1
|
Anselmi NK, Vanyo ST, Visser MB. Emerging oral Treponema membrane proteins disorder neutrophil phosphoinositide signaling via phosphatidylinositol-4-phosphate 5-kinase. FRONTIERS IN ORAL HEALTH 2025; 6:1568983. [PMID: 40248422 PMCID: PMC12003349 DOI: 10.3389/froh.2025.1568983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/20/2025] [Indexed: 04/19/2025] Open
Abstract
Background Periodontitis (PD) is a group of inflammatory pathologies characterized by destruction of the tooth-supporting tissues. During PD, dysbiosis of the oral biofilm disrupts the host immune response and supports growth of pathogenic bacteria including the spirochetes Treponema denticola (Td), T. maltophilum (Tm), and T. lecithinolyticum (Tl). The outer membrane protein of Td, Msp, perturbs the function of neutrophils by modulating phosphoinositide (PIP) signaling. While Tm and Tl have similar outer membrane proteins, MspA and MspTL respectively, little is known of how these proteins affect neutrophil function. Methods This study examines putative mechanisms by which T. maltophilum MspA and T. lecithinolyticum MspTL inhibit neutrophil chemotaxis. Murine bone marrow neutrophils were treated with recombinant MspA or MspTL protein. Protein phosphorylation was assessed via immunoblot, phosphate release by malachite green assay, and PTEN and SHIP phosphatase activity through immunoprecipitation, enzymatic assays, and chemical inhibition. PIP quantification was assessed by immunofluorescence microscopy and Mass ELISAs, while small GTPase activity was measured with G-Protein Activation Assays. Neutrophil F-actin localization was determined through immunofluorescence. Results MspA and MspTL increase phosphate release in neutrophils, but unlike Msp, they do not affect PTEN or SHIP activity, despite modulating cellular levels of multiple PIP species [PI(3,4)P2, PI(4,5)P2, and PIP3]. Overall, MspA and MspTL differentially affected the metabolism of individual PIP species, but both increased PI(4,5)P2 levels in a PIP5K-dependent manner. Downstream effects of disrupted PIP signaling included inhibition of Akt and Rac1 activation and increased cortical F-actin localization. Conclusions Understanding distinct mechanistic relationships between novel Msp proteins and neutrophils provides important insight into how these understudied bacteria promote periodontitis progression.
Collapse
Affiliation(s)
| | | | - Michelle B. Visser
- Department of Oral Biology, The State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
2
|
Alvarez-Olmedo D, Kamaliddin C, Verhey TB, Ho M, De Vinney R, Chaconas G. Transendothelial migration of the Lyme disease spirochete involves spirochete internalization as an intermediate step through a transcellular pathway that involves Cdc42 and Rac1. Microbiol Spectr 2025; 13:e0222124. [PMID: 39727396 PMCID: PMC11792520 DOI: 10.1128/spectrum.02221-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Despite its importance in pathogenesis, the hematogenous dissemination pathway of Borrelia burgdorferi is still largely uncharacterized. To probe the molecular details of transendothelial migration more easily, we studied this process using cultured primary or telomerase-immortalized human microvascular endothelial cells in a medium that maintains both the human cells and the spirochetes. In B. burgdorferi-infected monolayers, we observed ~55% of wild-type spirochetes crossing the monolayer. Microscopic characterization revealed entrance points across the cellular surface rather than at cellular junctions, supporting a transcellular route. In support of this pathway, locking the endothelial junctions using a vascular endothelial protein tyrosine phosphatase (VE-PTP) inhibitor did not reduce transendothelial migration. We also used inhibitors to block the most common endocytic pathways to elucidate effectors that might be involved in B. burgdorferi uptake and/or transmigration. Directly inhibiting Cdc42 reduced spirochete transmigration by impeding internalization. However, blocking Rac1 alone dramatically reduced transmigration by ~84% and resulted in a concomitant doubling in spirochete accumulation in the cell. Our combined results support that B. burgdorferi internalization is an intermediate step in the transendothelial migration process, which requires both Cdc42 and Rac1; Cdc42 is needed for spirochete internalization, while Rac1 is required for cellular egress. These are the first two host proteins implicated in B. burgdorferi transmigration across endothelial cells.IMPORTANCELyme borreliosis is caused by Borrelia burgdorferi and related bacteria. It is the most common tick-transmitted illness in the Northern Hemisphere. The ability of this pathogen to spread to a wide variety of locations results in a diverse set of clinical manifestations, yet little is known regarding vascular escape of the spirochete, an important pathway for dissemination. Our current work has studied the traversal of B. burgdorferi across a monolayer of microvascular endothelial cells grown using a new culture system. We show that this occurs by passage of the spirochetes directly through cells rather than at cellular junctions and that internalization of B. burgdorferi is an intermediate step in transmigration. We also identify the first two host proteins, Cdc42 and Rac1, that are used by the spirochetes to promote traversal of the cellular monolayer. Our new experimental system also provides a new avenue for further studies of this important process.
Collapse
Affiliation(s)
- Daiana Alvarez-Olmedo
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Claire Kamaliddin
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, The University of Calgary, Calgary, Alberta, Canada
| | - Theodore B. Verhey
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - May Ho
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, The University of Calgary, Calgary, Alberta, Canada
| | - Rebekah De Vinney
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, The University of Calgary, Calgary, Alberta, Canada
| | - George Chaconas
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, The University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Alvarez-Olmedo D, Kamaliddin C, Verhey TB, Ho M, DeVinney R, Chaconas G. Transendothelial migration of the Lyme disease spirochete involves spirochete internalization as an intermediate step through a transcellular pathway that involves Cdc42 and Rac1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612329. [PMID: 39314306 PMCID: PMC11419014 DOI: 10.1101/2024.09.10.612329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Despite its importance in pathogenesis, the hematogenous dissemination pathway of B. burgdorferi is still largely uncharacterized. To probe the molecular details of transendothelial migration more easily, we studied this process using cultured primary or telomerase-immortalized human microvascular endothelial cells in a medium that maintains both the human cells and the spirochetes. In B. burgdorferi infected monolayers we observed ∼55% of wild-type spirochetes crossing the monolayer. Microscopic characterization revealed entrance points across the cellular surface rather than at cellular junctions, supporting a transcellular route. In support of this pathway, locking the endothelial junctions using a VE-PTP inhibitor did not reduce transendothelial migration. We also used inhibitors to block the most common endocytic pathways to elucidate effectors that might be involved in B. burgdorferi uptake and/or transmigration. Directly inhibiting Cdc42 reduced spirochete transmigration by impeding internalization. However, blocking Rac1 alone dramatically reduced transmigration and resulted in a concomitant increase in spirochete accumulation in the cell. Our combined results support that B. burgdorferi internalization is an intermediate step in the transendothelial migration process which requires both Cdc42 and Rac1; Cdc42 is needed for spirochete internalization while Rac1 is required for cellular egress. These are the first two host proteins implicated in B. burgdorferi transmigration across endothelial cells. IMPORTANCE Lyme borreliosis is caused by Borrelia burgdorferi and related bacteria. It is the most common tick-transmitted illness in the Northern Hemisphere. The ability of this pathogen to spread to a wide variety of locations results in a diverse set of clinical manisfestations, yet little is known regarding vascular escape of the spirochete, an important pathway for dissemination. Our current work has studied the traversal of B. burgdorferi across a monolayer of microvascular endothelial cells grown in culture. We show that this occurs by passage of the spirochetes directly through these cells rather than at cellular junctions and that internalization of B. burgdorferi is an intermediate step in the transmigration process. We also identify the first two host proteins, Cdc42 and Rac1, that are used by the spirochetes to promote traversal of the cellular monolayer. Our new experimental system also provides a new avenue for further studies of this important process.
Collapse
|
4
|
Srivastava P, Shukla A, Singh R, Kant R, Mishra N, Behera SP, Dwivedi GR, Yadav DK. Orientia tsutsugamushi: An Unusual Intracellular Bacteria-Adaptation Strategies, Available Antibiotics, and Alternatives for Treatment. Curr Microbiol 2024; 81:236. [PMID: 38907107 DOI: 10.1007/s00284-024-03754-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/28/2024] [Indexed: 06/23/2024]
Abstract
During evolution Orientia tsutsugamushi became a smarter obligate bacterium to establish as intracellular pathogens. O. tsutsugamushi is a human pathogenic bacterium responsible for 1 billion infections of scrub typhus. Several novel mechanisms make this bacterium unique (cell wall, genetic constitutions, secretion system, etc.). In 2007, O. tsutsugamushi Boryong was pioneer strain for whole-genome sequencing. But the fundamental biology of this bacterial cell is a mystery till date. The unusual biology makes this organism as model for host cell interaction. Only a few antibiotics are effective against this intracellular pathogen but emergence of less susceptibility toward antibiotics make the situation alarming. The review was captivated to highlight the unusual aspects of adaptation, antibiotics, and drugs beyond antibiotics.
Collapse
Affiliation(s)
- Prashansha Srivastava
- ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, 273013, India
| | - Aishwarya Shukla
- ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, 273013, India
| | - Rajeev Singh
- ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, 273013, India
| | - Rajni Kant
- ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, 273013, India
| | - Nalini Mishra
- ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, 273013, India
| | - Sthita P Behera
- ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, 273013, India
| | - Gaurav R Dwivedi
- ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur, 273013, India.
| | - Dharmendra K Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro 191, Yeonsu-Gu, Incheon, 21924, Korea
| |
Collapse
|
5
|
Zhang J, Brodsky IE, Shin S. Yersinia deploys type III-secreted effectors to evade caspase-4 inflammasome activation in human cells. mBio 2023; 14:e0131023. [PMID: 37615436 PMCID: PMC10653943 DOI: 10.1128/mbio.01310-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/06/2023] [Indexed: 08/25/2023] Open
Abstract
IMPORTANCE Yersinia are responsible for significant disease burden in humans, ranging from recurrent disease outbreaks (yersiniosis) to pandemics (Yersinia pestis plague). Together with rising antibiotic resistance rates, there is a critical need to better understand Yersinia pathogenesis and host immune mechanisms, as this information will aid in developing improved immunomodulatory therapeutics. Inflammasome responses in human cells are less studied relative to murine models of infection, though recent studies have uncovered key differences in inflammasome responses between mice and humans. Here, we dissect human intestinal epithelial cell and macrophage inflammasome responses to Yersinia pseudotuberculosis. Our findings provide insight into species- and cell type-specific differences in inflammasome responses to Yersinia.
Collapse
Affiliation(s)
- Jenna Zhang
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Igor E. Brodsky
- Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Sunny Shin
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Guo Z, Ma Y, Jia Z, Wang L, Lu X, Chen Y, Wang Y, Hao H, Yu S, Wang Z. Crosstalk between integrin/FAK and Crk/Vps25 governs invasion of bovine mammary epithelial cells by S. agalactiae. iScience 2023; 26:107884. [PMID: 37766995 PMCID: PMC10520442 DOI: 10.1016/j.isci.2023.107884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/26/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Streptococcus agalactiae (S. agalactiae) is a contagious obligate parasite of the udder in dairy cows. Here, we examined S. agalactiae-host interactions in bovine mammary epithelial cells (BMECs) in vitro. We found that S. agalactiae infected BMECs through laminin β2 and integrin. Crk, Vps25, and RhoA were differentially expressed in S. agalactiae-infected cells. S. agalactiae infection activated FAK and Crk. FAK deficiency decreased the number of intracellular S. agalactiae and Crk activation. Knockdown of Crk or Vps25 increased the level of intracellular S. agalactiae, whereas its overexpression had the opposite effect. RhoA expression and actin cytoskeleton were altered in S. agalactiae-infected BMECs. Crk and Vps25 interact in cells, and invaded S. agalactiae also activates Crk, allowing it to cooperate with Vps25 to defend against intracellular infection by S. agalactiae. This study provides insights into the mechanism by which intracellular infection by S. agalactiae is regulated in BMECs.
