1
|
Hassib L, Kanashiro A, Pedrazzi JFC, Vercesi BF, Higa S, Arruda Í, Soares Y, de Jesus de Souza A, Barichello T, Guimarães FS, Ferreira FR. Microbiota-based therapies as novel targets for autism spectrum disorder: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2025; 139:111385. [PMID: 40348275 DOI: 10.1016/j.pnpbp.2025.111385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 04/14/2025] [Accepted: 04/26/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by persistent deficits in social interaction and communication. Emerging evidence suggests that alterations in the gut-brain axis play a key role in the pathophysiology of ASD, and that microbiota-targeted interventions may offer therapeutic benefits. However, no clear consensus has been reached regarding the effectiveness of these strategies in ameliorating behavioral characteristics. This systematic review and meta-analysis (PROSPERO registration ID: CRD42023494067) aimed to evaluate the impact of microbiota-based interventions-including synbiotics, prebiotics, single-strain probiotics, probiotic blends, and fecal microbiota transplantation (FMT)-on behavioral outcomes in individuals with ASD, with particular emphasis on social functioning. RESULTS Of the 373 records initially identified, 20 studies met the inclusion criteria, comprising 16 randomized controlled trials and 4 open-label studies. The overall effect size indicated a statistically significant improvement in ASD-related behavioral symptoms following microbiota manipulation (Hedges' g = 0.47; 95 % CI: 0.30-0.64; p < 0.001; I2 = 33.01 %), representing a small but clinically relevant effect. Heterogeneity was classified as moderate. Among the interventions, FMT and probiotic blends yielded the most substantial effects. All major limitations of the current studies were thoroughly addressed and discussed to guide future experimental designs. Additionally, we examined preclinical evidence supporting the involvement of neural, immune, and metabolic pathways in mediating the observed behavioral improvements. CONCLUSIONS Our findings support the potential of microbiota-based therapies as a promising and well-tolerated strategy for improving behavioral symptoms in individuals with ASD. FMT and multi-strain probiotic formulations appear particularly effective. Nevertheless, further high-quality randomized controlled trials-especially involving FMT-are urgently needed to validate these results and guide clinical implementation. Thus, these findings provide a critical foundation for future investigations seeking to refine microbiota-based interventions and uncover the underlying mechanisms through which they influence ASD-related behaviors.
Collapse
Affiliation(s)
- Lucas Hassib
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Oswaldo Cruz Foundation, Institute Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.
| | - Alexandre Kanashiro
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - João Francisco Cordeiro Pedrazzi
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Bárbara Ferreira Vercesi
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Sayuri Higa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Íris Arruda
- Oswaldo Cruz Foundation, Institute Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Yago Soares
- Oswaldo Cruz Foundation, Institute Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Adriana de Jesus de Souza
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Tatiana Barichello
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | | | | |
Collapse
|
2
|
Cho H, Park Y. Synergistic Antidepressant-like Effects of Biotics and n-3 Polyunsaturated Fatty Acids on Dopaminergic Pathway through the Brain-Gut Axis in Rats Exposed to Chronic Mild Stress. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10332-1. [PMID: 39243350 DOI: 10.1007/s12602-024-10332-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 09/09/2024]
Abstract
Probiotics, postbiotics, and n-3 polyunsaturated fatty acids (PUFA) have antidepressant-like effects. However, the underlying mechanisms of the dopaminergic pathway are unclear. The present study investigated the hypothesis that probiotics and postbiotics combined with n-3 PUFA synergistically improve depression by modulating the dopaminergic pathway through the brain-gut axis. Rats were randomly divided into seven groups: non-chronic mild stress (CMS) with n-6 PUFA, and CMS with n-6 PUFA, n-3 PUFA, probiotics, postbiotics, probiotics combined with n-3 PUFA, and postbiotics combined with n-3 PUFA. Probiotics, postbiotics, and n-3 PUFA improved depressive behaviors, decreased blood concentrations of interferon-γ, and interleukin-1β, and increased the brain and gut concentrations of short chain fatty acids and dopamine. Moreover, probiotics, postbiotics, and n-3 PUFA increased the brain and gut expression of glucocorticoid receptor and tyrosine hydroxylase; brain expression of l-type amino acid transporter 1 and dopamine receptor (DR) D1; and gut expression of DRD2. The expression of phosphorylated protein kinase A/protein kinase A and phosphorylated cAMP response element-binding protein/cAMP response element-binding protein increased in the brain, however, decreased in the gut by the supplementation of probiotics, postbiotics, and n-3 PUFA. There was synergistic effect of probiotics and postbiotics combined with n-3 PUFA on the depressive behaviors and dopaminergic pathway in blood, brain, and gut. Moreover, no significant difference in the dopaminergic pathways between the probiotics and postbiotics was observed. In conclusion, probiotics and postbiotics, combined with n-3 PUFA have synergistic antidepressant-like effects on the dopaminergic pathway through the brain-gut axis in rats exposed to CMS.
Collapse
Affiliation(s)
- Hyunji Cho
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Yongsoon Park
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea.
| |
Collapse
|
3
|
Leoncini G, Cari L, Ronchetti S, Donato F, Caruso L, Calafà C, Villanacci V. Mucin Expression Profiles in Ulcerative Colitis: New Insights on the Histological Mucosal Healing. Int J Mol Sci 2024; 25:1858. [PMID: 38339134 PMCID: PMC10855303 DOI: 10.3390/ijms25031858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
A structural weakness of the mucus barrier (MB) is thought to be a cause of ulcerative colitis (UC). This study aims to investigate the mucin (MUC) composition of MB in normal mucosa and UC. Ileocolonic biopsies were taken at disease onset and after treatment in 40 patients, including 20 with relapsing and 20 with remitting UC. Ileocolonic biopsies from 10 non-IBD patients were included as controls. Gut-specific MUC1, MUC2, MUC4, MUC5B, MUC12, MUC13, MUC15, and MUC17 were evaluated immunohistochemically. The promoters of mucin genes were also examined. Normal mucosa showed MUC2, MUC5B, and MUC13 in terminal ileum and colon, MUC17 in ileum, and MUC1, MUC4, MUC12, and MUC15 in colon. Membranous, cytoplasmic and vacuolar expressions were highlighted. Overall, the mucin expression was abnormal in UC. Derangements in MUC1, MUC4, and MUC5B were detected both at onset and after treatment. MUC2 and MUC13 were unaffected. Sequence analysis revealed glucocorticoid-responsive elements in the MUC1 promoter, retinoic-acid-responsive elements in the MUC4 promoter, and butyrate-responsive elements in the MUC5B promoter. In conclusion, MUCs exhibited distinct expression patterns in the gut. Their expression was disrupted in UC, regardless of the treatment protocols. Abnormal MUC1, MUC4, and MUC5B expression marked the barrier dysfunction in UC.
Collapse
Affiliation(s)
- Giuseppe Leoncini
- First Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Luigi Cari
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Simona Ronchetti
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Francesco Donato
- Unit of Hygiene, Epidemiology and Public Health, University of Brescia, 25123 Brescia, Italy
| | - Laura Caruso
- Pathology Unit, Department of Pathology and Laboratory Medicine, Desenzano del Garda Hospital, ASST del Garda, 25015 Brescia, Italy
| | - Cristina Calafà
- Pathology Unit, Department of Pathology and Laboratory Medicine, Desenzano del Garda Hospital, ASST del Garda, 25015 Brescia, Italy
| | | |
Collapse
|
4
|
Hilakivi-Clarke L, de Oliveira Andrade F. Social Isolation and Breast Cancer. Endocrinology 2023; 164:bqad126. [PMID: 37586098 DOI: 10.1210/endocr/bqad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Although the role of life stressors in breast cancer remains unclear, social isolation is consistently associated with increased breast cancer risk and mortality. Social isolation can be defined as loneliness or an absence of perceived social connections. In female mice and rats, social isolation is mimicked by housing animals 1 per cage. Social isolation causes many biological changes, of which an increase in inflammatory markers and disruptions in mitochondrial and cellular metabolism are commonly reported. It is not clear how the 2 traditional stress-induced pathways, namely, the hypothalamic-pituitary-adrenocortical axis (HPA), resulting in a release of glucocorticoids from the adrenal cortex, and autonomic nervous system (ANS), resulting in a release of catecholamines from the adrenal medulla and postganglionic neurons, could explain the increased breast cancer risk in socially isolated individuals. For instance, glucocorticoid receptor activation in estrogen receptor positive breast cancer cells inhibits their proliferation, and activation of β-adrenergic receptor in immature immune cells promotes their differentiation toward antitumorigenic T cells. However, activation of HPA and ANS pathways may cause a disruption in the brain-gut-microbiome axis, resulting in gut dysbiosis. Gut dysbiosis, in turn, leads to an alteration in the production of bacterial metabolites, such as short chain fatty acids, causing a systemic low-grade inflammation and inducing dysfunction in mitochondrial and cellular metabolism. A possible causal link between social isolation-induced increased breast cancer risk and mortality and gut dysbiosis should be investigated, as it offers new tools to prevent breast cancer.
