marques Sacramento
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontics, Avenida Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Karina Gonzales Silverio Ruiz
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontics, Avenida Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Larissa Solano de Almeida
- Federal University of São Carlos (UFSCar) - Campus Sorocaba, Postgraduate Program in Materials Science, Rodovia João Leme dos Santos, Km 110, Sorocaba, São Paulo 18052-780, Brazil
| | - Luciana Sgarbi Rossino
- Federal University of São Carlos (UFSCar) - Campus Sorocaba, Postgraduate Program in Materials Science, Rodovia João Leme dos Santos, Km 110, Sorocaba, São Paulo 18052-780, Brazil
- State Center of Technological Education "Paula Souza" (CEETEPS), Sorocaba Technology College - Campus Sorocaba (Fatec Sorocaba), Avenida Engenheiro Carlos Reinaldo Mendes, 2015, Sorocaba, São Paulo 18013-280, Brazil
| | - Carlos Alberto Fortulan
- University of São Paulo (USP), Department of Mechanical Engineering, Trabalhador São Carlense 400, São Carlos, São Paulo 13566-590, Brazil
| | - Elidiane Cipriano Rangel
- São Paulo State University (UNESP), Institute of Science and Technology, Laboratory of Technological Plasmas, Avenida Três de Março, 51, Sorocaba, São Paulo 18087-180, Brazil
| | - Valentim A R Barão
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontics, Avenida Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Marcelo Ferraz Mesquita
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontics, Avenida Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| |
Collapse
|
34
|
Liu Z, Du Y, Xu S, Li M, Lu X, Tian G, Ye J, Zhao B, Wei P, Wang Y. Histatin 1-modified SIS hydrogels enhance the sealing of peri-implant mucosa to prevent peri-implantitis. iScience 2023; 26:108212. [PMID: 37965149 PMCID: PMC10641262 DOI: 10.1016/j.isci.2023.108212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Dental implants make it possible to replace teeth in more sophisticated ways. Nevertheless, peri-implantitis is one of the leading causes of implant failure, which can be avoided with proper soft tissue sealing. The aim of this study was to achieve the promotion of the synthesis of peri-implant epithelial hemidesmosome through Histatin 1 and porcine small intestinal submucosa (SIS) hydrogel to form a good peri-implant seal. The results show that hydrogel can improve the biological barrier function around implants by combining antibacterial, promoting soft tissue healing and promoting epithelial bonding. This means that the morphology and anti-infection ability of soft tissue are enhanced, which ensures the long-term stability of the implant.SIS-Hst1 hydrogel has certain clinical application in the prevention and early treatment of peri-implantitis. In conclusion, Hst1-SIS hydrogel, as a local administration system, provides experimental evidence for the prevention of peri-implant disease.
Collapse
Affiliation(s)
- Zihao Liu
- Zhongnuo Dental Hospital, Tianjin Nankai District, Tianjin 300101, China
| | - Yaqi Du
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| | - Shendan Xu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| | - Minting Li
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| | - Xuemei Lu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| | - Guangjie Tian
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| | - Jing Ye
- Department of Stomatology, Tianjin Hospital, Tianjin 300211, China
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co., Ltd., Beijing 102600, China
| | - Pengfei Wei
- Beijing Biosis Healing Biological Technology Co., Ltd., Beijing 102600, China
| | - Yonglan Wang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| |
Collapse
|
35
|
Gulati K, Adachi T. Profiling to Probing: Atomic force microscopy to characterize nano-engineered implants. Acta Biomater 2023; 170:15-38. [PMID: 37562516 DOI: 10.1016/j.actbio.2023.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Surface modification of implants in the nanoscale or implant nano-engineering has been recognized as a strategy for augmenting implant bioactivity and achieving long-term implant success. Characterizing and optimizing implant characteristics is crucial to achieving desirable effects post-implantation. Modified implant enables tailored, guided and accelerated tissue integration; however, our understanding is limited to multicellular (bulk) interactions. Finding the nanoscale forces experienced by a single cell on nano-engineered implants will aid in predicting implants' bioactivity and engineering the next generation of bioactive implants. Atomic force microscope (AFM) is a unique tool that enables surface characterization and understanding of the interactions between implant surface and biological tissues. The characterization of surface topography using AFM to gauge nano-engineered implants' characteristics (topographical, mechanical, chemical, electrical and magnetic) and bioactivity (adhesion of cells) is presented. A special focus of the review is to discuss the use of single-cell force spectroscopy (SCFS) employing AFM to investigate the minute forces involved with the adhesion of a single cell (resident tissue cell or bacterium) to the surface of nano-engineered implants. Finally, the research gaps and future perspectives relating to AFM-characterized current and emerging nano-engineered implants are discussed towards achieving desirable bioactivity performances. This review highlights the use of advanced AFM-based characterization of nano-engineered implant surfaces via profiling (investigating implant topography) or probing (using a single cell as a probe to study precise adhesive forces with the implant surface). STATEMENT OF SIGNIFICANCE: Nano-engineering is emerging as a surface modification platform for implants to augment their bioactivity and achieve favourable treatment outcomes. In this extensive review, we closely examine the use of Atomic Force Microscopy (AFM) to characterize the properties of nano-engineered implant surfaces (topography, mechanical, chemical, electrical and magnetic). Next, we discuss Single-Cell Force Spectroscopy (SCFS) via AFM towards precise force quantification encompassing a single cell's interaction with the implant surface. This interdisciplinary review will appeal to researchers from the broader scientific community interested in implants and cell adhesion to implants and provide an improved understanding of the surface characterization of nano-engineered implants.