Collapse
Affiliation(s)
- Zhixin Guo
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
- School of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yuze Ma
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Zhibo Jia
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Liping Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Xinyue Lu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Yuhao Chen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
- School of Life Sciences, Jining Normal University, Jining 012000, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Huifang Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Shuixing Yu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Zhigang Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
7
|
Zhang Y, Zhang X, Li Z, Zhao W, Yang H, Zhao S, Tang D, Zhang Q, Li Z, Liu H, Li H, Li B, Lappalainen P, Xu T, Cui Z, Jiu Y. Single particle tracking reveals SARS-CoV-2 regulating and utilizing dynamic filopodia for viral invasion. Sci Bull (Beijing) 2023; 68:2210-2224. [PMID: 37661543 DOI: 10.1016/j.scib.2023.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/22/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry mechanism has been explored, little is known about how SARS-CoV-2 regulates the subcellular structural remodeling to invade multiple organs and cell types. Here, we unveil how SARS-CoV-2 boosts and utilizes filopodia to enter the target cells by real-time imaging. Using SARS-CoV-2 single virus-like particle (VLP) tracking in live cells and sparse deconvolution algorithm, we uncover that VLPs utilize filopodia to reach the entry site in two patterns, "surfing" and "grabbing", which avoid the virus from randomly searching on the plasma membrane. Moreover, combining mechanical simulation, we elucidate that the formation of virus-induced filopodia and the retraction speed of filopodia depend on cytoskeleton dynamics and friction resistance at the substrate surface caused by loading-virus gravity, respectively. Further, we discover that the entry process of SARS-CoV-2 via filopodia depends on Cdc42 activity and actin-associated proteins fascin, formin, and Arp2/3. Together, our results highlight that the spatial-temporal regulation of actin cytoskeleton by SARS-CoV-2 infection makes filopodia as a highway for virus entry and potentiates it as an antiviral target.
Collapse
Affiliation(s)
- Yue Zhang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaowei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhongyi Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Weisong Zhao
- Innovation Photonics and Imaging Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Hui Yang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Shuangshuang Zhao
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Daijiao Tang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zonghong Li
- Guangzhou Laboratory, Guangzhou 510005, China
| | | | - Haoyu Li
- Innovation Photonics and Imaging Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Pekka Lappalainen
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Tao Xu
- Guangzhou Laboratory, Guangzhou 510005, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Yaming Jiu
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Fantini J. Lipid rafts and human diseases: why we need to target gangliosides. FEBS Open Bio 2023; 13:1636-1650. [PMID: 37052878 PMCID: PMC10476576 DOI: 10.1002/2211-5463.13612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 04/14/2023] Open
Abstract
Gangliosides are functional components of membrane lipid rafts that control critical functions in cell communication. Many pathologies involve raft gangliosides, which therefore represent an approach of choice for developing innovative therapeutic strategies. Beginning with a discussion of what a disease is (and is not), this review lists the major human pathologies that involve gangliosides, which includes cancer, diabetes, and infectious and neurodegenerative diseases. In most cases, the problem is due to a protein whose binding to gangliosides either creates a pathological condition or impairs a physiological function. Then, I draw up an inventory of the different molecular mechanisms of protein-ganglioside interactions. I propose to classify the ganglioside-binding domains of proteins into four categories, which I name GBD-1, GBD-2, GBD-3, and GBD-4. This structural and functional classification could help to rationalize the design of innovative molecules capable of disrupting the binding of selected proteins to gangliosides without generating undesirable effects. The biochemical specificities of gangliosides expressed in the human brain must also be taken into account to improve the reliability of animal models (or any animal-free alternative) of Alzheimer's and Parkinson's diseases.
Collapse
|
9
|
Zhang Q, Wan M, Kudryashova E, Kudryashov DS, Mao Y. Membrane-dependent actin polymerization mediated by the Legionella pneumophila effector protein MavH. PLoS Pathog 2023; 19:e1011512. [PMID: 37463171 PMCID: PMC10381072 DOI: 10.1371/journal.ppat.1011512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
L. pneumophila propagates in eukaryotic cells within a specialized niche, the Legionella-containing vacuole (LCV). The infection process is controlled by over 330 effector proteins delivered through the type IV secretion system. In this study, we report that the Legionella MavH effector localizes to endosomes and remodels host actin cytoskeleton in a phosphatidylinositol 3-phosphate (PI(3)P) dependent manner when ectopically expressed. We show that MavH recruits host actin capping protein (CP) and actin to the endosome via its CP-interacting (CPI) motif and WH2-like actin-binding domain, respectively. In vitro assays revealed that MavH stimulates actin assembly on PI(3)P-containing liposomes causing their tubulation. In addition, the recruitment of CP by MavH negatively regulates F-actin density at the membrane. We further show that, in L. pneumophila-infected cells, MavH appears around the LCV at the very early stage of infection and facilitates bacterium entry into the host. Together, our results reveal a novel mechanism of membrane tubulation induced by membrane-dependent actin polymerization catalyzed by MavH that contributes to the early stage of L. pneumophila infection by regulating host actin dynamics.
Collapse
Affiliation(s)
- Qing Zhang
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Min Wan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Dmitri S Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Yuxin Mao
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
10
|
Carella F, De Vico G. pathology, epidemiology, and phylogenyof mussel egg disease due to the microsporidianSteinhausia mytilovum(Field, 1924)in the Mediterranean mussel (Mytilus galloprovincialis). J Invertebr Pathol 2023; 198:107927. [PMID: 37087094 DOI: 10.1016/j.jip.2023.107927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/29/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
Microsporidia are well known fungal pathogens of aquatic animals. However, the taxonomy of microsporidia is generally poorly resolved, which has consequently constrained our understanding of their pathology and epidemiology in marine animals. To date, microsporidia have been reported in both bivalves and gastropods, and microsporidia from mollusks have been classified in different genera. Despite ongoing work to better describe these genera, including detailed microscopic and ultrastructural images, so far we lack information on microsporidian phylogeny and pathogenicity of species within these genera. Here we investigate the microsporidian parasite Steinhausia mytilovum associated with the mussel, Mytilus galloprovincialis, in natural beds and farms along coast of southern Italy. A survey of M. galloprovincialis was conducted in 13 mussel farms and one natural bed between 2009 and 2020. We found the presence of S. mytilovum in 10 of the investigated farms, with a prevalence ranging between 14-100% of female mussels, depending on the population and season in which they were sampled. The parasite developed in the oocytes within a sporophorous vesicle (SV) where it produced 1-3 spores per cell, both in the cytoplasm and in the nucleus. Stenhausia mytilovum elicited an infiltrative (24.8%) or a strong capsular inflammatory response (43.4%) at gonadal follicles and surrounding vesicular connective tissue, in some cases accompanied by gonadal atresia (24.8%), leading to loss of gonadal architecture. In 7% of cases no reaction was observed. Ultrastructural observations revealed a mitochondrial re-organization to interact with all the phases of parasite development; the mitochondria were arranged outside the parasitophorous vesicle (PV) or directly interacting with the spore inside vesicle. There are five taxonomic clades of microsporidians as identified by SSU ribosomal gene sequence data. Maximum likelihood analysis assigned S. mytilovum within the Clade IV, defined as the Class Terresporidia, with closest genetic relationship (83.6% identity) to an undetermined invertebrate ovarian microsporidian. The constant presence, prevalence, and severity of S. mytilovum in coastline populations of M. galloprovincialis populations in southern Italy may indirectly reflect immunocompetence at both individual and population levels.
Collapse
Affiliation(s)
- Francesca Carella
- Laboratory of Aquatic Animal Disease, Department of Biology, MSA, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy.
| | - Gionata De Vico
- Laboratory of Aquatic Animal Disease, Department of Biology, MSA, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| |
Collapse
|
11
|
Haines A, Wesolowski J, Paumet F. Chlamydia trachomatis Subverts Alpha-Actinins To Stabilize Its Inclusion. Microbiol Spectr 2023; 11:e0261422. [PMID: 36651786 PMCID: PMC9927245 DOI: 10.1128/spectrum.02614-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Chlamydia trachomatis is the leading cause of sexually transmitted bacterial disease and a global health burden. As an obligate intracellular pathogen, Chlamydia has evolved many strategies to manipulate its host and establish its intracellular niche called the inclusion. C. trachomatis reorganizes the host actin cytoskeleton to form scaffolds around the inclusion and reinforce the growing inclusion membrane. To control the kinetics and formation of actin scaffolds, Chlamydia expresses the effector InaC/CT813, which activates the host GTPase RhoA. Here, we have discovered that InaC stabilizes actin scaffolds through the host actin cross-linking proteins α-actinins 1 and 4. We demonstrate that α-actinins are recruited to the inclusion membrane in an InaC-dependent manner and associate with actin scaffolds that envelop the inclusion. Small interfering RNA (siRNA)-mediated knockdown of α-actinins differentially regulate the frequency of actin scaffolds and impair inclusion stability, leaving them susceptible to rupture and to nonionic detergent extraction. Overall, our data identify new host effectors that are subverted by InaC to stabilize actin scaffolds, highlighting the versatility of InaC as a key regulator of the host cytoskeletal network during Chlamydia infection. IMPORTANCE Despite antibiotics, recurrent C. trachomatis infections cause significant damage to the genital tract in men and women. Without a preventative vaccine, it is paramount to understand the virulence mechanisms that Chlamydia employs to cause disease. In this context, manipulation of the host cytoskeleton is a critical component of Chlamydia development. Actin scaffolds reinforce the integrity of Chlamydia's infectious vacuole, which is a critical barrier between Chlamydia and the host environment. Having previously established that InaC co-opts RhoA to promote the formation of actin scaffolds around the inclusion, we now show that Chlamydia hijacks a new class of host effectors, α-actinins, to cross-link these scaffolds and further stabilize the inclusion. We also establish that a core function of the chlamydial effector InaC is the regulation of cytoskeletal stability during Chlamydia infection. Ultimately, this work expands our understanding of how bacterial pathogens subvert the actin cytoskeleton by targeting fundamental host effector proteins.
Collapse
Affiliation(s)
- A. Haines
- Department of Immunology and Microbiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - J. Wesolowski
- Department of Immunology and Microbiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - F. Paumet
- Department of Immunology and Microbiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Zhang Q, Wan M, Mao Y. Membrane-dependent actin polymerization mediated by the Legionella pneumophila effector protein MavH. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525393. [PMID: 36747622 PMCID: PMC9900769 DOI: 10.1101/2023.01.24.525393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
L. pneumophila propagates in eukaryotic cells within a specialized niche, the Legionella -containing vacuole (LCV). The infection process is controlled by over 330 effector proteins delivered through the type IV secretion system. In this study, we report that the Legionella MavH effector harbors a lipid-binding domain that specifically recognizes PI(3)P (phosphatidylinositol 3-phosphate) and localizes to endosomes when ectopically expressed. We show that MavH recruits host actin capping proteins (CP) and actin to the endosome via its CP interacting (CPI) motif and WH2-like actin-binding domain, respectively. In vitro assays revealed that MavH stimulates robust actin polymerization only in the presence of PI(3)P-containing liposomes and the recruitment of CP by MavH negatively regulates F-actin density at the membrane. Furthermore, in L. pneumophila -infected cells, MavH can be detected around the LCV at the very early stage of infection. Together, our results reveal a novel mechanism of membrane-dependent actin polymerization catalyzed by MavH that may play a role at the early stage of L. pneumophila infection by regulating host actin dynamics.
