1
|
Alhosani F, Alhamidi RS, Ilce BY, Altaie AM, Ali N, Hamad AM, Künstner A, Khandanpour C, Busch H, Al-Ramadi B, Harati R, Sayed K, AlFazari A, Bendardaf R, Hamoudi R. Transcriptome-Wide Analysis and Experimental Validation from FFPE Tissue Identifies Stage-Specific Gene Expression Profiles Differentiating Adenoma, Carcinoma In-Situ and Adenocarcinoma in Colorectal Cancer Progression. Int J Mol Sci 2025; 26:4194. [PMID: 40362431 PMCID: PMC12071244 DOI: 10.3390/ijms26094194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/20/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Colorectal cancer (CRC) progression occurs through three stages: adenoma (pre-cancerous lesion), carcinoma in situ (CIS) and adenocarcinoma, with tumor stage playing a pivotal role in the prognosis and treatment outcomes. Despite therapeutic advancements, the lack of stage-specific biomarkers hinders the development of accurate diagnostic tools and effective therapeutic strategies. This study aims to identify stage-specific gene expression profiles and key molecular mechanisms in CRC providing insights into molecular alterations across disease progression. Our methodological approach integrates the use of absolute gene set enrichment analysis (absGSEA) on formalin-fixed paraffin-embedded (FFPE)-derived transcriptomic data, combined with large-scale clinical validation and experimental confirmation. A comparative whole transcriptomic analysis (RNA-seq) was performed on FFPE samples including adenoma (n = 10), carcinoma in situ (CIS) (n = 8) and adenocarcinoma (n = 11) samples. Using absGSEA, we identified significant cellular pathways and putative molecular biomarkers associated with each stage of CRC progression. Key findings were then validated in a large independent CRC patient cohort (n = 1926), with survival analysis conducted from 1336 patients to assess the prognostic relevance of the candidate biomarkers. The key differentially expressed genes were experimentally validated using real-time PCR (RT-qPCR). Pathway analysis revealed that in CIS, apoptotic processes and Wnt signaling pathways were more prominent than in adenoma samples, while in adenocarcinoma, transcriptional co-regulatory mechanisms and protein kinase activity, which are critical for tumor growth and metastasis, were significantly enriched compared to adenoma. Additionally, extracellular matrix organization pathways were significantly enriched in adenocarcinoma compared to CIS. Distinct gene signatures were identified across CRC stages that differentiate between adenoma, CIS and adenocarcinoma. In adenoma, ARRB1, CTBP1 and CTBP2 were overexpressed, suggesting their involvement in early tumorigenesis, whereas in CIS, RPS3A and COL4A5 were overexpressed, suggesting their involvement in the transition from benign to malignant stage. In adenocarcinoma, COL1A2, CEBPZ, MED10 and PAWR were overexpressed, suggesting their involvement in advanced disease progression. Functional analysis confirmed that ARRB1 and CTBP1/2 were associated with early tumor development, while COL1A2 and CEBPZ were involved in extracellular matrix remodeling and transcriptional regulation, respectively. Experimental validation with RT-qPCR confirmed the differential expression of the candidate biomarkers (ARRB1, RPS3A, COL4A5, COL1A2 and MED10) across the three CRC stages reinforcing their potential as stage-specific biomarkers in CRC progression. These findings provide a foundation to distinguish between the CRC stages and for the development of accurate stage-specific diagnostic and prognostic biomarkers, which helps in the development of more effective therapeutic strategies for CRC.
Collapse
Affiliation(s)
- Faisal Alhosani
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (R.S.A.); (B.Y.I.); (A.M.A.); (N.A.); (R.H.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (A.K.); (H.B.)
- Forensic Laboratory Department, Sharjah Police Headquarters, Sharjah P.O. Box 1965, United Arab Emirates
| | - Reem Sami Alhamidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (R.S.A.); (B.Y.I.); (A.M.A.); (N.A.); (R.H.)
| | - Burcu Yener Ilce
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (R.S.A.); (B.Y.I.); (A.M.A.); (N.A.); (R.H.)
| | - Alaa Muayad Altaie
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (R.S.A.); (B.Y.I.); (A.M.A.); (N.A.); (R.H.)
| | - Nival Ali
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (R.S.A.); (B.Y.I.); (A.M.A.); (N.A.); (R.H.)
| | - Alaa Mohamed Hamad
- College of Health Sciences, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates;
| | - Axel Künstner
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (A.K.); (H.B.)
| | - Cyrus Khandanpour
- Department of Hematology and Oncology, University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein, University of Lübeck, 23562 Lübeck, Germany;
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (A.K.); (H.B.)
| | - Basel Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Rania Harati
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (R.S.A.); (B.Y.I.); (A.M.A.); (N.A.); (R.H.)
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Kadria Sayed
- Department of Pathology and Laboratory Medicine, American Hospital Dubai, Dubai P.O. Box 3050, United Arab Emirates;
| | - Ali AlFazari
- Mediclinic Welcare Hospital, Dubai P.O. Box 31500, United Arab Emirates;
| | - Riyad Bendardaf
- Oncology Unit, University Hospital Sharjah, Sharjah P.O. Box 72772, United Arab Emirates;
| | - Rifat Hamoudi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (R.S.A.); (B.Y.I.); (A.M.A.); (N.A.); (R.H.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Center of Excellence for Precision Medicine, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- BIMAI-Lab, Biomedically Informed Artificial Intelligence Laboratory, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London WC1E 6BT, UK
| |
Collapse
|
2
|
Fan L, Guo X, Washington MK, Shi J, Ness RM, Liu Q, Wen W, Huang S, Liu X, Cai Q, Zheng W, Coffey RJ, Shrubsole MJ, Su T. Yes-associated protein plays oncogenic roles in human sporadic colorectal adenomas. Carcinogenesis 2025; 46:bgaf007. [PMID: 39977302 PMCID: PMC11923420 DOI: 10.1093/carcin/bgaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/04/2025] [Accepted: 02/18/2025] [Indexed: 02/22/2025] Open
Abstract
The role of Hippo-Yes-associated protein (YAP) in human colorectal cancer (CRC) presents contradictory results. We examined the function of YAP in the early stages of CRC by quantitatively measuring the expression of phospho-YAPS127 (p-YAP) and five APC-related proteins in 145 sporadic adenomas from the Tennessee Colorectal Polyp Study, conducting APC sequencing for 114 adenomas, and analyzing YAP-correlated cancer pathways using gene expression data from 326 adenomas obtained from Gene Expression Omnibus. The p-YAP expression was significantly correlated with YAP expression (r = 0.53, P < .0001) and nuclear β-catenin (r = 0.26, P = .0018) in adenoma tissues. Both p-YAP and nuclear β-catenin were associated with APC mutations (P = .05). A strong association was observed between p-YAP overexpression and advanced adenoma odds (OR = 12.62, 95% CI = 4.57-34.86, P trend < .001), which persisted after adjusting for covariates and biomarkers (OR = 12.31, 95% CI = 3.78-40.10, P trend < .0001). P-YAP exhibited a sensitivity of 77.4% and specificity of 78.2% in defining advanced versus nonadvanced adenomas. Additionally, synergistic interaction was noted between p-YAP positivity and nuclear β-catenin on advanced adenomas (OR = 16.82, 95% CI = 4.41-64.08, P < .0001). YAP-correlated genes were significantly enriched in autophagy, unfolded protein response, and sirtuin pathways showing predominantly pro-tumorigenic alterations. Collectively, YAP plays an oncogenic role in interacting with Wnt as well as other cancer pathways within human sporadic adenomas. P-YAP could be a potential biomarker for human high-risk sporadic adenomas.
Collapse
Affiliation(s)
- Lei Fan
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN 37203, United States
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN 37203, United States
- GRECC, Department of Veterans Affairs, Tennessee Valley Healthcare System, 1310 24th Avenue S., Nashville, TN 37212, United States
| | - Mary K Washington
- Department of Pathology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States
| | - Jiajun Shi
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN 37203, United States
- GRECC, Department of Veterans Affairs, Tennessee Valley Healthcare System, 1310 24th Avenue S., Nashville, TN 37212, United States
| | - Reid M Ness
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States
| | - Qi Liu
- Center for Quantitative Sciences and Department of Biostatistics, Vanderbilt University School of Medicine, 1211 Medical Center Drive, Nashville, TN 37232, United States
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN 37203, United States
- GRECC, Department of Veterans Affairs, Tennessee Valley Healthcare System, 1310 24th Avenue S., Nashville, TN 37212, United States
| | - Shuya Huang
- Department of Breast Surgery, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong 250031, China
| | - Xiao Liu
- Center for Quantitative Sciences and Department of Biostatistics, Vanderbilt University School of Medicine, 1211 Medical Center Drive, Nashville, TN 37232, United States
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN 37203, United States
- GRECC, Department of Veterans Affairs, Tennessee Valley Healthcare System, 1310 24th Avenue S., Nashville, TN 37212, United States
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN 37203, United States
- GRECC, Department of Veterans Affairs, Tennessee Valley Healthcare System, 1310 24th Avenue S., Nashville, TN 37212, United States
| | - Robert J Coffey
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States
- Cell and Development Biology, Vanderbilt University, 1211 Medical Center Drive, Nashville, TN 37232, United States
| | - Martha J Shrubsole
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN 37203, United States
- GRECC, Department of Veterans Affairs, Tennessee Valley Healthcare System, 1310 24th Avenue S., Nashville, TN 37212, United States
| | - Timothy Su
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN 37203, United States
- GRECC, Department of Veterans Affairs, Tennessee Valley Healthcare System, 1310 24th Avenue S., Nashville, TN 37212, United States
| |
Collapse
|
3
|
Wang T, Fu J, Huang Y, Fu C. Mechanism of APC truncation involved in colorectal cancer tumorigenesis (Review). Oncol Lett 2025; 29:2. [PMID: 39526304 PMCID: PMC11544694 DOI: 10.3892/ol.2024.14748] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
Adenomatous polyposis coli (APC) is widely recognized as a heavily mutated gene that suppresses tumor growth in colorectal cancer (CRC). Its mutation is considered to be the primary and early event that occurs in the development of CRC. In addition, APC has a crucial role in inhibiting the canonical Wnt signaling pathway. APC mutations in CRC result in the production of shortened gene products. This impairment of β-catenin destruction complexes causes an accumulation of active β-catenin in the cytoplasm and nucleus. In these compartments, β-catenin can bind with DNA-binding proteins of the transcription factor/lymphoid enhancer-binding factor family, thereby activating the Wnt signaling pathway. Consequently, the balance of numerous cellular processes is disrupted, ultimately driving the formation of tumors. There is a growing body of evidence indicating the prevalent occurrence of APC truncation in the majority of CRC cases. Furthermore, it has been observed that these truncated proteins have a crucial role in the activation of the Wnt signaling pathway and the subsequent loss of tumor inhibitory function. This review aimed to provide an overview of the recent advancements in understanding the mechanism behind APC truncation and its association with the onset and progression of CRC.
