1
|
Vieiros M, Almeida-Toledano L, Serra-Delgado M, Navarro-Tapia E, Ramos-Triguero A, Muñoz-Lozano C, Martínez L, Marchei E, Gómez-Roig MD, García-Algar Ó, Andreu-Fernández V. Effects of maternal drinking patterns and epigallocatechin-3-gallate treatment on behavioural and molecular outcomes in a mouse model of fetal alcohol spectrum disorders. Biomed Pharmacother 2025; 187:118138. [PMID: 40349554 DOI: 10.1016/j.biopha.2025.118138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025] Open
Abstract
Prenatal alcohol exposure (PAE) impairs fetal development leading to fetal alcohol spectrum disorders (FASD). Antioxidants like epigallocatechin-3-gallate (EGCG) may mitigate alcohol-induced oxidative stress, a major contributor to FASD. This study assessed the effects of PAE on cognition and behaviour under two drinking patterns and the role of postnatal EGCG therapy in a FASD-like mouse model. C57BL/6J mice were divided into five groups: control, moderate drinking (Mod), binge drinking (Bin), Mod+EGCG, and Bin+EGCG. Cognitive and behavioural performance were assessed using Rotarod test, T-Maze, and Morris Water Maze (MWM). Western blot analyses evaluated brain and cerebellum biomarkers related to neuronal plasticity, maturation, differentiation, transport, and proliferation. PAE impaired motor coordination, significantly reducing rotarod walking time in both drinking patterns. Spatial learning and memory were also disrupted, decreasing T-maze success rate. It also decreased time in the platform area and distance travelled in MWM. Both drinking patterns affected neuronal plasticity (BDNF, DYRK1A) and maturation (NeuN), astrocyte differentiation (GFAP, s100β), neuronal transport (MBP) and proliferation (GDNF, Wnt-3) via oxidative stress (Nrf2). Our results show how EGCG treatment significantly improved behavioural tests results and restored most brain and cerebellum biomarkers, reaching levels similar to control. These findings highlight the impact of PAE on cognition and behaviour and how EGCG may counteract its effects by reducing oxidative stress and enhancing brain plasticity. Our findings open the door to future studies on the mechanism of action of this antioxidant in order to use it as a therapeutic tool in this vulnerable population.
Collapse
Affiliation(s)
- Melina Vieiros
- Grup de Recerca Infancia i Entorn, Institut d'investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Spanish network in maternal, neonatal, child, and developmental health research (RICORS-SAMID, RD21/0012/0017, RD24/0013/0019) Instituto de Salud Carlos III, Madrid, Spain; Department de Cirurgia i Especialitats Mèdico-Quirúrgiques, Universitat de Barcelona, Barcelona, Spain
| | - Laura Almeida-Toledano
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat 08950, Spain; BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and and Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Mariona Serra-Delgado
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat 08950, Spain; BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and and Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Elisabet Navarro-Tapia
- Spanish network in maternal, neonatal, child, and developmental health research (RICORS-SAMID, RD21/0012/0017, RD24/0013/0019) Instituto de Salud Carlos III, Madrid, Spain; Faculty of Health Sciences, Valencian International University (VIU), Valencia, Spain; Department of Neonatology, Hospital Clínic-Maternitat, ICGON, IDIBAPS, BCNatal, Barcelona, Spain
| | - Anna Ramos-Triguero
- Grup de Recerca Infancia i Entorn, Institut d'investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Department de Cirurgia i Especialitats Mèdico-Quirúrgiques, Universitat de Barcelona, Barcelona, Spain; Institute for Biomedical Research La Paz (IdiPaz), Madrid, Spain
| | - Concha Muñoz-Lozano
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat 08950, Spain; BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and and Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Leopoldo Martínez
- Institute for Biomedical Research La Paz (IdiPaz), Madrid, Spain; Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain
| | - Emilia Marchei
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, Rome, Italy
| | - María D Gómez-Roig
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat 08950, Spain; BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and and Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Óscar García-Algar
- Grup de Recerca Infancia i Entorn, Institut d'investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Spanish network in maternal, neonatal, child, and developmental health research (RICORS-SAMID, RD21/0012/0017, RD24/0013/0019) Instituto de Salud Carlos III, Madrid, Spain; Department of Neonatology, Hospital Clínic-Maternitat, ICGON, IDIBAPS, BCNatal, Barcelona, Spain
| | - Vicente Andreu-Fernández
- Grup de Recerca Infancia i Entorn, Institut d'investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Faculty of Health Sciences, Valencian International University (VIU), Valencia, Spain; Biosanitary Research Institute, Valencian International University, Valencia, Spain.
| |
Collapse
|
2
|
Villalba NM, Madarnas C, Bressano J, Sanchez V, Brusco A. Perinatal ethanol exposure affects cell populations in adult dorsal hippocampal neurogenic niche. Neurosci Res 2024; 198:8-20. [PMID: 37419388 DOI: 10.1016/j.neures.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Neurodevelopment is highly affected by perinatal ethanol exposure (PEE). In the adult brain, neurogenesis takes place in the dentate gyrus (DG) of the hippocampus and in the subventricular zone. This work aimed to analyze the effect of PEE on the cellular types involved in adult dorsal hippocampal neurogenesis phases using a murine model. For this purpose, primiparous female CD1 mice consumed only ethanol 6% v/v from 20 days prior to mating and along pregnancy and lactation to ensure that the pups were exposed to ethanol throughout pre- and early postnatal development. After weaning, pups had no further contact with ethanol. Cell types of the adult male dorsal DG were studied by immunofluorescence. A lower percentage of type 1 cells and immature neurons and a higher percentage of type 2 cells were observed in PEE animals. This decrease in type 1 cells suggests that PEE reduces the population of remnant progenitors of the dorsal DG present in adulthood. The increase in type 2 cells and the decrease in immature neurons indicate that, during neurodevelopment, ethanol alters the capacity of neuroblasts to become neurons in the adult neurogenic niche. These results suggest that pathways implicated in cell determination are affected by PEE and remain affected in adulthood.