Collapse
Affiliation(s)
- Karan Gulati
- Institute for Life and Medical Sciences, Kyoto University, Sakyo, Kyoto 606-8507, Japan; The University of Queensland, School of Dentistry, Herston QLD 4006, Australia.
| | - Taiji Adachi
- Institute for Life and Medical Sciences, Kyoto University, Sakyo, Kyoto 606-8507, Japan
| |
Collapse
|
36
|
Mukaddam K, Astasov-Frauenhoffer M, Fasler-Kan E, Ruggiero S, Alhawasli F, Kisiel M, Meyer E, Köser J, Bornstein MM, Wagner RS, Kühl S. Piranha-etched titanium nanostructure reduces biofilm formation in vitro. Clin Oral Investig 2023; 27:6187-6197. [PMID: 37653076 PMCID: PMC10560173 DOI: 10.1007/s00784-023-05235-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
OBJECTIVES Nano-modified surfaces for dental implants may improve gingival fibroblast adhesion and antibacterial characteristics through cell-surface interactions. The present study investigated how a nanocavity titanium surface impacts the viability and adhesion of human gingival fibroblasts (HGF-1) and compared its response to Porphyromonas gingivalis with those of marketed implant surfaces. MATERIAL AND METHODS Commercial titanium and zirconia disks, namely, sandblasted and acid-etched titanium (SLA), sandblasted and acid-etched zirconia (ZLA), polished titanium (PT) and polished zirconia (ZrP), and nanostructured disks (NTDs) were tested. Polished titanium disks were etched with a 1:1 combination of 98% H2SO4 and 30% H2O2 (piranha etching) for 5 h at room temperature to produce the NTDs. Atomic force microscopy was used to measure the surface topography, roughness, adhesion force, and work of adhesion. MTT assays and immunofluorescence staining were used to examine cell viability and adhesion after incubation of HGF-1 cells on the disk surfaces. After incubation with P. gingivalis, conventional culture, live/dead staining, and SEM were used to determine the antibacterial properties of NTD, SLA, ZLA, PT, and ZrP. RESULTS Etching created nanocavities with 10-20-nm edge-to-edge diameters. Chemical etching increased the average surface roughness and decreased the surface adherence, while polishing and flattening of ZrP increased adhesion. However, only the NTDs inhibited biofilm formation and bacterial adherence. The NTDs showed antibacterial effects and P. gingivalis vitality reductions. The HGF-1 cells demonstrated greater viability on the NTDs compared to the controls. CONCLUSION Nanocavities with 10-20-nm edge-to-edge diameters on titanium disks hindered P. gingivalis adhesion and supported the adhesion of gingival fibroblasts when compared to the surfaces of currently marketed titanium or zirconia dental implants. CLINICAL RELEVANCE This study prepared an effective antibacterial nanoporous surface, assessed its effects against oral pathogens, and demonstrated that surface characteristics on a nanoscale level influenced oral pathogens and gingival fibroblasts. CLINICAL TRIAL REGISTRATION not applicable.
Collapse
Affiliation(s)
- Khaled Mukaddam
- Department of Oral Surgery, University Center for Dental Medicine Basel (UZB), University of Basel, Mattenstrasse 40, 4058, Basel, Switzerland.
| | - Monika Astasov-Frauenhoffer
- Department Research, University Center for Dental Medicine Basel (UZB), University of Basel, Mattenstrasse 40, 4058, Basel, Switzerland
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern and Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
| | - Sabrina Ruggiero
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern and Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
| | - Farah Alhawasli
- Department of Biomedicine University of Basel and University Hospital Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Marcin Kisiel
- Department of Physics, University of Basel, Klingelbergstraße 82, 4056, Basel, Switzerland
| | - Ernst Meyer
- Department of Physics, University of Basel, Klingelbergstraße 82, 4056, Basel, Switzerland
| | - Jochen Köser
- Institut für Chemie und Bioanalytik, Hochschule für Life Sciences, Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Michael M Bornstein
- Department of Oral Health & Medicine, University Center for Dental Medicine Basel (UZB), University of Basel, Mattenstrasse 40, 4058, Basel, Switzerland
| | - Raphael S Wagner
- Institut Straumann AG, Peter-Merian-Weg 12, 4052, Basel, Switzerland
| | - Sebastian Kühl
- Department of Oral Surgery, University Center for Dental Medicine Basel (UZB), University of Basel, Mattenstrasse 40, 4058, Basel, Switzerland
| |
Collapse
|
37
|
Zhai S, Tian Y, Shi X, Liu Y, You J, Yang Z, Wu Y, Chu S. Overview of strategies to improve the antibacterial property of dental implants. Front Bioeng Biotechnol 2023; 11:1267128. [PMID: 37829564 PMCID: PMC10565119 DOI: 10.3389/fbioe.2023.1267128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023] Open
Abstract