Collapse
Affiliation(s)
- Tuya Wang
- Department of Medicine, Hetao College, Bayannur, Inner Mongolia Autonomous Region 015000, P.R. China
| | - Jing Fu
- Department of Medicine, Hetao College, Bayannur, Inner Mongolia Autonomous Region 015000, P.R. China
| | - Ye Huang
- Department of Medicine, Hetao College, Bayannur, Inner Mongolia Autonomous Region 015000, P.R. China
| | - Chun Fu
- Department of Medicine, Hetao College, Bayannur, Inner Mongolia Autonomous Region 015000, P.R. China
| |
Collapse
|
4
|
Filograna A, De Tito S, Monte ML, Oliva R, Bruzzese F, Roca MS, Zannetti A, Greco A, Spano D, Ayala I, Liberti A, Petraccone L, Dathan N, Catara G, Schembri L, Colanzi A, Budillon A, Beccari AR, Del Vecchio P, Luini A, Corda D, Valente C. Identification and characterization of a new potent inhibitor targeting CtBP1/BARS in melanoma cells. J Exp Clin Cancer Res 2024; 43:137. [PMID: 38711119 PMCID: PMC11071220 DOI: 10.1186/s13046-024-03044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND The C-terminal-binding protein 1/brefeldin A ADP-ribosylation substrate (CtBP1/BARS) acts both as an oncogenic transcriptional co-repressor and as a fission inducing protein required for membrane trafficking and Golgi complex partitioning during mitosis, hence for mitotic entry. CtBP1/BARS overexpression, in multiple cancers, has pro-tumorigenic functions regulating gene networks associated with "cancer hallmarks" and malignant behavior including: increased cell survival, proliferation, migration/invasion, epithelial-mesenchymal transition (EMT). Structurally, CtBP1/BARS belongs to the hydroxyacid-dehydrogenase family and possesses a NAD(H)-binding Rossmann fold, which, depending on ligands bound, controls the oligomerization of CtBP1/BARS and, in turn, its cellular functions. Here, we proposed to target the CtBP1/BARS Rossmann fold with small molecules as selective inhibitors of mitotic entry and pro-tumoral transcriptional activities. METHODS Structured-based screening of drug databases at different development stages was applied to discover novel ligands targeting the Rossmann fold. Among these identified ligands, N-(3,4-dichlorophenyl)-4-{[(4-nitrophenyl)carbamoyl]amino}benzenesulfonamide, called Comp.11, was selected for further analysis. Fluorescence spectroscopy, isothermal calorimetry, computational modelling and site-directed mutagenesis were employed to define the binding of Comp.11 to the Rossmann fold. Effects of Comp.11 on the oligomerization state, protein partners binding and pro-tumoral activities were evaluated by size-exclusion chromatography, pull-down, membrane transport and mitotic entry assays, Flow cytometry, quantitative real-time PCR, motility/invasion, and colony assays in A375MM and B16F10 melanoma cell lines. Effects of Comp.11 on tumor growth in vivo were analyzed in mouse tumor model. RESULTS We identify Comp.11 as a new, potent and selective inhibitor of CtBP1/BARS (but not CtBP2). Comp.11 directly binds to the CtBP1/BARS Rossmann fold affecting the oligomerization state of the protein (unlike other known CtBPs inhibitors), which, in turn, hinders interactions with relevant partners, resulting in the inhibition of both CtBP1/BARS cellular functions: i) membrane fission, with block of mitotic entry and cellular secretion; and ii) transcriptional pro-tumoral effects with significantly hampered proliferation, EMT, migration/invasion, and colony-forming capabilities. The combination of these effects impairs melanoma tumor growth in mouse models. CONCLUSIONS: This study identifies a potent and selective inhibitor of CtBP1/BARS active in cellular and melanoma animal models revealing new opportunities to study the role of CtBP1/BARS in tumor biology and to develop novel melanoma treatments.
Collapse
Affiliation(s)
- Angela Filograna
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Stefano De Tito
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK. The Study Has Been Previously Performed at IEOS-CNR, Naples, Italy
| | - Matteo Lo Monte
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Francesca Bruzzese
- Animal Facility Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Maria Serena Roca
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, 80131, Italy
| | - Antonella Zannetti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), Naples, 80145, Italy
| | - Adelaide Greco
- Interdepartmental Service Center of Veterinary Radiology, University of Naples Federico II, 80137, Naples, Italy
| | - Daniela Spano
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Inmaculada Ayala
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Assunta Liberti
- National Research Council (CNR), Piazzale Aldo Moro, 700185, Rome, Italy
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Nina Dathan
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Giuliana Catara
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), 80131, Naples, Italy
| | - Laura Schembri
- National Research Council (CNR), Piazzale Aldo Moro, 700185, Rome, Italy
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Antonino Colanzi
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Alfredo Budillon
- Scientific Directorate, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | | | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Alberto Luini
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Daniela Corda
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy.
| | - Carmen Valente
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy.
- Present address: Dompé Farmaceutici S.P.A, L'Aquila, Italy.
| |
Collapse
|
5
|
Bu W, Creighton CJ, Heavener KS, Gutierrez C, Dou Y, Ku AT, Zhang Y, Jiang W, Urrutia J, Jiang W, Yue F, Jia L, Ibrahim AA, Zhang B, Huang S, Li Y. Efficient cancer modeling through CRISPR-Cas9/HDR-based somatic precision gene editing in mice. SCIENCE ADVANCES 2023; 9:eade0059. [PMID: 37172086 PMCID: PMC10181191 DOI: 10.1126/sciadv.ade0059] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 04/06/2023] [Indexed: 05/14/2023]
Abstract
CRISPR-Cas9 has been used successfully to introduce indels in somatic cells of rodents; however, precise editing of single nucleotides has been hampered by limitations of flexibility and efficiency. Here, we report technological modifications to the CRISPR-Cas9 vector system that now allows homology-directed repair-mediated precise editing of any proto-oncogene in murine somatic tissues to generate tumor models with high flexibility and efficiency. Somatic editing of either Kras or Pik3ca in both normal and hyperplastic mammary glands led to swift tumorigenesis. The resulting tumors shared some histological, transcriptome, and proteome features with tumors induced by lentivirus-mediated expression of the respective oncogenes, but they also exhibited some distinct characteristics, particularly showing less intertumor variation, thus potentially offering more consistent models for cancer studies and therapeutic development. Therefore, this technological advance fills a critical gap between the power of CRISPR technology and high-fidelity mouse models for studying human tumor evolution and preclinical drug testing.
Collapse
Affiliation(s)
- Wen Bu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Chad J. Creighton
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Kelsey S. Heavener
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Carolina Gutierrez
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Amy T. Ku
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Weiyu Jiang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Jazmin Urrutia
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Wen Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Fei Yue
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Luyu Jia
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Ahmed Atef Ibrahim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shixia Huang
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Education, Innovation, and Technology, Baylor College of Medicine, Houston, TX, USA
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
6
|
Panyarat C, Nakornchai S, Chintakanon K, Leelaadisorn N, Intachai W, Olsen B, Tongsima S, Adisornkanj P, Ngamphiw C, Cox TC, Kantaputra P. Rare Genetic Variants in Human APC Are Implicated in Mesiodens and Isolated Supernumerary Teeth. Int J Mol Sci 2023; 24:ijms24054255. [PMID: 36901686 PMCID: PMC10002335 DOI: 10.3390/ijms24054255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
The activation of Wnt/β-catenin signalling is a prerequisite for odontogenesis. APC, a member of the AXIN-CK1-GSK3β-APC β-catenin destruction complex, functions to modulate Wnt/β-catenin signalling to establish regular teeth number and positions. APC loss-of-function mutations are associated with the over-activation of WNT/β-catenin signalling and subsequent familial adenomatous polyposis (FAP; MIM 175100) with or without multiple supernumerary teeth. The ablation of Apc function in mice also results in the constitutive activation of β-catenin in embryonic mouse epithelium and causes supernumerary tooth formation. The objective of this study was to investigate if genetic variants in the APC gene were associated with supernumerary tooth phenotypes. We clinically, radiographically, and molecularly investigated 120 Thai patients with mesiodentes or isolated supernumerary teeth. Whole exome and Sanger sequencing identified three extremely rare heterozygous variants (c.3374T>C, p.Val1125Ala; c.6127A>G, p.Ile2043Val; and c.8383G>A, p.Ala2795Thr) in APC in four patients with mesiodentes or a supernumerary premolar. An additional patient with mesiodens was compound as heterozygous for two APC variants (c.2740T>G, p.Cys914Gly, and c.5722A>T, p.Asn1908Tyr). Rare variants in APC in our patients are likely to contribute to isolated supernumerary dental phenotypes including isolated mesiodens and an isolated supernumerary tooth.
Collapse
Affiliation(s)
- Chomchanok Panyarat
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriruk Nakornchai
- Department of Pediatric Dentistry, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Kanoknart Chintakanon
- Division of Orthodontics, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Worrachet Intachai
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bjorn Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sissades Tongsima
- National Biobank of Thailand, National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani 12120, Thailand
| | - Ploy Adisornkanj
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
- Dental Department, Sawang Daen Din Crown Prince Hospital, Sakon Nakhon 47110, Thailand
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani 12120, Thailand
| | - Timothy C. Cox
- Departments of Oral & Craniofacial Sciences, School of Dentistry, and Pediatrics, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Piranit Kantaputra
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence:
| |
Collapse
|
7
|
Al-Thani NM, Schaefer-Ramadan S, Aleksic J, Mohamoud YA, Malek JA. Identifying novel interactions of the colon-cancer related APC protein with Wnt-pathway nuclear transcription factors. Cancer Cell Int 2022; 22:376. [PMID: 36457029 PMCID: PMC9714242 DOI: 10.1186/s12935-022-02799-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/19/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Colon cancer is often driven by mutations of the adenomatous polyposis coli (APC) gene, an essential tumor suppressor gene of the Wnt β-catenin signaling pathway. APC and its cytoplasmic interactions have been well studied. However, various groups have also observed its presence in the nucleus. Identifying novel interactions of APC in the Wnt pathway will provide an opportunity to understand APC's nuclear role better and ultimately identify potential cancer treatment targets. METHODS We used the all-vs-all sequencing (AVA-Seq) method to interrogate the interactome of protein fragments spanning most of the 60 Wnt β-catenin pathway proteins. Using protein fragments identified the interacting regions between the proteins with more resolution than a full-length protein approach. Pull-down assays were used to validate a subset of these interactions. RESULTS 74 known and 703 novel Wnt β-catenin pathway protein-protein interactions were recovered in this study. There were 8 known and 31 novel APC protein-protein interactions. Novel interactions of APC and nuclear transcription factors TCF7, JUN, FOSL1, and SOX17 were particularly interesting and confirmed in validation assays. CONCLUSION Based on our findings of novel interactions between APC and transcription factors and previous evidence of APC localizing to the nucleus, we suggest APC may compete and repress CTNNB1. This would occur through APC binding to the transcription factors (JUN, FOSL1, TCF7) to regulate the Wnt signaling pathway including through enhanced marking of CTNNB1 for degradation in the nucleus by APC binding with SOX17. Additional novel Wnt β-catenin pathway protein-protein interactions from this study could lead researchers to novel drug designs for cancer.
Collapse
Affiliation(s)
- Nayra M. Al-Thani
- grid.416973.e0000 0004 0582 4340Department of Genetic Medicine, Weill Cornell Medicine in Qatar, PO Box 24144, Doha, Qatar ,grid.452146.00000 0004 1789 3191Department of Genomics and Precision Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Stephanie Schaefer-Ramadan
- grid.416973.e0000 0004 0582 4340Department of Genetic Medicine, Weill Cornell Medicine in Qatar, PO Box 24144, Doha, Qatar
| | - Jovana Aleksic
- grid.416973.e0000 0004 0582 4340Department of Genetic Medicine, Weill Cornell Medicine in Qatar, PO Box 24144, Doha, Qatar
| | - Yasmin A. Mohamoud
- grid.416973.e0000 0004 0582 4340Genomics Core, Weill Cornell Medicine in Qatar, Doha, Qatar
| | - Joel A. Malek
- grid.416973.e0000 0004 0582 4340Department of Genetic Medicine, Weill Cornell Medicine in Qatar, PO Box 24144, Doha, Qatar ,grid.416973.e0000 0004 0582 4340Genomics Core, Weill Cornell Medicine in Qatar, Doha, Qatar
| |
Collapse
|
8
|
Shang W, Quan Tan AY, van Steensel MAM, Lim X. ABERRANT WNT SIGNALING INDUCES COMEDO-LIKE CHANGES IN THE MURINE UPPER HAIR FOLLICLE. J Invest Dermatol 2021; 142:2603-2612.e6. [PMID: 34929175 DOI: 10.1016/j.jid.2021.11.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022]
Abstract
Stem cell proliferation and differentiation must be carefully balanced to support tissue maintenance and growth. Defective stem cell regulation may underpin diseases in many organs, including the skin. Lrig1-expressing stem cells residing in the HF junction zone (JZ) support sebaceous gland (SG) homeostasis. An emerging hypothesis from observations in both mouse and human holds that imbalances in key stem cell regulatory pathways such as Wnt signaling may lead to abnormal fate determination of these Lrig1+ve cells. They accumulate and form cystic structures in the JZ that are similar to the comedones found in human acne. To test the possible involvement of Wnt signals in this scenario, we used the Lrig1-CreERT2 mouse line to modulate Wnt signaling in JZ stem cells. We observed that persistent activation of Wnt signaling leads to JZ cyst formation with associated SG atrophy. The cysts strongly express stem cell markers and can be partially reduced by all-trans retinoic acid treatment as well as by Hedgehog signaling inhibition. Conversely, loss of Wnt signaling leads to enlargement of JZ, infundibulum and SGs. These data implicate abnormal Wnt signaling in the generation of mouse pathologies that resemble human acne and respond to acne treatments.