Collapse
Affiliation(s)
- Qing Zhang
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Min Wan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Yuxin Mao
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.,Corresponding Author: , Telephone: 607-255-0783
| |
Collapse
|
13
|
Sadhu RK, Barger SR, Penič S, Iglič A, Krendel M, Gauthier NC, Gov NS. A theoretical model of efficient phagocytosis driven by curved membrane proteins and active cytoskeleton forces. SOFT MATTER 2022; 19:31-43. [PMID: 36472164 PMCID: PMC10078962 DOI: 10.1039/d2sm01152b] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phagocytosis is the process of engulfment and internalization of comparatively large particles by cells, and plays a central role in the functioning of our immune system. We study the process of phagocytosis by considering a simplified coarse grained model of a three-dimensional vesicle, having a uniform adhesion interaction with a rigid particle, and containing curved membrane-bound protein complexes or curved membrane nano-domains, which in turn recruit active cytoskeletal forces. Complete engulfment is achieved when the bending energy cost of the vesicle is balanced by the gain in the adhesion energy. The presence of curved (convex) proteins reduces the bending energy cost by self-organizing with a higher density at the highly curved leading edge of the engulfing membrane, which forms the circular rim of the phagocytic cup that wraps around the particle. This allows the engulfment to occur at much smaller adhesion strength. When the curved membrane-bound protein complexes locally recruit actin polymerization machinery, which leads to outward forces being exerted on the membrane, we found that engulfment is achieved more quickly and at a lower protein density. We consider spherical and non-spherical particles and found that non-spherical particles are more difficult to engulf in comparison to the spherical particles of the same surface area. For non-spherical particles, the engulfment time crucially depends on the initial orientation of the particles with respect to the vesicle. Our model offers a mechanism for the spontaneous self-organization of the actin cytoskeleton at the phagocytic cup, in good agreement with recent high-resolution experimental observations.
Collapse
Affiliation(s)
- Raj Kumar Sadhu
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Sarah R Barger
- Molecular, Cellular, Developmental Biology, Yale University, New Haven, USA
| | - Samo Penič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Mira Krendel
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, USA
| | | | - Nir S Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
14
|
Kirchenwitz M, Stahnke S, Prettin S, Borowiak M, Menke L, Sieben C, Birchmeier C, Rottner K, Stradal TEB, Steffen A. SMER28 Attenuates PI3K/mTOR Signaling by Direct Inhibition of PI3K p110 Delta. Cells 2022; 11:1648. [PMID: 35626685 PMCID: PMC9140127 DOI: 10.3390/cells11101648] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/03/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
SMER28 (Small molecule enhancer of Rapamycin 28) is an autophagy-inducing compound functioning by a hitherto unknown mechanism. Here, we confirm its autophagy-inducing effect by assessing classical autophagy-related parameters. Interestingly, we also discovered several additional effects of SMER28, including growth retardation and reduced G1 to S phase progression. Most strikingly, SMER28 treatment led to a complete arrest of receptor tyrosine kinase signaling, and, consequently, growth factor-induced cell scattering and dorsal ruffle formation. This coincided with a dramatic reduction in phosphorylation patterns of PI3K downstream effectors. Consistently, SMER28 directly inhibited PI3Kδ and to a lesser extent p110γ. The biological relevance of our observations was underscored by SMER28 interfering with InlB-mediated host cell entry of Listeria monocytogenes, which requires signaling through the prominent receptor tyrosine kinase c-Met. This effect was signaling-specific, since entry of unrelated, gram-negative Salmonella Typhimurium was not inhibited. Lastly, in B cell lymphoma cells, which predominantly depend on tonic signaling through PI3Kδ, apoptosis upon SMER28 treatment is profound in comparison to non-hematopoietic cells. This indicates SMER28 as a possible drug candidate for the treatment of diseases that derive from aberrant PI3Kδ activity.
Collapse
Affiliation(s)
- Marco Kirchenwitz
- Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (M.K.); (S.S.); (S.P.); (K.R.)
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Stephanie Stahnke
- Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (M.K.); (S.S.); (S.P.); (K.R.)
| | - Silvia Prettin
- Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (M.K.); (S.S.); (S.P.); (K.R.)
| | - Malgorzata Borowiak
- Developmental Biology/Signal Transduction, Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany; (M.B.); (C.B.)
| | - Laura Menke
- Nanoscale Infection Biology Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (L.M.); (C.S.)
| | - Christian Sieben
- Nanoscale Infection Biology Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (L.M.); (C.S.)
| | - Carmen Birchmeier
- Developmental Biology/Signal Transduction, Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany; (M.B.); (C.B.)
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (M.K.); (S.S.); (S.P.); (K.R.)
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Theresia E. B. Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (M.K.); (S.S.); (S.P.); (K.R.)
| | - Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (M.K.); (S.S.); (S.P.); (K.R.)
| |
Collapse
|
15
|
Paluck A, Osan J, Hollingsworth L, Talukdar SN, Saegh AA, Mehedi M. Role of ARP2/3 Complex-Driven Actin Polymerization in RSV Infection. Pathogens 2021; 11:26. [PMID: 35055974 PMCID: PMC8781601 DOI: 10.3390/pathogens11010026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 01/30/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading viral agent causing bronchiolitis and pneumonia in children under five years old worldwide. The RSV infection cycle starts with macropinocytosis-based entry into the host airway epithelial cell membrane, followed by virus transcription, replication, assembly, budding, and spread. It is not surprising that the host actin cytoskeleton contributes to different stages of the RSV replication cycle. RSV modulates actin-related protein 2/3 (ARP2/3) complex-driven actin polymerization for a robust filopodia induction on the infected lung epithelial A549 cells, which contributes to the virus's budding, and cell-to-cell spread. Thus, a comprehensive understanding of RSV-induced cytoskeletal modulation and its role in lung pathobiology may identify novel intervention strategies. This review will focus on the role of the ARP2/3 complex in RSV's pathogenesis and possible therapeutic targets to the ARP2/3 complex for RSV.
Collapse
Affiliation(s)
- Autumn Paluck
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (A.P.); (J.O.); (L.H.); (S.N.T.); (A.A.S.)
| | - Jaspreet Osan
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (A.P.); (J.O.); (L.H.); (S.N.T.); (A.A.S.)
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lauren Hollingsworth
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (A.P.); (J.O.); (L.H.); (S.N.T.); (A.A.S.)
| | - Sattya Narayan Talukdar
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (A.P.); (J.O.); (L.H.); (S.N.T.); (A.A.S.)
| | - Ali Al Saegh
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (A.P.); (J.O.); (L.H.); (S.N.T.); (A.A.S.)
| | - Masfique Mehedi
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (A.P.); (J.O.); (L.H.); (S.N.T.); (A.A.S.)
| |
Collapse
|
16
|
Cross Talk between ARF1 and RhoA Coordinates the Formation of Cytoskeletal Scaffolds during Chlamydia Infection. mBio 2021; 12:e0239721. [PMID: 34903051 PMCID: PMC8669492 DOI: 10.1128/mbio.02397-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterium that has developed sophisticated mechanisms to survive inside its infectious compartment, the inclusion. Notably, Chlamydia weaves an extensive network of microtubules (MTs) and actin filaments to enable interactions with host organelles and enhance its stability. Despite the global health and economic burden caused by this sexually transmitted pathogen, little is known about how actin and MT scaffolds are integrated into an increasingly complex virulence system. Previously, we established that the chlamydial effector InaC interacts with ARF1 to stabilize MTs. We now demonstrate that InaC regulates RhoA to control actin scaffolds. InaC relies on cross talk between ARF1 and RhoA to coordinate MTs and actin, where the presence of RhoA downregulates stable MT scaffolds and ARF1 activation inhibits actin scaffolds. Understanding how Chlamydia hijacks complex networks will help elucidate how this clinically significant pathogen parasitizes its host and reveal novel cellular signaling pathways.
Collapse
|
17
|
Chatterjee R, Chowdhury AR, Mukherjee D, Chakravortty D. Lipid larceny: channelizing host lipids for establishing successful pathogenesis by bacteria. Virulence 2021; 12:195-216. [PMID: 33356849 PMCID: PMC7808437 DOI: 10.1080/21505594.2020.1869441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/03/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
Lipids are complex organic compounds made up of carbon, oxygen, and hydrogen. These play a diverse and intricate role in cellular processes like membrane trafficking, protein sorting, signal transduction, and bacterial infections. Both Gram-positive bacteria (Staphylococcus sp., Listeria monocytogenes, etc.) and Gram-negative bacteria (Chlamydia sp., Salmonella sp., E. coli, etc.) can hijack the various host-lipids and utilize them structurally as well as functionally to mount a successful infection. The pathogens can deploy with various arsenals to exploit host membrane lipids and lipid-associated receptors as an attachment for toxins' landing or facilitate their entry into the host cellular niche. Bacterial species like Mycobacterium sp. can also modulate the host lipid metabolism to fetch its carbon source from the host. The sequential conversion of host membrane lipids into arachidonic acid and prostaglandin E2 due to increased activity of cPLA-2 and COX-2 upon bacterial infection creates immunosuppressive conditions and facilitates the intracellular growth and proliferation of bacteria. However, lipids' more debatable role is that they can also be a blessing in disguise. Certain host-lipids, especially sphingolipids, have been shown to play a crucial antibacterial role and help the host in combating the infections. This review shed light on the detailed role of host lipids in bacterial infections and the current understanding of the lipid in therapeutics. We have also discussed potential prospects and the need of the hour to help us cope in this race against deadly pathogens and their rapidly evolving stealthy virulence strategies.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Atish Roy Chowdhury
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Debapriya Mukherjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
18
|
Gkartziou F, Giormezis N, Spiliopoulou I, Antimisiaris SG. Nanobiosystems for Antimicrobial Drug-Resistant Infections. NANOMATERIALS 2021; 11:nano11051075. [PMID: 33922004 PMCID: PMC8143556 DOI: 10.3390/nano11051075] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023]
Abstract
The worldwide increased bacterial resistance toward antimicrobial therapeutics has led investigators to search for new therapeutic options. Some of the options currently exploited to treat drug-resistant infections include drug-associated nanosystems. Additionally, the use of bacteriophages alone or in combination with drugs has been recently revisited; some studies utilizing nanosystems for bacteriophage delivery have been already reported. In this review article, we focus on nine pathogens that are the leading antimicrobial drug-resistant organisms, causing difficult-to-treat infections. For each organism, the bacteriophages and nanosystems developed or used in the last 20 years as potential treatments of pathogen-related infections are discussed. Summarizing conclusions and future perspectives related with the potential of such nano-antimicrobials for the treatment of persistent infections are finally highlighted.
Collapse
Affiliation(s)
- Foteini Gkartziou
- Institute of Chemical Engineering, FORTH/ICES, Platani, 26504 Patras, Greece;
| | - Nikolaos Giormezis
- National Reference Centre for Staphylococci, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Iris Spiliopoulou
- National Reference Centre for Staphylococci, School of Medicine, University of Patras, 26504 Patras, Greece;
- Department of Microbiology, School of Medicine, University of Patras, 26504 Patras, Greece
- Correspondence: (I.S.); (S.G.A.)
| | - Sophia G. Antimisiaris
- Institute of Chemical Engineering, FORTH/ICES, Platani, 26504 Patras, Greece;
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
- Correspondence: (I.S.); (S.G.A.)
| |
Collapse
|
19
|
Sachdeva K, Sundaramurthy V. The Interplay of Host Lysosomes and Intracellular Pathogens. Front Cell Infect Microbiol 2020; 10:595502. [PMID: 33330138 PMCID: PMC7714789 DOI: 10.3389/fcimb.2020.595502] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
Lysosomes are an integral part of the intracellular defense system against microbes. Lysosomal homeostasis in the host is adaptable and responds to conditions such as infection or nutritional deprivation. Pathogens such as Mycobacterium tuberculosis (Mtb) and Salmonella avoid lysosomal targeting by actively manipulating the host vesicular trafficking and reside in a vacuole altered from the default lysosomal trafficking. In this review, the mechanisms by which the respective pathogen containing vacuoles (PCVs) intersect with lysosomal trafficking pathways and maintain their distinctness are discussed. Despite such active inhibition of lysosomal targeting, emerging literature shows that different pathogens or pathogen derived products exhibit a global influence on the host lysosomal system. Pathogen mediated lysosomal enrichment promotes the trafficking of a sub-set of pathogens to lysosomes, indicating heterogeneity in the host-pathogen encounter. This review integrates recent advancements on the global lysosomal alterations upon infections and the host protective role of the lysosomes against these pathogens. The review also briefly discusses the heterogeneity in the lysosomal targeting of these pathogens and the possible mechanisms and consequences.