The increasing number of peri-implant diseases and the unsatisfactory results of conventional treatment are causing great concern to patients and medical staff. The effective removal of plaque which is one of the key causes of peri-implant disease from the surface of implants has become one of the main problems to be solved urgently in the field of peri-implant disease prevention and treatment. In recent years, with the advancement of materials science and pharmacology, a lot of research has been conducted to enhance the implant antimicrobial properties, including the addition of antimicrobial coatings on the implant surface, the adjustment of implant surface topography, and the development of new implant materials, and significant progress has been made in various aspects. Antimicrobial materials have shown promising applications in the prevention of peri-implant diseases, but meanwhile, there are some shortcomings, which leads to the lack of clinical widespread use of antimicrobial materials. This paper summarizes the research on antimicrobial materials applied to implants in recent years and presents an outlook on the future development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shunli Chu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
38
|
Baus-Domínguez M, Maza-Solano S, Vázquez-Pachón C, Flores-Cerero M, Torres-Lagares D, Serrera-Figallo MÁ, Macías-García L. Behaviour of the Peri-Implant Soft Tissue with Different Rehabilitation Materials on Implants. Polymers (Basel) 2023; 15:3321. [PMID: 37571215 PMCID: PMC10422441 DOI: 10.3390/polym15153321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
(1) Background: Mucointegration seems to gain interest when talking about success in the maintenance of dental implants. As we well know, collagen fibres cannot be inserted due to the lack of root structure on the implant surface, so the structural integration of peri-implant tissues that provide a firm seal around implants seems to be of interest when it comes to ensuring the survival of dental implants. To achieve a good epithelial barrier, the physicochemical characteristics of the surfaces of the restorative materials are of vital importance; therefore, the objective of this study is to analyse the histological behaviour of the peri-implant soft tissues in three different restorative materials. (2) Methods: Histological analysis of biopsied peri-implant keratinised mucosa, inflammatory epithelium and connective tissue in contact with a reinforced composite (BRILLIANT Crios), a cross-linked polymethylmethacrylate (TELIO CAD), and a hybrid ceramic (Vita Enamic), restored on a customised Atlantis-type abutment (Dentsply Sirona) between 60 and 180 days after restoration. (3) Results: A greater number of cells per mm2 of keratinised epithelium is observed in the reinforced composite, which could indicate greater surface roughness with greater inflammatory response. In this way, the greater number of lymphocytes and the lateral cellular composition of the inflammatory cells confirm the greater inflammatory activity towards that material. The best material to rehabilitate was hybrid ceramic, as it shows a better cellular response. (4) Conclusions: Knowing the limitations of the proposed study, despite the fact that greater inflammation is observed in the reinforced composite relative to the other materials studied, no statistically significant differences were found.
Collapse
Affiliation(s)
- María Baus-Domínguez
- Instituto de Biomedicina de Sevilla, IBiS/Departamento de Estomatología, Facultad de Odontología, Universidad de Sevilla, C/Avicena S/N, 41009 Sevilla, Spain; (M.B.-D.); (S.M.-S.); (C.V.-P.); (M.F.-C.); (D.T.-L.)
| | - Serafín Maza-Solano
- Instituto de Biomedicina de Sevilla, IBiS/Departamento de Estomatología, Facultad de Odontología, Universidad de Sevilla, C/Avicena S/N, 41009 Sevilla, Spain; (M.B.-D.); (S.M.-S.); (C.V.-P.); (M.F.-C.); (D.T.-L.)
| | - Celia Vázquez-Pachón
- Instituto de Biomedicina de Sevilla, IBiS/Departamento de Estomatología, Facultad de Odontología, Universidad de Sevilla, C/Avicena S/N, 41009 Sevilla, Spain; (M.B.-D.); (S.M.-S.); (C.V.-P.); (M.F.-C.); (D.T.-L.)
| | - Marta Flores-Cerero
- Instituto de Biomedicina de Sevilla, IBiS/Departamento de Estomatología, Facultad de Odontología, Universidad de Sevilla, C/Avicena S/N, 41009 Sevilla, Spain; (M.B.-D.); (S.M.-S.); (C.V.-P.); (M.F.-C.); (D.T.-L.)
| | - Daniel Torres-Lagares
- Instituto de Biomedicina de Sevilla, IBiS/Departamento de Estomatología, Facultad de Odontología, Universidad de Sevilla, C/Avicena S/N, 41009 Sevilla, Spain; (M.B.-D.); (S.M.-S.); (C.V.-P.); (M.F.-C.); (D.T.-L.)
| | - María-Ángeles Serrera-Figallo
- Instituto de Biomedicina de Sevilla, IBiS/Departamento de Estomatología, Facultad de Odontología, Universidad de Sevilla, C/Avicena S/N, 41009 Sevilla, Spain; (M.B.-D.); (S.M.-S.); (C.V.-P.); (M.F.-C.); (D.T.-L.)