Collapse
Affiliation(s)
- Leena Hilakivi-Clarke
- Department of Food Science and Nutrition, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Fabia de Oliveira Andrade
- Department of Food Science and Nutrition, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
5
|
Mehra A, Arora G, Gaurav, Kaur M, Singh H, Singh B, Kaur S. Gut microbiota and Autism Spectrum Disorder: From pathogenesis to potential therapeutic perspectives. J Tradit Complement Med 2022; 13:135-149. [PMID: 36970459 PMCID: PMC10037072 DOI: 10.1016/j.jtcme.2022.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 01/19/2022] [Accepted: 03/03/2022] [Indexed: 02/08/2023] Open
Abstract
Autism is a complex neurodevelopmental disorder which disrupts communication, social and interactive skills followed by appearance of repetitive behavior. The underlying etiology remains incomprehensible but genetic and environmental factors play a key role. Accumulated evidence shows that alteration in level of gut microbes and their metabolites are not only linked to gastrointestinal problems but also to autism. So far the mix of microbes that is present in the gut affects human health in numerous ways through extensive bacterial-mammalian cometabolism and has a marked influence over health via gut-brain-microbial interactions. Healthy microbiota may even ease the symptoms of autism, as microbial balance influences brain development through the neuroendocrine, neuroimmune, and autonomic nervous systems. In this article, we focused on reviewing the correlation between gut microbiota and their metabolites on symptoms of autism by utilizing prebiotics, probiotics and herbal remedies to target gut microflora hence autism.
Collapse
|
6
|
Modulation of Hepatic Insulin and Glucagon Signaling by Nutritional Factors in Broiler Chicken. Vet Sci 2022; 9:vetsci9030103. [PMID: 35324832 PMCID: PMC8955576 DOI: 10.3390/vetsci9030103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Influencing the endocrine metabolic regulation of chickens by nutritional factors might provide novel possibilities for improving animal health and productivity. This study was designed to evaluate the impact of dietary cereal type (wheat-based (WB) vs. maize-based (MB) diets), crude protein level (normal (NP) vs. lowered (LP)), and sodium (n-)butyrate (1.5 g/kg diet) supplementation (vs. no butyrate) on the responsiveness of hepatic glucagon receptor (GCGR), insulin receptor beta (IRβ) and mammalian target of rapamycin (mTOR) in the phase of intensive growth of chickens. Liver samples of Ross 308 broiler chickens (Gallus gallus domesticus) were collected on day 21 for quantitative real-time polymerase chain reaction and Western blot analyses. Hepatic GCGR and mTOR gene expressions were up-regulated by WB and LP diet. GCGR and IRβ protein level decreased in groups with butyrate supplementation; however, the quantity of IRβ and mTOR protein increased in WB groups. Based on these data, the applied dietary strategies may be useful tools to modulate hepatic insulin and glucagon signaling of chickens in the period of intensive growth. The obtained results might contribute to the better understanding of glycemic control of birds and increase the opportunity of ameliorating insulin sensitivity, hence, improving the production parameters and the welfare of broilers.
Collapse
|
7
|
LaGamma EF, Hu F, Pena Cruz F, Bouchev P, Nankova BB. Bacteria - derived short chain fatty acids restore sympathoadrenal responsiveness to hypoglycemia after antibiotic-induced gut microbiota depletion. Neurobiol Stress 2021; 15:100376. [PMID: 34401412 PMCID: PMC8358200 DOI: 10.1016/j.ynstr.2021.100376] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/09/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
The microbiome co-evolved with their mammalian host over thousands of years. This commensal relationship serves a pivotal role in various metabolic, physiological, and immunological processes. Recently we discovered impaired adrenal catecholamine stress responses in germ-free mice suggesting developmental modification of the reflex arc or absence of an ongoing microbiome signal. To determine whether maturational arrest or an absent bacteria-derived metabolite was the cause, we tested whether depleting gut microbiome in young adult animals could also alter the peripheral stress responses to insulin-induced hypoglycemia. Groups of C57Bl6 male mice were given regular water (control) or a cocktail of non-absorbable broad-spectrum antibiotics (Abx) in the drinking water for two weeks before injection with insulin or saline. Abx mice displayed a profound decrease in microbial diversity and abundance of Bacteroidetes and Firmicutes, plus a markedly enlarged caecum and no detectable by-products of bacterial fermentation (sp. short chain fatty acids, SCFA). Tonic and stress-induced epinephrine levels were attenuated. Recolonization (Abx + R) restored bacterial diversity, but not the sympathoadrenal system responsiveness or caecal acetate, propionate and butyrate levels. In contrast, corticosterone (HPA) and glucagon (parasympathetic) resting values and responses to hypoglycemia remained similar across all conditions. Oral supplementation with SCFA improved epinephrine responses to hypoglycaemia. Whole genome shotgun sequence profiling of fecal samples from control, Abx and Abx + R cohorts identified nine microbes (SCFA producers) absent from both Abx and Abx + R groups. These results implicate gut microbiome depletion plus its attendant reduction in SCFA signalling in adversely affecting the release of epinephrine in response to hypoglycemia. We speculate that regardless of postnatal age, a mutable microbiome messaging system exists throughout life. Unravelling these mechanisms could lead to new therapeutic possibilities through controlled manipulation of the gut microbiota and its ability to alter systemic neurotransmitter responsiveness. Gut microbiome depletion affects sympathoadrenal medullary stress axis. Recolonization restores bacterial diversity, but not the epinephrine response to hypoglycaemia. SCFA supplement during antibiotic treatment improves tonic and stress-induced epinephrine release. Delayed recovery of several SCFA producers after recolonization modulates peripheral catecholaminergic pathways.
Collapse
Affiliation(s)
- Edmund F. LaGamma
- Division of Newborn Medicine, Departments of Pediatrics, Biochemistry and Molecular Biology, New York Medical College, USA
- The Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, Valhalla, NY, 10595, USA
| | - Furong Hu
- Division of Newborn Medicine, Departments of Pediatrics, Biochemistry and Molecular Biology, New York Medical College, USA
| | - Fernando Pena Cruz
- The Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, Valhalla, NY, 10595, USA
| | - Philip Bouchev
- Ridgefield High School, Junior, Ridgefield, CT, 06877, USA
| | - Bistra B. Nankova
- Division of Newborn Medicine, Departments of Pediatrics, Biochemistry and Molecular Biology, New York Medical College, USA
- Corresponding author. Department of Pediatrics, Biochemistry and Molecular Biology, Division of Newborn Medicine, New York Medical College, Valhalla, NY, 10595, USA.
| |
Collapse
|
8
|
Caffaratti C, Plazy C, Mery G, Tidjani AR, Fiorini F, Thiroux S, Toussaint B, Hannani D, Le Gouellec A. What We Know So Far about the Metabolite-Mediated Microbiota-Intestinal Immunity Dialogue and How to Hear the Sound of This Crosstalk. Metabolites 2021; 11:406. [PMID: 34205653 PMCID: PMC8234899 DOI: 10.3390/metabo11060406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/25/2022] Open
Abstract
Trillions of microorganisms, termed the "microbiota", reside in the mammalian gastrointestinal tract, and collectively participate in regulating the host phenotype. It is now clear that the gut microbiota, metabolites, and intestinal immune function are correlated, and that alterations of the complex and dynamic host-microbiota interactions can have deep consequences for host health. However, the mechanisms by which the immune system regulates the microbiota and by which the microbiota shapes host immunity are still not fully understood. This article discusses the contribution of metabolites in the crosstalk between gut microbiota and immune cells. The identification of key metabolites having a causal effect on immune responses and of the mechanisms involved can contribute to a deeper insight into host-microorganism relationships. This will allow a better understanding of the correlation between dysbiosis, microbial-based dysmetabolism, and pathogenesis, thus creating opportunities to develop microbiota-based therapeutics to improve human health. In particular, we systematically review the role of soluble and membrane-bound microbial metabolites in modulating host immunity in the gut, and of immune cells-derived metabolites affecting the microbiota, while discussing evidence of the bidirectional impact of this crosstalk. Furthermore, we discuss the potential strategies to hear the sound of such metabolite-mediated crosstalk.