Collapse
Affiliation(s)
- Wei Shang
- Skin Research Institute of Singapore, Agency for Science, Technology, and Research
| | - Alvin Yong Quan Tan
- Skin Research Institute of Singapore, Agency for Science, Technology, and Research
| | - Maurice A M van Steensel
- Skin Research Institute of Singapore, Agency for Science, Technology, and Research;; Lee Kong Chian School of Medicine, Nanyang Technological University Singapore
| | - Xinhong Lim
- Skin Research Institute of Singapore, Agency for Science, Technology, and Research;.
| |
Collapse
|
9
|
Abou Azar F, Lim GE. Metabolic Contributions of Wnt Signaling: More Than Controlling Flight. Front Cell Dev Biol 2021; 9:709823. [PMID: 34568323 PMCID: PMC8458764 DOI: 10.3389/fcell.2021.709823] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
The canonical Wnt signaling pathway is ubiquitous throughout the body and influences a diverse array of physiological processes. Following the initial discovery of the Wnt signaling pathway during wing development in Drosophila melanogaster, it is now widely appreciated that active Wnt signaling in mammals is necessary for the development and growth of various tissues involved in whole-body metabolism, such as brain, liver, pancreas, muscle, and adipose. Moreover, elegant gain- and loss-of-function studies have dissected the tissue-specific roles of various downstream effector molecules in the regulation of energy homeostasis. This review attempts to highlight and summarize the contributions of the Wnt signaling pathway and its downstream effectors on whole-body metabolism and their influence on the development of metabolic diseases, such as diabetes and obesity. A better understanding of the Wnt signaling pathway in these tissues may aid in guiding the development of future therapeutics to treat metabolic diseases.
Collapse
Affiliation(s)
- Frederic Abou Azar
- Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Gareth E Lim
- Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
10
|
The transrepression and transactivation roles of CtBPs in the pathogenesis of different diseases. J Mol Med (Berl) 2021; 99:1335-1347. [PMID: 34196767 DOI: 10.1007/s00109-021-02107-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/31/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Gene transcription is strictly controlled by transcriptional complexes, which are assemblies of transcription factors, transcriptional regulators, and co-regulators. Mammalian genomes encode two C-terminal-binding proteins (CtBPs), CtBP1 and CtBP2, which are both well-known transcriptional corepressors of oncogenic processes. Their overexpression in tumors is associated with malignant behavior, such as uncontrolled cell proliferation, migration, and invasion, as well as with an increase in the epithelial-mesenchymal transition. CtBPs coordinate with other transcriptional regulators, such as histone deacetylases (HDACs) and histone acetyltransferases (p300 and CBP [CREBP-binding protein]) that contain the PXDLS motif, and with transcription factors to assemble transcriptional complexes that dock onto the promoters of genes to initiate gene transcription. Emerging evidence suggests that CtBPs function as both corepressors and coactivators in different biological processes ranging from apoptosis to inflammation and osteogenesis. Therapeutic targeting of CtBPs or the interactions required to form transcriptional complexes has also shown promising effects in preventing disease progression. This review summarizes the most recent progress in the study of CtBP functions and therapeutic inhibitors in different biological processes. This knowledge may enable a better understanding of the complexity of the roles of CtBPs, while providing new insights into therapeutic strategies that target CtBPs.
Collapse
|
11
|
Noe O, Filipiak L, Royfman R, Campbell A, Lin L, Hamouda D, Stanbery L, Nemunaitis J. Adenomatous polyposis coli in cancer and therapeutic implications. Oncol Rev 2021; 15:534. [PMID: 34267890 PMCID: PMC8256374 DOI: 10.4081/oncol.2021.534] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Inactivating mutations of the adenomatous polyposis coli (APC) gene and consequential upregulation of the Wnt signaling pathway are critical initiators in the development of colorectal cancer (CRC), the third most common cancer in the United States for both men and women. Emerging evidence suggests APCmutations are also found in gastric, breast and other cancers. The APC gene, located on chromosome 5q, is responsible for negatively regulating the b-catenin/Wnt pathway by creating a destruction complex with Axin/Axin2, GSK-3b, and CK1. In the event of an APC mutation, b-catenin accumulates, translocates to the cell nucleus and increases the transcription of Wnt target genes that have carcinogenic consequences in gastrointestinal epithelial stem cells. A literature review was conducted to highlight carcinogenesis related to APC mutations, as well as preclinical and clinical studies for potential therapies that target steps in inflammatory pathways, including IL-6 transduction, and Wnt pathway signaling regulation. Although a range of molecular targets have been explored in murine models, relatively few pharmacological agents have led to substantial increases in survival for patients with colorectal cancer clinically. This article reviews a range of molecular targets that may be efficacious targets for tumors with APC mutations.
Collapse
Affiliation(s)
- Olivia Noe
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Louis Filipiak
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Rachel Royfman
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Austin Campbell
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Leslie Lin
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Danae Hamouda
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Laura Stanbery
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | | |
Collapse
|
12
|
Tian M, Wang X, Sun J, Lin W, Chen L, Liu S, Wu X, Shi L, Xu P, Cai X, Wang X. IRF3 prevents colorectal tumorigenesis via inhibiting the nuclear translocation of β-catenin. Nat Commun 2020; 11:5762. [PMID: 33188184 PMCID: PMC7666182 DOI: 10.1038/s41467-020-19627-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 10/14/2020] [Indexed: 12/19/2022] Open
Abstract
Occurrence of Colorectal cancer (CRC) is relevant with gut microbiota. However, role of IRF3, a key signaling mediator in innate immune sensing, has been barely investigated in CRC. Here, we unexpectedly found that the IRF3 deficient mice are hyper-susceptible to the development of intestinal tumor in AOM/DSS and Apcmin/+ models. Genetic ablation of IRF3 profoundly promotes the proliferation of intestinal epithelial cells via aberrantly activating Wnt signaling. Mechanically, IRF3 in resting state robustly associates with the active β-catenin in the cytoplasm, thus preventing its nuclear translocation and cell proliferation, which can be relieved upon microbe-induced activation of IRF3. In accordance, the survival of CRC is clinically correlated with the expression level of IRF3. Therefore, our study identifies IRF3 as a negative regulator of the Wnt/β-catenin pathway and a potential prognosis marker for Wnt-related tumorigenesis, and describes an intriguing link between gut microbiota and CRC via the IRF3-β-catenin axis.
Collapse
Affiliation(s)
- Miao Tian
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Xiumei Wang
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, China
| | - Wenlong Lin
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Lumin Chen
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, China
| | - Shengduo Liu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Ximei Wu
- Department of Pharmacology, School of Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Liyun Shi
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, 210046, Nanjing, China
| | - Pinglong Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Xiujun Cai
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China.
| | - Xiaojian Wang
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China.
| |
Collapse
|
13
|
Bian J, Dannappel M, Wan C, Firestein R. Transcriptional Regulation of Wnt/β-Catenin Pathway in Colorectal Cancer. Cells 2020; 9:cells9092125. [PMID: 32961708 PMCID: PMC7564852 DOI: 10.3390/cells9092125] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
The Wnt/β-catenin signaling pathway exerts integral roles in embryogenesis and adult homeostasis. Aberrant activation of the pathway is implicated in growth-associated diseases and cancers, especially as a key driver in the initiation and progression of colorectal cancer (CRC). Loss or inactivation of Adenomatous polyposis coli (APC) results in constitutive activation of Wnt/β-catenin signaling, which is considered as an initiating event in the development of CRC. Increased Wnt/β-catenin signaling is observed in virtually all CRC patients, underscoring the importance of this pathway for therapeutic intervention. Prior studies have deciphered the regulatory networks required for the cytoplasmic stabilisation or degradation of the Wnt pathway effector, β-catenin. However, the mechanism whereby nuclear β-catenin drives or inhibits expression of Wnt target genes is more diverse and less well characterised. Here, we describe a brief synopsis of the core canonical Wnt pathway components, set the spotlight on nuclear mediators and highlight the emerging role of chromatin regulators as modulators of β-catenin-dependent transcription activity and oncogenic output.
Collapse
Affiliation(s)
- Jia Bian
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Marius Dannappel
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Chunhua Wan
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
- Correspondence:
| |
Collapse
|
14
|
van Dop M, Fiedler M, Mutte S, de Keijzer J, Olijslager L, Albrecht C, Liao CY, Janson ME, Bienz M, Weijers D. DIX Domain Polymerization Drives Assembly of Plant Cell Polarity Complexes. Cell 2020; 180:427-439.e12. [PMID: 32004461 PMCID: PMC7042713 DOI: 10.1016/j.cell.2020.01.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/18/2019] [Accepted: 01/06/2020] [Indexed: 11/28/2022]
Abstract
Cell polarity is fundamental for tissue morphogenesis in multicellular organisms. Plants and animals evolved multicellularity independently, and it is unknown whether their polarity systems are derived from a single-celled ancestor. Planar polarity in animals is conferred by Wnt signaling, an ancient signaling pathway transduced by Dishevelled, which assembles signalosomes by dynamic head-to-tail DIX domain polymerization. In contrast, polarity-determining pathways in plants are elusive. We recently discovered Arabidopsis SOSEKI proteins, which exhibit polar localization throughout development. Here, we identify SOSEKI as ancient polar proteins across land plants. Concentration-dependent polymerization via a bona fide DIX domain allows these to recruit ANGUSTIFOLIA to polar sites, similar to the polymerization-dependent recruitment of signaling effectors by Dishevelled. Cross-kingdom domain swaps reveal functional equivalence of animal and plant DIX domains. We trace DIX domains to unicellular eukaryotes and thus show that DIX-dependent polymerization is an ancient mechanism conserved between kingdoms and central to polarity proteins. SOSEKI proteins are deeply conserved polar proteins in land plants A DIX domain mediates polymerization and polarization of SOSEKI proteins SOSEKI polymerization allows polar recruitment of an effector protein DIX-dependent polymerization is shared between animal and plant polarity proteins
Collapse
Affiliation(s)
- Maritza van Dop
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Marc Fiedler
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Sumanth Mutte
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Jeroen de Keijzer
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen, the Netherlands
| | - Lisa Olijslager
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Catherine Albrecht
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Che-Yang Liao
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Marcel E Janson
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen, the Netherlands
| | - Mariann Bienz
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands.