| | - Laura Macías-García
- Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez-Pizjuán S/N, 41009 Sevilla, Spain
| |
Collapse
|
39
|
Li D, Yang L, Deng H, Li T, Zhang Z. Optimized titanium dioxide nanotubes for dental implants: Estimation of mechanical properties and effects on the biological behaviors of human gingival fibroblasts and oral bacteria. J Mech Behav Biomed Mater 2023; 144:105988. [PMID: 37406484 DOI: 10.1016/j.jmbbm.2023.105988] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
The long-term successes of implant restorations rely on both appropriate osseointegration and robust soft tissue integration (STI). Numerous studies have reported that titanium dioxide nanotube (TNT) arrays formed by electrochemical anodization (EA) can promote early osteogenesis, but the mechanical stability of such modifications is often ignored and remains underexplored. In addition, relatively little research has been done on their effects on soft tissues integration. In this study, we developed mechanically robust TNT arrays using an optimized EA system. Subsequently, we immobilized a peptide, specifically D-amino K122-4, onto the anodized TNTs via polydopamine (PDA) films to enhance their mechanical properties. Surface morphology and composition were characterized by scanning electron microscopy (SEM), atomic force microscopy, and X-ray photoelectron spectroscopy. Mechanical properties, including the elastic modulus and hardness of TNTs modified Ti surfaces, were assessed using the nano-indention test. The adhesive strength of TNTs films to the substrate was measured using the nano scratch test. Furthermore, we evaluated the adhesion, spreading, and proliferation of human gingival fibroblasts (HGFs) and periodontal pathogenic bacteria such as Streptococcus mutans (S.m) and F. nucleatum (F.n) on the surface. Results showed that the elastic modulus, hardness, and adhesive strength of anodized TNTs were significantly enhanced by the incorporation of the D-amino K122-4 peptide. Live-dead staining and SEM observation suggested a decreased surface colonization by both bacterial species. The antibacterial rate of S.m and F. n was 81.5% and 71.7%, respectively, evaluated by colony counting method. Additionally, results of CCK8 assay showed that modified TNTs slightly stimulated HGFs attachment and proliferation while producing enhanced fluorescence of integrin β1 and F-actin, confirmed by laser confocal microscopy observation. Thus, D-amino K122-4 biofunctionalized TNTs present significantly improved mechanical properties, and the mechanically robust structures modulate HGFs proliferation and alignment, resulting in decreased bacteria growth. This novel strategy has the potential to create a surface coating for implants that exhibits superior mechanical robustness and enhanced surface-to-implant interactions.
Collapse
Affiliation(s)
- Dan Li
- Department of Prosthodontics, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| | - Lian Yang
- Department of Prosthodontics, School of Stomatology, Capital Medical University, Beijing, People's Republic of China; Department of Stomatology, Electric Power Teaching Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Hongyan Deng
- Department of Prosthodontics, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| | - Tao Li
- Department of Prosthodontics, School of Stomatology, Capital Medical University, Beijing, People's Republic of China.
| | - Zhenting Zhang
- Department of Prosthodontics, School of Stomatology, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
40
|
Heras‐Parets A, Ginebra M, Manero JM, Guillem‐Marti J. Guiding Fibroblast Activation Using an RGD-Mutated Heparin Binding II Fragment of Fibronectin for Gingival Titanium Integration. Adv Healthc Mater 2023; 12:e2203307. [PMID: 37100430 PMCID: PMC11468578 DOI: 10.1002/adhm.202203307] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/15/2023] [Indexed: 04/28/2023]
Abstract
The formation of a biological seal around the neck of titanium (Ti) implants is critical for ensuring integration at the gingival site and for preventing bacterial colonization that may lead to periimplantitis. This process is guided by activated fibroblasts, named myofibroblasts, which secrete extracellular matrix (ECM) proteins and ECM-degrading enzymes resolving the wound. However, in some cases, Ti is not able to attract and activate fibroblasts to a sufficient extent, which may compromise the success of the implant. Fibronectin (FN) is an ECM component found in wounds that is able to guide soft tissue healing through the adhesion of cells and attraction of growth factors (GFs). However, clinical use of FN functionalized Ti implants is problematic because FN is difficult to obtain, and is sensitive to degradation. Herein, functionalizing Ti with a modified recombinant heparin binding II (HBII) domain of FN, mutated to include an Arg-Gly-Asp (RGD) sequence for promoting both fibroblast adhesion and GF attraction, is aimed at. The HBII-RGD domain is able to stimulate fibroblast adhesion, spreading, proliferation, migration, and activation to a greater extent than the native HBII, reaching values closer to those of full-length FN suggesting that it might induce the formation of a biological sealing.
Collapse
Affiliation(s)
- Aina Heras‐Parets
- BiomaterialsBiomechanics and Tissue Engineering groupDepartment of Materials Science and EngineeringUniversitat Politècnica de Catalunya – BarcelonaTech (UPC)Av. Eduard Maristany 16Barcelona08930Spain
- Barcelona Research Center in Multiscale Science and EngineeringUPCAv. Eduard Maristany 16Barcelona08930Spain
| | - Maria‐Pau Ginebra
- BiomaterialsBiomechanics and Tissue Engineering groupDepartment of Materials Science and EngineeringUniversitat Politècnica de Catalunya – BarcelonaTech (UPC)Av. Eduard Maristany 16Barcelona08930Spain
- Barcelona Research Center in Multiscale Science and EngineeringUPCAv. Eduard Maristany 16Barcelona08930Spain
- Institute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)Barcelona08028Spain
| | - Jose Maria Manero
- BiomaterialsBiomechanics and Tissue Engineering groupDepartment of Materials Science and EngineeringUniversitat Politècnica de Catalunya – BarcelonaTech (UPC)Av. Eduard Maristany 16Barcelona08930Spain
- Barcelona Research Center in Multiscale Science and EngineeringUPCAv. Eduard Maristany 16Barcelona08930Spain
| | - Jordi Guillem‐Marti
- BiomaterialsBiomechanics and Tissue Engineering groupDepartment of Materials Science and EngineeringUniversitat Politècnica de Catalunya – BarcelonaTech (UPC)Av. Eduard Maristany 16Barcelona08930Spain
- Barcelona Research Center in Multiscale Science and EngineeringUPCAv. Eduard Maristany 16Barcelona08930Spain
| |
Collapse
|
41
|
Gulati K, Chopra D, Kocak-Oztug NA, Verron E. Fit and forget: The future of dental implant therapy via nanotechnology. Adv Drug Deliv Rev 2023; 199:114900. [PMID: 37263543 DOI: 10.1016/j.addr.2023.114900] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 06/03/2023]
Abstract
Unlike orthopedic implants, dental implants require the orchestration of both osseointegration at the bone-implant interface and soft-tissue integration at the transmucosal region in a complex oral micro-environment with ubiquitous pathogenic bacteria. This represents a very challenging environment for early acceptance and long-term survival of dental implants, especially in compromised patient conditions, including aged, smoking and diabetic patients. Enabling advanced local therapy from the surface of titanium-based dental implants via novel nano-engineering strategies is emerging. This includes anodized nano-engineered implants eluting growth factors, antibiotics, therapeutic nanoparticles and biopolymers to achieve maximum localized therapeutic action. An important criterion is balancing bioactivity enhancement and therapy (like bactericidal efficacy) without causing cytotoxicity. Critical research gaps still need to be addressed to enable the clinical translation of these therapeutic dental implants. This review informs the latest developments, challenges and future directions in this domain to enable the successful fabrication of clinically-translatable therapeutic dental implants that would allow for long-term success, even in compromised patient conditions.