Collapse
Affiliation(s)
- Clément Caffaratti
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
| | - Caroline Plazy
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
- Service de Biochimie Biologie Moléculaire Toxicologie Environnementale, UM Biochimie des Enzymes et des Protéines, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France
- Plateforme de Métabolomique GEMELI-GExiM, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France;
| | - Geoffroy Mery
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
- Department of Infectiology-Pneumology, CHU Grenoble-Alpes, 38000 Grenoble, France
| | - Abdoul-Razak Tidjani
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
| | - Federica Fiorini
- Plateforme de Métabolomique GEMELI-GExiM, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France;
| | - Sarah Thiroux
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
| | - Bertrand Toussaint
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
- Service de Biochimie Biologie Moléculaire Toxicologie Environnementale, UM Biochimie des Enzymes et des Protéines, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France
- Plateforme de Métabolomique GEMELI-GExiM, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France;
| | - Dalil Hannani
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
| | - Audrey Le Gouellec
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
- Service de Biochimie Biologie Moléculaire Toxicologie Environnementale, UM Biochimie des Enzymes et des Protéines, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France
- Plateforme de Métabolomique GEMELI-GExiM, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France;
| |
Collapse
|
9
|
Anderson G, Maes M. Mitochondria and immunity in chronic fatigue syndrome. Prog Neuropsychopharmacol Biol Psychiatry 2020; 103:109976. [PMID: 32470498 DOI: 10.1016/j.pnpbp.2020.109976] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
It is widely accepted that the pathophysiology and treatment of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) could be considerably improved. The heterogeneity of ME/CFS and the confusion over its classification have undoubtedly contributed to this, although this would seem a consequence of the complexity of the array of ME/CFS presentations and high levels of diverse comorbidities. This article reviews the biological underpinnings of ME/CFS presentations, including the interacting roles of the gut microbiome/permeability, endogenous opioidergic system, immune cell mitochondria, autonomic nervous system, microRNA-155, viral infection/re-awakening and leptin as well as melatonin and the circadian rhythm. This details not only relevant pathophysiological processes and treatment options, but also highlights future research directions. Due to the complexity of interacting systems in ME/CFS pathophysiology, clarification as to its biological underpinnings is likely to considerably contribute to the understanding and treatment of other complex and poorly managed conditions, including fibromyalgia, depression, migraine, and dementia. The gut and immune cell mitochondria are proposed to be two important hubs that interact with the circadian rhythm in driving ME/CFS pathophysiology.
Collapse
Affiliation(s)
- G Anderson
- CRC Scotland & London, Eccleston Square, London, UK.
| | - M Maes
- Dept Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Dept Psychiatry, Medical University Plovdiv, Plovdiv, Bulgaria.; IMPACT Research Center, Deakin University, Geelong, Australia
| |
Collapse
|
10
|
Mir HD, Milman A, Monnoye M, Douard V, Philippe C, Aubert A, Castanon N, Vancassel S, Guérineau NC, Naudon L, Rabot S. The gut microbiota metabolite indole increases emotional responses and adrenal medulla activity in chronically stressed male mice. Psychoneuroendocrinology 2020; 119:104750. [PMID: 32569990 DOI: 10.1016/j.psyneuen.2020.104750] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/16/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS The gut microbiota produces metabolites that are an integral part of the metabolome and, as such, of the host physiology. Changes in gut microbiota metabolism could therefore contribute to pathophysiological processes. We showed previously that a chronic and moderate overproduction of indole from tryptophan in male individuals of the highly stress-sensitive F344 rat strain induced anxiety-like and helplessness behaviors. The aim of the present study was to extend the scope of these findings by investigating whether emotional behaviors of male mice that are moderately stress-sensitive but chronically exposed to environmental stressors would also be affected by indole. METHODS We colonized germ-free male C3H/HeN mice with a wild-type indole-producing Escherichia coli strain, or with the non-indole producing mutant. Gnotobiotic mice were subjected to an unpredictable chronic mild stress procedure, then to a set of tests aimed at assessing anxiety-like (novelty and elevated plus maze tests) and depression-like behaviors (coat state, splash, nesting, tail suspension and sucrose tests). Results of the individual tests were aggregated into a common z-score to estimate the overall emotional response to chronic mild stress and chronic indole production. We also carried out biochemical and molecular analyses in gut mucosa, plasma, brain hippocampus and striatum, and adrenal glands, to examine biological correlates that are usually associated with stress, anxiety and depression. RESULTS Chronic mild stress caused coat state degradation and anhedonia in both indole-producing and non-indole producing mice, but it did not influence behaviors in the other tests. Chronic indole production did not influence mice behavior when tests were considered individually, but it increased the overall emotionality z-score, specifically in mice under chronic mild stress. Interestingly, in the same mice, indole induced a dramatic increase of the expression of the adrenomedullary Pnmt gene, which is involved in catecholamine biosynthesis. By contrast, systemic tryptophan bioavailability, brain serotonin and dopamine levels and turnover, as well as expression of gut and brain genes involved in cytokine production and tryptophan metabolism along the serotonin and kynurenine pathways, remained similar in all mice. CONCLUSIONS Chronic indole production by the gut microbiota increased the vulnerability of male mice to the adverse effects of chronic mild stress on emotional behaviors. It also targeted catecholamine biosynthetic pathway of the adrenal medulla, which plays a pivotal role in body's physiological adaptation to stressful events. Future studies will aim to investigate the action mechanisms responsible for these effects.
Collapse
Affiliation(s)
- Hayatte-Dounia Mir
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Alexandre Milman
- IGF, Univ. Montpellier, CNRS, INSERM, 34000 Montpellier, France.
| | - Magali Monnoye
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Véronique Douard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Catherine Philippe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Agnès Aubert
- Université de Bordeaux, INRAE, UMR NutriNeurO, 33000 Bordeaux, France.
| | - Nathalie Castanon
- Université de Bordeaux, INRAE, UMR NutriNeurO, 33000 Bordeaux, France.
| | - Sylvie Vancassel
- Université de Bordeaux, INRAE, UMR NutriNeurO, 33000 Bordeaux, France.
| | | | - Laurent Naudon
- Université Paris-Saclay, INRAE, AgroParisTech, CNRS, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Sylvie Rabot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
11
|
Small talk: chemical conversations with bacteria. CHEMTEXTS 2020. [DOI: 10.1007/s40828-020-0102-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Giri P, Hu F, La Gamma EF, Nankova BB. Absence of gut microbial colonization attenuates the sympathoadrenal response to hypoglycemic stress in mice: implications for human neonates. Pediatr Res 2019; 85:574-581. [PMID: 30675019 DOI: 10.1038/s41390-018-0270-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/29/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Gut microbiota plays an important role during early development via bidirectional gut-brain signaling. Catecholamines provide a survival advantage allowing adaptation to common postnatal stressors. We aimed to explore the potential link between gut microbiota/gut-derived metabolites and sympathoadrenal stress responsivity. METHODS The effect of insulin-induced hypoglycemia was compared in mice with (control, adapted control) and without microbiome (germ-free, GF). Counter-regulatory hormones were analyzed in urine and plasma. Adrenal gene expression levels were evaluated and correlated to cecal short chain fatty acids (SCFA) content. RESULTS There was a significant association between absent microbiota/SCFA and epinephrine levels at baseline and after stress. Corticosterone (hypothalamic-pituitary-adrenal axis) and glucagon release (parasympathetic signaling) were similar in all groups. Hypoglycemia-induced c-Fos (marker of trans-synaptic neuronal activation) in both conditions. Delayed increases in adrenal tyrosine hydroxylase and neuropeptide Y messenger RNA were observed in GF mice. Transcriptome analysis provided insight into underlying mechanisms for attenuated epinephrine production and release. CONCLUSION Lack of microbiome selectively impaired adrenal catecholamine responses to hypoglycemia. We speculate that absent/delayed acquisition of flora (e.g., after antibiotic exposure) may compromise sympathoadrenal stress responsivity. Conversely, controlled manipulation of the intestinal microflora may provide a novel therapeutic opportunity to improve survival and overall health in preterm neonates.