Collapse
Affiliation(s)
- Nerina M Villalba
- Universidad de Buenos Aires, CONICET, Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, 1° Unidad Académica del Departamento de Histología, Biología Celular, Embriología y Genética, Buenos Aires, Argentina
| | - Catalina Madarnas
- Universidad de Buenos Aires, CONICET, Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN), Buenos Aires, Argentina
| | - Julieta Bressano
- Universidad de Buenos Aires, CONICET, Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN), Buenos Aires, Argentina
| | - Viviana Sanchez
- Universidad de Buenos Aires, Facultad de Medicina, 1° Unidad Académica del Departamento de Histología, Biología Celular, Embriología y Genética, Buenos Aires, Argentina
| | - Alicia Brusco
- Universidad de Buenos Aires, CONICET, Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, 1° Unidad Académica del Departamento de Histología, Biología Celular, Embriología y Genética, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Madarnas C, Villalba NM, Soriano D, Brusco A. Anxious Behavior of Adult CD1 Mice Perinatally Exposed to Low Concentrations of Ethanol Correlates With Morphological Changes in Cingulate Cortex and Amygdala. Front Behav Neurosci 2020; 14:92. [PMID: 32636737 PMCID: PMC7319189 DOI: 10.3389/fnbeh.2020.00092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/14/2020] [Indexed: 01/12/2023] Open
Abstract
Perinatal ethanol (EtOH) exposure is associated with high incidence of behavioral disorders such as depression and anxiety. The cerebral areas related with these consequences involve the corticolimbic system, in particular the prefrontal cortex, hippocampus, amygdala, and cingulate cortex, although the latter has not been thoroughly studied yet. Different animal models of prenatal or perinatal EtOH exposure have reported morphofunctional alterations in the central nervous system, which could explain behavioral disorders along life; these results focus on youth and adolescents and are still controversial. In the light of these inconclusive results, the aim of this work was to analyze adult behavior in CD1 mice perinatally exposed to low concentrations of EtOH (PEE) during gestation and lactation, and describe the morphology of the cingulate cortex and amygdala with a view to establishing structure/function/behavior correlations. Primiparous CD1 female mice were exposed to EtOH 6% v/v for 20 days prior to mating and continued drinking EtOH 6% v/v during pregnancy and lactation. After weaning, male pups were fed food and water ad libitum until 77 days of age, when behavioral and morphological studies were performed. Mouse behavior was analyzed through light–dark box and open field tests. Parameters related to anxious behavior and locomotor activity revealed anxiogenic behavior in PEE mice. After behavioral studies, mice were perfused and neurons, axons, serotonin transporter, 5HT, CB1 receptor (CB1R) and 5HT1A receptor (5HT1AR) were studied by immunofluorescence and immunohistochemistry in brain sections containing cingulate cortex and amygdala. Cingulate cortex and amygdala cytoarchitecture were preserved in adult PEE mice, although a smaller number of neurons was detected in the amygdala. Cingulate cortex axons demonstrated disorganized radial distribution and reduced area. Serotonergic and endocannabinoid systems, both involved in anxious behavior, showed differential expression. Serotonergic afferents were lower in both brain areas of PEE animals, while 5HT1AR expression was lower in the cingulate cortex and higher in the amygdala. The expression of CB1R was lower only in the amygdala. In sum, EtOH exposure during early brain development induces morphological changes in structures of the limbic system and its neuromodulation, which persist into adulthood and may be responsible for anxious behavior.
Collapse
Affiliation(s)
- Catalina Madarnas
- Instituto de Biología Celular y Neurociencia (IBCN), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Nerina Mariel Villalba
- Instituto de Biología Celular y Neurociencia (IBCN), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Delia Soriano
- Instituto de Biología Celular y Neurociencia (IBCN), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.,Facultad de Medicina, Departamento de Biología Celular, Histología, Embriología y Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alicia Brusco
- Instituto de Biología Celular y Neurociencia (IBCN), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.,Facultad de Medicina, Departamento de Biología Celular, Histología, Embriología y Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
4
|
Abstract
CLINICAL ISSUE Agenesis of the corpus callosum is reported to have an incidence of about 1:4000 live births. In 30-45% of cases, genetic etiologies can be identified, e. g., 10% chromosomal anomalies and 20-35% genetic syndromes. Environmental factors like fetal alcohol syndrome are also known to be prone to callosal agenesis. Callosal agenesis can be complete or partial and can be isolated or associated with other central nervous system (CNS) anomalies (e. g., cortical developmental disorders, callosal lipoma, intracranial cysts) or extra-CNS anomalies (e. g., eyes, face, cardiovascular). STANDARD RADIOLOGICAL METHODS AND METHODICAL INNOVATIONS Diagnosis is made using ultrasound, computed tomography (CT) or best with magnetic resonance imaging (MRI). Typical imaging findings in callosal agenesis are colpocephaly, high riding enlarged third ventricle, Texas Longhorn configuration of frontal horns and so-called Probst bundles parasagittal. Diffusion tensor imaging and fiber-tracking, based on diffusion-weighted techniques, can also visualize fiber/tract anomalies in the patients' brains. ASSESSMENT Clinical correlations of callosal agenesis is difficult in general because of the common association of other CNS malformations. Differential diagnosis of primary complete or partial callosal agenesis are secondary callosal changes, e. g. vascular, inflammatory or posttreatment in origin.