Collapse
Affiliation(s)
- Karan Gulati
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia.
| | - Divya Chopra
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia
| | - Necla Asli Kocak-Oztug
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia; Istanbul University, Faculty of Dentistry, Department of Periodontology, 34116 Istanbul, Turkey
| | - Elise Verron
- Nantes Université, CNRS, CEISAM, UMR 6230, 44000 Nantes, France
| |
Collapse
|
42
|
Alevizakos V, Mosch R, von See C. Influence of Multiple Used Implant Drills on Their Cutting Performance and Fracture Resistance. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5271. [PMID: 37569975 PMCID: PMC10420324 DOI: 10.3390/ma16155271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
This study aimed to analyze the influence of multiple uses of zirconia implant drills on their cutting performance and bending strength. The hypothesis was that drill usage and sterilization cycles would not affect drilling time or flexural strength. Sixty zirconia twist drills from Z-Systems were used to drill in the angulus mandibulae region of fresh porcine jaws. The drills were divided into four groups based on the cycle count, and the drilling time was measured. Bending strength tests were conducted using a universal testing machine, and statistical analysis was performed using ANOVA tests. The results showed that drilling times followed a normal distribution, and significant differences were observed in drilling times between group 1 and the other groups for the pilot drill. However, no significant differences were found for ø3.75 mm and ø4.25 mm drills, and drilling times also varied significantly among different drill diameters, regardless of the cycle count. Flexural strength did not significantly differ among drill diameters or sterilization cycles. Overall, using and sterilizing zirconia implant drills had no significant impact on drilling time or flexural strength. Nevertheless, drilling times did vary depending on the diameter of the drill. These findings provide valuable insights into the performance and durability of zirconia implant drills, contributing to the optimization of dental implant procedures.
Collapse
Affiliation(s)
- Vasilios Alevizakos
- Research Center for Digital Technologies in Dentistry and CAD/CAM, Danube Private University, Steiner Landstrasse 124, 3500 Krems an der Donau, Austria; (R.M.); (C.v.S.)
| | | | | |
Collapse
|
43
|
Hussain B, Khan S, Agger AE, Ellingsen JE, Lyngstadaas SP, Bueno J, Haugen HJ. A Comparative Investigation of Chemical Decontamination Methods for In-Situ Cleaning of Dental Implant Surfaces. J Funct Biomater 2023; 14:394. [PMID: 37623639 PMCID: PMC10455251 DOI: 10.3390/jfb14080394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Surface chemistry evaluation is crucial in assessing the efficacy of chemical decontamination products for titanium implants. This study aimed to investigate the effectiveness of chemical decontamination solutions in cleaning a contaminated dental implant surface and to evaluate the potential of combining Pluronic gel with hydrogen peroxide (NuBone®Clean) by evaluating pellicle disruption and re-formation on implant surfaces. In addition, ensuring safety with in vitro and human testing protocols. X-ray Photoelectron Spectroscopy (XPS) was utilised for surface analysis. All the tested gels had some effect on the surface cleanness except for PrefGel®. Among the tested chemical decontamination candidates, NuBone®Clean demonstrated effectiveness in providing a cleaner titanium surface. Furthermore, none of the tested chemical agents exhibited cytotoxic effects, and the safety assessment showed no adverse events. The results of this study highlight the significance of conducting comprehensive evaluations, encompassing safety and efficacy, before introducing new chemical agents for dental treatments. The findings suggest that NuBone®Clean shows potential as a chemical decontamination solution for implant surfaces. However, further investigation through randomised clinical trials is necessary. By adhering to rigorous testing protocols, the development of safe and efficient chemical decontamination strategies can be advanced, benefiting patients and promoting progress in implant dentistry.