Collapse
Affiliation(s)
- Priyadarshani Giri
- The Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, Valhalla, NY, 10595, USA
| | - Furong Hu
- Departments of Pediatrics, Biochemistry and Molecular Biology, Division of Newborn Medicine, New York Medical College, Valhalla, NY, 10595, USA
| | - Edmund F La Gamma
- Departments of Pediatrics, Biochemistry and Molecular Biology, Division of Newborn Medicine, New York Medical College, Valhalla, NY, 10595, USA
| | - Bistra B Nankova
- Departments of Pediatrics, Biochemistry and Molecular Biology, Division of Newborn Medicine, New York Medical College, Valhalla, NY, 10595, USA.
| |
Collapse
|
13
|
Petrilla J, Mátis G, Kulcsár A, Talapka P, Bíró E, Mackei M, Fébel H, Neogrády Z. Effect of dietary cereal type, crude protein and butyrate supplementation on metabolic parameters of broilers. Acta Vet Hung 2018; 66:408-452. [PMID: 30264622 DOI: 10.1556/004.2018.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This study investigates the metabolic effects of maize- or wheat-based diets with normal (NP) and lowered (LP) dietary crude protein level [the latter supplemented with limiting amino acids and sodium (n-)butyrate at 1.5 g/kg diet] at different phases of broiler fattening. Blood samples of Ross 308 broilers were tested at the age of 1, 3 and 6 weeks. Total protein (TP) concentration increased in wheat-based and decreased in LP groups in week 3, while butyrate reduced albumin/TP ratio in week 1. Uric acid level was elevated by wheat-based diet in week 1 and by wheat-based diet and butyrate in week 3, but decreased in LP groups in weeks 3 and 6. Aspartate aminotransferase activity was increased by wheat-based diet in week 3, and creatine kinase activity was intensified by LP in weeks 3 and 6. Blood glucose level decreased in wheat-based groups in week 3; however, triglyceride concentration was augmented in the same groups in week 3. No change of glucagon-like peptide 1, glucose-dependent insulinotropic polypeptide and insulin concentration was observed. In conclusion, an age-dependent responsiveness of broilers to dietary factors was found, dietary cereal type was a potent modulator of metabolism, and a low crude protein diet supplemented with limiting amino acids might have a beneficial impact on the growth of chickens.
Collapse
Affiliation(s)
- Janka Petrilla
- 1 Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary
| | - Gábor Mátis
- 1 Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary
| | - Anna Kulcsár
- 1 Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary
| | - Petra Talapka
- 1 Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary
| | - Enikő Bíró
- 1 Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary
| | - Máté Mackei
- 1 Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary
| | - Hedvig Fébel
- 2 Research Institute for Animal Breeding, Nutrition and Meat Science, National Agricultural Research Centre, Herceghalom, Hungary
| | - Zsuzsanna Neogrády
- 1 Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary
| |
Collapse
|
14
|
Grimaldi R, Gibson GR, Vulevic J, Giallourou N, Castro-Mejía JL, Hansen LH, Leigh Gibson E, Nielsen DS, Costabile A. A prebiotic intervention study in children with autism spectrum disorders (ASDs). MICROBIOME 2018; 6:133. [PMID: 30071894 PMCID: PMC6091020 DOI: 10.1186/s40168-018-0523-3] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/27/2018] [Indexed: 06/02/2023]
Abstract
BACKGROUND Different dietary approaches, such as gluten and casein free diets, or the use of probiotics and prebiotics have been suggested in autistic spectrum disorders in order to reduce gastrointestinal (GI) disturbances. GI symptoms are of particular interest in this population due to prevalence and correlation with the severity of behavioural traits. Nowadays, there is lack of strong evidence about the effect of dietary interventions on these problems, particularly prebiotics. Therefore, we assessed the impact of exclusion diets and a 6-week Bimuno® galactooligosaccharide (B-GOS®) prebiotic intervention in 30 autistic children. RESULTS The results showed that children on exclusion diets reported significantly lower scores of abdominal pain and bowel movement, as well as lower abundance of Bifidobacterium spp. and Veillonellaceae family, but higher presence of Faecalibacterium prausnitzii and Bacteroides spp. In addition, significant correlations were found between bacterial populations and faecal amino acids in this group, compared to children following an unrestricted diet. Following B-GOS® intervention, we observed improvements in anti-social behaviour, significant increase of Lachnospiraceae family, and significant changes in faecal and urine metabolites. CONCLUSIONS To our knowledge, this is the first study where the effect of exclusion diets and prebiotics has been evaluated in autism, showing potential beneficial effects. A combined dietary approach resulted in significant changes in gut microbiota composition and metabolism suggesting that multiple interventions might be more relevant for the improvement of these aspects as well as psychological traits. TRIAL REGISTRATION NCT02720900 ; registered in November 2015.
Collapse
Affiliation(s)
- Roberta Grimaldi
- Department of Food and Nutritional Sciences, University of Reading, Reading, RG66AP UK
- Clasado Research Services Ltd., Thames Valley Science Park, Reading, RG29LH UK
| | - Glenn R. Gibson
- Department of Food and Nutritional Sciences, University of Reading, Reading, RG66AP UK
| | - Jelena Vulevic
- Clasado Research Services Ltd., Thames Valley Science Park, Reading, RG29LH UK
| | - Natasa Giallourou
- Division of Computational and Systems Medicine, Imperial College London, London, SW7 2AZ UK
| | - Josué L. Castro-Mejía
- Department of Food Science, Faculty of Science, Food Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lars H. Hansen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - E. Leigh Gibson
- Health Sciences Research Centre, Life Sciences Department, Whitelands College, University of Roehampton, London, SW15 4JD UK
| | - Dennis S. Nielsen
- Department of Food Science, Faculty of Science, Food Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Adele Costabile
- Health Sciences Research Centre, Life Sciences Department, Whitelands College, University of Roehampton, London, SW15 4JD UK
| |
Collapse
|
15
|
Tan X, Feng L, Huang X, Yang Y, Yang C, Gao Y. Histone deacetylase inhibitors promote eNOS expression in vascular smooth muscle cells and suppress hypoxia-induced cell growth. J Cell Mol Med 2017; 21:2022-2035. [PMID: 28266122 PMCID: PMC5571528 DOI: 10.1111/jcmm.13122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/13/2017] [Indexed: 12/25/2022] Open
Abstract
Hypoxia stimulates excessive growth of vascular smooth muscle cells (VSMCs) contributing to vascular remodelling. Recent studies have shown that histone deacetylase inhibitors (HDIs) suppress VSMC proliferation and activate eNOS expression. However, the effects of HDI on hypoxia-induced VSMC growth and the role of activated eNOS in VSMCs are unclear. Using an EdU incorporation assay and flow cytometry analysis, we found that the HDIs, butyrate (Bur) and suberoylanilide hydroxamic acid (SAHA) significantly suppressed the proliferation of hypoxic VSMC lines and induced apoptosis. Remarkable induction of cleaved caspase 3, p21 expression and reduction of PCNA expression were also observed. Increased eNOS expression and enhanced NO secretion by hypoxic VSMC lines were detected using Bur or SAHA treatment. Knockdown of eNOS by siRNA transfection or exposure of hypoxic VSMCs to NO scavengers weakened the effects of Bur and SAHA on the growth of hypoxic VSMCs. In animal experiments, administration of Bur to Wistar rats exposed to hypobaric hypoxia for 28 days ameliorated the thickness and collagen deposition in pulmonary artery walls. Although the mean pulmonary arterial pressure (mPAP) was not obviously decreased with Bur in hypoxic rats, right ventricle hypertrophy index (RVHI) was decreased and the oxygen partial pressure of arterial blood was elevated. Furthermore, cell viability was decreased and eNOS and cleaved caspase 3 were induced in HDI-treated rat pulmonary arterial SMCs. These findings imply that HDIs prevent hypoxia-induced VSMC growth, in correlation with activated eNOS expression and activity in hypoxic VSMCs.