Collapse
|
20
|
Wang S, Jagadesan P, Sun H, Hu R, Li Z, Huang Y, Liu L, Wang S, Younus M, Schanze KS. Fluorescence Imaging of Mammalian Cells with Cationic Conjugated Polyelectrolytes. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shanshan Wang
- Department of Chemistry University of Florida Gainesville Florida 32611-7200 USA
| | - Pradeepkumar Jagadesan
- Department of Chemistry University of Texas at San Antonio One UTSA San Antonio TX, 78249 USA
| | - Han Sun
- Department of Chemistry University of Texas at San Antonio One UTSA San Antonio TX, 78249 USA
| | - Rong Hu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhiliang Li
- Department of Chemistry University of Florida Gainesville Florida 32611-7200 USA
| | - Yun Huang
- Department of Chemistry University of Florida Gainesville Florida 32611-7200 USA
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Muhammad Younus
- Department of Chemistry University of Texas at San Antonio One UTSA San Antonio TX, 78249 USA
| | - Kirk S. Schanze
- Department of Chemistry University of Florida Gainesville Florida 32611-7200 USA
- Department of Chemistry University of Texas at San Antonio One UTSA San Antonio TX, 78249 USA
| |
Collapse
|
21
|
Zhang Z, Lu Y, Xu W, Sui L, Du Q, Wang Y, Zhao Y, Li Q. Influence of genetic diversity of seventeen Beauveria bassiana isolates from different hosts on virulence by comparative genomics. BMC Genomics 2020; 21:451. [PMID: 32605539 PMCID: PMC7329388 DOI: 10.1186/s12864-020-06791-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 05/20/2020] [Indexed: 12/17/2022] Open
Abstract
Background Beauveria bassiana (B. bassiana) is a famous entomopathogenic fungus that could parasitize on hundreds of insect species, which are being used as an environmentally friendly mycoinsecticide. Nevertheless, the possible effect of genetic diversity of these B. bassiana isolates from different hosts on virulence has not been explored before. In order to explore that issue, we compared the genome sequences among seventeen B. bassiana isolates from 17 different insects using whole genome re-sequencing, with B. bassiana strain ARSEF 2860 as the reference genome. Results There were a total of 10,098 missense mutated genes, 720 positively selected genes were identified in 17 strains of B. bassiana. Among these, two genes with high frequency mutations encode the toxin-producing non-ribosomal peptide synthase (NRPS) protein. Seven genes undergoing positive selection were enriched in the two-component signaling pathway that is known to regulate the fungal toxicity. In addition, the domain changes of three positively selected genes are also directly related to the virulence plasticity. Besides, the functional categorization of mutated genes showed that most of them involved in the biological functions of toxic proteins involved in. Conclusions Based on our data, our results indicate that several mutated genes and positively selected genes may underpin virulence of B. bassiana towards hosts during infection process, which provide an insight into the potential effects of natural variation on the virulence of B. bassiana, which will be useful in screening out potential virulence factors in B. bassiana.
Collapse
Affiliation(s)
- Zhengkun Zhang
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture, Changchun, 130033, Jilin Province, P. R. China
| | - Yang Lu
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture, Changchun, 130033, Jilin Province, P. R. China
| | - Wenjing Xu
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture, Changchun, 130033, Jilin Province, P. R. China
| | - Li Sui
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture, Changchun, 130033, Jilin Province, P. R. China
| | - Qian Du
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture, Changchun, 130033, Jilin Province, P. R. China
| | - Yangzhou Wang
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture, Changchun, 130033, Jilin Province, P. R. China
| | - Yu Zhao
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture, Changchun, 130033, Jilin Province, P. R. China
| | - Qiyun Li
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture, Changchun, 130033, Jilin Province, P. R. China.
| |
Collapse
|
22
|
The Serine Protease Autotransporters TagB, TagC, and Sha from Extraintestinal Pathogenic Escherichia coli Are Internalized by Human Bladder Epithelial Cells and Cause Actin Cytoskeletal Disruption. Int J Mol Sci 2020; 21:ijms21093047. [PMID: 32357479 PMCID: PMC7246781 DOI: 10.3390/ijms21093047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/10/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022] Open
Abstract
TagB, TagC (tandem autotransporter genes B and C), and Sha (Serine-protease hemagglutinin autotransporter) are recently described members of the SPATE (serine protease autotransporters of Enterobacteriaceae) family. These SPATEs can cause cytopathic effects on bladder cells and contribute to urinary tract infection in a mouse model. Bladder epithelial cells form an important barrier in the urinary tract. Some SPATEs produced by pathogenic E. coli are known to breach the bladder epithelium. The capacity of these newly described SPATEs to alter bladder epithelial cells and the role of the serine protease active site were investigated. All three SPATE proteins were internalized by bladder epithelial cells and altered the distribution of actin cytoskeleton. Sha and TagC were also shown to degrade mucin and gelatin respectively. Inactivation of the serine catalytic site in each of these SPATEs did not affect secretion of the SPATEs from bacterial cells, but abrogated entry into epithelial cells, cytotoxicity, and proteolytic activity. Thus, our results show that the serine catalytic triad of these proteins is required for internalization in host cells, actin disruption, and degradation of host substrates such as mucin and gelatin.
Collapse
|
23
|
Lee WY. "Hairiness" is a Facsimile of Reorganized Cytoskeletons: A Cytopathic Effect of Coxiella burnetii. Yonsei Med J 2019; 60:890-897. [PMID: 31538423 PMCID: PMC6753337 DOI: 10.3349/ymj.2019.60.10.890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/14/2023] Open
Abstract
In 1993, I reported that Coxiella burnetii transforms human B cells into hairy cells (cbHCs), the first hairy cell reported outside of hairy cell leukemia (HCL). Over last few decades, advances in molecular biology have provided evidence supporting that C. burnetii induces hairiness and inhibits the apoptosis of host cells. The present review summarizes new information in support of cbHC. C. burnetii was shown to induce reorganization of the cytoskeleton and to inhibit apoptosis in host cells. Peritoneal B1a cells were found to be permissive for virulent C. burnetii Nine Mile phase I (NMI) strains in mice. C. burnetii severely impaired E-cad expression in circulating cells of Q fever patients. B-cell non-Hodgkin lymphoma was linked to C. burnetii. Mutation of BRAF V600E was pronounced in HCL, but "hairiness" was not linked to the mutation. Risk factors shared among coxiellosis and HCL in humans and animals were reported in patients with Q-fever. Accordingly, I propose that C. burnetii induces reorganization of the cytoskeleton and inhibits apoptosis as cytopathic effects that are not target cell specific. The observed hairiness in cbHC appears to be a fixed image of dynamic nature, and hairy cells in HCL are distinct among lymphoid cells in circulation. As the cytoskeleton plays key roles in maintaining cell structural integrity in health and disease, the pathophysiology of similar cytopathic effects should be addressed in other diseases, such as myopathies, B-cell dyscrasias, and autoimmune syndromes.
Collapse
Affiliation(s)
- Won Young Lee
- Emeritus Professor, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
24
|
Han B, Ma Y, Tu V, Tomita T, Mayoral J, Williams T, Horta A, Huang H, Weiss LM. Microsporidia Interact with Host Cell Mitochondria via Voltage-Dependent Anion Channels Using Sporoplasm Surface Protein 1. mBio 2019; 10:e01944-19. [PMID: 31431557 PMCID: PMC6703431 DOI: 10.1128/mbio.01944-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023] Open
Abstract
Microsporidia are opportunistic intracellular pathogens that can infect a wide variety of hosts ranging from invertebrates to vertebrates. During invasion, the microsporidian polar tube pushes into the host cell, creating a protective microenvironment, the invasion synapse, into which the sporoplasm extrudes. Within the synapse, the sporoplasm then invades the host cell, forming a parasitophorous vacuole (PV). Using a proteomic approach, we identified Encephalitozoon hellem sporoplasm surface protein 1 (EhSSP1), which localized to the surface of extruded sporoplasms. EhSSP1 was also found to interact with polar tube protein 4 (PTP4). Recombinant EhSSP1 (rEhSSP1) bound to human foreskin fibroblasts, and both anti-EhSSP1 and rEhSSP1 caused decreased levels of host cell invasion, suggesting that interaction of SSP1 with the host cell was involved in invasion. Coimmunoprecipitation (Co-IP) followed by proteomic analysis identified host cell voltage-dependent anion channels (VDACs) as EhSSP1 interacting proteins. Yeast two-hybrid assays demonstrated that EhSSP1 was able to interact with VDAC1, VDAC2, and VDAC3. rEhSSP1 colocalized with the host mitochondria which were associated with microsporidian PVs in infected cells. Transmission electron microscopy revealed that the outer mitochondrial membrane interacted with meronts and the PV membrane, mitochondria clustered around meronts, and the VDACs were concentrated at the interface of mitochondria and parasite. Knockdown of VDAC1, VDAC2, and VDAC3 in host cells resulted in significant decreases in the number and size of the PVs and a decrease in mitochondrial PV association. The interaction of EhSSP1 with VDAC probably plays an important part in energy acquisition by microsporidia via its role in the association of mitochondria with the PV.IMPORTANCE Microsporidia are important opportunistic human pathogens in immune-suppressed individuals, such as those with HIV/AIDS and recipients of organ transplants. The sporoplasm is critical for establishing microsporidian infection. Despite the biological importance of this structure for transmission, there is limited information about its structure and composition that could be targeted for therapeutic intervention. Here, we identified a novel E. hellem sporoplasm surface protein, EhSSP1, and demonstrated that it can bind to host cell mitochondria via host VDAC. Our data strongly suggest that the interaction between SSP1 and VDAC is important for the association of mitochondria with the parasitophorous vacuole during microsporidian infection. In addition, binding of SSP1 to the host cell is associated with the final steps of invasion in the invasion synapse.
Collapse
Affiliation(s)
- Bing Han
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
| | - Yanfen Ma
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
| | - Vincent Tu
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
| | - Tadakimi Tomita
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
| | - Joshua Mayoral
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
| | - Tere Williams
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
| | - Aline Horta
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
| | - Huan Huang
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, USA
| |
Collapse
|
25
|
Sharma V, Mobeen F, Prakash T. Exploration of Survival Traits, Probiotic Determinants, Host Interactions, and Functional Evolution of Bifidobacterial Genomes Using Comparative Genomics. Genes (Basel) 2018; 9:genes9100477. [PMID: 30275399 PMCID: PMC6210967 DOI: 10.3390/genes9100477] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 09/10/2018] [Indexed: 12/15/2022] Open
Abstract
Members of the genus Bifidobacterium are found in a wide-range of habitats and are used as important probiotics. Thus, exploration of their functional traits at the genus level is of utmost significance. Besides, this genus has been demonstrated to exhibit an open pan-genome based on the limited number of genomes used in earlier studies. However, the number of genomes is a crucial factor for pan-genome calculations. We have analyzed the pan-genome of a comparatively larger dataset of 215 members of the genus Bifidobacterium belonging to different habitats, which revealed an open nature. The pan-genome for the 56 probiotic and human-gut strains of this genus, was also found to be open. The accessory- and unique-components of this pan-genome were found to be under the operation of Darwinian selection pressure. Further, their genome-size variation was predicted to be attributed to the abundance of certain functions carried by genomic islands, which are facilitated by insertion elements and prophages. In silico functional and host-microbe interaction analyses of their core-genome revealed significant genomic factors for niche-specific adaptations and probiotic traits. The core survival traits include stress tolerance, biofilm formation, nutrient transport, and Sec-secretion system, whereas the core probiotic traits are imparted by the factors involved in carbohydrate- and protein-metabolism and host-immunomodulations.