Collapse
Affiliation(s)
- Badra Hussain
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway; (B.H.); (A.E.A.); (S.P.L.)
| | - Sadia Khan
- Department of Prosthetics and Oral Function, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway; (S.K.); (J.E.E.)
| | - Anne Eriksson Agger
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway; (B.H.); (A.E.A.); (S.P.L.)
| | - Jan Eirik Ellingsen
- Department of Prosthetics and Oral Function, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway; (S.K.); (J.E.E.)
| | - Ståle Petter Lyngstadaas
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway; (B.H.); (A.E.A.); (S.P.L.)
| | - Jaime Bueno
- Section of the Postgraduate Program in Periodontology, Faculty of Dentistry, Complutense University of Madrid (UCM), 28040 Madrid, Spain;
| | - Håvard J. Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway; (B.H.); (A.E.A.); (S.P.L.)
| |
Collapse
|
44
|
Huang C, Miao X, Li J, Liang J, Xu J, Wu Z. Promoted Abutment-Soft Tissue Integration Around Self-Glazed Zirconia Surfaces with Nanotopography Fabricated by Additive 3D Gel Deposition. Int J Nanomedicine 2023; 18:3141-3155. [PMID: 37333732 PMCID: PMC10276606 DOI: 10.2147/ijn.s404047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Improving the biological sealing around dental abutments could promote the long-term success of implants. Although titanium abutments have a wide range of clinical applications, they incur esthetic risks due to their color, especially in the esthetic zone. Currently, zirconia has been applied as an esthetic alternative material for implant abutments; however, zirconia is purported to be an inert biomaterial. How to improve the biological activities of zirconia has thus become a popular research topic. In this study, we presented a novel self-glazed zirconia (SZ) surface with nanotopography fabricated by additive 3D gel deposition and investigated its soft tissue integration capability compared to that of clinically used titanium and polished conventional zirconia surfaces. Materials and Methods Three groups of disc samples were prepared for in vitro study and the three groups of abutment samples were prepared for in vivo study. The surface topography, roughness, wettability and chemical composition of the samples were examined. Moreover, we analyzed the effect of the three groups of samples on protein adsorption and on the biological behavior of human gingival keratinocytes (HGKs) and human gingival fibroblasts (HGFs). Furthermore, we conducted an in vivo study in which the bilateral mandibular anterior teeth of rabbits were extracted and replaced with implants and corresponding abutments. Results The surface of SZ showed a unique nanotopography with nm range roughness and a greater ability to absorb protein. The promoted expression of adhesion molecules in both HGKs and HGFs was observed on the SZ surface compared to the surfaces of Ti and PCZ, while the cell viability and proliferation of HGKs and the number of HGFs adhesion were not significant among all groups. In vivo results showed that the SZ abutment formed strong biological sealing at the abutment-soft tissue interface and exhibited markedly more hemidesmosomes when observed with a transmission electron microscope. Conclusion These results demonstrated that the novel SZ surface with nanotopography promoted soft tissue integration, suggesting its promising application as a zirconia surface for the dental abutment.
Collapse
Affiliation(s)
- Chaoyi Huang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Xinchao Miao
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Jiang Li
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Jieyi Liang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Junxi Xu
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Zhe Wu
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
45
|
Tardelli JDC, Bagnato VS, Reis ACD. Bacterial Adhesion Strength on Titanium Surfaces Quantified by Atomic Force Microscopy: A Systematic Review. Antibiotics (Basel) 2023; 12:994. [PMID: 37370313 DOI: 10.3390/antibiotics12060994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 06/29/2023] Open
Abstract
Few studies have been able to elucidate the correlation of factors determining the strength of interaction between bacterial cells and substrate at the molecular level. The aim was to answer the following question: What biophysical factors should be considered when analyzing the bacterial adhesion strength on titanium surfaces and its alloys for implants quantified by atomic force microscopy? This review followed PRISMA. The search strategy was applied in four databases. The selection process was carried out in two stages. The risk of bias was analyzed. One thousand four hundred sixty-three articles were found. After removing the duplicates, 1126 were screened by title and abstract, of which 57 were selected for full reading and 5 were included; 3 had a low risk of bias and 2 moderated risks of bias. (1) The current literature shows the preference of bacteria to adhere to surfaces of the same hydrophilicity. However, this fact was contradicted by this systematic review, which demonstrated that hydrophobic bacteria developed hydrogen bonds and adhered to hydrophilic surfaces; (2) the application of surface treatments that induce the reduction of areas favorable for bacterial adhesion interfere more in the formation of biofilm than surface roughness; and (3) bacterial colonization should be evaluated in time-dependent studies as they develop adaptation mechanisms, related to time, which are obscure in this review.
Collapse
Affiliation(s)
- Juliana Dias Corpa Tardelli
- Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto 14040-904, Brazil
| | - Vanderlei Salvador Bagnato
- Department of Physics and Materials Science, São Carlos Institute of Physics, University of São Paulo (USP), São Carlos 13566-970, Brazil
| | - Andréa Cândido Dos Reis
- Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto 14040-904, Brazil
| |
Collapse
|
46
|
Zadrożny Ł, Górski B, Baldoni E, Lumbau AI, Meloni SM, Pisano M, Tallarico M. Minimally Invasive Treatment of Lateral Incisors with Guided One-Piece or Two-Piece Titanium-Made Narrow Diameter Implants: A Retrospective Comparative Study with Up to Two Years Follow-Up. J Clin Med 2023; 12:jcm12113711. [PMID: 37297907 DOI: 10.3390/jcm12113711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Restoring teeth with dental implants has become the gold standard in recent years, especially in the esthetic zone. However, limited amount of available bone as well as limited interdental space in the anterior zone may create problems for implant treatment. Narrow diameter implants (NDI) may be a treatment option to resolve the above-mentioned limitations and providing minimally invasive implant therapy without additional regenerative procedures. In this retrospective study, a comparison of clinical and radiographic outcomes between one-piece and two-piece titanium-made NDIs was done with the follow-up of two years after loading. Twenty-three NDI cases were analyzed, 11 in the one-piece implant group (group one) and 12 in the two-piece implant group (group two). The outcomes were implant and prosthetic failures, any complications occurred, peri-implant bone level changes, and as well as the Pink Esthetic score. No implant or prosthetic failures, as well as, no complications were reported at the two-year follow-up examination. At the same time the marginal bone loss was 0.23 ± 0.11 in the group one and 0.18 ± 0.12 in the group two. Difference was not statistically significant (p = 0.3339). The Pink Esthetic Score, recorded two years after definitive loading, was 12.6 ± 0.97 in the group one and 12.2 ± 0.92 in the group two, with no statistically significant difference between groups (p = 0.3554). With the limitations of the present study, including the small sample size and short follow-up, it is possible to conclude that either one and two-piece NDI can be successfully used to restore lateral incisors with comparable results within the two years of follow-up.