Collapse
|
5
|
Parkhurst SJ, Adhikari P, Navarrete JS, Legendre A, Manansala M, Wolf FW. Perineurial Barrier Glia Physically Respond to Alcohol in an Akap200-Dependent Manner to Promote Tolerance. Cell Rep 2019; 22:1647-1656. [PMID: 29444420 PMCID: PMC5831198 DOI: 10.1016/j.celrep.2018.01.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 12/04/2017] [Accepted: 01/16/2018] [Indexed: 12/22/2022] Open
Abstract
Ethanol is the most common drug of abuse. It exerts its behavioral effects by acting on widespread neural circuits; however, its impact on glial cells is less understood. We show that Drosophila perineurial glia are critical for ethanol tolerance, a simple form of behavioral plasticity. The perineurial glia form the continuous outer cellular layer of the blood-brain barrier and are the interface between the brain and the circulation. Ethanol tolerance development requires the A kinase anchoring protein Akap200 specifically in perineurial glia. Akap200 tightly coordinates protein kinase A, actin, and calcium signaling at the membrane to control tolerance. Furthermore, ethanol causes a structural remodeling of the actin cytoskeleton and perineurial membrane topology in an Akap200-dependent manner, without disrupting classical barrier functions. Our findings reveal an active molecular signaling process in the cells at the blood-brain interface that permits a form of behavioral plasticity induced by ethanol.
Collapse
Affiliation(s)
- Sarah J Parkhurst
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Pratik Adhikari
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Jovana S Navarrete
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Arièle Legendre
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Miguel Manansala
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Fred W Wolf
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA; Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA.
| |
Collapse
|
6
|
Bouskila J, Palmour RM, Bouchard JF, Ptito M. Retinal structure and function in monkeys with fetal alcohol exposure. Exp Eye Res 2018; 177:55-64. [PMID: 30071214 DOI: 10.1016/j.exer.2018.07.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 11/16/2022]
Abstract
Exposure to ethanol in utero leads to several brain development disorders including retinal abnormalities whose underlying cellular pathogenesis remains elusive. We recently reported that fetal alcohol exposure (FAE) in vervet monkeys induces anomalies of full-field electroretinogram (ERG) waveforms that suggest premature aging of the retina. The goal of this study is to characterize the anatomo-functional mechanisms underlying the retinal changes observed in fetal alcohol exposed (FAE) monkeys, and age- and sex-matched normals. First, we examined in vivo the fundus of the eyes, measured intraocular pressure (IOP) and assessed cone activity using flicker ERG. Second, we investigated ex vivo, protein expression and anatomical organization of the retina using Western blotting, classical histology and immunohistochemistry. Our results indicated that the fundus of the eyes showed both, increased vascularization (tessellated fundus) and IOP in FAE monkeys. Furthermore, light-adapted flicker responses above 15 Hz were also significantly higher in FAE monkeys. Although there were no obvious changes in the overall anatomy in the FAE retina, Glial Fibrillary Acidic Protein (GFAP, a potent marker of astrocytes) immunoreactivity was increased in the FAE retinal ganglion cell layer indicating a strong astrogliosis. These alterations were present in juvenile (2 years old) monkeys and persist in adults (8 years old). Moreover, using specific cell type markers, no significant modifications in the morphology of the photoreceptors, horizontal cells, bipolar cells, and amacrine cells were observed. Our data indicate that FAE does indeed induce anatomical changes within the retinal ganglion cell layer that are reflected in the increased photosensitivity of the cone photoreceptors.
Collapse
Affiliation(s)
- Joseph Bouskila
- Departments of Psychiatry and Human Genetics, McGill University, Montreal, QC, Canada; Behavioral Science Foundations, Saint Kitts and Nevis; School of Optometry, University of Montreal, Montreal, Quebec, Canada.
| | - Roberta M Palmour
- Departments of Psychiatry and Human Genetics, McGill University, Montreal, QC, Canada; Behavioral Science Foundations, Saint Kitts and Nevis
| | | | - Maurice Ptito
- School of Optometry, University of Montreal, Montreal, Quebec, Canada; Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
7
|
Early asymmetric inter-hemispheric transfer in the auditory network: insights from infants with corpus callosum agenesis. Brain Struct Funct 2018; 223:2893-2905. [DOI: 10.1007/s00429-018-1667-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
|
8
|
Direct effects of ethanol on neuronal differentiation: An in vitro analysis of viability and morphology. Brain Res Bull 2016; 127:177-186. [PMID: 27679397 DOI: 10.1016/j.brainresbull.2016.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/29/2022]
Abstract
The deleterious effects of ethanol (EtOH) on the brain have been widely described, but its effects on the neuronal cytoskeleton during differentiation have not yet been firmly established. In this context, our aim was to investigate the direct effect of EtOH on cortical neurons during the period of differentiation. Primary cultures of cortical neurons obtained from 1-day-old rats were exposed to EtOH after 7days of culture, and viability and morphology were analyzed at structural and ultrastructural levels after 24-h EtOH exposure. EtOH caused a significant reduction of 73±7% in the viability of cultured cortical neurons, by preferentially inducing apoptotic cellular death. This effect was accompanied by an increase in caspase 3 and 9 expression. Furthermore, EtOH induced a reduction in total dendrite length and in the number of dendrites per cell. Ultrastructural studies showed that EtOH increased the number of lipidic vacuoles, lysosomes and multilamellar vesicles and induced a dilated endoplasmatic reticulum lumen and a disorganized Golgi apparatus with a ring-shape appearance. Microtubules showed a disorganized distribution. Apposition between pre- and postsynaptic membranes without a defined synaptic cleft and a delay in presynaptic vesicle organization were also observed. Synaptophysin and PSD95 expression, proteins pre- and postsynaptically located, were reduced in EtOH-exposed cultures. Overall, our study shows that EtOH induces neuronal apoptosis and changes in the cytoskeleton and membrane proteins related with the establishment of mature synapses. These direct effects of EtOH on neurons may partially explain its effects on brain development.