Collapse
Affiliation(s)
- Vikas Sharma
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175005, India.
| | - Fauzul Mobeen
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175005, India.
| | - Tulika Prakash
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175005, India.
| |
Collapse
|
26
|
Sellegounder D, Gupta YR, Murugananthkumar R, Senthilkumaran B. Enterotoxic effects of Aeromonas hydrophila infection in the catfish, Clarias gariepinus: Biochemical, histological and proteome analyses. Vet Immunol Immunopathol 2018; 204:1-10. [PMID: 30596375 DOI: 10.1016/j.vetimm.2018.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 12/26/2022]
Abstract
Aeromonas hydrophila is considered as a potential risk to fish populations in the aquaculture industry and could also pose a serious threat to humans. In this study, the impact of A. hydrophila infection in the air-breathing catfish, Clarias gariepinus was analyzed using a multidimensional approach. Aeromonas hydrophila (1 × 107 cells) was injected into C. gariepinus intraperitoneally and maintained at an ambient temperature and photoperiod with periodical monitoring for morphological changes. After 7 days post-infection, tissue samples of the gills, liver, intestine, and kidney were subjected to biochemical, histological, transmission electron microscope (TEM) and proteomic analyses. Observed results indicated distinct morphological changes with the significant increase of ROS and oxidative stress enzymes (CAT and SOD) in tissues of the infected group when compared to the control. Histological analysis in infected fish revealed the presence of pyknotic nuclei, early stages of necrosis in the liver, degradation of renal tubules and widened sinusoidal space in kidneys along with enlargement of the epithelial region in the intestine. TEM analysis of the infected intestine showed degeneration of villi and the presence of multinucleated erythrocytes. Two-dimensional proteomic and mass spectrometry analysis of intestine and liver displayed up-regulation of several immune regulatory proteins such as proteasome subunit 3 protein, prolactin and intermediated filament protein; and down-regulation of proteins including actin, serine/arginine-rich splicing factor and carbonic anhydrase. Taken together, these results suggest that the identified proteins may have a role in immune regulation against A. hydrophila infection in C. gariepinus and support further investigations of host-pathogen interactions.
Collapse
Affiliation(s)
- Durai Sellegounder
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Yugantak Raj Gupta
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Raju Murugananthkumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India.
| |
Collapse
|
27
|
Stradal TEB, Schelhaas M. Actin dynamics in host-pathogen interaction. FEBS Lett 2018; 592:3658-3669. [PMID: 29935019 PMCID: PMC6282728 DOI: 10.1002/1873-3468.13173] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023]
Abstract
The actin cytoskeleton and Rho GTPase signaling to actin assembly are prime targets of bacterial and viral pathogens, simply because actin is involved in all motile and membrane remodeling processes, such as phagocytosis, macropinocytosis, endocytosis, exocytosis, vesicular trafficking and membrane fusion events, motility, and last but not least, autophagy. This article aims at providing an overview of the most prominent pathogen‐induced or ‐hijacked actin structures, and an outlook on how future research might uncover additional, equally sophisticated interactions.
Collapse
Affiliation(s)
- Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Mario Schelhaas
- Institute of Cellular Virology, ZMBE, University of Münster, Germany
| |
Collapse
|
28
|
Prashar A, Ortiz ME, Lucarelli S, Barker E, Tabatabeiyazdi Z, Shamoun F, Raju D, Antonescu C, Guyard C, Terebiznik MR. Small Rho GTPases and the Effector VipA Mediate the Invasion of Epithelial Cells by Filamentous Legionella pneumophila. Front Cell Infect Microbiol 2018; 8:133. [PMID: 29774203 PMCID: PMC5943596 DOI: 10.3389/fcimb.2018.00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/17/2018] [Indexed: 12/13/2022] Open
Abstract
Legionella pneumophila (Lp) exhibits different morphologies with varying degrees of virulence. Despite their detection in environmental sources of outbreaks and in respiratory tract secretions and lung autopsies from patients, the filamentous morphotype of Lp remains poorly studied. We previously demonstrated that filamentous Lp invades lung epithelial cells (LECs) and replicates intracellularly in a Legionella containing vacuole. Filamentous Lp activates β1integrin and E-cadherin receptors at the surface of LECs leading to the formation of actin-rich cell membrane structures we termed hooks and membrane wraps. These structures entrap segments of an Lp filament on host cell surface and mediate bacterial internalization. Here we investigated the molecular mechanisms responsible for the actin rearrangements needed for the formation and elongation of these membrane wraps and bacterial internalization. We combined genetic and pharmacological approaches to assess the contribution of signaling downstream of β1integrin and E-cadherin receptors, and Lp Dot/Icm secretion system- translocated effectors toward the invasion process. Our studies demonstrate a multi-stage mechanism of LEC invasion by filamentous Lp. Bacterial attachment to host cells depends on signaling downstream of β1integrin and E-cadherin activation, leading to Rho GTPases-dependent activation of cellular actin nucleating proteins, Arp2/3 and mDia. This mediates the formation of primordial membrane wraps that entrap the filamentous bacteria on the cell surface. Following this, in a second phase of the invasion process the Dot/Icm translocated effector VipA mediates rapid membrane wrap elongation, leading to the engulfment of the filamentous bacteria by the LECs. Our findings provide the first description of Rho GTPases and a Dot/Icm effector VipA regulating the actin dynamics needed for the invasion of epithelial cells by Lp.
Collapse
Affiliation(s)
- Akriti Prashar
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - María Eugenia Ortiz
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada
| | - Stefanie Lucarelli
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Elizabeth Barker
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Zohreh Tabatabeiyazdi
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Feras Shamoun
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada
| | - Deepa Raju
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada
| | - Costin Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Cyril Guyard
- Bioaster, Lyon, France.,Molecular Microbiology, Public Health Ontario, Toronto, ON, Canada
| | - Mauricio R Terebiznik
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Pang H, Qiu M, Zhao J, Hoare R, Monaghan SJ, Song D, Chang Y, Jian J. Construction of a Vibrio alginolyticus hopPmaJ (hop) mutant and evaluation of its potential as a live attenuated vaccine in orange-spotted grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2018; 76:93-100. [PMID: 29427720 DOI: 10.1016/j.fsi.2018.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
Vibrio alginolyticus, a bacterial pathogen in fish and humans, expresses a type III secretion system (T3SS) that is critical for pathogen virulence and disease development. However, little is known about the associated effectors (T3SEs) and their physiological role. In this study, the T3SE gene hopPmaJ (hop) was cloned from V. alginolyticus wild-type strain HY9901 and the mutant strain HY9901Δhop was constructed by the in-frame deletion method. The results showed that the deduced amino acid sequence of V. alginolyticus HopPmaJ shared 78-98% homology with other Vibrio spp. In addition, the HY9901Δhop mutant showed an attenuated swarming phenotype and a 2600-fold decrease in the virulence to grouper. However, the HY9901Δhop mutant showed no difference in morphology, growth, biofilm formation and ECPase activity. Finally, grouper vaccinated via intraperitoneal (IP) injection with HY9901Δhop induced a high antibody titer with a relative percent survival (RPS) value of 84% after challenging with the wild-type HY9901. Real-time PCR assays showed that vaccination with HY9901Δhop enhanced the expression of immune-related genes, including MHC-Iα, MHC-IIα, IgM, and IL-1β after vaccination, indicating that it is able to induce humoral and cell-mediated immune response in grouper. These results demonstrate that the HY9901Δhop mutant could be used as an effective live vaccine to combat V. alginolyticus in grouper.
Collapse
Affiliation(s)
- Huanying Pang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524025, China
| | - Mingsheng Qiu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Jingmin Zhao
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Rowena Hoare
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Sean J Monaghan
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Dawei Song
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524025, China
| | - Yunsheng Chang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524025, China
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524025, China.
| |
Collapse
|
30
|
Cortactin: Cell Functions of A Multifaceted Actin-Binding Protein. Trends Cell Biol 2018; 28:79-98. [DOI: 10.1016/j.tcb.2017.10.009] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 12/30/2022]
|
31
|
Zhang Y, Li J, Li B, Wang J, Liu CH. Mycobacterium tuberculosisMce3C promotes mycobacteria entry into macrophages through activation of β2 integrin-mediated signalling pathway. Cell Microbiol 2017; 20. [DOI: 10.1111/cmi.12800] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/11/2017] [Accepted: 10/23/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Yong Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
- Savaid Medical School; University of Chinese Academy of Sciences; Beijing China
| | - Jie Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
| | - Bingxi Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
| | - Jing Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
- Savaid Medical School; University of Chinese Academy of Sciences; Beijing China
| |
Collapse
|
32
|
Kelly FD, Wei BM, Cygan AM, Parker ML, Boulanger MJ, Boothroyd JC. Toxoplasma gondii MAF1b Binds the Host Cell MIB Complex To Mediate Mitochondrial Association. mSphere 2017; 2:e00183-17. [PMID: 28567444 PMCID: PMC5444011 DOI: 10.1128/msphere.00183-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 04/25/2017] [Indexed: 01/08/2023] Open
Abstract
Many diverse intracellular pathogens, such as Legionella pneumophila, Chlamydia psittaci, Encephalitozoon sp., and Toxoplasma gondii, manipulate and relocate host cell organelles, including mitochondria. Toxoplasma tachyzoites use a secreted protein, mitochondrial association factor 1b (MAF1b), to drive the association between the host mitochondria and the membrane of the parasitophorous vacuole, in which the parasites grow. The identity of the host partner in this interaction, however, has not previously been identified. By exogenously expressing tagged MAF1b in mouse embryonic fibroblasts, we were able to isolate host cell proteins that specifically interact with MAF1b. We then verified these interactions in the MAF1b-expressing fibroblasts, as well as in the context of parasite infection in human fibroblasts and HeLa cells. The results show that a host cell mitochondrial complex, the mitochondrial intermembrane space bridging (MIB) complex, specifically interacts with MAF1b. We further demonstrate that a version of MAF1b that is deficient in host-mitochondrial association does not efficiently coprecipitate the MIB complex. Validation of the importance of the MAF1b-MIB interaction came from showing that knockdown of two MIB complex components, MIC60 and SAM50, substantially reduces mitochondrial association with the parasitophorous vacuole membrane. This interaction between a secreted membrane-integral parasite protein and a membrane-bound complex of a host organelle represents the first instance of organelle relocalization in which both the host and pathogen molecules are known and provides the foundation for more detailed biochemical studies. IMPORTANCE Parasites interact intimately with their hosts, and the interactions shape both parties. The common human parasite Toxoplasma gondii replicates exclusively in a vacuole in a host cell and alters its host cell's environment through secreted proteins. One of these secreted proteins, MAF1b, acts to concentrate mitochondria around the parasite's vacuole, and this relocalization alters the host immune response. Many other intracellular pathogens also recruit host mitochondria, but the identities of the partners that mediate this interaction have not previously been described in any infection. Here, we show that Toxoplasma MAF1b binds to the multifunctional MIB protein complex on the host mitochondria. Reducing the levels of the proteins in this mitochondrial complex reduces the close association of host cell mitochondria and the parasite's vacuole. This work provides new insight into a key host-pathogen interaction and identifies possible targets for future therapeutic intervention as well as a more molecular understanding of important biology.