Collapse
Affiliation(s)
- Xiaoling Tan
- Department of High Altitude Physiology & Biology, College of High Altitude Medicine, Third Military Medical University, Chongqing, China
| | - Lan Feng
- Department of High Altitude Physiology & Biology, College of High Altitude Medicine, Third Military Medical University, Chongqing, China
| | - Xiaoyong Huang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yidong Yang
- Department of Pathophysiology & High Altitude Pathology, College of High Altitude Medicine, Third Military Medical University, Chongqing, China
| | - Chengzhong Yang
- Department of High Altitude Physiology & Biology, College of High Altitude Medicine, Third Military Medical University, Chongqing, China
| | - Yuqi Gao
- Department of Pathophysiology & High Altitude Pathology, College of High Altitude Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
16
|
Soto-Piña AE, Franklin C, Rani CSS, Gottlieb H, Hinojosa-Laborde C, Strong R. A Novel Model of Dexamethasone-Induced Hypertension: Use in Investigating the Role of Tyrosine Hydroxylase. J Pharmacol Exp Ther 2016; 358:528-36. [PMID: 27405316 DOI: 10.1124/jpet.116.234005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 07/08/2016] [Indexed: 03/08/2025] Open
Abstract
Our objective was to study hypertension induced by chronic administration of synthetic glucocorticoid, dexamethasone (DEX), under nonstressful conditions and examine the role of catecholamine biosynthesis. To achieve this, we did the following: 1) used radiotelemetry to record mean arterial pressure (MAP) and heart rate (HR) in freely moving rats, and 2) administered different doses of DEX in drinking water. To evaluate the involvement of tyrosine hydroxylase (TH), the rate-limiting step in catecholamine biosynthesis, we treated rats with the TH inhibitor, α-methyl-para-tyrosine (α-MPT), for 3 days prior to administration of DEX and assessed TH mRNA and protein expression by quantitative real-time polymerase chain reaction and Western blot in the adrenal medulla. We observed a dose-dependent elevation in blood pressure with a DEX dose of 0.3 mg/kg administered for 10 days, significantly increasing MAP by +15.0 ± 1.1 mm Hg, while concomitantly reducing HR. Although this DEX treatment also significantly decreased body weight, pair-fed animals that showed similar decreases in body weight due to lowered food intake were not hypertensive, suggesting that body weight changes may not account for DEX-induced hypertension. Chronic DEX treatment significantly increased the TH mRNA and protein levels in the adrenal medulla, and α-MPT administration not only reduced DEX pressor effects, but also inhibited TH (serine(40)) phosphorylation. Our study thus validates a novel model to study hypertension induced by chronic intake of DEX in freely moving rats not subject to the confounding factors of previous models and establishes its dependence on concomitant activation of peripheral catecholamine biosynthesis.
Collapse
Affiliation(s)
- Alexandra E Soto-Piña
- Universidad Autónoma del Estado de México, Facultad de Medicina, Toluca, México (A.E.S.-P.); Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (C.S.S.R., C.H.-L., R.S.); Feik School of Pharmacy, University of the Incarnate Word, San Antonio, Texas (H.G., C.F.); and Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, Texas (R.S.)
| | - Cynthia Franklin
- Universidad Autónoma del Estado de México, Facultad de Medicina, Toluca, México (A.E.S.-P.); Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (C.S.S.R., C.H.-L., R.S.); Feik School of Pharmacy, University of the Incarnate Word, San Antonio, Texas (H.G., C.F.); and Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, Texas (R.S.)
| | - C S Sheela Rani
- Universidad Autónoma del Estado de México, Facultad de Medicina, Toluca, México (A.E.S.-P.); Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (C.S.S.R., C.H.-L., R.S.); Feik School of Pharmacy, University of the Incarnate Word, San Antonio, Texas (H.G., C.F.); and Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, Texas (R.S.)
| | - Helmut Gottlieb
- Universidad Autónoma del Estado de México, Facultad de Medicina, Toluca, México (A.E.S.-P.); Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (C.S.S.R., C.H.-L., R.S.); Feik School of Pharmacy, University of the Incarnate Word, San Antonio, Texas (H.G., C.F.); and Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, Texas (R.S.)
| | - Carmen Hinojosa-Laborde
- Universidad Autónoma del Estado de México, Facultad de Medicina, Toluca, México (A.E.S.-P.); Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (C.S.S.R., C.H.-L., R.S.); Feik School of Pharmacy, University of the Incarnate Word, San Antonio, Texas (H.G., C.F.); and Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, Texas (R.S.)
| | - Randy Strong
- Universidad Autónoma del Estado de México, Facultad de Medicina, Toluca, México (A.E.S.-P.); Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas (C.S.S.R., C.H.-L., R.S.); Feik School of Pharmacy, University of the Incarnate Word, San Antonio, Texas (H.G., C.F.); and Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, Texas (R.S.)
| |
Collapse
|
17
|
Interactions Between Bacteria and the Gut Mucosa: Do Enteric Neurotransmitters Acting on the Mucosal Epithelium Influence Intestinal Colonization or Infection? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 874:121-41. [DOI: 10.1007/978-3-319-20215-0_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Sandrini S, Aldriwesh M, Alruways M, Freestone P. Microbial endocrinology: host-bacteria communication within the gut microbiome. J Endocrinol 2015; 225:R21-34. [PMID: 25792117 DOI: 10.1530/joe-14-0615] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2015] [Indexed: 12/28/2022]
Abstract
The human body is home to trillions of micro-organisms, which are increasingly being shown to have significant effects on a variety of disease states. Evidence exists that a bidirectional communication is taking place between us and our microbiome co-habitants, and that this dialogue is capable of influencing our health in a variety of ways. This review considers how host hormonal signals shape the microbiome, and what in return the microbiome residents may be signalling to their hosts.
Collapse
Affiliation(s)
- Sara Sandrini
- Department of Infection Immunity and Inflammation, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester LE1 9HN, UK
| | - Marwh Aldriwesh
- Department of Infection Immunity and Inflammation, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester LE1 9HN, UK
| | - Mashael Alruways
- Department of Infection Immunity and Inflammation, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester LE1 9HN, UK
| | - Primrose Freestone
- Department of Infection Immunity and Inflammation, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester LE1 9HN, UK
| |
Collapse
|
19
|
Wang M, Banerjee K, Baker H, Cave JW. Nucleotide sequence conservation of novel and established cis-regulatory sites within the tyrosine hydroxylase gene promoter. ACTA ACUST UNITED AC 2014; 10:74-90. [PMID: 25774193 DOI: 10.1007/s11515-014-1341-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis and its gene proximal promoter ( < 1 kb upstream from the transcription start site) is essential for regulating transcription in both the developing and adult nervous systems. Several putative regulatory elements within the TH proximal promoter have been reported, but evolutionary conservation of these elements has not been thoroughly investigated. Since many vertebrate species are used to model development, function and disorders of human catecholaminergic neurons, identifying evolutionarily conserved transcription regulatory mechanisms is a high priority. In this study, we align TH proximal promoter nucleotide sequences from several vertebrate species to identify evolutionarily conserved motifs. This analysis identified three elements (a TATA box, cyclic AMP response element (CRE) and a 5'-GGTGG-3' site) that constitute the core of an ancient vertebrate TH promoter. Focusing on only eutherian mammals, two regions of high conservation within the proximal promoter were identified: a ∼250 bp region adjacent to the transcription start site and a ∼85 bp region located approximately 350 bp further upstream. Within both regions, conservation of previously reported cis-regulatory motifs and human single nucleotide variants was evaluated. Transcription reporter assays in a TH -expressing cell line demonstrated the functionality of highly conserved motifs in the proximal promoter regions and electromobility shift assays showed that brain-region specific complexes assemble on these motifs. These studies also identified a non-canonical CRE binding (CREB) protein recognition element in the proximal promoter. Together, these studies provide a detailed analysis of evolutionary conservation within the TH promoter and identify potential cis-regulatory motifs that underlie a core set of regulatory mechanisms in mammals.