Collapse
|
9
|
An L, Zhang T. Prenatal ethanol exposure impairs spatial cognition and synaptic plasticity in female rats. Alcohol 2015; 49:581-8. [PMID: 26251263 DOI: 10.1016/j.alcohol.2015.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 05/20/2015] [Accepted: 05/27/2015] [Indexed: 01/12/2023]
Abstract
Chronic prenatal ethanol exposure (CPEE) can impair long-term potentiation (LTP) in the male hippocampus. Sexually specific alterations were frequently reported in female animals that had been prenatally exposed to ethanol. This study aimed to examine the effects of CPEE on spatial learning and memory, as well as on hippocampal synaptic plasticity in female adolescent rats. Female offspring were selected from dams that had been exposed to 4 g/kg/day of ethanol throughout the gestational period. Subsequently, performance in the Morris water maze (MWM) was determined, while LTP and depotentiation were measured in the hippocampal CA3-CA1 pathway. In the behavioral test, the escape latencies in both initial and reversal training stages were significantly prolonged. Interestingly, LTP was considerably enhanced while depotentiation was significantly depressed. Our results suggest a critical role of synaptic plasticity balance, which may prominently contribute to the cognitive deficits present in CPEE offspring.
Collapse
|
10
|
Yang JY, Xue X, Tian H, Wang XX, Dong YX, Wang F, Zhao YN, Yao XC, Cui W, Wu CF. Role of microglia in ethanol-induced neurodegenerative disease: Pathological and behavioral dysfunction at different developmental stages. Pharmacol Ther 2014; 144:321-37. [DOI: 10.1016/j.pharmthera.2014.07.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 07/03/2014] [Indexed: 01/04/2023]
|
11
|
Moderate prenatal alcohol exposure alters behavior and neuroglial parameters in adolescent rats. Behav Brain Res 2014; 269:175-84. [DOI: 10.1016/j.bbr.2014.04.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/18/2014] [Accepted: 04/14/2014] [Indexed: 11/21/2022]
|
12
|
Tallis S, Caltana LR, Souto PA, Delfante AE, Lago NR, Brusco A, Perazzo JC. Changes in CNS cells in hyperammonemic portal hypertensive rats. J Neurochem 2014; 128:431-444. [PMID: 24382264 DOI: 10.1111/jnc.12458] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/14/2013] [Accepted: 09/16/2013] [Indexed: 01/06/2023]
Abstract
Rats with pre-hepatic portal hypertension because of partial portal vein ligation develop minimal hepatic encephalopathy (MHE) with hyperammonemia, impaired blood-brain barrier, mild brain edema, and severe mitochondrial changes in the hippocampus. The aim of this study was to evaluate changes of different neural cells in the cerebral cortex and the hippocampus. Animals were divided into two groups, MHE and sham. Astrocytes were studied by immunostaining with glial fibrillary acidic protein and S100β protein; neurons were immunostained with neuronal nuclear marker, microtubule associated protein-2, and NF-200 and capillaries with Nestin. The hypoxia-inducible factor 1α (HIF-1α) and its downstream proteins, P-glycoprotein (P-gp) and erythropoietin receptor (Epo-R), were also evaluated. Astrocytes were increased in area and number only in the hippocampus, while S100β increased in both brain areas in MHE animals. Microtubule associated protein-2 and NF-200 immunoreactivities (-ir) were significantly reduced in both areas. Hippocampal Nestin-ir was increased in MHE animals. These cellular changes were similar to those described in ischemic conditions, thus HIF-1α, P-gp, and Epo-R were also evaluated. A high expression of HIF-1α in cortical neurons was observed in the MHE group. It is likely that this hypoxia-like state is triggered via ammonia occupying the binding domain of HIF-1α and thereby preventing its degradation and inducing its stabilization, leading to the over-expression of P-gp and the Epo-R.