| |
Collapse
|
15
|
Yang J, Li Y, He M, Qiao J, Sang Y, Cheang LH, Gomes FC, Hu Y, Li Z, Liu N, Zhang H, Zha Z. HSP90 regulates osteosarcoma cell apoptosis by targeting the p53/TCF‐1‐mediated transcriptional network. J Cell Physiol 2019; 235:3894-3904. [PMID: 31595984 DOI: 10.1002/jcp.29283] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Jie Yang
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital Jinan University Guangzhou Guangdong China
| | - Yu‐Hang Li
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital Jinan University Guangzhou Guangdong China
| | - Ming‐Tang He
- Department of Orthopedics Longgang Orthopedics Hospital of Shenzhen Shenzhen Guangdong China
| | - Ju‐Feng Qiao
- Department of Orthopedic Surgery Chashan Hospital of Dongguan Dongguan Guangdong China
| | - Yuan Sang
- Department of Orthopedic Surgery, The Third Affiliated Hospital Sun Yat‐sen University Guangzhou Guangdong China
| | - Lek Hang Cheang
- Department of Orthotraumaology Centro Hospitalar Conde S. Januario Macau China
| | - Fernando Cardoso Gomes
- Department of Physical Medicine and Rehabilitation Centro Hospitalar Conde S. Januario Macau China
| | - Yang Hu
- School of Preclinical Medicine Jinan University Guangzhou Guangdong China
| | - Zhen‐Yan Li
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital Jinan University Guangzhou Guangdong China
| | - Ning Liu
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital Jinan University Guangzhou Guangdong China
| | - Huan‐Tian Zhang
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital Jinan University Guangzhou Guangdong China
| | - Zhen‐Gang Zha
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital Jinan University Guangzhou Guangdong China
| |
Collapse
|
16
|
Prabhakar K, Rodrίguez CI, Jayanthy AS, Mikheil DM, Bhasker AI, Perera RJ, Setaluri V. Role of miR-214 in regulation of β-catenin and the malignant phenotype of melanoma. Mol Carcinog 2019; 58:1974-1984. [PMID: 31338875 DOI: 10.1002/mc.23089] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022]
Abstract
Wnt/β-catenin signaling plays an important role in melanocyte biology, especially in the early stages of melanocyte transformation and melanomagenesis. β-catenin, encoded by the gene CTNNB1, is an intracellular signal transducer of Wnt signaling and activates transcription of genes important for cell proliferation and survival. Wnt/β-catenin signaling is frequently activated in melanoma through oncogenic mutations of β-catenin and elevated β-catenin levels are positively correlated with melanoma aggressiveness. Molecular mechanisms that regulate β-catenin expression in melanoma are not fully understood. MicroRNA-214 is known to function as a tumor suppressor by targeting β-catenin in several types of cancer cells. Here, we investigated the regulation of β-catenin by miR-214 and its role in melanoma. We show that β-catenin mRNA levels are negatively correlated with miR-214 in melanoma. However, overexpression of miR-214 paradoxically increased β-catenin protein levels and promoted malignant properties of melanoma cells including resistance to mitogen-activated protein kinase inhibitors (MAPKi). RNA-seq analysis revealed that melanoma cells predominantly express a β-catenin mRNA isoform lacking miR-214 target site. Using matched miRNA and mRNA-seq and bioinformatics analysis, we identified novel miR-214 targets, ankyrin repeat domain 6 (ANKRD6) and C-terminal binding protein 1 (CTBP1), that are involved in negative regulation of Wnt signaling. Overexpression of miR-214 or knockdown of the novel miR-214 targets, ANKRD6 or CTBP1, increased melanoma cell proliferation, migration, and decreased sensitivity to MAPKi. Our data suggest that in melanoma cells β-catenin is not regulated by miR-214 and the functions of miR-214 in melanoma are mediated partly by regulating proteins involved in attenuation of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Kirthana Prabhakar
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Carlos I Rodrίguez
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Ashika S Jayanthy
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Dareen M Mikheil
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Aishwarya Iyer Bhasker
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Ranjan J Perera
- Sanford-Burham Prebys Medical Discovery Institute, Orlando, Florida
| | - Vijayasaradhi Setaluri
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| |
Collapse
|
17
|
Functions of the APC tumor suppressor protein dependent and independent of canonical WNT signaling: implications for therapeutic targeting. Cancer Metastasis Rev 2019; 37:159-172. [PMID: 29318445 DOI: 10.1007/s10555-017-9725-6] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The acquisition of biallelic mutations in the APC gene is a rate-limiting step in the development of most colorectal cancers and occurs in the earliest lesions. APC encodes a 312-kDa protein that localizes to multiple subcellular compartments and performs diverse functions. APC participates in a cytoplasmic complex that promotes the destruction of the transcriptional licensing factor β-catenin; APC mutations that abolish this function trigger constitutive activation of the canonical WNT signaling pathway, a characteristic found in almost all colorectal cancers. By negatively regulating canonical WNT signaling, APC counteracts proliferation, promotes differentiation, facilitates apoptosis, and suppresses invasion and tumor progression. APC further antagonizes canonical WNT signaling by interacting with and counteracting β-catenin in the nucleus. APC also suppresses tumor initiation and progression in the colorectal epithelium through functions that are independent of canonical WNT signaling. APC regulates the mitotic spindle to facilitate proper chromosome segregation, localizes to the cell periphery and cell protrusions to establish cell polarity and appropriate directional migration, and inhibits DNA replication by interacting directly with DNA. Mutations in APC are often frameshifts, insertions, or deletions that introduce premature stop codons and lead to the production of truncated APC proteins that lack its normal functions and possess tumorigenic properties. Therapeutic approaches in development for the treatment of APC-deficient tumors are focused on the inhibition of canonical WNT signaling, especially through targets downstream of APC in the pathway, or on the restoration of wild-type APC expression.
Collapse
|
18
|
Zhao Z, Hao D, Wang L, Li J, Meng Y, Li P, Wang Y, Zhang C, Zhou H, Gardner K, Di LJ. CtBP promotes metastasis of breast cancer through repressing cholesterol and activating TGF-β signaling. Oncogene 2019; 38:2076-2091. [PMID: 30442980 DOI: 10.1038/s41388-018-0570-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/19/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023]
Abstract
Metastasis is the process through which the primary cancer cells spread beyond the primary tumor and disseminate to other organs. Most cancer patients die of metastatic disease. EMT is proposed to be the initial event associated with cancer metastasis and how it occurred is still a mystery. CtBP is known as a co-repressor abundantly expressed in many types of cancer and regulates genes involved in cancer initiation, progression, and metastasis. We found that CtBP regulates intracellular cholesterol homeostasis in breast cancer cells by forming a complex with ZEB1 and transcriptionally repressing SREBF2 expression. Importantly, CtBP repression of intracellular cholesterol abundance leads to increased EMT and cell migration. The reason is that cholesterol negatively regulates the stability of TGF-β receptors on the cell membrane. Interestingly, TGF-β is also capable of reducing intracellular cholesterol relying on the increased recruitment of ZEB1 and CtBP complex to SREBF2 promoter. Thus, we propose a feedback loop formed by CtBP, cholesterol, and TGF-β signaling pathway, through which TGF-β triggers the cascade that mobilizes the cancer cells for metastasis. Consistently, the intravenous injection of breast cancer cells with ectopically CtBP expression show increased lung metastasis depending on the reduction of intracellular cholesterol. Finally, we analyzed the public breast cancer datasets and found that CtBP expression negatively correlates with SREBF2 and HMGCR expressions. High expression of CtBP and low expression of SREBF2 and HMGCR significantly correlates with high EMT of the primary tumors.
Collapse
Affiliation(s)
- Zhiqiang Zhao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Dapeng Hao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Li Wang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
- Metabolomics Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Jingjing Li
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Yuan Meng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Peipei Li
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Yuan Wang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Chao Zhang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| | - Haisheng Zhou
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, China
| | - Kevin Gardner
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, USA
| | - Li-Jun Di
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|
19
|
Al-Qattan MM, Alkuraya FS. Cenani-Lenz syndrome and other related syndactyly disorders due to variants in LRP4, GREM1/FMN1, and APC: Insight into the pathogenesis and the relationship to polyposis through the WNT and BMP antagonistic pathways. Am J Med Genet A 2018; 179:266-279. [PMID: 30569497 DOI: 10.1002/ajmg.a.60694] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/12/2018] [Accepted: 10/22/2018] [Indexed: 11/10/2022]
Abstract
Cenani-Lenz (C-L) syndrome is characterized by oligosyndactyly, metacarpal synostosis, phalangeal disorganization, and other variable facial and systemic features. Most cases are caused by homozygous and compound heterozygous missense and splice mutations of the LRP4 gene. Currently, the syndrome carries one OMIM number (212780). However, C-L syndrome-like phenotypes as well as other syndactyly disorders with or without metacarpal synostosis/phalangeal disorganization are also known to be associated with specific LRP4 mutations, adenomatous polyposis coli (APC) truncating mutations, genomic rearrangements of the GREM1-FMN1 locus, as well as FMN1 mutations. Surprisingly, patients with C-L syndrome-like phenotype caused by APC truncating mutations have no polyposis despite the increased levels of β catenin. The LRP4 and APC proteins act on the WNT (wingless-type integration site family) canonical pathway, whereas the GREM-1 and FMN1 proteins act on the bone morphogenetic protein (BMP) pathway. In this review, we discuss the different mutations associated with C-L syndrome, classify its clinical features, review familial adenomatous polyposis caused by truncating APC mutations and compare these mutations to the splicing APC mutation associated with syndactyly, and finally, explore the pathophysiology through a review of the cross talks between the WNT canonical and the BMP antagonistic pathways.
Collapse
Affiliation(s)
- Mohammad M Al-Qattan
- Division of Plastic Surgery, King Saud University, Riyadh, Saudi Arabia.,Division of Plastic Surgery, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Wingless Signaling: A Genetic Journey from Morphogenesis to Metastasis. Genetics 2018; 208:1311-1336. [PMID: 29618590 DOI: 10.1534/genetics.117.300157] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/13/2017] [Indexed: 12/15/2022] Open
Abstract
This FlyBook chapter summarizes the history and the current state of our understanding of the Wingless signaling pathway. Wingless, the fly homolog of the mammalian Wnt oncoproteins, plays a central role in pattern generation during development. Much of what we know about the pathway was learned from genetic and molecular experiments in Drosophila melanogaster, and the core pathway works the same way in vertebrates. Like most growth factor pathways, extracellular Wingless/Wnt binds to a cell surface complex to transduce signal across the plasma membrane, triggering a series of intracellular events that lead to transcriptional changes in the nucleus. Unlike most growth factor pathways, the intracellular events regulate the protein stability of a key effector molecule, in this case Armadillo/β-catenin. A number of mysteries remain about how the "destruction complex" destabilizes β-catenin and how this process is inactivated by the ligand-bound receptor complex, so this review of the field can only serve as a snapshot of the work in progress.
Collapse
|
21
|
Ji L, Lu B, Wang Z, Yang Z, Reece-Hoyes J, Russ C, Xu W, Cong F. Identification of ICAT as an APC Inhibitor, Revealing Wnt-Dependent Inhibition of APC-Axin Interaction. Mol Cell 2018; 72:37-47.e4. [DOI: 10.1016/j.molcel.2018.07.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/18/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022]
|
22
|
An intestinal stem cell niche in Apc mutated neoplasia targetable by CtBP inhibition. Oncotarget 2018; 9:32408-32418. [PMID: 30197752 PMCID: PMC6126694 DOI: 10.18632/oncotarget.25784] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 06/19/2018] [Indexed: 12/18/2022] Open
Abstract
C-terminal binding protein 2 (CtBP2) drives intestinal polyposis in the Apcmin mouse model of human Familial Adenomatous Polyposis. As CtBP2 is targetable by an inhibitor of its dehydrogenase domain, understanding CtBP2’s role in adenoma formation is necessary to optimize CtBP-targeted therapies in Apc mutated human neoplasia. Tumor initiating cell (TIC) populations were substantially decreased in ApcminCtbp2+/- intestinal epithelia. Moreover, normally nuclear Ctbp2 was mislocalized to the cytoplasm of intestinal crypt stem cells in Ctbp2+/- mice, both Apcmin and wildtype, correlating with low/absent CD133 expression in those cells, and possibly explaining the lower burden of polyps in Apcmin Ctbp2+/- mice. The CtBP inhibitor 4-chloro-hydroxyimino phenylpyruvate (4-Cl-HIPP) also robustly downregulated TIC populations and significantly decreased intestinal polyposis in Apcmin mice. We have therefore demonstrated a critical link between polyposis, intestinal TIC’s and Ctbp2 gene dosage or activity, supporting continued efforts targeting CtBP in the treatment or prevention of Apc mutated neoplasia.
Collapse
|
23
|
Hankey W, Chen Z, Bergman MJ, Fernandez MO, Hancioglu B, Lan X, Jegga AG, Zhang J, Jin VX, Aronow BJ, Wang Q, Groden J. Chromatin-associated APC regulates gene expression in collaboration with canonical WNT signaling and AP-1. Oncotarget 2018; 9:31214-31230. [PMID: 30131849 PMCID: PMC6101278 DOI: 10.18632/oncotarget.25781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/05/2018] [Indexed: 11/25/2022] Open
Abstract
Mutation of the APC gene occurs in a high percentage of colorectal tumors and is a central event driving tumor initiation in the large intestine. The APC protein performs multiple tumor suppressor functions including negative regulation of the canonical WNT signaling pathway by both cytoplasmic and nuclear mechanisms. Published reports that APC interacts with β-catenin in the chromatin fraction to repress WNT-activated targets have raised the possibility that chromatin-associated APC participates more broadly in mechanisms of transcriptional control. This screening study has used chromatin immunoprecipitation and next-generation sequencing to identify APC-associated genomic regions in colon cancer cell lines. Initial target selection was performed by comparison and statistical analysis of 3,985 genomic regions associated with the APC protein to whole transcriptome sequencing data from APC-deficient and APC-wild-type colon cancer cells, and two types of murine colon adenomas characterized by activated Wnt signaling. 289 transcripts altered in expression following APC loss in human cells were linked to APC-associated genomic regions. High-confidence targets additionally validated in mouse adenomas included 16 increased and 9 decreased in expression following APC loss, indicating that chromatin-associated APC may antagonize canonical WNT signaling at both WNT-activated and WNT-repressed targets. Motif analysis and comparison to ChIP-seq datasets for other transcription factors identified a prevalence of binding sites for the TCF7L2 and AP-1 transcription factors in APC-associated genomic regions. Our results indicate that canonical WNT signaling can collaborate with or antagonize the AP-1 transcription factor to fine-tune the expression of shared target genes in the colorectal epithelium. Future therapeutic strategies for APC-deficient colorectal cancers might be expanded to include agents targeting the AP-1 pathway.