Collapse
Affiliation(s)
- Meng Wang
- Burke Medical Research Institute, White Plains, NY 10605, USA
| | | | - Harriet Baker
- Burke Medical Research Institute, White Plains, NY 10605, USA ; Weill Cornell Medical College Brain and Mind Research Institute, NY 10065, USA
| | - John W Cave
- Burke Medical Research Institute, White Plains, NY 10605, USA ; Weill Cornell Medical College Brain and Mind Research Institute, NY 10065, USA
| |
Collapse
|
20
|
Nankova BB, Agarwal R, MacFabe DF, La Gamma EF. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells--possible relevance to autism spectrum disorders. PLoS One 2014; 9:e103740. [PMID: 25170769 PMCID: PMC4149359 DOI: 10.1371/journal.pone.0103740] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/01/2014] [Indexed: 12/11/2022] Open
Abstract
Alterations in gut microbiome composition have an emerging role in health and disease including brain function and behavior. Short chain fatty acids (SCFA) like propionic (PPA), and butyric acid (BA), which are present in diet and are fermentation products of many gastrointestinal bacteria, are showing increasing importance in host health, but also may be environmental contributors in neurodevelopmental disorders including autism spectrum disorders (ASD). Further to this we have shown SCFA administration to rodents over a variety of routes (intracerebroventricular, subcutaneous, intraperitoneal) or developmental time periods can elicit behavioral, electrophysiological, neuropathological and biochemical effects consistent with findings in ASD patients. SCFA are capable of altering host gene expression, partly due to their histone deacetylase inhibitor activity. We have previously shown BA can regulate tyrosine hydroxylase (TH) mRNA levels in a PC12 cell model. Since monoamine concentration is known to be elevated in the brain and blood of ASD patients and in many ASD animal models, we hypothesized that SCFA may directly influence brain monoaminergic pathways. When PC12 cells were transiently transfected with plasmids having a luciferase reporter gene under the control of the TH promoter, PPA was found to induce reporter gene activity over a wide concentration range. CREB transcription factor(s) was necessary for the transcriptional activation of TH gene by PPA. At lower concentrations PPA also caused accumulation of TH mRNA and protein, indicative of increased cell capacity to produce catecholamines. PPA and BA induced broad alterations in gene expression including neurotransmitter systems, neuronal cell adhesion molecules, inflammation, oxidative stress, lipid metabolism and mitochondrial function, all of which have been implicated in ASD. In conclusion, our data are consistent with a molecular mechanism through which gut related environmental signals such as increased levels of SCFA's can epigenetically modulate cell function further supporting their role as environmental contributors to ASD.
Collapse
Affiliation(s)
- Bistra B. Nankova
- New York Medical College, Department of Pediatrics/Maria Fareri Children's Hospital, Valhalla, New York, United States of America
- * E-mail:
| | - Raj Agarwal
- New York Medical College, Department of Pediatrics/Maria Fareri Children's Hospital, Valhalla, New York, United States of America
| | - Derrick F. MacFabe
- The Kilee Patchell-Evans Autism Research Group, Departments of Psychology (Neuroscience) and Psychiatry, Division of Developmental Disabilities, The University of Western Ontario, London, Ontario, Canada
| | - Edmund F. La Gamma
- New York Medical College, Department of Pediatrics/Maria Fareri Children's Hospital, Valhalla, New York, United States of America
| |
Collapse
|
21
|
Abstract
Vibrio fischeri is a bioluminescent, Gram-negative marine bacterium that can be found free living and in a mutualistic association with certain squids and fishes. Over the past decades, the study of V. fischeri has led to important discoveries about bioluminescence, quorum sensing, and the mechanisms that underlie beneficial host-microbe interactions. This chapter highlights what has been learned about metabolic pathways in V. fischeri, and how this information contributes to a broader understanding of the role of bacterial metabolism in host colonization by both beneficial and pathogenic bacteria, as well as in the growth and survival of free-living bacteria.
Collapse
|
22
|
Boks MP, de Jong NM, Kas MJH, Vinkers CH, Fernandes C, Kahn RS, Mill J, Ophoff RA. Current status and future prospects for epigenetic psychopharmacology. Epigenetics 2012; 7:20-8. [PMID: 22207355 DOI: 10.4161/epi.7.1.18688] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mounting evidence suggest that epigenetic regulation of brain functions is important in the etiology of psychiatric disorders. These epigenetic regulatory mechanisms, such as DNA methylation and histone acetylation, are influenced by many pharmaceutical compounds including psychiatric drugs. It is therefore of interest to investigate how psychiatric drugs are of influence and what the potential is of new epigenetic drugs for psychiatric disorders. With this targeted review we summarize the current state of knowledge in order to provide insight in this developing field. Several traditional psychiatric drugs have been found to alter the epigenome and in a variety of animal studies, experimental compounds with epigenetic targets have been investigated as potential psychiatric drugs. After discussion of the most relevant epigenetic mechanisms we present the evidence for epigenetic effects for the most relevant classes of drugs.
Collapse
Affiliation(s)
- Marco P Boks
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Down-regulation of matrix metalloproteinase-7 inhibits metastasis of human anaplastic thyroid cancer cell line. Clin Exp Metastasis 2011; 29:71-82. [PMID: 22042554 DOI: 10.1007/s10585-011-9430-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 10/07/2011] [Indexed: 12/26/2022]
Abstract
Epigenetic drugs such as histone deacetylase inhibitors (HDACIs) possess anticancer properties due to its ability to regulate genes associated with tumor growth, differentiation, apoptosis and metastasis. In addition to its apoptotic effect, phenylbutyrate (PB), a carboxylic acid HDACI, inhibited an anaplastic (ATC) thyroid cancer cell line ARO from penetrating a matrigel coated transwell with concomitant suppression of a metastasis-associated gene, matrix metalloproteinase-7 (MMP-7) and stimulation of a transformation suppressor protein, reversion-inducing- cysteine-rich protein with Kazal motifs without affecting MMP-2 expression levels. Direct evidence suggesting MMP-7 down-regulated cancer metastasis came from the observation of a decreased pulmonary metastasis in SCID mice xeno-transplanted with MMP-7-knocked-down ARO cells. In addition, H-89, a protein kinase A inhibitor, remarkably restored the down-regulaed MMP-7 level treated by PB. Thus, the suppressive effect of PB on MMP-7 was partially carried out through H3 phosphoacetylation. To conclude, our findings suggest PB inhibits MMP-7 expression epigenetically through phosphoacetylation of histone proteins, and thereby, reduced invasive ability of an ATC thyroid cancer cell line.
Collapse
|
24
|
Lenartowski R, Goc A. Epigenetic, transcriptional and posttranscriptional regulation of the tyrosine hydroxylase gene. Int J Dev Neurosci 2011; 29:873-83. [PMID: 21803145 DOI: 10.1016/j.ijdevneu.2011.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 07/14/2011] [Indexed: 01/12/2023] Open
Abstract
The activity of tyrosine hydroxylase (TH, EC 1.14.16.2) gene and protein determines the catecholamine level, which, in turn, is crucial for the organism homeostasis. The TH gene expression is regulated by near all possible regulatory mechanisms on epigenetic, transcriptional and posttranscriptional levels. Ongoing molecular characteristic of the TH gene reveals some of the cis and trans elements necessary for its proper expression but most of them especially these responsible for tissue specific expression remain still obscure. This review will focus on some aspects of TH regulation including spatial chromatin organization of the TH locus and TH gene, regulatory elements mediating basal, induced and cell-specific activity, transcriptional elongation, alternative TH RNA processing, and the regulation of TH RNA stability in the cell.
Collapse
Affiliation(s)
- Robert Lenartowski
- Nicolaus Copernicus University, Institute of General and Molecular Biology, Department of Genetics, Gagarina 9, 87-100 Toruń, Poland
| | | |
Collapse
|
25
|
Bernini P, Bertini I, Luchinat C, Nepi S, Saccenti E, Schäfer H, Schütz B, Spraul M, Tenori L. Individual human phenotypes in metabolic space and time. J Proteome Res 2009; 8:4264-71. [PMID: 19527021 DOI: 10.1021/pr900344m] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Differences between individual phenotypes are due both to differences in genotype and to exposure to different environmental factors. A fundamental contribution to the definition of the individual phenotype for clinical and therapeutic applications would come from a deeper understanding of the metabolic phenotype. The existence of unique individual metabolic phenotypes has been hypothesized, but the experimental evidence has been only recently collected. Analysis of individual phenotypes over the timescale of years shows that the metabolic phenotypes are largely invariant. The present work also supports the idea that the individual metabolic phenotype can also be considered a metagenomic entity that is strongly affected by both gut microbiome and host metabolic phenotype, the latter defined by both genetic and environmental contributions.