Collapse
Affiliation(s)
- Łukasz Zadrożny
- Department of Dental Propaedeutics and Prophylaxis, Medical University of Warsaw, Nowogrodzka 59 St., 02-006 Warsaw, Poland
| | - Bartłomiej Górski
- Department of Periodontology and Oral Mucosa Diseases, Medical University of Warsaw, Binieckiego 6 St., 02-097 Warsaw, Poland
| | - Edoardo Baldoni
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, 07021 Sassari, Italy
| | | | - Silvio Mario Meloni
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, 07021 Sassari, Italy
| | - Milena Pisano
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, 07021 Sassari, Italy
| | - Marco Tallarico
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, 07021 Sassari, Italy
| |
Collapse
|
47
|
Seo BY, Son K, Son YT, Dahal RH, Kim S, Kim J, Hwang J, Kwon SM, Lee JM, Lee KB, Kim JW. Influence of Dental Titanium Implants with Different Surface Treatments Using Femtosecond and Nanosecond Lasers on Biofilm Formation. J Funct Biomater 2023; 14:297. [PMID: 37367261 DOI: 10.3390/jfb14060297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
This study aimed to evaluate the impact of different surface treatments (machined; sandblasted, large grit, and acid-etched (SLA); hydrophilic; and hydrophobic) on dental titanium (Ti) implant surface morphology, roughness, and biofilm formation. Four groups of Ti disks were prepared using distinct surface treatments, including femtosecond and nanosecond lasers for hydrophilic and hydrophobic treatments. Surface morphology, wettability, and roughness were assessed. Biofilm formation was evaluated by counting the colonies of Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), and Prevotella intermedia (Pi) at 48 and 72 h. Statistical analysis was conducted to compare the groups using the Kruskal-Wallis H test and the Wilcoxon signed-rank test (α = 0.05). The analysis revealed that the hydrophobic group had the highest surface contact angle and roughness (p < 0.05), whereas the machined group had significantly higher bacterial counts across all biofilms (p < 0.05). At 48 h, the lowest bacterial counts were observed in the SLA group for Aa and the SLA and hydrophobic groups for Pg and Pi. At 72 h, low bacterial counts were observed in the SLA, hydrophilic, and hydrophobic groups. The results indicate that various surface treatments affect implant surface properties, with the hydrophobic surface using femtosecond laser treatment exerting a particularly inhibitory effect on initial biofilm growth (Pg and Pi).
Collapse
Affiliation(s)
- Bo Yun Seo
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - KeunBaDa Son
- Advanced Dental Device Development Institute (A3DI), Kyungpook National University, Daegu 41940, Republic of Korea
| | - Young-Tak Son
- Advanced Dental Device Development Institute (A3DI), Kyungpook National University, Daegu 41940, Republic of Korea
- Department of Dental Science, Graduate School, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Ram Hari Dahal
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Shukho Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Jungmin Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - JunHo Hwang
- Institute of Advanced Convergence Technology, Kyungpook National University, Daegu 41061, Republic of Korea
| | - Sung-Min Kwon
- Institute of Advanced Convergence Technology, Kyungpook National University, Daegu 41061, Republic of Korea
| | - Jae-Mok Lee
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Kyu-Bok Lee
- Advanced Dental Device Development Institute (A3DI), Kyungpook National University, Daegu 41940, Republic of Korea
- Department of Prosthodontics, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Jin-Wook Kim
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| |
Collapse
|
48
|
Zhou M, Wang J, Wang J, Yu J, Huang S, Wang T, Wei H. Construction of a Localized and Long-Acting CCN2 Delivery System on Percutaneous Ti Implant Surfaces for Enhanced Soft-Tissue Integration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22864-22875. [PMID: 37133335 DOI: 10.1021/acsami.3c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Soft-tissue integration (STI) plays an essential role in the long-term success of percutaneous Ti implants since it acts as a biological barrier that protects the soft and hard tissue around implants. Surface modification of Ti implants with drug-release properties to achieve soft-tissue regeneration has been proven to be effective in STI. However, the short-acting effect caused by the uncontrolled drug release of the topical delivery system limits long-term STI enhancement. Herein, a long-acting protein delivery system for Ti implants that involved micro-arc oxidation of Ti surfaces (MAO-Ti) and localized immobilization of cellular communication network factor 2 (CCN2) bearing mesoporous silica nanoparticles (MSNs) on MAO-Ti was prepared, namely, CCN2@MSNs-Ti. The CCN2 release study of CCN2@MSNs-Ti demonstrated a sustained-release profile for 21 days, which was able to maintain long-term stable STI. In addition, in vitro cell behavior evaluation results indicated that CCN2@MSNs-Ti could promote the STI-related biological response of human dermal fibroblasts via the FAK-MAPK pathway. More importantly, the system could effectively enhance STI after 4 weeks and proinflammatory factors in the soft tissue decreased significantly in a rat model of implantation. These results denote that CCN2@MSNs-Ti showed an appealing application prospect for enhanced STI around transcutaneous Ti implants, which would ultimately result in an increased success rate of percutaneous Ti implants.