Collapse
Affiliation(s)
- William Hankey
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Zhong Chen
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Maxwell J Bergman
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Max O Fernandez
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Baris Hancioglu
- Biomedical Informatics Shared Resource, The Ohio State University, Columbus, Ohio, United States of America
| | - Xun Lan
- Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China
| | - Anil G Jegga
- Division of Bioinformatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Victor X Jin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Bruce J Aronow
- Division of Bioinformatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Qianben Wang
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Joanna Groden
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
24
|
Blevins MA, Huang M, Zhao R. The Role of CtBP1 in Oncogenic Processes and Its Potential as a Therapeutic Target. Mol Cancer Ther 2018; 16:981-990. [PMID: 28576945 DOI: 10.1158/1535-7163.mct-16-0592] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/11/2016] [Accepted: 02/22/2017] [Indexed: 12/24/2022]
Abstract
Transcriptional corepressor proteins have emerged as an important facet of cancer etiology. These corepressor proteins are often altered by loss- or gain-of-function mutations, leading to transcriptional imbalance. Thus, research directed at expanding our current understanding of transcriptional corepressors could impact the future development of new cancer diagnostics, prognostics, and therapies. In this review, our current understanding of the CtBP corepressors, and their role in both development and disease, is discussed in detail. Importantly, the role of CtBP1 overexpression in adult tissues in promoting the progression of multiple cancer types through their ability to modulate the transcription of developmental genes ectopically is explored. CtBP1 overexpression is known to be protumorigenic and affects the regulation of gene networks associated with "cancer hallmarks" and malignant behavior, including increased cell survival, proliferation, migration, invasion, and the epithelial-mesenchymal transition. As a transcriptional regulator of broad developmental processes capable of promoting malignant growth in adult tissues, therapeutically targeting the CtBP1 corepressor has the potential to be an effective method for the treatment of diverse tumor types. Although efforts to develop CtBP1 inhibitors are still in the early stages, the current progress and the future perspectives of therapeutically targeting this transcriptional corepressor are also discussed. Mol Cancer Ther; 16(6); 981-90. ©2017 AACR.
Collapse
Affiliation(s)
- Melanie A Blevins
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado
| | - Mingxia Huang
- Department of Dermatology, University of Colorado School of Medicine, Aurora, Colorado.
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|
25
|
Yang X, Sun Y, Li H, Shao Y, Zhao D, Yu W, Fu J. C-terminal binding protein-2 promotes cell proliferation and migration in breast cancer via suppression of p16INK4A. Oncotarget 2018; 8:26154-26168. [PMID: 28412731 PMCID: PMC5432247 DOI: 10.18632/oncotarget.15402] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/01/2017] [Indexed: 01/27/2023] Open
Abstract
C-terminal binding protein-2 (CtBP2) enhances cancer proliferation and metastasis. The role and mechanism of CtBP2 in breast cancer remains to be elucidated. Western blot and immunochemistry were employed to evaluate the level of CtBP2 and p16INK4A in breast cancer. Genetic manipulation was used to study the expression of p16INK4A and its downstream genes regulated by CtBP2. Functional assays, including colony formation, wound healing, transwell invasion, anchorage-independent growth assay and a xenograft tumor model were used to determine the oncogenic role of CtBP2 in breast cancer progression. The expression of CtBP2 was increased in breast cancer tissues and cell lines. The expression of p16INK4A were inversely correlated CtBP2 (r2 = 0.43, P < 0.01). The expression of both CtBP2 and p16INK4A were significantly related to histological differentiation (P < 0.01 and P = 0.004, respectively) and metastasis (P = 0.046 and 0.047, respectively). The overall survival rate was lower in patients with increased CtBP2 expression and lower p16INK4A expression. Knockdown of CtBP2 resulted in the activation of p16INK4A and down–regulation of cell cycle regulators cyclin D, cyclin E and cyclin-dependent kinase 2 and 4. This down-regulation also led to a decreased transition of the G1-S phase in breast cancer cells. Moreover, gain-of-function experiments showed that CtBP2 suppressed p16INK4A and matrix metalloproteinase-2, subsequently enhancing the migration in breast cancer. However, the silence of CtBP2 abrogated this effect. Collectively, these findings provide insight into the role CtBP2 plays in promoting proliferation and migration in breast cancer by the inhibition of p16INK4A.
Collapse
Affiliation(s)
- Xiaojing Yang
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yi Sun
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Hongling Li
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yuhui Shao
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Depeng Zhao
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, P.R. China
| | - Weiwei Yu
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jie Fu
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| |
Collapse
|
26
|
Prognostic significance of Cytokeratin 20-positive lymph node vascular endothelial growth factor A mRNA and chromodomain helicase DNA binding protein 4 in pN0 colorectal cancer patients. Oncotarget 2017; 9:6737-6751. [PMID: 29467924 PMCID: PMC5805510 DOI: 10.18632/oncotarget.23424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/28/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cytokeratin 20-positive cells in lymph nodes from pN0 colorectal cancer (CRC) patients were detected previously by us. The aims of this study were to investigate which tumor metastasis-related genes were involved and their potential clinical significance. RESULTS Fourteen of 84 (17%) genes were differentially expressed by at least 2-fold. Among them, 10 genes were up-regulated whereas 4 genes were down-regulated. Those differential expressed genes were validated in the second cohort of specimens. Follow-up analysis for 60 months showed that patients with lymph node vascular endothelial growth factor A (VEGF-A) mRNA and chromodomain helicase DNA binding protein 4 (CHD4) mRNA expression higher than the median copies had significantly shorter time to recurrence than those with lower than the median copies. Multivariate analysis showed that VEGF-A mRNA, CHD4 mRNA and lymphatic vessel involvement were independent prognostic factors for disease recurrence. CONCLUSIONS VEGF-A mRNA and CHD4 mRNA were up-regulated in CK20-positive pN0 lymph nodes and they may have prognostic significance in pN0 CRC patients. METHODS Two cohorts of lymph node specimens from pN0 CRC patients of each with and without CK20-positive cells were recruited. In the first cohort, tumor metastasis genes were profiled using gene expression arrays. Differential expressed genes were validated in the second cohort. Moreover, their prognostic significance was examined by following-up the second cohort of patients with CK20-positive cells for 60 months and all histopathological findings were correlated to recurrence.
Collapse
|
27
|
Sinha S. Hilbert-Schmidt and Sobol sensitivity indices for static and time series Wnt signaling measurements in colorectal cancer - part A. BMC SYSTEMS BIOLOGY 2017; 11:120. [PMID: 29202761 PMCID: PMC5716378 DOI: 10.1186/s12918-017-0488-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 11/09/2017] [Indexed: 11/10/2022]
Abstract
Background Ever since the accidental discovery of Wingless [Sharma R.P., Drosophila information service, 1973, 50, p 134], research in the field of Wnt signaling pathway has taken significant strides in wet lab experiments and various cancer clinical trials, augmented by recent developments in advanced computational modeling of the pathway. Information rich gene expression profiles reveal various aspects of the signaling pathway and help in studying different issues simultaneously. Hitherto, not many computational studies exist which incorporate the simultaneous study of these issues. Results This manuscript ∙ explores the strength of contributing factors in the signaling pathway, ∙ analyzes the existing causal relations among the inter/extracellular factors effecting the pathway based on prior biological knowledge and ∙ investigates the deviations in fold changes in the recently found prevalence of psychophysical laws working in the pathway. To achieve this goal, local and global sensitivity analysis is conducted on the (non)linear responses between the factors obtained from static and time series expression profiles using the density (Hilbert-Schmidt Information Criterion) and variance (Sobol) based sensitivity indices. Conclusion The results show the advantage of using density based indices over variance based indices mainly due to the former’s employment of distance measures & the kernel trick via Reproducing kernel Hilbert space (RKHS) that capture nonlinear relations among various intra/extracellular factors of the pathway in a higher dimensional space. In time series data, using these indices it is now possible to observe where in time, which factors get influenced & contribute to the pathway, as changes in concentration of the other factors are made. This synergy of prior biological knowledge, sensitivity analysis & representations in higher dimensional spaces can facilitate in time based administration of target therapeutic drugs & reveal hidden biological information within colorectal cancer samples.
Collapse
Affiliation(s)
- Shriprakash Sinha
- Faculty of Maths & IT, Royal Thimphu College, Nagbiphu, Thimphu, 1122, Bhutan.
| |
Collapse
|
28
|
Ctbp2-mediated β-catenin regulation is required for exit from pluripotency. Exp Mol Med 2017; 49:e385. [PMID: 29026198 PMCID: PMC5668466 DOI: 10.1038/emm.2017.147] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/21/2017] [Accepted: 03/31/2017] [Indexed: 12/17/2022] Open
Abstract
The canonical Wnt pathway is critical for embryonic stem cell (ESC) pluripotency and aberrant control of β-catenin leads to failure of exit from pluripotency and lineage commitments. Hence, maintaining the appropriate level of β-catenin is important for the decision to commit to the appropriate lineage. However, how β-catenin links to core transcription factors in ESCs remains elusive. C-terminal-binding protein (CtBP) in Drosophila is essential for Wnt-mediated target gene expression. In addition, Ctbp acts as an antagonist of β-catenin/TCF activation in mammals. Recently, Ctbp2, a core Oct4-binding protein in ESCs, has been reported to play a key role in ESC pluripotency. However, the significance of the connection between Ctbp2 and β-catenin with regard to ESC pluripotency remains elusive. Here, we demonstrate that C-terminal-binding protein 2 (Ctbp2) associates with major components of the β-catenin destruction complex and limits the accessibility of β-catenin to core transcription factors in undifferentiated ESCs. Ctbp2 knockdown leads to stabilization of β-catenin, which then interacts with core pluripotency-maintaining factors that are occupied by Ctbp2, leading to incomplete exit from pluripotency. These findings suggest a suppressive function for Ctbp2 in reducing the protein level of β-catenin, along with priming its position on core pluripotency genes to hinder β-catenin deposition, which is central to commitment to the appropriate lineage.
Collapse
|
29
|
Yu F, Cai W, Jiang B, Xu L, Liu S, Zhao S. A novel mutation of adenomatous polyposis coli (APC) gene results in the formation of supernumerary teeth. J Cell Mol Med 2017; 22:152-162. [PMID: 28782241 PMCID: PMC5742724 DOI: 10.1111/jcmm.13303] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/27/2017] [Indexed: 12/15/2022] Open
Abstract
Supernumerary teeth are teeth that are present in addition to normal teeth. Although several hypotheses and some molecular signalling pathways explain the formation of supernumerary teeth, but their exact disease pathogenesis is unknown. To study the molecular mechanisms of supernumerary tooth‐related syndrome (Gardner syndrome), a deeper understanding of the aetiology of supernumerary teeth and the associated syndrome is needed, with the goal of inhibiting disease inheritance via prenatal diagnosis. We recruited a Chinese family with Gardner syndrome. Haematoxylin and eosin staining of supernumerary teeth and colonic polyp lesion biopsies revealed that these patients exhibited significant pathological characteristics. APC gene mutations were detected by PCR and direct sequencing. We revealed the pathological pathway involved in human supernumerary tooth development and the mouse tooth germ development expression profile by RNA sequencing (RNA‐seq). Sequencing analysis revealed that an APC gene mutation in exon 15, namely 4292‐4293‐Del GA, caused Gardner syndrome in this family. This mutation not only initiated the various manifestations typical of Gardner syndrome but also resulted in odontoma and supernumerary teeth in this case. Furthermore, RNA‐seq analysis of human supernumerary teeth suggests that the APC gene is the key gene involved in the development of supernumerary teeth in humans. The mouse tooth germ development expression profile shows that the APC gene plays an important role in tooth germ development. We identified a new mutation in the APC gene that results in supernumerary teeth in association with Gardner syndrome. This information may shed light on the molecular pathogenesis of supernumerary teeth. Gene‐based diagnosis and gene therapy for supernumerary teeth may become available in the future, and our study provides a high‐resolution reference for treating other syndromes associated with supernumerary teeth.