Collapse
Affiliation(s)
- Patrizia Bernini
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Safaya S, Klings ES, Odhiambo A, Li G, Farber HW, Steinberg MH. Effect of sodium butyrate on lung vascular TNFSF15 (TL1A) expression: differential expression patterns in pulmonary artery and microvascular endothelial cells. Cytokine 2009; 46:72-8. [PMID: 19251437 PMCID: PMC2702851 DOI: 10.1016/j.cyto.2008.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 12/08/2008] [Accepted: 12/29/2008] [Indexed: 12/30/2022]
Abstract
Vascular endothelial growth inhibitor TNFSF15 (TL1A), a ligand for TNFRSF25 (DR3) and decoy receptor TNFRSF6B (DcR3), is expressed in human pulmonary arterial (HPAEC) and lung microvascular (HMVEC) endothelial cells where it might modulate inflammation and sickle vasculopathy. Pulmonary disease, endothelial abnormalities and inflammation are prominent features of sickle cell disease (SCD). Butyrate has opposing effects on endogenous TNFSF15 expression in pulmonary endothelium, acting as an inhibitor in HPAEC and an inducer in HMVEC. Similar effects were observed with a known cytokine TNF-alpha in these two cell types. Furthermore the TNFSF15 promoter utilized different combinations of cis-elements for its expression in these two cell types. AP1-like and G-rich sequence elements were critical for promoter activity in large vessel HPAEC while AP1-like and NF-kappaB consensus sequence elements were required in small vessel HMVEC. The requirement of an NF-kappaB sequence element by the TNFSF15 promoter in HMVEC but not in HPAEC supported the notion that HMVEC might be a target of inflammation and vasoocclusion in SCD. The dual effects of butyrate-dependant TNFSF15 regulation in lung endothelium may help in identify inflammatory pathways and understand the role of HMVEC in pathogenesis of vasoocclusion in SCD.
Collapse
Affiliation(s)
- Surinder Safaya
- Center of Excellence in Sickle Cell Disease and Division of Hematology/Oncology, 88 East Newton St., Boston, MA 02118, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Chen J, Sai SYT, Vazin T, Coggiano M, Freed WJ. Human embryonic stem cells which express hrGFP in the undifferentiated state and during dopaminergic differentiation. Restor Neurol Neurosci 2009; 27:359-70. [PMID: 19738328 PMCID: PMC2952420 DOI: 10.3233/rnn-2009-0521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Human embryonic stem cells (hESCs) which express a reporter gene consistently during all phases of differentiation would be valuable for basic research on cell transplantation. In this study, we describe karyotypically-abnormal variant hESCs, BGO1V2-EFG, which express hrGFP driven by the EF1 promoter. METHODS BGO1V2-EFG cells were analyzed by using immunocytochemistry, single cell-based confocal image, and in vitro differentiation, including dopaminergic differentiation. RESULTS Undifferentiated BGO1V2-EFG cells expressed pluripotent ESC markers and retained the ability to differentiate into cell types of all three germ layers. BGO1V2-EFG cells maintained stable and robust hrGFP expression in vitro in the undifferentiated state and during differentiation. The EF1 promoter retained activity during dopaminergic differentiation, as 76% of tyrosine hydroxlase (TH)-positive cells co-expressed hrGFP by confocal analysis. Treated with sodium butyrate (0.02 mM to 2.0 mM), an inhibitor of histone deacetylase (HDAC), during differentiation did not affect hrGFP expression, although TH expression was reduced by higher concentrations of sodium butyrate. CONCLUSION BGO1V2-EFG cells maintain stable and robust hrGFP expression in the undifferentiated state and during neural differentiation. Especially, the EF1 promoter was effective in driving hrGFP expression during dopaminergic differentiation. BGO1V2-EFG cells may be useful for transplantation studies in Parkinson disease animal models.
Collapse
Affiliation(s)
- Jia Chen
- Cellular Neurobiology Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
28
|
D'Souza A, Onem E, Patel P, La Gamma EF, Nankova BB. Valproic acid regulates catecholaminergic pathways by concentration-dependent threshold effects on TH mRNA synthesis and degradation. Brain Res 2008; 1247:1-10. [PMID: 18976638 DOI: 10.1016/j.brainres.2008.09.088] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 09/22/2008] [Accepted: 09/24/2008] [Indexed: 12/23/2022]
Abstract
The spectrum of neurological conditions and psychiatric disorders affected by valproic acid (VPA) ranges from control of seizure and mood disorders to migraine, neuropathic pain, and even congenital malformations and autism. While widely used clinically, the mechanism(s) of action of VPA is not completely understood. Emerging evidence indicates that brain noradrenergic systems contribute to the symptoms of mood disorders and may involve regulation of tyrosine hydroxylase (TH) expression, the rate-limiting enzyme in the biosynthesis of dopamine, norepinephrine and epinephrine. We previously showed that the structurally related short chain fatty acid sodium butyrate (SB) induces TH transcription and alters TH mRNA stability in PC12 cells. The present study was undertaken to determine whether the branched short chain fatty acid VPA could also regulate TH gene expression in vitro. Similar to SB, VPA induced TH transcription at all concentrations tested. VPA-stimulated transcription was significantly attenuated by introducing point mutations in either the canonical cAMP- or in the butyrate-response elements of the TH promoter; or by co-expression of dominant-negative forms of CREB. As with SB, increasing concentrations of VPA demonstrated opposing effects on TH mRNA and protein abundance: elevation of both at low (0.1 mM) but attenuation at concentrations higher than 0.5 mM. This concentration-dependence is consistent with a novel and previously unrecognized cellular/molecular drug regulatory step at the level of TH mRNA stability. Thus, the therapeutic efficacy of VPA might be related to its ability to regulate TH mRNA and protein levels, and thereby central catecholaminergic-dependent behavioral pathways.
Collapse
Affiliation(s)
- Antoni D'Souza
- Division of Newborn Medicine, Department of Pediatrics, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | |
Collapse
|
29
|
Studer SV, Mandel MJ, Ruby EG. AinS quorum sensing regulates the Vibrio fischeri acetate switch. J Bacteriol 2008; 190:5915-23. [PMID: 18487321 PMCID: PMC2519518 DOI: 10.1128/jb.00148-08] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 05/12/2008] [Indexed: 01/01/2023] Open
Abstract
The marine bacterium Vibrio fischeri uses two acyl-homoserine lactone (acyl-HSL) quorum-sensing systems. The earlier signal, octanoyl-HSL, produced by AinS, is required for normal colonization of the squid Euprymna scolopes and, in culture, is necessary for a normal growth yield. In examining the latter requirement, we found that during growth in a glycerol/tryptone-based medium, wild-type V. fischeri cells initially excrete acetate but, in a metabolic shift termed the acetate switch, they subsequently utilize the acetate, removing it from the medium. In contrast, an ainS mutant strain grown in this medium does not remove the excreted acetate, which accumulates to lethal levels. The acetate switch is characterized by the induction of acs, the gene encoding acetyl coenzyme A (acetyl-CoA) synthetase, leading to uptake of the excreted acetate. Wild-type cells induce an acs transcriptional reporter 25-fold, coincident with the disappearance of the extracellular acetate; in contrast, the ainS mutant did not display significant induction of the acs reporter. Supplementation of the medium of an ainS mutant with octanoyl-HSL restored normal levels of acs induction and acetate uptake. Additional mutant analyses indicated that acs regulation was accomplished through the regulator LitR but was independent of the LuxIR quorum-signaling pathway. Importantly, the acs mutant of V. fischeri has a competitive defect when colonizing the squid, indicating the importance of proper control of acetate metabolism in the light of organ symbiosis. This is the first report of quorum-sensing control of the acetate switch, and it indicates a metabolic connection between acetate utilization and cell density.