Collapse
Affiliation(s)
- Felice D. Kelly
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Brian M. Wei
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Alicja M. Cygan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Michelle L. Parker
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Martin J. Boulanger
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - John C. Boothroyd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
33
|
Mittal R, Lisi CV, Kumari H, Grati M, Blackwelder P, Yan D, Jain C, Mathee K, Weckwerth PH, Liu XZ. Otopathogenic Pseudomonas aeruginosa Enters and Survives Inside Macrophages. Front Microbiol 2016; 7:1828. [PMID: 27917157 PMCID: PMC5114284 DOI: 10.3389/fmicb.2016.01828] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022] Open
Abstract
Otitis media (OM) is a broad term describing a group of infectious and inflammatory disorders of the middle ear. Despite antibiotic therapy, acute OM can progress to chronic suppurative otitis media (CSOM) characterized by ear drum perforation and purulent discharge. Pseudomonas aeruginosa is the most common pathogen associated with CSOM. Although, macrophages play an important role in innate immune responses but their role in the pathogenesis of P. aeruginosa-induced CSOM is not known. The objective of this study is to examine the interaction of P. aeruginosa with primary macrophages. We observed that P. aeruginosa enters and multiplies inside human and mouse primary macrophages. This bacterial entry in macrophages requires both microtubule and actin dependent processes. Transmission electron microscopy demonstrated that P. aeruginosa was present in membrane bound vesicles inside macrophages. Interestingly, deletion of oprF expression in P. aeruginosa abrogates its ability to survive inside macrophages. Our results suggest that otopathogenic P. aeruginosa entry and survival inside macrophages is OprF-dependent. The survival of bacteria inside macrophages will lead to evasion of killing and this lack of pathogen clearance by phagocytes contributes to the persistence of infection in CSOM. Understanding host-pathogen interaction will provide novel avenues to design effective treatment modalities against OM.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Christopher V Lisi
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Hansi Kumari
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami FL, USA
| | - M'hamed Grati
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Patricia Blackwelder
- Chemistry Department, Center for Advanced Microscopy, University of Miami, Coral GablesFL, USA; Rosenstiel School of Marine and Atmospheric Science, University of Miami, Key BiscayneFL, USA
| | - Denise Yan
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Chaitanya Jain
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, MiamiFL, USA; Global Health Consortium and Biomolecular Science Institute, Florida International University, MiamiFL, USA
| | - Paulo H Weckwerth
- Health Sciences Department, University of Sagrado Coração Bauru, Brazil
| | - Xue Z Liu
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| |
Collapse
|
34
|
Kang WT, Vellasamy KM, Vadivelu J. Eukaryotic pathways targeted by the type III secretion system effector protein, BipC, involved in the intracellular lifecycle of Burkholderia pseudomallei. Sci Rep 2016; 6:33528. [PMID: 27634329 PMCID: PMC5025855 DOI: 10.1038/srep33528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/24/2016] [Indexed: 12/15/2022] Open
Abstract
Burkholderia pseudomallei, the etiological agent for melioidosis, is known to secrete a type III secretion system (TTSS) protein into the host’s internal milieu. One of the TTSS effector protein, BipC, has been shown to play an important role in the B. pseudomallei pathogenesis. To identify the host response profile that was directly or indirectly regulated by this protein, genome-wide transcriptome approach was used to examine the gene expression profiles of infected mice. The transcriptome analysis of the liver and spleen revealed that a total of approximately 1,000 genes were transcriptionally affected by BipC. Genes involved in bacterial invasion, regulation of actin cytoskeleton, and MAPK signalling pathway were over-expressed and may be specifically regulated by BipC in vivo. These results suggest that BipC mainly targets pathways related to the cellular processes which could modulate the cellular trafficking processes. The host transcriptional response exhibited remarkable differences with and without the presence of the BipC protein. Overall, the detailed picture of this study provides new insights that BipC may have evolved to efficiently manipulate host-cell pathways which is crucial in the intracellular lifecycle of B. pseudomallei.
Collapse
Affiliation(s)
- Wen-Tyng Kang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kumutha Malar Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
35
|
Andritschke D, Dilling S, Emmenlauer M, Welz T, Schmich F, Misselwitz B, Rämö P, Rottner K, Kerkhoff E, Wada T, Penninger JM, Beerenwinkel N, Horvath P, Dehio C, Hardt WD. A Genome-Wide siRNA Screen Implicates Spire1/2 in SipA-Driven Salmonella Typhimurium Host Cell Invasion. PLoS One 2016; 11:e0161965. [PMID: 27627128 PMCID: PMC5023170 DOI: 10.1371/journal.pone.0161965] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/15/2016] [Indexed: 12/20/2022] Open
Abstract
Salmonella Typhimurium (S. Tm) is a leading cause of diarrhea. The disease is triggered by pathogen invasion into the gut epithelium. Invasion is attributed to the SPI-1 type 3 secretion system (T1). T1 injects effector proteins into epithelial cells and thereby elicits rearrangements of the host cellular actin cytoskeleton and pathogen invasion. The T1 effector proteins SopE, SopB, SopE2 and SipA are contributing to this. However, the host cell factors contributing to invasion are still not completely understood. To address this question comprehensively, we used Hela tissue culture cells, a genome-wide siRNA library, a modified gentamicin protection assay and S. TmSipA, a sopBsopE2sopE mutant which strongly relies on the T1 effector protein SipA to invade host cells. We found that S. TmSipA invasion does not elicit membrane ruffles, nor promote the entry of non-invasive bacteria "in trans". However, SipA-mediated infection involved the SPIRE family of actin nucleators, besides well-established host cell factors (WRC, ARP2/3, RhoGTPases, COPI). Stage-specific follow-up assays and knockout fibroblasts indicated that SPIRE1 and SPIRE2 are involved in different steps of the S. Tm infection process. Whereas SPIRE1 interferes with bacterial binding, SPIRE2 influences intracellular replication of S. Tm. Hence, these two proteins might fulfill non-redundant functions in the pathogen-host interaction. The lack of co-localization hints to a short, direct interaction between S. Tm and SPIRE proteins or to an indirect effect.
Collapse
Affiliation(s)
- Daniel Andritschke
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, CH-8093, Zurich, Switzerland
| | - Sabrina Dilling
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, CH-8093, Zurich, Switzerland
| | | | - Tobias Welz
- Department of Neurology, University of Regensburg, DE- 93040, Regensburg, Germany
| | - Fabian Schmich
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, CH-4058, Basel, Switzerland
- SIB Swiss Institute for Bioinformatics, 4058, Basel, Switzerland
| | - Benjamin Misselwitz
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, CH-8093, Zurich, Switzerland
- Division of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, CH-8091, Zurich, Switzerland
| | - Pauli Rämö
- Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | - Klemens Rottner
- Zoological Institute, Technische Universität Braunschweig, D-38106, Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, D-38124, Braunschweig, Germany
| | - Eugen Kerkhoff
- Department of Neurology, University of Regensburg, DE- 93040, Regensburg, Germany
| | - Teiji Wada
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), A-1030, Vienna, Austria
| | - Josef M. Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), A-1030, Vienna, Austria
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, CH-4058, Basel, Switzerland
- SIB Swiss Institute for Bioinformatics, 4058, Basel, Switzerland
| | - Peter Horvath
- Light Microscopy Center, Eidgenössische Technische Hochschule Zurich, CH-8093, Zurich, Switzerland
| | - Christoph Dehio
- Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, CH-8093, Zurich, Switzerland
| |
Collapse
|
36
|
Steffen A, Stradal TEB, Rottner K. Signalling Pathways Controlling Cellular Actin Organization. Handb Exp Pharmacol 2016; 235:153-178. [PMID: 27757765 DOI: 10.1007/164_2016_35] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The actin cytoskeleton is essential for morphogenesis and virtually all types of cell shape changes. Reorganization is per definition driven by continuous disassembly and re-assembly of actin filaments, controlled by major, ubiquitously operating machines. These are specifically employed by the cell to tune its activities in accordance with respective environmental conditions or to satisfy specific needs.Here we sketch some fundamental signalling pathways established to contribute to the reorganization of specific actin structures at the plasma membrane. Rho-family GTPases are at the core of these pathways, and dissection of their precise contributions to actin reorganization in different cell types and tissues will thus continue to improve our understanding of these important signalling nodes. Furthermore, we will draw your attention to the emerging theme of actin reorganization on intracellular membranes, its functional relation to Rho-GTPase signalling, and its relevance for the exciting phenomenon autophagy.
Collapse
Affiliation(s)
- Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany.
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany.,Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| |
Collapse
|
37
|
Stradal TEB, Costa SCP. Type III Secreted Virulence Factors Manipulating Signaling to Actin Dynamics. Curr Top Microbiol Immunol 2016; 399:175-199. [PMID: 27744505 DOI: 10.1007/82_2016_35] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A key aspect of bacterial pathogenesis is the colonization and persistence within the host and, later on, its dissemination to new niches. During evolution, bacteria developed a myriad of virulence mechanisms to usurp the host's sophisticated defense mechanisms in order to establish their colonization niche. Elucidation of the highly dynamic and complex interactions between host and pathogens remains an important field of study. Here, we highlight the conserved manipulation of the actin cytoskeleton by some Gram-negative gastrointestinal pathogens, addressing the role of type III secreted bacterial GEFs at the different steps of pathogenesis. As a final topic, we review cytoskeleton dynamics induced by EPEC/EHEC strains for pedestal formation.
Collapse
Affiliation(s)
- Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Baunschweig, Germany.
| | - Sonia C P Costa
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Baunschweig, Germany
| |
Collapse
|
38
|
Musetti R, Pagliari L, Buxa SV, Degola F, De Marco F, Loschi A, Kogel KH, van Bel AJE. OHMS**: Phytoplasmas dictate changes in sieve-element ultrastructure to accommodate their requirements for nutrition, multiplication and translocation. PLANT SIGNALING & BEHAVIOR 2016; 11:e1138191. [PMID: 26795235 PMCID: PMC4883841 DOI: 10.1080/15592324.2016.1138191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 12/24/2015] [Accepted: 12/28/2015] [Indexed: 05/22/2023]
Abstract
Phytoplasmas are among the most recently discovered plant pathogenic microorganisms so, many traits of the interactions with host plants and insect vectors are still unclear and need to be investigated. At now, it is impossible to determine the precise sequences leading to the onset of the relationship with the plant host cell. It is still unclear how phytoplasmas, located in the phloem sieve elements, exploit host cell to draw nutrition for their metabolism, growth and multiplication. In this work, basing on microscopical observations, we give insight about the structural interactions established by phytoplasmas and the sieve element plasma membrane, cytoskeleton, sieve endoplasmic reticulum, speculating about a possible functional role.
Collapse
Affiliation(s)
- Rita Musetti
- Department of Agricultural and Environmental Sciences, University of Udine, Udine, Italy
| | - Laura Pagliari
- Department of Agricultural and Environmental Sciences, University of Udine, Udine, Italy
| | - Stefanie V. Buxa
- Department of Phytopathology and Applied Zoology, Justus Liebig University, Giessen, Germany
| | | | - Federica De Marco
- Department of Agricultural and Environmental Sciences, University of Udine, Udine, Italy
| | - Alberto Loschi
- Department of Agricultural and Environmental Sciences, University of Udine, Udine, Italy
| | - Karl-Heinz Kogel
- Department of Phytopathology and Applied Zoology, Justus Liebig University, Giessen, Germany
| | - Aart J. E. van Bel
- Department of Phytopathology and Applied Zoology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
39
|
Co-Transcriptomes of Initial Interactions In Vitro between Streptococcus Pneumoniae and Human Pleural Mesothelial Cells. PLoS One 2015; 10:e0142773. [PMID: 26566142 PMCID: PMC4643877 DOI: 10.1371/journal.pone.0142773] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/27/2015] [Indexed: 01/21/2023] Open
Abstract
Streptococcus pneumoniae (Spn) is a major causative organism of empyema, an inflammatory condition occurring in the pleural sac. In this study, we used human and Spn cDNA microarrays to characterize the transcriptional responses occurring during initial contact between Spn and a human pleural mesothelial cell line (PMC) in vitro. Using stringent filtering criteria, 42 and 23 Spn genes were up-and down-regulated respectively. In particular, genes encoding factors potentially involved in metabolic processes and Spn adherence to eukaryotic cells were up-regulated e.g. glnQ, glnA, aliA, psaB, lytB and nox. After Spn initial contact, 870 human genes were differentially regulated and the largest numbers of significant gene expression changes were found in canonical pathways for eukaryotic initiation factor 2 signaling (60 genes out of 171), oxidative phosphorylation (32/103), mitochondrial dysfunction (37/164), eIF4 and p70S6K signaling (28/142), mTOR signaling (27/182), NRF2-mediated oxidative stress response (20/177), epithelial adherens junction remodeling (11/66) and ubiquitination (22/254). The cellular response appeared to be directed towards host cell survival and defense. Spn did not activate NF-kB or phosphorylate p38 MAPK or induce cytokine production from PMC. Moreover, Spn infection of TNF-α pre-stimulated PMC inhibited production of IL-6 and IL-8 secretion by >50% (p<0.01). In summary, this descriptive study provides datasets and a platform for examining further the molecular mechanisms underlying the pathogenesis of empyema.