Collapse
Affiliation(s)
- Fang Yu
- Department of Pediatric Dentistry, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Wenping Cai
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Beizhan Jiang
- Department of Endodontics, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Laijun Xu
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shangfeng Liu
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shouliang Zhao
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China.,Department of Endodontics, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| |
Collapse
|
30
|
Dcona MM, Morris BL, Ellis KC, Grossman SR. CtBP- an emerging oncogene and novel small molecule drug target: Advances in the understanding of its oncogenic action and identification of therapeutic inhibitors. Cancer Biol Ther 2017; 18:379-391. [PMID: 28532298 PMCID: PMC5536941 DOI: 10.1080/15384047.2017.1323586] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
C-terminal Binding Proteins (CtBP) 1 and 2 are oncogenic transcriptional co-regulators overexpressed in many cancer types, with their expression level correlating to worse prognostic outcomes and aggressive tumor features. CtBP negatively regulates the expression of many tumor suppressor genes, while coactivating genes that promote proliferation, epithelial-mesenchymal transition, and cancer stem cell self-renewal activity. In light of this evidence, the development of novel inhibitors that mitigate CtBP function may provide clinically actionable therapeutic tools. This review article focuses on the progress made in understanding CtBP structure, role in tumor progression, and discovery and development of CtBP inhibitors that target CtBP's dehydrogenase activity and other functions, with a focus on the theory and rationale behind the designs of current inhibitors. We provide insight into the future development and use of rational combination therapy that may further augment the efficacy of CtBP inhibitors, specifically addressing metastasis and cancer stem cell populations within tumors.
Collapse
Affiliation(s)
- M Michael Dcona
- a Department of Internal Medicine , Virginia Commonwealth University , Richmond , VA , USA
| | - Benjamin L Morris
- b Department of Human and Molecular Genetics , Virginia Commonwealth University , Richmond , VA , USA
| | - Keith C Ellis
- c Department of Medicinal Chemistry , Virginia Commonwealth University , Richmond , VA , USA.,d Institute for Structural Biology , Drug Discovery and Development, Virginia Commonwealth University , Richmond , VA , USA.,e VCU Massey Cancer Center , Virginia Commonwealth University , Richmond , VA , USA
| | - Steven R Grossman
- a Department of Internal Medicine , Virginia Commonwealth University , Richmond , VA , USA.,b Department of Human and Molecular Genetics , Virginia Commonwealth University , Richmond , VA , USA.,d Institute for Structural Biology , Drug Discovery and Development, Virginia Commonwealth University , Richmond , VA , USA.,e VCU Massey Cancer Center , Virginia Commonwealth University , Richmond , VA , USA
| |
Collapse
|
31
|
Zhang L, Shay JW. Multiple Roles of APC and its Therapeutic Implications in Colorectal Cancer. J Natl Cancer Inst 2017; 109:3113843. [PMID: 28423402 DOI: 10.1093/jnci/djw332] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023] Open
Abstract
Adenomatous polyposis coli (APC) is widely accepted as a tumor suppressor gene highly mutated in colorectal cancers (CRC). Mutation and inactivation of this gene is a key and early event almost uniquely observed in colorectal tumorigenesis. Alterations in the APC gene generate truncated gene products, leading to activation of the Wnt signaling pathway and deregulation of multiple other cellular processes. It has been a mystery why most patients with CRC retain a truncated APC protein, but accumulating evidence suggest that these C terminally truncated APC proteins may have gain of function properties beyond the well-established loss of tumor suppressive function. Here, we will review the evidence for both the loss of function and the gain of function of APC truncations and how together they contribute to CRC initiation and progression.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA
| |
Collapse
|
32
|
The tumour suppressor APC promotes HIV-1 assembly via interaction with Gag precursor protein. Nat Commun 2017; 8:14259. [PMID: 28134256 PMCID: PMC5290283 DOI: 10.1038/ncomms14259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/13/2016] [Indexed: 12/26/2022] Open
Abstract
Diverse cellular proteins and RNAs are tightly regulated in their subcellular localization to exert their local function. Here we report that the tumour suppressor adenomatous polyposis coli protein (APC) directs the localization and assembly of human immunodeficiency virus (HIV)-1 Gag polyprotein at distinct membrane components to enable the efficient production and spread of infectious viral particles. A proteomic analysis and subsequent biomolecular interaction assay reveals that the carboxyl terminus of APC interacts with the matrix region of Gag. Ectopic expression of APC, but not its familial adenomatous polyposis-related truncation mutant, prominently enhances HIV-1 production. Conversely, the depletion of APC leads to a significant decrease in membrane targeting of viral components, resulting in the severe loss of production of infectious virions. Furthermore, APC promotes the directional assembly of viral components at virological synapses, thereby facilitating cell-to-cell viral transmission. These findings reveal an unexpected role of APC in the directional spread of HIV-1. The tumour suppressor APC is a multifunctional protein implicated in intracellular localization of mRNAs and WNT signalling. Here, Miyakawa et al. show that, via interaction with the HIV Gag precursor protein, APC promotes membrane targeting of viral components and cell-to-cell spread of HIV.
Collapse
|
33
|
Expression and prognostic significance of CTBP2 in human gliomas. Oncol Lett 2016; 12:2429-2434. [PMID: 27698809 PMCID: PMC5038390 DOI: 10.3892/ol.2016.4998] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 07/01/2016] [Indexed: 11/18/2022] Open
Abstract
Deregulated expression of C-terminal-binding protein 2 (CTBP2) has been observed previously in a number of tumors, such as hepatocellular carcinoma and prostatic cancer, in the colorectal cancer SW480 cell line and in the human embryonic kidney 293 cell line. In the present study, western blot analysis and immunohistochemistry were performed to investigate whether gliomas exhibit deregulated CTBP2 expression. Kaplan-Meier survival analyses were performed to evaluate the associations between CTBP2 expression, clinicopathological data and patient survival in glioma patients. The results revealed that CTBP2 expression was significantly upregulated in high grade glioma tissues compared with that in low grade glioma and normal brain tissues. Furthermore, increased CTBP2 expression in gliomas was significantly associated with a higher World Health Organization (WHO) tumor grade (P<0.005) and poorer disease-specific survival (P<0.005). In conclusion, these results suggest that CTBP2 may act as an intrinsic regulator of progression in glioma cells and thus may serve as an important prognostic factor for the disease.
Collapse
|
34
|
Hrckulak D, Kolar M, Strnad H, Korinek V. TCF/LEF Transcription Factors: An Update from the Internet Resources. Cancers (Basel) 2016; 8:cancers8070070. [PMID: 27447672 PMCID: PMC4963812 DOI: 10.3390/cancers8070070] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 12/18/2022] Open
Abstract
T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) proteins (TCFs) from the High Mobility Group (HMG) box family act as the main downstream effectors of the Wnt signaling pathway. The mammalian TCF/LEF family comprises four nuclear factors designated TCF7, LEF1, TCF7L1, and TCF7L2 (also known as TCF1, LEF1, TCF3, and TCF4, respectively). The proteins display common structural features and are often expressed in overlapping patterns implying their redundancy. Such redundancy was indeed observed in gene targeting studies; however, individual family members also exhibit unique features that are not recapitulated by the related proteins. In the present viewpoint, we summarized our current knowledge about the specific features of individual TCFs, namely structural-functional studies, posttranslational modifications, interacting partners, and phenotypes obtained upon gene targeting in the mouse. In addition, we employed several publicly available databases and web tools to evaluate the expression patterns and production of gene-specific isoforms of the TCF/LEF family members in human cells and tissues.
Collapse
Affiliation(s)
- Dusan Hrckulak
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4 14220, Czech Republic.
| | - Michal Kolar
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4 14220, Czech Republic.
| | - Hynek Strnad
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4 14220, Czech Republic.
| | - Vladimir Korinek
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4 14220, Czech Republic.
| |
Collapse
|
35
|
A Role for Nuclear Actin in HDAC 1 and 2 Regulation. Sci Rep 2016; 6:28460. [PMID: 27345839 PMCID: PMC4921920 DOI: 10.1038/srep28460] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/26/2016] [Indexed: 01/13/2023] Open
Abstract
Class I histone deacetylases (HDACs) are known to remove acetyl groups from histone tails. This liberates positive charges on the histone tail and allows for tighter winding of DNA, preventing transcription factor binding and gene activation. Although the functions of HDAC proteins are becoming apparent both biochemically and clinically, how this class of proteins is regulated remains poorly understood. We identified a novel interaction between nuclear actin and HDAC 1 and HDAC 2. Nuclear actin has been previously shown to interact with a growing list of nuclear proteins including chromatin remodeling complexes, transcription factors and RNA polymerases. We find that monomeric actin is able to bind the class I HDAC complex. Furthermore, increasing the concentration of actin in HeLa nuclear extracts was able to suppress overall HDAC function. Conversely, polymerizing nuclear actin increased HDAC activity and decreased histone acetylation. Moreover, the interaction between class I HDACs and nuclear actin was found to be activity dependent. Together, our data suggest nuclear actin is able to regulate HDAC 1 and 2 activity.
Collapse
|
36
|
Akhade VS, Dighe SN, Kataruka S, Rao MRS. Mechanism of Wnt signaling induced down regulation of mrhl long non-coding RNA in mouse spermatogonial cells. Nucleic Acids Res 2015; 44:387-401. [PMID: 26446991 PMCID: PMC4705645 DOI: 10.1093/nar/gkv1023] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 09/29/2015] [Indexed: 12/18/2022] Open
Abstract
Long non coding RNAs (lncRNAs) have emerged as important regulators of various biological processes. LncRNAs also behave as response elements or targets of signaling pathway(s) mediating cellular function. Wnt signaling is important in regulating mammalian spermatogenesis. Mrhl RNA negatively regulates canonical Wnt pathway and gets down regulated upon Wnt signaling activation in mouse spermatogonial cells. Also, mrhl RNA regulates expression of genes pertaining to Wnt pathway and spermatogenesis by binding to chromatin. In the present study, we delineate the detailed molecular mechanism of Wnt signaling induced mrhl RNA down regulation in mouse spermatogonial cells. Mrhl RNA has an independent transcription unit and our various experiments like Chromatin Immunoprecipitation (in cell line as well as mouse testis) and shRNA mediated down regulation convincingly show that β-catenin and TCF4, which are the key effector proteins of the Wnt signaling pathway are required for down regulation of mrhl RNA. We have identified Ctbp1 as the co-repressor and its occupancy on mrhl RNA promoter depends on both β-catenin and TCF4. Upon Wnt signaling activation, Ctbp1 mediated histone repression marks increase at the mrhl RNA promoter. We also demonstrate that Wnt signaling induced mrhl RNA down regulation results in an up regulation of various meiotic differentiation marker genes.
Collapse
Affiliation(s)
- Vijay Suresh Akhade
- From the Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Shrinivas Nivrutti Dighe
- From the Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Shubhangini Kataruka
- From the Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Manchanahalli R Satyanarayana Rao
- From the Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
37
|
Stankiewicz TR, Gray JJ, Winter AN, Linseman DA. C-terminal binding proteins: central players in development and disease. Biomol Concepts 2015; 5:489-511. [PMID: 25429601 DOI: 10.1515/bmc-2014-0027] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/07/2014] [Indexed: 01/06/2023] Open
Abstract
C-terminal binding proteins (CtBPs) were initially identified as binding partners for the E1A-transforming proteins. Although the invertebrate genome encodes one CtBP protein, two CtBPs (CtBP1 and CtBP2) are encoded by the vertebrate genome and perform both unique and duplicative functions. CtBP1 and CtBP2 are closely related and act as transcriptional corepressors when activated by nicotinamide adenine dinucleotide binding to their dehydrogenase domains. CtBPs exert transcriptional repression primarily via recruitment of a corepressor complex to DNA that consists of histone deacetylases (HDACs) and histone methyltransferases, although CtBPs can also repress transcription through HDAC-independent mechanisms. More recent studies have demonstrated a critical function for CtBPs in the transcriptional repression of pro-apoptotic genes such as Bax, Puma, Bik, and Noxa. Nonetheless, although recent efforts have characterized the essential involvement of CtBPs in promoting cellular survival, the dysregulation of CtBPs in both neurodegenerative disease and cancers remains to be fully elucidated.