Collapse
Affiliation(s)
- Silvina Tallis
- Laboratory of Hepatic Encephalopathy and Portal Hypertension, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina; Laboratory of Experimental Pathology, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
13
|
An L, Zhang T. Spatial cognition and sexually dimorphic synaptic plasticity balance impairment in rats with chronic prenatal ethanol exposure. Behav Brain Res 2013; 256:564-74. [PMID: 24050890 DOI: 10.1016/j.bbr.2013.09.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/03/2013] [Accepted: 09/07/2013] [Indexed: 01/12/2023]
Abstract
Prenatal ethanol exposure can lead to long-lasting impairments in the ability of rats to process spatial information, as well as produce long-lasting deficits in long-term potentiation (LTP), a biological model of learning and memory processing. The present study aimed to examine the sexually dimorphic effects of chronic prenatal ethanol exposure (CPEE) on behavior cognition and synaptic plasticity balance (SPB), and tried to understand a possible mechanism by evaluating the alternation of SPB. The animal model was produced by ethanol exposure throughout gestational period with 4 g/kg bodyweight. Offspring of both male and female were selected and studied on postnatal days 36. Subsequently, the data showed that chronic ethanol exposure resulted in birth weight reduction, losing bodyweight gain, microcephaly and hippocampus weight retardation. In Morris water maze (MWM) test, escape latencies were significantly higher in CPEE-treated rats than that in control ones. They also spent much less time in the target quadrant compared to that of control animals in the probe phase. In addition, it was found that there was a more severe impairment in females than that in males after CPEE treatment. Electrophysiological studies showed that CPEE considerably inhibited hippocampal LTP and facilitated depotentiation in males, while significantly enhanced LTP and suppressed depotentiation in females. A novel index, developed by us, showed that the action of CPEE on SPB was more sensitive in females than that in males, suggesting that it might be an effective index to distinguish the difference of SPB impairment between males and females.
Collapse
Affiliation(s)
- Lei An
- College of Life Sciences, Nankai University, 300071 Tianjin, PR China
| | | |
Collapse
|
14
|
An L, Yang Z, Zhang T. Imbalanced synaptic plasticity induced spatial cognition impairment in male offspring rats treated with chronic prenatal ethanol exposure. Alcohol Clin Exp Res 2012; 37:763-70. [PMID: 23240555 DOI: 10.1111/acer.12040] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 09/05/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND As chronic prenatal ethanol (EtOH) exposure (CPEE) may cause deficiencies in a variety of behavioral and cognitive functions, the aim of present study is to investigate the effects of CPEE on spatial learning and memory and examine the action of CPEE on synaptic plasticity balance in the hippocampus of adolescent male rats. METHODS The animal model was produced by EtOH exposure throughout gestational period with 4 g/kg bodyweight, while the male offspring rats were used in the study. Morris water maze (MWM) test was performed, and then, long-term potentiation (LTP) and depotentiation were recorded from Schaffer collaterals to CA1 region in the hippocampus. RESULTS It was shown that escape latencies in learning period and re-acquisition period were prolonged in CPEE-treated group compared with that in control group. Furthermore, LTP was drastically inhibited, and depotentiation was distinctly enhanced in CPEE-treated group compared with that in control group. CONCLUSIONS It is suggested that the balance between cognitive stability and flexibility was broken by the bidirectional effects of long-term synaptic plasticity. In addition, the spatial cognition was attenuated by the alteration of synaptic plasticity balance in CPEE-treated male adolescent rats.
Collapse
Affiliation(s)
- Lei An
- College of Life Sciences, Nankai University, Tianjin, China
| | | | | |
Collapse
|
15
|
Aronne MP, Guadagnoli T, Fontanet P, Evrard SG, Brusco A. Effects of prenatal ethanol exposure on rat brain radial glia and neuroblast migration. Exp Neurol 2011; 229:364-71. [PMID: 21414313 DOI: 10.1016/j.expneurol.2011.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 01/04/2011] [Accepted: 03/07/2011] [Indexed: 01/28/2023]
Abstract
Prenatal ethanol exposure (PEE) induces morphologic and functional alterations in the developing central nervous system. The orderly migration of neuroblasts is a key process in the development of a layered structure such as the cerebral cortex (CC). From initial stages of corticogenesis, the transcription factor Pax6 is intensely expressed in neuroepithelial and radial glia cells (RGCs) and is involved in continual regulation of cell surface properties responsible for both cellular identity and radial migration. In the present work, one month before mating, during pregnancy and lactation, a group of female Wistar rats were fed a liquid diet with 5.9% (w/w) ethanol (EtOH), rendering moderate blood EtOH concentrations. Maternal gestational weight progression and fetal CC thickness were measured. CC from E12-P3 rats were examined for expression of vimentin, nestin, S-100b, Pax6 and doublecortin using immunohistochemical assays. RGCs expressing vimentin, nestin, S-100b and Pax6 had abnormal morphologies. The migration distance through the CC and the number of doublecortin-ir neuroblasts in germinative zones were decreased. We found significant morphologic defects on RGCs, a marked delay in neuronal migration, decreased numbers of neuroblasts, and decreased numbers of Pax6-ir cells in the CC as a consequence of exposure to ethanol during development. These observations suggest a sequence of toxic events that contribute to cortical dysplasia in offspring exposed to EtOH during gestation.