Collapse
|
40
|
Schweppe DK, Harding C, Chavez JD, Wu X, Ramage E, Singh PK, Manoil C, Bruce JE. Host-Microbe Protein Interactions during Bacterial Infection. ACTA ACUST UNITED AC 2015; 22:1521-1530. [PMID: 26548613 DOI: 10.1016/j.chembiol.2015.09.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/11/2015] [Accepted: 09/24/2015] [Indexed: 12/24/2022]
Abstract
Interspecies protein-protein interactions are essential mediators of infection. While bacterial proteins required for host cell invasion and infection can be identified through bacterial mutant library screens, information about host target proteins and interspecies complex structures has been more difficult to acquire. Using an unbiased chemical crosslinking/mass spectrometry approach, we identified interspecies protein-protein interactions in human lung epithelial cells infected with Acinetobacter baumannii. These efforts resulted in identification of 3,076 crosslinked peptide pairs and 46 interspecies protein-protein interactions. Most notably, the key A. baumannii virulence factor, OmpA, was identified as crosslinked to host proteins involved in desmosomes, specialized structures that mediate host cell-to-cell adhesion. Co-immunoprecipitation and transposon mutant experiments were used to verify these interactions and demonstrate relevance for host cell invasion and acute murine lung infection. These results shed new light on A. baumannii-host protein interactions and their structural features, and the presented approach is generally applicable to other systems.
Collapse
Affiliation(s)
- Devin K Schweppe
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Christopher Harding
- Departments of Medicine and Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Juan D Chavez
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Xia Wu
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Elizabeth Ramage
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Pradeep K Singh
- Departments of Medicine and Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Colin Manoil
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - James E Bruce
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Departments of Medicine and Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington School of Medicine, 850 Republican Street, Brotman Building, Room 154, Seattle, WA 98109, USA.
| |
Collapse
|
41
|
Chigwechokha PK, Tabata M, Shinyoshi S, Oishi K, Araki K, Komatsu M, Itakura T, Shiozaki K. Recombinant sialidase NanA (rNanA) cleaves α2-3 linked sialic acid of host cell surface N-linked glycoprotein to promote Edwardsiella tarda infection. FISH & SHELLFISH IMMUNOLOGY 2015; 47:34-45. [PMID: 26291491 DOI: 10.1016/j.fsi.2015.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 06/04/2023]
Abstract
Edwardsiella tarda is one of the major pathogenic bacteria affecting both marine and freshwater fish species. Sialidase NanA expressed endogenously in E. tarda is glycosidase removing sialic acids from glycoconjugates. Recently, the relationship of NanA sialidase activity to E. tarda infection has been reported, however, the mechanism with which sialidase NanA aids the pathogenicity of E. tarda remained unclear. Here, we comprehensively determined the biochemical properties of NanA towards various substrates in vitro to provide novel insights on the potential NanA target molecule at the host cell. GAKS cell pretreated with recombinant NanA showed increased susceptibility to E. tarda infection. Moreover, sialidase inhibitor treated E. tarda showed a significantly reduced ability to infect GAKS cells. These results indicate that NanA-induced desialylation of cell surface glycoconjugates is essential for the initial step of E. tarda infection. Among the natural substrates, NanA exhibited the highest activity towards 3-sialyllactose, α2-3 linked sialic acid carrying sialoglycoconjugates. Supporting this finding, intact GAKS cell membrane exposed to recombinant NanA showed changes of glycoconjugates only in α2-3 sialo-linked glycoproteins, but not in glycolipids and α2-6 sialo-linked glycoproteins. Lectin staining of cell surface glycoprotein provided further evidence that α2-3 sialo-linkage of the N-linked glycoproteins was the most plausible target of NanA sialidase. To confirm the significance of α2-3 sialo-linkage desialylation for E. tarda infection, HeLa cells which possessed lower amount of α2-3 sialo-linkage glycoprotein were used for infection experiment along with GAKS cells. As a result, infection of HeLa cells by E. tarda was significantly reduced when compared to GAKS cells. Furthermore, E. tarda infection was significantly inhibited by mannose pretreatment suggesting that the bacterium potentially recognizes and binds to mannose or mannose containing chains following desialylation. Together, these results suggest that E. tarda may employ endogenous NanA to desialylate α2-3 glycoproteins on host cells, thus revealing one of the potential binding molecules during infection.
Collapse
Affiliation(s)
- Petros Kingstone Chigwechokha
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan; Department of Fisheries, Mzuzu University, Mzuzu, Malawi
| | - Mutsumi Tabata
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | | | - Kazuki Oishi
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Kyosuke Araki
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan; Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Masaharu Komatsu
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan; Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Takao Itakura
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan; Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Kazuhiro Shiozaki
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan; Faculty of Fisheries, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
42
|
Memišević V, Zavaljevski N, Rajagopala SV, Kwon K, Pieper R, DeShazer D, Reifman J, Wallqvist A. Mining host-pathogen protein interactions to characterize Burkholderia mallei infectivity mechanisms. PLoS Comput Biol 2015; 11:e1004088. [PMID: 25738731 PMCID: PMC4349708 DOI: 10.1371/journal.pcbi.1004088] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/15/2014] [Indexed: 01/01/2023] Open
Abstract
Burkholderia pathogenicity relies on protein virulence factors to control and promote bacterial internalization, survival, and replication within eukaryotic host cells. We recently used yeast two-hybrid (Y2H) screening to identify a small set of novel Burkholderia proteins that were shown to attenuate disease progression in an aerosol infection animal model using the virulent Burkholderia mallei ATCC 23344 strain. Here, we performed an extended analysis of primarily nine B. mallei virulence factors and their interactions with human proteins to map out how the bacteria can influence and alter host processes and pathways. Specifically, we employed topological analyses to assess the connectivity patterns of targeted host proteins, identify modules of pathogen-interacting host proteins linked to processes promoting infectivity, and evaluate the effect of crosstalk among the identified host protein modules. Overall, our analysis showed that the targeted host proteins generally had a large number of interacting partners and interacted with other host proteins that were also targeted by B. mallei proteins. We also introduced a novel Host-Pathogen Interaction Alignment (HPIA) algorithm and used it to explore similarities between host-pathogen interactions of B. mallei, Yersinia pestis, and Salmonella enterica. We inferred putative roles of B. mallei proteins based on the roles of their aligned Y. pestis and S. enterica partners and showed that up to 73% of the predicted roles matched existing annotations. A key insight into Burkholderia pathogenicity derived from these analyses of Y2H host-pathogen interactions is the identification of eukaryotic-specific targeted cellular mechanisms, including the ubiquitination degradation system and the use of the focal adhesion pathway as a fulcrum for transmitting mechanical forces and regulatory signals. This provides the mechanisms to modulate and adapt the host-cell environment for the successful establishment of host infections and intracellular spread. Burkholderia species need to manipulate many host processes and pathways in order to establish a successful intracellular infection in eukaryotic host organisms. Burkholderia mallei uses secreted virulence factor proteins as a means to execute host-pathogen interactions and promote pathogenesis. While validated virulence factor proteins have been shown to attenuate infection in animal models, their actual roles in modifying and influencing host processes are not well understood. Here, we used host-pathogen protein-protein interactions derived from yeast two-hybrid screens to study nine known B. mallei virulence factors and map out potential virulence mechanisms. From the data, we derived both general and specific insights into Burkholderia host-pathogen infectivity pathways. We showed that B. mallei virulence factors tended to target multifunctional host proteins, proteins that interacted with each other, and host proteins with a large number of interacting partners. We also identified similarities between host-pathogen interactions of B. mallei, Yersinia pestis, and Salmonella enterica using a novel host-pathogen interactions alignment algorithm. Importantly, our data are compatible with a framework in which multiple B. mallei virulence factors broadly influence key host processes related to ubiquitin-mediated proteolysis and focal adhesion. This provides B. mallei the means to modulate and adapt the host-cell environment to advance infection.
Collapse
Affiliation(s)
- Vesna Memišević
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | - Nela Zavaljevski
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | | | - Keehwan Kwon
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Rembert Pieper
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - David DeShazer
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
- * E-mail:
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| |
Collapse
|
43
|
Buxa SV, Degola F, Polizzotto R, De Marco F, Loschi A, Kogel KH, di Toppi LS, van Bel AJE, Musetti R. Phytoplasma infection in tomato is associated with re-organization of plasma membrane, ER stacks, and actin filaments in sieve elements. FRONTIERS IN PLANT SCIENCE 2015; 6:650. [PMID: 26347766 PMCID: PMC4541602 DOI: 10.3389/fpls.2015.00650] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/05/2015] [Indexed: 05/22/2023]
Abstract
Phytoplasmas, biotrophic wall-less prokaryotes, only reside in sieve elements of their host plants. The essentials of the intimate interaction between phytoplasmas and their hosts are poorly understood, which calls for research on potential ultrastructural modifications. We investigated modifications of the sieve-element ultrastructure induced in tomato plants by 'Candidatus Phytoplasma solani,' the pathogen associated with the stolbur disease. Phytoplasma infection induces a drastic re-organization of sieve-element substructures including changes in plasma membrane surface and distortion of the sieve-element reticulum. Observations of healthy and stolbur-diseased plants provided evidence for the emergence of structural links between sieve-element plasma membrane and phytoplasmas. One-sided actin aggregates on the phytoplasma surface also inferred a connection between phytoplasma and sieve-element cytoskeleton. Actin filaments displaced from the sieve-element mictoplasm to the surface of the phytoplasmas in infected sieve elements. Western blot analysis revealed a decrease of actin and an increase of ER-resident chaperone luminal binding protein (BiP) in midribs of phytoplasma-infected plants. Collectively, the studies provided novel insights into ultrastructural responses of host sieve elements to phloem-restricted prokaryotes.
Collapse
Affiliation(s)
- Stefanie V. Buxa
- Department of Phytopathology and Applied Zoology, Justus Liebig UniversityGiessen, Germany
| | | | - Rachele Polizzotto
- Department of Agricultural and Environmental Sciences, University of UdineUdine, Italy
| | - Federica De Marco
- Department of Agricultural and Environmental Sciences, University of UdineUdine, Italy
| | - Alberto Loschi
- Department of Agricultural and Environmental Sciences, University of UdineUdine, Italy
| | - Karl-Heinz Kogel
- Department of Phytopathology and Applied Zoology, Justus Liebig UniversityGiessen, Germany
| | | | - Aart J. E. van Bel
- Department of Phytopathology and Applied Zoology, Justus Liebig UniversityGiessen, Germany
| | - Rita Musetti
- Department of Agricultural and Environmental Sciences, University of UdineUdine, Italy
- *Correspondence: Rita Musetti, Department of Agricultural and Environmental Sciences, University of Udine, Via delle Scienze, 206, I-33100 Udine, Italy,
| |
Collapse
|
44
|
Lv Q, Hao H, Bi L, Zheng Y, Zhou X, Jiang Y. Suilysin remodels the cytoskeletons of human brain microvascular endothelial cells by activating RhoA and Rac1 GTPase. Protein Cell 2014; 5:261-4. [PMID: 24639279 PMCID: PMC3978165 DOI: 10.1007/s13238-014-0037-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Qingyu Lv
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | | | | | | | | | | |
Collapse
|
45
|
Matsumura F, Yamakita Y, Starovoytov V, Yamashiro S. Fascin confers resistance to Listeria infection in dendritic cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:6156-64. [PMID: 24244012 DOI: 10.4049/jimmunol.1300498] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ag-presenting dendritic cells (DCs) must survive bacterial infection to present Ag information to naive T cells. The greater ability of DCs' host defense is evident from the report that DCs are more resistant to Listeria monocytogenes than macrophages. However, the molecular mechanism of this resistance is unclear. We found that Listeria replicate more slowly in wild-type DCs compared with fascin1 knockout DCs. This finding is significant because fascin1, an actin-bundling protein, is specifically and greatly induced upon maturation of dendritic cells, but not other blood cells, including macrophages and neutrophils. Infection by Listeria makes phagosomes more acidic in wild-type DCs than in fascin1 knockout DCs, suggesting that fascin1 facilitates phagolysosomal fusion for killing of phagocytosed Listeria. We further found that fascin1 binds to LC3, an autophagosome marker, both in vivo and in vitro. Listeria are associated with LC3 to a greater extent in wild-type DCs than in fascin1 knockout DCs, suggesting that fascin1 facilitates autophagy for eradication of cytoplasmic Listeria. Taken together, our results suggest that fascin1 plays critical roles in the survival of DCs during Listeria infection, allowing DCs to function in innate and adaptive immunity.