Collapse
|
38
|
Wang L, Di LJ. Wnt/β-Catenin Mediates AICAR Effect to Increase GATA3 Expression and Inhibit Adipogenesis. J Biol Chem 2015; 290:19458-68. [PMID: 26109067 DOI: 10.1074/jbc.m115.641332] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 11/06/2022] Open
Abstract
A better understanding of the mechanism and manipulation of the tightly regulated cellular differentiation process of adipogenesis may contribute to a reduction in obesity and diabetes. Multiple transcription factors and signaling pathways are involved in the regulation of adipogenesis. Here, we report that the AMP-activated protein kinase activator, 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) can activate AMPK in preadipocytes and thus increase the expression of GATA3, an anti-adipogenic factor. However, AICAR-increased GATA3 is mediated by the stimulation of Wnt/β-catenin signaling in preadipocytes. Mechanistically, AICAR-activated AMPK inhibits GSK3β through a phosphorylation process that stabilizes β-catenin. This stabilized β-catenin then translocates into nucleus where it interacts with T-cell factors (TCF), leading to the increased β-catenin/TCF transcriptional activity that induces GATA3 expression. In addition, AICAR also relieves the repressing effect of the C-terminal-binding protein (CtBP) co-repressor by diverting CtBP away from the β-catenin·TCF complex at the GATA3 promoter. The anti-adipogenic effect of GATA3 and AICAR is consistently attenuated by the disruption of Wnt/β-catenin signaling. Furthermore, GATA3 suppresses key adipogenic regulators by binding to the promoters of these regulators, such as the peroxisome proliferator-activated receptor-γ (PPARγ) gene, and the disruption of Wnt/β-catenin signaling reduces the GATA3 binding at the PPARγ promoter. In differentiated adipocytes, GATA3 expression inhibition is facilitated by the down-regulation of β-catenin levels, the reduction in β-catenin binding, and the increase in CtBP binding at the GATA3 promoter. Our findings shed light on the molecular mechanism of adipogenesis by suggesting that different regulation pathways and adipogenic regulators collectively modulate adipocyte differentiation through cross-talk.
Collapse
Affiliation(s)
- Li Wang
- From the Metabolomics Core, Faculty of Health Sciences, University of Macau, Macau SAR (Special Administrative Region), China and
| | - Li-jun Di
- the Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
39
|
Prozorovski T, Schneider R, Berndt C, Hartung HP, Aktas O. Redox-regulated fate of neural stem progenitor cells. Biochim Biophys Acta Gen Subj 2015; 1850:1543-54. [PMID: 25662818 DOI: 10.1016/j.bbagen.2015.01.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/29/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Accumulated data indicate that self-renewal, multipotency, and differentiation of neural stem cells are under an intrinsic control mediated by alterations in the redox homeostasis. These dynamic redox changes not only reflect and support the ongoing metabolic and energetic processes, but also serve to coordinate redox-signaling cascades. Controlling particular redox couples seems to have a relevant impact on cell fate decision during development, adult neurogenesis and regeneration. SCOPE OF REVIEW Our own research provided initial evidence for the importance of NAD+-dependent enzymes in neural stem cell fate decision. In this review, we summarize recent knowledge on the active role of reactive oxygen species, redox couples and redox-signaling mechanisms on plasticity and function of neural stem and progenitor cells focusing on NAD(P)+/NAD(P)H-mediated processes. MAJOR CONCLUSIONS The compartmentalized subcellular sources and availability of oxidizing/reducing molecules in particular microenvironment define the specificity of redox regulation in modulating the delicate balance between stemness and differentiation of neural progenitors. The generalization of "reactive oxygen species" as well as the ambiguity of their origin might explain the diametrically-opposed findings in the field of redox-dependent cell fate reflected by the literature. GENERAL SIGNIFICANCE Increasing knowledge of temporary and spatially defined redox regulation is of high relevance for the development of novel approaches in the field of cell-based regeneration of nervous tissue in various pathological states. This article is part of a special issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Tim Prozorovski
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| | - Reiner Schneider
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
40
|
Mounier C, Bouraoui L, Rassart E. Lipogenesis in cancer progression (review). Int J Oncol 2014; 45:485-92. [PMID: 24827738 DOI: 10.3892/ijo.2014.2441] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/10/2014] [Indexed: 11/06/2022] Open
Abstract
In normal tissues, energy-providing lipids come principally from circulating lipids. However, in growing tumors, energy supply is mainly provided by lipids coming from de novo synthesis. It is not surprising to see elevated expression of several lipogenic genes in tumors from different origins. The role of lipogenic genes in the establishment of the primary tumor has been clearly established. A large number of studies demonstrate a role of fatty acid synthase in the activation of cell cycle and inhibition of apoptosis in tumor cells. Other lipogenic genes such as the acetyl CoA carboxylase (ACC) and the stearoyl CoA desaturase 1 (SCD1) are highly expressed in primary tumors and also appear to play a role in their development. However, the role of lipogenesis in the metastatic process is less clear. In the present review, we aim to present the most recent evidences for the key role of lipogenic enzymes in the metastatic process and in epithelial to mesenchymal transition.
Collapse
Affiliation(s)
| | - Lamia Bouraoui
- Biomed-Biological Sciences Department, UQÀM, Montréal, PQ, Canada
| | - Eric Rassart
- Biomed-Biological Sciences Department, UQÀM, Montréal, PQ, Canada
| |
Collapse
|
41
|
Choi SH, Estarás C, Moresco JJ, Yates JR, Jones KA. α-Catenin interacts with APC to regulate β-catenin proteolysis and transcriptional repression of Wnt target genes. Genes Dev 2014; 27:2473-88. [PMID: 24240237 PMCID: PMC3841736 DOI: 10.1101/gad.229062.113] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutation of the adenomatous polyposis coli (APC) tumor suppressor stabilizes β-catenin and aberrantly reactivates Wnt/β-catenin target genes in colon cancer. APC mutants in cancer frequently lack the conserved catenin inhibitory domain (CID), which is essential for β-catenin proteolysis. Here we show that the APC CID interacts with α-catenin, a Hippo signaling regulator and heterodimeric partner of β-catenin at cell:cell adherens junctions. Importantly, α-catenin promotes β-catenin ubiquitylation and proteolysis by stabilizing its association with APC and protecting the phosphodegron. Moreover, β-catenin ubiquitylation requires binding to α-catenin. Multidimensional protein identification technology (MudPIT) proteomics of multiple Wnt regulatory complexes reveals that α-catenin binds with β-catenin to LEF-1/TCF DNA-binding proteins in Wnt3a signaling cells and recruits APC in a complex with the CtBP:CoREST:LSD1 histone H3K4 demethylase to regulate transcription and β-catenin occupancy at Wnt target genes. Interestingly, tyrosine phosphorylation of α-catenin at Y177 disrupts binding to APC but not β-catenin and prevents repression of Wnt target genes in transformed cells. Chromatin immunoprecipitation studies further show that α-catenin and APC are recruited with β-catenin to Wnt response elements in human embryonic stem cells (hESCs). Knockdown of α-catenin in hESCs prevents the switch-off of Wnt/β-catenin transcription and promotes endodermal differentiation. Our findings indicate a role for α-catenin in the APC destruction complex and at Wnt target genes.
Collapse
Affiliation(s)
- Seung H Choi
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037 USA
| | | | | | | | | |
Collapse
|
42
|
Grumolato L, Liu G, Haremaki T, Mungamuri SK, Mong P, Akiri G, Lopez-Bergami P, Arita A, Anouar Y, Mlodzik M, Ronai ZA, Brody J, Weinstein DC, Aaronson SA. β-Catenin-independent activation of TCF1/LEF1 in human hematopoietic tumor cells through interaction with ATF2 transcription factors. PLoS Genet 2013; 9:e1003603. [PMID: 23966864 PMCID: PMC3744423 DOI: 10.1371/journal.pgen.1003603] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 05/17/2013] [Indexed: 01/22/2023] Open
Abstract
The role of Wnt signaling in embryonic development and stem cell maintenance is well established and aberrations leading to the constitutive up-regulation of this pathway are frequent in several types of human cancers. Upon ligand-mediated activation, Wnt receptors promote the stabilization of β-catenin, which translocates to the nucleus and binds to the T-cell factor/lymphoid enhancer factor (TCF/LEF) family of transcription factors to regulate the expression of Wnt target genes. When not bound to β-catenin, the TCF/LEF proteins are believed to act as transcriptional repressors. Using a specific lentiviral reporter, we identified hematopoietic tumor cells displaying constitutive TCF/LEF transcriptional activation in the absence of β-catenin stabilization. Suppression of TCF/LEF activity in these cells mediated by an inducible dominant-negative TCF4 (DN-TCF4) inhibited both cell growth and the expression of Wnt target genes. Further, expression of TCF1 and LEF1, but not TCF4, stimulated TCF/LEF reporter activity in certain human cell lines independently of β-catenin. By a complementary approach in vivo, TCF1 mutants, which lacked the ability to bind to β-catenin, induced Xenopus embryo axis duplication, a hallmark of Wnt activation, and the expression of the Wnt target gene Xnr3. Through generation of different TCF1-TCF4 fusion proteins, we identified three distinct TCF1 domains that participate in the β-catenin-independent activity of this transcription factor. TCF1 and LEF1 physically interacted and functionally synergized with members of the activating transcription factor 2 (ATF2) family of transcription factors. Moreover, knockdown of ATF2 expression in lymphoma cells phenocopied the inhibitory effects of DN-TCF4 on the expression of target genes associated with the Wnt pathway and on cell growth. Together, our findings indicate that, through interaction with ATF2 factors, TCF1/LEF1 promote the growth of hematopoietic malignancies in the absence of β-catenin stabilization, thus establishing a new mechanism for TCF1/LEF1 transcriptional activity distinct from that associated with canonical Wnt signaling. The Wnt signaling pathway plays a crucial role during embryonic development and in the maintenance of stem cell populations in various organs and tissues. Aberrant activation of this pathway through different mechanisms participates in the onset and progression of several types of human cancers. In the presence of Wnt ligands, stabilized β-catenin acts as a transcriptional activator to induce the expression of target genes through binding to the TCF/LEF family of transcription factors. Using in vitro and in vivo models, we show that TCF/LEF proteins can be activated independently of β-catenin through cooperation with members of the ATF2 subfamily of transcription factors. This novel alternative mechanism of TCF/LEF activation is constitutively up-regulated in certain hematopoietic tumor cells, where it regulates the expression of TCF/LEF target genes and promotes cell growth.