Collapse
Affiliation(s)
- Sarah V Studer
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, 1550 Linden Drive, 5203 Microbial Sciences Building, Madison, WI 53706, USA
| | | | | |
Collapse
|
30
|
Arányi T, Sarkis C, Berrard S, Sardin K, Siron V, Khalfallah O, Mallet J. Sodium butyrate modifies the stabilizing complexes of tyrosine hydroxylase mRNA. Biochem Biophys Res Commun 2007; 359:15-9. [PMID: 17524356 DOI: 10.1016/j.bbrc.2007.05.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Accepted: 05/06/2007] [Indexed: 12/27/2022]
Abstract
Multiple mechanisms regulate the expression of the tyrosine hydroxylase (Th) gene, which encodes the rate-limiting enzyme in the biosynthesis of catecholamines. Sodium butyrate (SOB), a physiological histone deacetylase (HDAC) inhibitor, was reported to stimulate the Th gene promoter activity in reporter gene assays. However, the expression of the endogenous Th gene in PC12 cells was reported to be either stimulated or inhibited by SOB. Here, we report that SOB and other HDAC inhibitors drastically (up to 90%) and reversibly decrease the level of TH mRNA in PC12 cells. We also show that SOB does not influence the transcription initiation rate of the Th gene but perturbs the formation of protein-RNA complexes at the 3'UTR of the gene. Our results suggest that SOB inhibits the expression of the Th gene by destabilizing TH mRNAs.
Collapse
Affiliation(s)
- T Arányi
- CNRS UMR 7091 - Université Pierre et Marie Curie (Paris 6), Hôpital de la Pitié Salpêtrière (Bâtiment CERVI), 83 Bd de l'hôpital, 75013 Paris, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Sauer J, Richter KK, Pool-Zobel BL. Products formed during fermentation of the prebiotic inulin with humangut flora enhance expression of biotransformation genes in human primarycolon cells. Br J Nutr 2007; 97:928-37. [PMID: 17381985 DOI: 10.1017/s0007114507666422] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Inulin-type fructans are fermented by gut bacteria to yield SCFA, including butyrate which is trophic for colonocytes and induces glutathioneS-transferases (GST) that detoxify carcinogens. Since little is known on similar effects by complex fermentation samples, we studied related products in non-transformed human colonocytes. Inulin enriched with oligofructose (1 : 1, Synergy1) was fermented with human gut flora. SCFA were quantified and a SCFA mixture was prepared accordingly. Colonocytes were incubated (4–12 h) with the Synergy1 fermentation supernatant (SFS), faeces control, a mixture of the three major SCFA (each 0–15 %, v/v) or butyrate (0–50 mm). Metabolic activity was determined to assess trophic effects and cytotoxicity. Expression of ninety-six genes related to biotransformation was studied using cDNA macroarrays. Results on modulated GST were reassessed with real-time PCR and GST activity was measured. Fermentation of inulin resulted in 2–3-fold increases of SCFA. The samples were non-cytotoxic. SFS increased metabolic activity, pointing to trophic effects. The samples modulated gene expression with different response patterns. Key results were thatGSTM2(2·0-fold) andGSTM5(2·2-fold) were enhanced by SFS, whereas the SCFA mixture reduced expression. The faeces control enhancedGSTA4(2·0-fold), but reducedGSTM2(0·2-fold) andGSTM5(0·2-fold). Real-time qPCR confirmed the induction ofGSTM2andGSTM5by SFS and ofGSTA4andGSTT2by butyrate. Activity of GST was not modulated. High concentrations of fermentation products were well tolerated by primary colonocytes, pointing to trophic effects. The induction of GST by the SFS may protect the cells from carcinogenic compounds.
Collapse
Affiliation(s)
- Julia Sauer
- Department of Nutritional Toxicology, Institute for Nutrition, Friedrich-Schiller-University, Dornburger Str. 25, D-07743 Jena, Germany
| | | | | |
Collapse
|
32
|
Parab S, Nankova BB, La Gamma EF. Differential regulation of the tyrosine hydroxylase and enkephalin neuropeptide transmitter genes in rat PC12 cells by short chain fatty acids: Concentration-dependent effects on transcription and RNA stability. Brain Res 2007; 1132:42-50. [PMID: 17174279 DOI: 10.1016/j.brainres.2006.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 10/31/2006] [Accepted: 11/06/2006] [Indexed: 12/12/2022]
Abstract
At physiologic concentrations, butyrate regulates the expression of individual genes involving at least three mechanisms: (i) through induction of cis- and trans-acting butyrate-dependent transcription factors for selected genes, (ii) by inhibition of histone deacetylation and attendant chromatin remodeling and (iii) by affecting turnover of mRNAs. Our previous work illustrated gradual accumulation of mRNA for tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis and the neuropeptide transmitter proenkephalin (ppEnk) in butyrate-differentiated PC12 cells (Nankova, B.B., Chua, J., Mishra, R., Kobasiuk, C.D., La Gamma, E.F. 2003. Nicotinic induction of preproenkephalin and tyrosine hydroxylase gene expression in butyrate-differentiated rat PC12 cells: a model for adaptation to gut-derived environmental signals. Pediatr. Res. 53, 113-118.). However, at higher physiological concentrations (6 mM), TH mRNA levels are significantly reduced while ppEnk mRNA transcripts remained elevated. These differential effects suggest suppression of endogenous TH gene transcription, targeted degradation of TH mRNA or both. By using nuclear run-on assays, we found that transcription increased for both endogenous TH and ppEnk genes, even at time points and concentrations when reduced steady-state levels of TH mRNA were observed. The reduction in TH mRNA was blocked by cycloheximide consistent with a protein-dependent mechanism. We also observed a dose-dependent accumulation of luciferase reporter molecules driven by TH promoter in transient transfection experiments, data that provide additional support for separate regulatory pathways. Significantly, butyrate-dependent decreases in TH mRNA were also reflected in a reduction in TH protein. Our results suggest a novel mode of regulation for TH by butyrate operating via both transcriptional and post-transcriptional mechanisms. We speculate that, depending on plasma concentrations of butyrate, this naturally occurring signaling molecule can function as an in vivo molecular switch to alter levels of TH mRNA, its protein and thus the biosynthesis of endogenous catecholamines.
Collapse
Affiliation(s)
- Santosh Parab
- Division of Newborn Medicine, Departments of Pediatrics, Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | | | | |
Collapse
|
33
|
Shah P, Nankova BB, Parab S, La Gamma EF. Short chain fatty acids induce TH gene expression via ERK-dependent phosphorylation of CREB protein. Brain Res 2006; 1107:13-23. [PMID: 16854387 DOI: 10.1016/j.brainres.2006.05.097] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 05/25/2006] [Accepted: 05/28/2006] [Indexed: 01/12/2023]
Abstract
Butyrate modulates specific gene expression through various second-messenger signal transduction systems including activation of the PKA/cAMP pathway (Decastro, M., Nankova, B.B., Shah, P., Patel, P., Mally, P.V., Mishra, R., La Gamma, E.F., 2005. Short chain fatty acids regulate tyrosine hydroxylase gene expression through a cAMP-dependent signaling pathway, Brain Res. Mol. Brain Res. 142 28-38; Mally, P., Mishra, R., Gandhi, S., Decastro, M.H., Nankova, B.B., Lagamma, E.F., 2004. Stereospecific regulation of tyrosine hydroxylase and proenkephalin genes by short-chain fatty acids in rat PC12 cells, Pediatr. Res. 55 847-854). In the current report, we provide additional evidence that exposure to butyrate causes a rapid activation of the MAP kinase pathway, associated with increased phosphorylation of CREB. Under these conditions, no changes in relative amounts of CREB protein were observed by Western blot. Pre-treatment with the MAPK specific inhibitor (U0126) or the adenylate cyclase inhibitor dideoxyadenosine (ddA) abolished the butyrate-induced: (i) accumulation of TH mRNA, (ii) the phosphorylation of ERK1/2 as well as (iii) CREB phosphorylation. PC12 cells transfected with a TH promoter-luciferase reporter gene showed a robust induction in response to butyrate that was significantly reduced after co-transfection of either of two dominant-negative CREB expression vectors. Nuclear run-on assays demonstrated that butyrate increases endogenous TH gene transcription. We conclude that the initial steps of butyrate-induced gene activation are mediated through the CREB/CREB family of transcription factors which are coupled to both the MAP kinase and cAMP-dependent second messenger systems. Our data delineate a molecular mechanism through which short chain fatty acid's, their related drug-congeners (e.g., valproate) or even diet-derived butyrate (from fermentation of carbohydrates in the gut) can in principle, modulate brain catecholaminergic systems by modifying TH gene expression, dopaminergic levels and the corresponding animal behavior. These molecular relationships also offer a plausible explanation of how the well-recognized clinical effects of ketogenic diets can alter human behavior via the same central mechanisms.
Collapse
Affiliation(s)
- Parul Shah
- Department of Pediatrics, Biochemistry and Molecular Biology, The Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|