Collapse
Affiliation(s)
- Fumio Matsumura
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854
| | | | | | | |
Collapse
|
46
|
Memišević V, Zavaljevski N, Pieper R, Rajagopala SV, Kwon K, Townsend K, Yu C, Yu X, DeShazer D, Reifman J, Wallqvist A. Novel Burkholderia mallei virulence factors linked to specific host-pathogen protein interactions. Mol Cell Proteomics 2013; 12:3036-51. [PMID: 23800426 PMCID: PMC3820922 DOI: 10.1074/mcp.m113.029041] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/10/2013] [Indexed: 11/09/2022] Open
Abstract
Burkholderia mallei is an infectious intracellular pathogen whose virulence and resistance to antibiotics makes it a potential bioterrorism agent. Given its genetic origin as a commensal soil organism, it is equipped with an extensive and varied set of adapted mechanisms to cope with and modulate host-cell environments. One essential virulence mechanism constitutes the specialized secretion systems that are designed to penetrate host-cell membranes and insert pathogen proteins directly into the host cell's cytosol. However, the secretion systems' proteins and, in particular, their host targets are largely uncharacterized. Here, we used a combined in silico, in vitro, and in vivo approach to identify B. mallei proteins required for pathogenicity. We used bioinformatics tools, including orthology detection and ab initio predictions of secretion system proteins, as well as published experimental Burkholderia data to initially select a small number of proteins as putative virulence factors. We then used yeast two-hybrid assays against normalized whole human and whole murine proteome libraries to detect and identify interactions among each of these bacterial proteins and host proteins. Analysis of such interactions provided both verification of known virulence factors and identification of three new putative virulence proteins. We successfully created insertion mutants for each of these three proteins using the virulent B. mallei ATCC 23344 strain. We exposed BALB/c mice to mutant strains and the wild-type strain in an aerosol challenge model using lethal B. mallei doses. In each set of experiments, mice exposed to mutant strains survived for the 21-day duration of the experiment, whereas mice exposed to the wild-type strain rapidly died. Given their in vivo role in pathogenicity, and based on the yeast two-hybrid interaction data, these results point to the importance of these pathogen proteins in modulating host ubiquitination pathways, phagosomal escape, and actin-cytoskeleton rearrangement processes.
Collapse
Affiliation(s)
- Vesna Memišević
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | - Nela Zavaljevski
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | | | | | - Keehwan Kwon
- §J. Craig Venter Institute, Rockville, Maryland 20850
| | | | - Chenggang Yu
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | - Xueping Yu
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | - David DeShazer
- ¶Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702
| | - Jaques Reifman
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | - Anders Wallqvist
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| |
Collapse
|
47
|
Chisada SI, Shimizu K, Kamada H, Matsunaga N, Okino N, Ito M. Vibrios adhere to epithelial cells in the intestinal tract of red sea bream,Pagrus major,utilizing GM4 as an attachment site. FEMS Microbiol Lett 2013; 341:18-26. [DOI: 10.1111/1574-6968.12082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Shin-ichi Chisada
- Department of Bioscience and Biotechnology; Graduate School of Bioresource and Bioenvironmental Sciences; Kyushu University; Fukuoka; Japan
| | - Kohei Shimizu
- Department of Bioscience and Biotechnology; Graduate School of Bioresource and Bioenvironmental Sciences; Kyushu University; Fukuoka; Japan
| | - Haruna Kamada
- Department of Bioscience and Biotechnology; Graduate School of Bioresource and Bioenvironmental Sciences; Kyushu University; Fukuoka; Japan
| | - Naoyuki Matsunaga
- Department of Bioscience and Biotechnology; Graduate School of Bioresource and Bioenvironmental Sciences; Kyushu University; Fukuoka; Japan
| | - Nozomu Okino
- Department of Bioscience and Biotechnology; Graduate School of Bioresource and Bioenvironmental Sciences; Kyushu University; Fukuoka; Japan
| | - Makoto Ito
- Department of Bioscience and Biotechnology; Graduate School of Bioresource and Bioenvironmental Sciences; Kyushu University; Fukuoka; Japan
| |
Collapse
|
48
|
Kumar Y, Valdivia RH. Reorganization of the host cytoskeleton by the intracellular pathogen Chlamydia trachomatis. Commun Integr Biol 2012; 1:175-7. [PMID: 19704885 DOI: 10.4161/cib.1.2.7146] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 10/08/2008] [Indexed: 12/22/2022] Open
Abstract
Chlamydiae are obligate intracellular pathogens that cause a wide range of human diseases. Chlamydia resides in a membrane bound vacuole ("inclusion") that expands to accommodate replicating bacteria. We recently reported that Chlamydia remodels and recruit two major cytoskeletal components of the host cell- F-actin and Intermediate filaments-to form a dynamic scaffold that provides structural stability to the inclusion. As the inclusion expands, a secreted chlamydial protease progressively modifies the intermediate filaments scaffold, presumably to increase the inclusion's flexibility and accommodate the increased bacterial load. This represents a unique mechanism employed by an intracellular pathogen to support its intracellular niche and may be linked to immune evasion by this pathogen. Here, we discuss the potential consequences of Chlamydia-mediated alteration of host cytoskeletal dynamics on the pathogenesis of chlamydial infections.
Collapse
Affiliation(s)
- Yadunanda Kumar
- Center for Microbial Pathogenesis and Department of Molecular Genetics and Microbiology; Duke University Medical Center; Durham, North Carolina USA
| | | |
Collapse
|
49
|
Arnold R, Boonen K, Sun MG, Kim PM. Computational analysis of interactomes: current and future perspectives for bioinformatics approaches to model the host-pathogen interaction space. Methods 2012; 57:508-18. [PMID: 22750305 PMCID: PMC7128575 DOI: 10.1016/j.ymeth.2012.06.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 11/05/2022] Open
Abstract
Bacterial and viral pathogens affect their eukaryotic host partly by interacting with proteins of the host cell. Hence, to investigate infection from a systems' perspective we need to construct complete and accurate host-pathogen protein-protein interaction networks. Because of the paucity of available data and the cost associated with experimental approaches, any construction and analysis of such a network in the near future has to rely on computational predictions. Specifically, this challenge consists of a number of sub-problems: First, prediction of possible pathogen interactors (e.g. effector proteins) is necessary for bacteria and protozoa. Second, the prospective host binding partners have to be determined and finally, the impact on the host cell analyzed. This review gives an overview of current bioinformatics approaches to obtain and understand host-pathogen interactions. As an application example of the methods covered, we predict host-pathogen interactions of Salmonella and discuss the value of these predictions as a prospective for further research.
Collapse
Affiliation(s)
- Roland Arnold
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada M5S 3E1
| | - Kurt Boonen
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada M5S 3E1
| | - Mark G.F. Sun
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada M5S 3E1
| | - Philip M. Kim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada M5S 3E1
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, Canada M5S 3E1
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada M5S 3E1
- Department of Computer Science, University of Toronto, Toronto, ON, Canada M5S 3E1
| |
Collapse
|
50
|
Boehm M, Hoy B, Rohde M, Tegtmeyer N, Bæk KT, Oyarzabal OA, Brøndsted L, Wessler S, Backert S. Rapid paracellular transmigration of Campylobacter jejuni across polarized epithelial cells without affecting TER: role of proteolytic-active HtrA cleaving E-cadherin but not fibronectin. Gut Pathog 2012; 4:3. [PMID: 22534208 PMCID: PMC3413534 DOI: 10.1186/1757-4749-4-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 04/25/2012] [Indexed: 01/28/2023] Open
Abstract
Background Campylobacter jejuni is one of the most important bacterial pathogens causing food-borne illness worldwide. Crossing the intestinal epithelial barrier and host cell entry by C. jejuni is considered the primary reason of damage to the intestinal tissue, but the molecular mechanisms as well as major bacterial and host cell factors involved in this process are still widely unclear. Results In the present study, we characterized the serine protease HtrA (high-temperature requirement A) of C. jejuni as a secreted virulence factor with important proteolytic functions. Infection studies and in vitro cleavage assays showed that C. jejuni’s HtrA triggers shedding of the extracellular E-cadherin NTF domain (90 kDa) of non-polarised INT-407 and polarized MKN-28 epithelial cells, but fibronectin was not cleaved as seen for H. pylori’s HtrA. Deletion of the htrA gene in C. jejuni or expression of a protease-deficient S197A point mutant did not lead to loss of flagella or reduced bacterial motility, but led to severe defects in E-cadherin cleavage and transmigration of the bacteria across polarized MKN-28 cell layers. Unlike other highly invasive pathogens, transmigration across polarized cells by wild-type C. jejuni is highly efficient and is achieved within a few minutes of infection. Interestingly, E-cadherin cleavage by C. jejuni occurs in a limited fashion and transmigration required the intact flagella as well as HtrA protease activity, but does not reduce transepithelial electrical resistance (TER) as seen with Salmonella, Shigella, Listeria or Neisseria. Conclusion These results suggest that HtrA-mediated E-cadherin cleavage is involved in rapid crossing of the epithelial barrier by C. jejuni via a very specific mechanism using the paracellular route to reach basolateral surfaces, but does not cleave the fibronectin receptor which is necessary for cell entry.
Collapse
Affiliation(s)
- Manja Boehm
- School for Medicine and Medical Science, University College Dublin, Belfield Campus, Dublin-4, Ireland
| | - Benjamin Hoy
- The Division of Microbiology, University Salzburg, A-5020, Salzburg, Austria
| | - Manfred Rohde
- The Department of Medical Microbiology, Helmholtz Center for Infection Research, Inhoffen Str. 7, D-38124, Braunschweig, Germany
| | - Nicole Tegtmeyer
- School for Medicine and Medical Science, University College Dublin, Belfield Campus, Dublin-4, Ireland
| | - Kristoffer T Bæk
- The Department of Veterinary Disease Biology, University Copenhagen, Stigbøjlen 4, DK-1870, Frederiksberg C, Denmark
| | - Omar A Oyarzabal
- Institute for Environmental Health, Inc., 15300 Bothell Way NE Lake Forest Park, Seattle, WA, 98155, USA
| | - Lone Brøndsted
- The Department of Veterinary Disease Biology, University Copenhagen, Stigbøjlen 4, DK-1870, Frederiksberg C, Denmark
| | - Silja Wessler
- The Division of Microbiology, University Salzburg, A-5020, Salzburg, Austria
| | - Steffen Backert
- School for Medicine and Medical Science, University College Dublin, Belfield Campus, Dublin-4, Ireland.,University College Dublin, UCD School of Biomolecular and Biomedical Sciences, Science Center West L231, Belfield Campus, Dublin 4, Ireland
| |
Collapse
|