Collapse
Affiliation(s)
- María Paula Aronne
- Instituto de Biología Celular y Neurociencias Prof. Eduardo De Robertis, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 3rd fl., (C1121ABG) Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
16
|
Evrard SG, Brusco A. Ethanol Effects on the Cytoskeleton of Nerve Tissue Cells. ADVANCES IN NEUROBIOLOGY 2011. [DOI: 10.1007/978-1-4419-6787-9_29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Helfer JL, Calizo LH, Dong WK, Goodlett CR, Greenough WT, Klintsova AY. Binge-like postnatal alcohol exposure triggers cortical gliogenesis in adolescent rats. J Comp Neurol 2009; 514:259-71. [PMID: 19296475 PMCID: PMC3006179 DOI: 10.1002/cne.22018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The long-term effects of binge-like postnatal alcohol exposure on cell proliferation and differentiation in the adolescent rat neocortex were examined. Unlike the hippocampal dentate gyrus, where proliferation of progenitors results primarily in addition of granule cells in adulthood, the vast majority of newly generated cells in the intact mature rodent neocortex appear to be glial cells. The current study examined cytogenesis in the motor cortex of adolescent and adult rats that were exposed to 5.25 g/kg/day of alcohol on postnatal days (PD) 4-9 in a binge manner. Cytogenesis was examined at PD50 (through bromodeoxyuridine [BrdU] labeling) and survival of these newly generated cells was evaluated at PD80. At PD50, significantly more BrdU-positive cells were present in the motor cortex of alcohol-exposed rats than controls. Confocal analysis revealed that the majority (>60%) of these labeled cells also expressed NG2 chondroitin sulfate proteoglycan (NG2 glia). Additionally, survival of these newly generated cortical cells was affected by neonatal alcohol exposure, based on the greater reduction in the number of BrdU-labeled cells from PD50 to PD80 in the alcohol-exposed animals compared to controls. These findings demonstrate that neonatal alcohol exposure triggers an increase in gliogenesis in the adult motor cortex.
Collapse
Affiliation(s)
| | - Lyngine H. Calizo
- Psychology Department, University of Delaware, Newark, DE, 19716, USA
| | - Willie K. Dong
- Psychology Department and Beckman Institute, University of Illinois, Urbana, IL, 61801, USA
| | - Charles R. Goodlett
- Psychology Department, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - William T. Greenough
- Psychology Department and Beckman Institute, University of Illinois, Urbana, IL, 61801, USA
| | - Anna Y. Klintsova
- Psychology Department, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
18
|
Aronne MP, Evrard SG, Mirochnic S, Brusco A. Prenatal Ethanol Exposure Reduces the Expression of the Transcriptional FactorPax6in the Developing Rat Brain. Ann N Y Acad Sci 2008; 1139:478-98. [DOI: 10.1196/annals.1432.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Gohlke JM, Griffith WC, Faustman EM. Computational models of ethanol-induced neurodevelopmental toxicity across species: Implications for risk assessment. ACTA ACUST UNITED AC 2008; 83:1-11. [PMID: 18161053 DOI: 10.1002/bdrb.20137] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Computational, systems-based approaches can provide a quantitative construct for evaluating risk in the context of mechanistic data. Previously, we developed computational models for the rat, mouse, rhesus monkey, and human, describing the acquisition of adult neuron number in the neocortex during the key neurodevelopmental processes of neurogenesis and synaptogenesis. Here we apply mechanistic data from the rat describing ethanol-induced toxicity in the developing neocortex to evaluate the utility of these models for analyzing neurodevelopmental toxicity across species. Our model can explain long-term neocortical neuronal loss in the rodent model after in utero exposure to ethanol based on inhibition of proliferation during neurogenesis. Our human model predicts a significant neuronal deficit after daily peak BECs reaching 10-20 mg/dl, which is the approximate BEC reached after drinking one standard drink within one hour. In contrast, peak daily BECs of 100 mg/dl are necessary to predict similar deficits in the rat. Our model prediction of increased sensitivity of primate species to ethanol-induced inhibition of proliferation is based on application of in vivo experimental data from primates showing a prolonged rapid growth period in the primate versus rodent neuronal progenitor population. To place our predictions into a broader context, we evaluate the evidence for functional low-dose effects across rats, monkeys, and humans. Results from this critical evaluation suggest subtle effects are evident at doses causing peak BECs of approximately 20 mg/dl daily, corroborating our model predictions. Our example highlights the utility of a systems-based modeling approach in risk assessment.
Collapse
Affiliation(s)
- Julia M Gohlke
- Institute for Risk Analysis and Risk Communication, Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105-6099, USA
| | | | | |
Collapse
|
20
|
Lei M, Hua X, Xiao M, Ding J, Han Q, Hu G. Impairments of astrocytes are involved in the d-galactose-induced brain aging. Biochem Biophys Res Commun 2008; 369:1082-7. [PMID: 18329384 DOI: 10.1016/j.bbrc.2008.02.151] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 02/29/2008] [Indexed: 12/31/2022]
Abstract
Astrocyte dysfunction is implicated in course of various age-related neurodegenerative diseases. Chronic injection of d-galactose can cause a progressive deterioration in learning and memory capacity and serve as an animal model of aging. To investigate the involvement of astrocytes in this model, oxidative stress biomarkers, biochemical and pathological changes of astrocytes were examined in the hippocampus of the rats with six weeks of d-galactose injection. d-galactose-injected rats displayed impaired antioxidant systems, an increase in nitric oxide levels, and a decrease in reduced glutathione levels. Consistently, western blotting and immunostaining of glial fibrillary acidic protein showed extensive activation of astrocytes. Double-immunofluorescent staining further showed activated astrocytes highly expressed inducible nitric oxide synthase. Electron microscopy demonstrated the degeneration of astrocytes, especially in the aggregated area of synapse and brain microvessels. These findings indicate that impairments of astrocytes are involved in oxidative stress-induced brain aging by chronic injection of d-galactose.