Collapse
Affiliation(s)
- Minghao Zhou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, P. R. China
| | - Jing Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, P. R. China
| | - Jia Wang
- Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, P. R. China
| | - Jingwei Yu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, P. R. China
| | - Shitou Huang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, P. R. China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710129, Shaanxi, P. R. China
| | - Hongbo Wei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, P. R. China
| |
Collapse
|
49
|
Zhang W, Fu W, Wang X, Ye J. Improving the osseointegration and soft tissue sealing of zirconia ceramics by the incorporation of akermanite via sol infiltration for dental implants. J Mater Chem B 2023; 11:4237-4259. [PMID: 37115523 DOI: 10.1039/d3tb00190c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Zirconia ceramics are promising dental implant materials due to their high-grade biocompatibility, high mechanical strength, and distinctive aesthetic appearance. Nevertheless, zirconia ceramics are bio-inert with a lack of osseointegration and soft tissue sealing, which limits dental implant applications. As such, the fabrication of zirconia ceramics with high mechanical strength, excellent osseointegration and soft tissue sealing performance remains a great challenge in the dental restoration field. In this article, a novel zirconia ceramic with akermanite (AKT) modification by the negative pressure infiltration method is presented. The effects of AKT sol infiltration at different times on the morphology, phase composition, mechanical properties, bioactivity, osseointegration and soft tissue sealing of the modified zirconia ceramics have been systematically investigated. The modified zirconia ceramics feature excellent mechanical properties and significantly improved surface roughness, hydrophilia, and apatite mineralization ability as compared with unmodified zirconia ceramics. Furthermore, cell-culture experiment results indicated that the surface modification of zirconia ceramics could promote adhesion, spreading, migration, proliferation and osteogenic differentiation of mouse bone marrow stromal stem cells (mBMSCs), as well as the early adhesion, spreading, proliferation and fibroblast differentiation of human gingival fibroblasts (HGFs) in vitro. The prepared bioactive zirconia distinctively enhanced the alkaline phosphate (ALP) activity, osteogenesis-related gene expression of mBMSCs and fibroblast-related-gene expression of HGFs. The in vivo evaluation confirmed that 15-TZP ceramics could promote bone-implant osseointegration to the greatest extent as compared with pure zirconia ceramics. To conclude, our research has shown that AKT-modified zirconia ceramics can achieve bone integration and soft tissue sealing, indicating that they have a lot of potential for application as a novel dental implant material in the clinical setting.
Collapse
Affiliation(s)
- Wenmin Zhang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Wenhao Fu
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaolan Wang
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Jiandong Ye
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
50
|
Chen D, Li Z, Li Z, Sun Y, Liu Q, Yang J, Song J, Cai H, Feng Z, Chen Z, Huang B. Transcriptome analysis of human peri-implant soft tissue and periodontal gingiva: a paired design study. Clin Oral Investig 2023:10.1007/s00784-023-05017-y. [PMID: 37060358 DOI: 10.1007/s00784-023-05017-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 04/02/2023] [Indexed: 04/16/2023]
Abstract
OBJECTIVES Limited information is available about the biological characterization of peri-implant soft tissue at the transcriptional level. The aim of this study was to investigate the effect of dental implant on the soft tissue in vivo by using paired samples and compare the differences between peri-implant soft tissue and periodontal gingiva at the transcriptional level. METHODS Paired peri-implant soft tissue and periodontal gingiva tissue from 6 patients were obtained, and the pooled RNAs were analyzed by deep sequencing. Venn diagram was used to further screen out differentially expressed genes in every pair of samples. Annotation and enrichment analysis was performed. Further verification was done by quantitative real-time PCR. RESULTS Totally 3549 differentially expressed genes (DEGs) were found between peri-implant and periodontal groups. The Venn diagram further identified 185 DEGs in every pair of samples, of which the enrichment analysis identified significant enrichment for cellular component was associated with external side of plasma membrane, for molecular function was protein binding, for biological process was immune system process, and for KEGG pathway was cytokine-cytokine receptor interaction. Among the DEGs, CST1, SPP1, AQP9, and SFRP2 were verified to be upregulated in peri-implant soft tissue. CONCLUSIONS Peri-implant soft tissue showed altered expressions of several genes related to the cell-ECM interaction compared to periodontal gingiva. CLINICAL RELEVANCE Compared to periodontal gingiva, altered cell-ECM interactions in peri-implant may contribute to the susceptibility of peri-implant diseases. At the transcriptional level, periodontal gingiva is generally considered the appropriate control for peri-implantitis, except regarding the cell-ECM interactions.
Collapse
Affiliation(s)
- Danying Chen
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Zhixin Li
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Zhipeng Li
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yue Sun
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Qifan Liu
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Jieting Yang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Jiaying Song
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Huaxiong Cai
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Zhicai Feng
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Zhuofan Chen
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| | - Baoxin Huang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|