Collapse
Affiliation(s)
- Luca Grumolato
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- INSERM U982, DC2N, Institute for Research and Innovation in Biomedicine, University of Rouen, Mont Saint Aignan, France
| | - Guizhong Liu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Tomomi Haremaki
- Biology Department, Queens College of the City University of New York, Flushing, New York, United States of America
| | - Sathish Kumar Mungamuri
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Phyllus Mong
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Gal Akiri
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Pablo Lopez-Bergami
- Instituto de Medicina y Biología Experimental, CONICET, Buenos Aires, Argentina
| | - Adriana Arita
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Youssef Anouar
- INSERM U982, DC2N, Institute for Research and Innovation in Biomedicine, University of Rouen, Mont Saint Aignan, France
| | - Marek Mlodzik
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ze'ev A. Ronai
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Joshua Brody
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Daniel C. Weinstein
- Biology Department, Queens College of the City University of New York, Flushing, New York, United States of America
| | - Stuart A. Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
43
|
Gardano L, Pucci F, Christian L, Le Bihan T, Harrington L. Telomeres, a busy platform for cell signaling. Front Oncol 2013; 3:146. [PMID: 23772418 PMCID: PMC3677152 DOI: 10.3389/fonc.2013.00146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/21/2013] [Indexed: 12/18/2022] Open
Abstract
Telomeres are the terminal structures at the ends of linear chromosomes that represent a solution to the end replication problem. Specific binding of the six-protein subunit complex shelterin to telomeric, repetitive TTAGGG DNA sequences contributes to the stable architecture and maintenance of telomeres. Proteins involved in the DNA damage response are also localized at telomeres, and play a role in the surveillance and maintenance of telomere integrity. The enzyme responsible for telomere extension is telomerase, a ribonucleoprotein with reverse transcriptase activity. In the absence of telomerase, telomeres shorten to a length threshold that triggers the DNA damage response and replicative senescence. Here, we will summarize the latest findings concerning vertebrate telomere structure and epigenetics, and we present data regarding the impact of short telomeres upon cell signaling. In particular, in murine embryonic stem cells lacking telomerase, we found that distribution of cytosolic/nuclear β-catenin, a key component of the Wnt signaling pathway, changes when telomeres become critically short. We discuss implications and future perspectives of the effect of epigenetic modifications and/or conformational changes of telomeres on cell metabolism and signaling networks. Such an analysis may unveil potential therapeutic targets for pathologies like cancer, where the integrity of telomeres is altered.
Collapse
Affiliation(s)
- Laura Gardano
- Wellcome Trust Centre for Cell Biology, University of Edinburgh , Edinburgh , UK
| | | | | | | | | |
Collapse
|
44
|
C-Terminal Binding Protein: A Molecular Link between Metabolic Imbalance and Epigenetic Regulation in Breast Cancer. Int J Cell Biol 2013; 2013:647975. [PMID: 23762064 PMCID: PMC3671672 DOI: 10.1155/2013/647975] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/14/2013] [Accepted: 04/15/2013] [Indexed: 12/21/2022] Open
Abstract
The prevalence of obesity has given rise to significant global concerns as numerous population-based studies demonstrate an incontrovertible association between obesity and breast cancer. Mechanisms proposed to account for this linkage include exaggerated levels of carbohydrate substrates, elevated levels of circulating mitogenic hormones, and inflammatory cytokines that impinge on epithelial programming in many tissues. Moreover, recently many scientists have rediscovered the observation, first described by Otto Warburg nearly a century ago, that most cancer cells undergo a dramatic metabolic shift in energy utilization and expenditure that fuels and supports the cellular expansion associated with malignant proliferation. This shift in substrate oxidation comes at the cost of sharp changes in the levels of the high energy intermediate, nicotinamide adenine dinucleotide (NADH). In this review, we discuss a novel example of how shifts in the concentration and flux of substrates metabolized and generated during carbohydrate metabolism represent components of a signaling network that can influence epigenetic regulatory events in the nucleus. We refer to this regulatory process as "metabolic transduction" and describe how the C-terminal binding protein (CtBP) family of NADH-dependent nuclear regulators represents a primary example of how cellular metabolic status can influence epigenetic control of cellular function and fate.
Collapse
|
45
|
Abstract
The canonical Wnt/β-catenin pathway is an ancient and evolutionarily conserved signaling pathway that is required for the proper development of all metazoans, from the basal demosponge Amphimedon queenslandica to humans. Misregulation of Wnt signaling is implicated in many human diseases, making this pathway an intense area of research in industry as well as academia. In this review, we explore our current understanding of the molecular steps involved in the transduction of a Wnt signal. We will focus on how the critical Wnt pathway component, β-catenin, is in a "futile cycle" of constant synthesis and degradation and how this cycle is disrupted upon pathway activation. We describe the role of the Wnt pathway in major human cancers and in the control of stem cell self-renewal in the developing organism and in adults. Finally, we describe well-accepted criteria that have been proposed as evidence for the involvement of a molecule in regulating the canonical Wnt pathway.
Collapse
Affiliation(s)
- Kenyi Saito-Diaz
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-8240, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The Wnt/β-catenin pathway is highly regulated to insure the correct temporal and spatial activation of its target genes. In the absence of a Wnt stimulus, the transcriptional coactivator β-catenin is degraded by a multiprotein "destruction complex" that includes the tumor suppressors Axin and adenomatous polyposis coli (APC), the Ser/Thr kinases GSK-3 and CK1, protein phosphatase 2A (PP2A), and the E3-ubiquitin ligase β-TrCP. The complex generates a β-TrCP recognition site by phosphorylation of a conserved Ser/Thr-rich sequence near the β-catenin amino terminus, a process that requires scaffolding of the kinases and β-catenin by Axin. Ubiquitinated β-catenin is degraded by the proteasome. The molecular mechanisms that underlie several aspects of destruction complex function are poorly understood, particularly the role of APC. Here we review the molecular mechanisms of destruction complex function and discuss several potential roles of APC in β-catenin destruction.
Collapse
Affiliation(s)
- Jennifer L Stamos
- Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
47
|
Preet R, Mohapatra P, Das D, Satapathy SR, Choudhuri T, Wyatt MD, Kundu CN. Lycopene synergistically enhances quinacrine action to inhibit Wnt-TCF signaling in breast cancer cells through APC. Carcinogenesis 2012; 34:277-86. [PMID: 23129580 DOI: 10.1093/carcin/bgs351] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We previously reported that quinacrine (QC) has anticancer activity against breast cancer cells. Here, we examine the mechanism of action of QC and its ability to inhibit Wnt-TCF signaling in two independent breast cancer cell lines. QC altered Wnt-TCF signaling components by increasing the levels of adenomatous polyposis coli (APC), DAB2, GSK-3β and axin and decreasing the levels of β-catenin, p-GSK3β (ser 9) and CK1. QC also reduced the activity of the Wnt transcription factor TCF/LEF and its downstream targets cyclin D1 and c-MYC. Using a luciferase-based Wnt-TCF transcription factor assay, it was shown that APC levels were inversely associated with TCF/LEF activity. Induction of apoptosis and DNA damage was observed after treatment with QC, which was associated with increased expression of APC. The effects induced by QC depend on APC because the inhibition of Wnt-TCF signaling by QC is lost in APC-knockdown cells, and consequently, the extent of apoptosis and DNA damage caused by QC is reduced compared with parental cells. Because we previously showed that QC inhibits topoisomerase, we examined the effect of another topoisomerase inhibitor, etoposide, on Wnt signaling. Interestingly, etoposide treatment also reduced TCF/LEF activity, β-catenin and cyclin D1 levels commensurate with induction of DNA damage and apoptosis. Lycopene, a plant-derived antioxidant, synergistically increased QC activity and inhibited Wnt-TCF signaling in cancer cells without affecting the MCF-10A normal breast cell line. Collectively, the data suggest that QC-mediated Wnt-TCF signal inhibition depends on APC and that the addition of lycopene synergistically increases QC anticancer activity.
Collapse
Affiliation(s)
- Ranjan Preet
- Cancer Biology Laboratory, Department of KIIT School of Biotechnology, Campus-11, KIIT University, Patia, Bhubaneswar, Orissa 751024, India
| | | | | | | | | | | | | |
Collapse
|
48
|
Cadigan KM, Waterman ML. TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a007906. [PMID: 23024173 DOI: 10.1101/cshperspect.a007906] [Citation(s) in RCA: 560] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factors are the major end point mediators of Wnt/Wingless signaling throughout metazoans. TCF/LEFs are multifunctional proteins that use their sequence-specific DNA-binding and context-dependent interactions to specify which genes will be regulated by Wnts. Much of the work to define their actions has focused on their ability to repress target gene expression when Wnt signals are absent and to recruit β-catenin to target genes for activation when Wnts are present. Recent advances have highlighted how these on/off actions are regulated by Wnt signals and stabilized β-catenin. In contrast to invertebrates, which typically contain one TCF/LEF protein that can both activate and repress Wnt targets, gene duplication and isoform complexity of the family in vertebrates have led to specialization, in which individual TCF/LEF isoforms have distinct activities.
Collapse
Affiliation(s)
- Ken M Cadigan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, 48109-1048, USA
| | | |
Collapse
|
49
|
Zou F, Xu J, Fu H, Cao J, Mao H, Gong M, Cui G, Zhang Y, Shi W, Chen J. Different functions of HIPK2 and CtBP2 in traumatic brain injury. J Mol Neurosci 2012; 49:395-408. [PMID: 23076816 DOI: 10.1007/s12031-012-9906-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 10/09/2012] [Indexed: 01/09/2023]
Abstract
Traumatic brain injury (TBI) initiates a complex series of neurochemical and signaling changes that lead to neuronal dysfunction and over-reactive astrocytes. In our study, homeodomain interacting protein kinase 2 (HIPK2) can interact with C-terminal binding protein 2 (CtBP2) in rat brain, which is a component of Wnt-regulated transcription. Up to now, the functions of HIPK2 and CtBP2 in CNS are still with limited acquaintance. In our study, we found that the interaction between HIPK2 and CtBP2 was involved in central nervous system (CNS) injury and repair. We performed an acute TBI model in adult rats. Western blot and immunohistochemistry analysis revealed that both HIPK2 and CtBP2 significantly increased in the peritrauma brain cortex in comparison to contralateral cerebral cortex. And immunofluorescence double-labeling revealed that HIPK2 was mainly co-expressed with NeuN but less GFAP. Meanwhile, we also examined that the expression profiles of active-caspase-3 was correlated with the expression of HIPK2 and the expression profiles of the proliferating cell nuclear antigen (PCNA) was correlated with the expression of CtBP2. HIPK2 participated in apoptosis of neurons, but CtBP2 was associated with the activation and proliferation of astrocytes. Immunoprecipitation further showed that they enhanced the interaction with each other in the pathophysiology process. In conclusion, this was the first description that HIPK2 interacted with CtBP2 in traumatic brains. Our data suggest that HIPK2 and CtBP2 might play important roles in CNS pathophysiology after TBI, and might provide a basis for the further study on their roles in regulating the prognosis after TBI.
Collapse
Affiliation(s)
- Feihui Zou
- Department of Neurology, Surgical Comprehensive Laboratory Affiliated Hospital of Nantong University, 19 Qi-Xiu Road, Nantong, Jiangsu Province, 226001, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
β-Catenin signaling dosage dictates tissue-specific tumor predisposition in Apc-driven cancer. Oncogene 2012; 32:4579-85. [PMID: 23045279 DOI: 10.1038/onc.2012.449] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/23/2012] [Accepted: 08/09/2012] [Indexed: 12/13/2022]
Abstract
Apc-driven tumor formation in patients and Apc-mutant mouse models is generally attributed to increased levels of β-catenin signaling. We and others have proposed that a specific level of β-catenin signaling is required to successfully initiate tumor formation, and that each tissue prefers different dosages of signaling. This is illustrated by APC genotype-tumor phenotype correlations in cancer patients, and by the different tumor phenotypes displayed by different Apc-mutant mouse models. Apc1638N mice, associated with intermediate β-catenin signaling, characteristically develop intestinal tumors (<10) and extra-intestinal tumors, including cysts and desmoids. Apc1572T mice associated with lower levels of β-catenin signaling are free of intestinal tumors, but instead develop mammary tumors. Although the concept of β-catenin signaling dosage and its impact on tumor growth among tissues is gaining acceptance, it has not been formally proven. Additionally, alternative explanations for Apc-driven tumor formation have been proposed. To obtain direct evidence for the dominant role of β-catenin dosage in tumor formation and tissue-specific tumor predisposition, we crossed Apc1638N mice with heterozygous β-catenin knockout mice, thereby reducing β-catenin levels. Whereas all the Apc1638N;Ctnnb1(+/+) mice developed gastrointestinal tumors, none were present in the Apc1638N;Ctnnb1(-/+) mice. Incidence of other Apc1638N-associated lesions, including desmoids and cysts, was strongly reduced as well. Interestingly, Apc1638N;Ctnnb1(-/+) females showed an increased incidence of mammary tumors, which are normally rarely observed in Apc1638N mice, and the histological composition of the tumors resembled that of Apc1572T-related tumors. Hereby, we provide in vivo genetic evidence confirming the dominant role of β-catenin dosage in tumor formation and in dictating tumor predisposition among tissues in Apc-driven cancer.
Collapse
|