Collapse
Affiliation(s)
- Ming Lei
- Key Laboratory of Neurodegeneration of Jiangsu Province, Department of Anatomy, Histology and Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | | | | | | | | | | |
Collapse
|
21
|
Paul LK, Brown WS, Adolphs R, Tyszka JM, Richards LJ, Mukherjee P, Sherr EH. Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nat Rev Neurosci 2007; 8:287-99. [PMID: 17375041 DOI: 10.1038/nrn2107] [Citation(s) in RCA: 577] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Agenesis of the corpus callosum (AgCC), a failure to develop the large bundle of fibres that connect the cerebral hemispheres, occurs in 1:4000 individuals. Genetics, animal models and detailed structural neuroimaging are now providing insights into the developmental and molecular bases of AgCC. Studies using neuropsychological, electroencephalogram and functional MRI approaches are examining the resulting impairments in emotional and social functioning, and have begun to explore the functional neuroanatomy underlying impaired higher-order cognition. The study of AgCC could provide insight into the integrated cerebral functioning of healthy brains, and may offer a model for understanding certain psychiatric illnesses, such as schizophrenia and autism.
Collapse
Affiliation(s)
- Lynn K Paul
- California Institute of Technology, MC 228-77 Pasadena, California 91125, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Evrard SG, Duhalde-Vega M, Tagliaferro P, Mirochnic S, Caltana LR, Brusco A. A low chronic ethanol exposure induces morphological changes in the adolescent rat brain that are not fully recovered even after a long abstinence: An immunohistochemical study. Exp Neurol 2006; 200:438-59. [PMID: 16631170 DOI: 10.1016/j.expneurol.2006.03.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 02/25/2006] [Accepted: 03/01/2006] [Indexed: 10/24/2022]
Abstract
Little is known about the morphological effects of alcoholism on the developing adolescent brain and its consequences into adulthood. We studied here the relationship between two neurotransmitter systems (the serotoninergic and nitrergic) and the astrocytic and neuronal cytoskeleton immediately and long after drinking cessation of a chronic, but low, ethanol administration. Adolescent male Wistar rats were exposed to ethanol 6.6% (v/v) in drinking water for 6 weeks and studied after ending exposure or after a 10-week recovery period drinking water. Control animals received water. Brain sections were processed by immunohistochemistry using antibodies to serotonin (5-HT); glial fibrillary acidic protein (GFAP); astroglial S-100b protein; microtubule associated protein-2 (MAP-2); 200 kDa neurofilaments (Nf-200); and neuronal nitric oxide synthase (nNOS). The mesencephalic dorsal and median raphe nucleus (DRN; MRN) and three prosencephalic areas closely related to cognitive abilities (CA1 hippocampal area, striatum and frontal cortex) were studied by digital image analysis. 5-HT immunoreactivity (-ir) decreased in the DRN and recovered after abstinence and was not changed in the MRN. In the three prosencephalic areas, astrocytes' cell area (GFAP-ir cells) increased after EtOH exposure and tended to return to normality after abstinence, while cytoplasmic astroglial S100b protein-ir, relative area of MAP-2-ir and Nf-200-ir fibers decreased, and later partially recovered. In the striatum and frontal cortex, nNOS-ir decreased only after abstinence. In conclusion, in the adolescent brain, drinking cessation can partially ameliorate the ethanol-induced morphological changes on neurons and astrocytes but cannot fully return it to the basal state.
Collapse
Affiliation(s)
- Sergio Gustavo Evrard
- Instituto de Biología Celular y Neurociencias, Prof. Eduardo De Robertis, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 3rd fl., C1121ABG, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
23
|
Tagliaferro P, Javier Ramos A, Onaivi ES, Evrard SG, Lujilde J, Brusco A. Neuronal cytoskeleton and synaptic densities are altered after a chronic treatment with the cannabinoid receptor agonist WIN 55,212-2. Brain Res 2006; 1085:163-76. [PMID: 16566907 DOI: 10.1016/j.brainres.2005.12.089] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 12/19/2005] [Accepted: 12/21/2005] [Indexed: 11/21/2022]
Abstract
Cannabinoid CB1 receptors are the most abundant G-protein-coupled receptors in the brain. Its presynaptic location suggests a role for cannabinoids in modulating the release of neurotransmitters from axon terminals by retrograde signaling. The neuroprotective effects of cannabinoid agonists in animal models of ischemia, seizures, hypoxia, Multiple Sclerosis, Huntington and Parkinson disease have been demonstrated in several reports. The proposed mechanism for the neuroprotection ranges from antioxidant effects, reduction of microglial activation and anti-inflammatory reaction to receptor-mediated reduction of glutamate release. In the present work, we analyzed the morphological changes induced by a chronic treatment with the synthetic cannabinoid receptor agonist, WIN 55,212-2, in four brain regions where the CB1 cannabinoid receptor is present in high density: the CA1 hippocampal area, corpus striatum, cerebellum and frontal cortex. After a twice-daily treatment for 14 days with the cannabinoid receptor agonist (3 mg/kg sc, each dose) to male Wistar rats (150-170 g), the expression of neurofilaments (Nf-160 and Nf-200), microtubule-associated protein-2 (MAP-2), synaptophysin (Syn) and glial fibrillary acidic protein (GFAP) was studied by immunohistochemistry and digital image analysis. Ultrastructural study of the synapses was done using electron microscopy. After the treatment, a significant increase in the expression of neuronal cytoskeletal proteins (Nf-160, Nf-200, MAP-2) was observed, but we did not find changes in the expression of GFAP, the main astroglial cytoskeletal protein. In cerebellum, there was an increase in Syn expression and in the number of synaptic vesicles, while, in the hippocampus, an increase in the Syn expression and in the thickness of the postsynaptic densities was observed. The results obtained from these studies provide evidences on the absence of astroglial reaction and a sprouting phenomena induced by the WIN treatment that might be a key contributor to the long-term neuroprotective effects observed after cannabinoid treatments in different models of central nervous system (CNS) injury reported in the literature.
Collapse
Affiliation(s)
- Patricia Tagliaferro
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis", Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 3(er) piso, (C1121ABG), Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
24
|
Williams SM, Bryan-Lluka LJ, Pow DV. Quantitative analysis of immunolabeling for serotonin and for glutamate transporters after administration of imipramine and citalopram. Brain Res 2005; 1042:224-32. [PMID: 15854594 DOI: 10.1016/j.brainres.2005.02.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 02/14/2005] [Accepted: 02/15/2005] [Indexed: 11/21/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is an amine neurotransmitter derived from tryptophan and is important in brain systems regulating mood, emotional behavior, and sleep. Selective serotonin reuptake inhibitor (SSRI) drugs are used to treat disorders such as depression, stress, eating disorders, autism, and schizophrenia. It is thought that these drugs act to prolong the action of 5-HT by blocking reuptake. This may lead to decreased 5-HT content in the nerve fibers themselves; however, this has not previously been directly demonstrated. We have studied the effects of administration of two drugs, imipramine and citalopram, on levels of 5-HT in nerve fibers in the murine brain. Quantitative analysis of the areal density of 5-HT fibers throughout the brain was performed using ImageJ software. While a high density of fibers was observed in mid- and hind-brain regions and areas such as thalamus and hypothalamus, densities were far lower in areas such as cortex, where SSRIs might be thought to exert their actions. As anticipated, imipramine and citalopram produced a decline in 5-HT levels in nerve fibers, but the result was not uniform. Areas such as inferior colliculus showed significant reduction whereas little, if any, change was observed in the adjacent superior colliculus. The reason for, and significance of, this regionality is unclear. It has been proposed that serotonin effects in the brain might be linked to changes in glutamatergic transmission. Extracellular glutamate levels are regulated primarily by glial glutamate transporters. Qualitative evaluation of glutamate transporter immunolabeling in cortex of control and drug-treated mice revealed no discernable difference in intensity of glutamate transporter immunoreactivity. These data suggest that changes in intracellular and extracellular levels of serotonin do not cause concomitant changes in astroglial glutamate transporter expression, and thus cannot represent a mechanism for the delayed efficacy of antidepressants when administered clinically.
Collapse
Affiliation(s)
- Susan M Williams
- Discipline of Anatomy, School of Biomedical Sciences, and Hunter Medical Research Institute (HMRI), University of Newcastle, Callaghan, NSW, 2308, Australia
| | | | | |
Collapse
|
25
|
Ramos AJ, Rubio MD, Defagot C, Hischberg L, Villar MJ, Brusco A. The 5HT1A receptor agonist, 8-OH-DPAT, protects neurons and reduces astroglial reaction after ischemic damage caused by cortical devascularization. Brain Res 2004; 1030:201-20. [PMID: 15571670 DOI: 10.1016/j.brainres.2004.10.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2004] [Indexed: 11/22/2022]
Abstract
Serotonin 1A (5HT1A) receptor agonists have shown neuroprotective properties in different models of central nervous system injury. Activation of neuronal 5HT1A receptors appears to be involved in the neuroprotective effects. It remains to be elucidated if astroglial cells are responsive to the 5HT1A neuroprotective effects. The participation of astroglial S100B trophic factor has been proposed since 5HT1A activation leads to S100B release and nanomolar concentration level of this molecule showed pro-survival activity in neuronal cultures. Using the cortical devascularization model (CD; unilateral pial disruption), a procedure that results in localized ischemia without producing direct physical damage to brain tissue, we tested the effects of a full 5HT1A agonist, 8-OH-DPAT, or the antagonist WAY-100635 on cortical neuronal survival, astroglial cell response and S100B expression. Wistar rats were subjected to CD lesion which consisted of a craniotomy followed by physical damage to the underlying pial blood vessels. Two and twenty-four hours after the CD lesion, animals received intraperitoneally 8-OH-DPAT (1 mg/kg), WAY-100635 (1 mg/kg) or vehicle (sterile saline). At 3, 7 or 14 days post-lesion, animals were sacrificed and their brains processed for immunohistochemistry to detect GFAP, vimentin, MAP-2, S100B and nuclear Hoechst staining. S100B level in the brain cortex and serum was quantified by an ELISA assay. Serum S100B was considered an index of S100B release. 8-OH-DPAT treatment reduced neuronal death, dendrite loss, astroglial hypertrophy and hyperplasia. In contrast, WAY-100635 treatment increased these parameters of damage. S100B intracellular immunoreactivity in astrocytes and total S100B level showed long-lasting changes after the CD lesion and subsequent treatments depending on the 5HT1A activity. The level of serum S100B was increased in 8-OH-DPAT-treated animals. Increased damage observed in WAY-100635-treated animals supports the hypothesis that the protective 8-OH-DPAT action may be mediated by specific 5HT1A receptors. The reduction in astroglial hypertrophy and hyperplasia as well as long-term changes in S100B immunoreactivity and increased S100B release that we observed allows us to hypothesize that astroglial cells may play an important role in 5HT1A-mediated neuroprotection.
Collapse
Affiliation(s)
- Alberto Javier Ramos
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 3er piso, 1121 Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|