1
|
Chen H, Wang Q, Zhang Y, Shangguan L, Zhu Z, Zhang H, Zou X, Geng Q, Wen Y, Wang D, Wang Y. Loss of vitamin D receptor induces premature ovarian insufficiency through compromising the 7-dehydrocholesterol-dependent anti-aging effects. Front Cell Dev Biol 2025; 13:1545167. [PMID: 40276652 PMCID: PMC12018433 DOI: 10.3389/fcell.2025.1545167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
Vitamin D has the potential to therapeutically affect the endocrine parameters of premature ovarian insufficiency (POI) patients. Previous research has indicated that serum vitamin D levels tend to decline with age and in individuals with POI. However, the precise impact of vitamin D deficiency on female fertility, especially their ovarian function, remains unclear. Vitamin D receptor (VDR) deficiency mice provide a model to investigate the possible effect of vitamin D on female reproduction. In this study, we observed abnormal follicular development in the Vdr deficiency mice. This anomaly is associated with reduced expression of anti-Mullerian hormone (AMH) and disrupted aromatase expression that disrupts the hormone secretion. Moreover, our findings indicate that Vdr deficiency disturbs redox balance, resulting in oxidative stress in the ovary, which further suppresses granulosa cell function and accelerates ovarian aging. Mechanistically, loss of Vdr inhibits de novo cholesterol synthesis by transcriptional repression of Hmgcr, and the antioxidant and anti-aging effects of the intermediate product 7-dehydrocholesterol (7-DHC) are also decreased. Treatment with 7-DHC effectively reduces ROS levels and alleviates aging in KGN cells deficient in Vdr. In conclusion, our results show that Vdr deficiency impairs follicle maturation and hormone secretion by accelerating granulosa cell aging, as a result of the reduced antioxidant and anti-aging effect of 7-DHC.
Collapse
Affiliation(s)
- Haiyun Chen
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Qiuyi Wang
- Liangzhu Laboratory, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Zhang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Luxi Shangguan
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Zhengquan Zhu
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Huan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Xiang Zou
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Qinghe Geng
- Key Laboratory of Clinical Research of Osteoporosis, Xuzhou Medical University, Xuzhou, China
- Central Lab, Pizhou Hospital, Xuzhou Medical University, Xuzhou, China
| | - Yanting Wen
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Daojuan Wang
- Department of Pain, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
- Nanjing University (Suzhou) High-Tech Institute, Suzhou, China
| |
Collapse
|
2
|
Dai W, Deng L, He C, Fu X, Liu J, Wang GC, Yang J, Zhang YB, Xiao F, Wan QL. Crassifolin A prolongs lifespan and healthspan in Caenorhabditis elegans via activating autophagy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119399. [PMID: 39890089 DOI: 10.1016/j.jep.2025.119399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root of Croton crassifolius Geiseler (C. crassifolius), commonly known as "Jiguxiang" in traditional Chinese medicine, is globally recognized for its ethnomedical applications in treating a spectrum of diseases. Crassifolin A (CA), a diterpenoid compound extracted from the roots of C. crassifolius, exhibits anti-herpes simplex virus (HSV), anti-viral and anti-angiogenic properties. AIM OF THE REVIEW This study aimed to explore the effects of CA on aging and the mechanisms involved. MATERIALS AND METHODS Utilizing Caenorhabditis elegans (C. elegans) as a model organism, we conducted a comprehensive survival analysis and evaluated aging-related phenotypes, including the period of fast body movement and body bending rates. To elucidate the molecular mechanisms of CA's impact on aging, we employed a multifaceted approach, including reverse transcription quantitative polymerase chain reaction (RT-qPCR), western blotting, and fluorescence quantification of transgenic reporter strains. RESULTS Our findings demonstrated that CA significantly prolonged both the lifespan and healthspan of C. elegans. The survival benefits conferred by CA were found to correlate with the activation of several key aging-related signaling pathways, including insulin/insulin-like signaling pathway (IIS), dietary restriction (DR) pathway, and germline signaling pathway. Engagement of these pathways led to the activation of transcription factors DAF-16/FOXO, SKN-1/NRF2, HSF-1 and HLH-30/TFEB, as well as the nuclear receptor DAF-12. Consequently, this activation cascade prompted an upregulation of autophagy, a cellular process associated with the maintenance of cellular homeostasis and longevity. CONCLUSION Our study delineates novel mechanisms underlying anti-aging strategies, establishing a conceptual framework for the exploitation and advancement of traditional Chinese medicinal herbs as potential therapeutic agents in the fight against aging and its associated pathologies.
Collapse
Affiliation(s)
- Wenyu Dai
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China; The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Lifeng Deng
- The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Chenyang He
- The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiaoxia Fu
- The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jing Liu
- Neurology Department, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Guo-Cai Wang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research Jinan University, Guangzhou, 510632, China
| | - Jing Yang
- The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Yu-Bo Zhang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research Jinan University, Guangzhou, 510632, China.
| | - Fei Xiao
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qin-Li Wan
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
3
|
Carstensen HR, Hong RL. Dafadine Does Not Promote Dauer Development in Pristionchus pacificus. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001470. [PMID: 39916877 PMCID: PMC11799934 DOI: 10.17912/micropub.biology.001470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/09/2025]
Abstract
In response to unfavorable conditions, nematodes develop into the stress-resistant dauer larvae. Under favorable conditions, many nematodes are known to synthesize dafachronic acids (DAs) that bind to the conserved nuclear hormone receptor DAF-12 to suppress dauer development. However, the enzymes involved in the production of DAs have not been thoroughly investigated in Pristionchus pacificus . Here we show that the cytochrome P450 inhibitor Dafadine-A, which suppresses DAF-9 in DA biosynthesis in C. elegans and other nematode species, does not cause constitutive dauer formation or gonad migration defects in P. pacificus wild type. Instead, Dafadine-A may slightly reduce P. pacificus growth rate.
Collapse
Affiliation(s)
- Heather R. Carstensen
- Biology Department, California State University, Northridge, Northridge, California, United States
| | - Ray L. Hong
- Biology Department, California State University, Northridge, Northridge, California, United States
| |
Collapse
|
4
|
Lv J, He QH, Shi P, Zhou F, Zhang TT, Zhang M, Zhang XY. RNAi-mediated silencing of the neverland gene inhibits molting in the migratory locust, Locusta migratoria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105845. [PMID: 38582577 DOI: 10.1016/j.pestbp.2024.105845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/08/2024]
Abstract
7-dehydrocholesterol (7-DHC) is a key intermediate product used for biosynthesis of molting hormone. This is achieved through a series of hydroxylation reactions catalyzed by the Halloween family of cytochrome P450s. Neverland is an enzyme catalyzes the first reaction of the ecdysteroidogenic pathway, which converts dietary cholesterol into 7-DHC. However, research on the physiological function of neverland in orthopteran insects is lacking. In this study, neverland from Locusta migratoria (LmNvd) was cloned and analyzed. LmNvd was mainly expressed in the prothoracic gland and highly expressed on days 6 and 7 of fifth instar nymphs. RNAi-mediated silencing of LmNvd resulted in serious molting delays and abnormal phenotypes, which could be rescued by 7-DHC and 20-hydroxyecdysone supplementation. Hematoxylin and eosin staining results showed that RNAi-mediated silencing of LmNvd disturbed the molting process by both promoting the synthesis of new cuticle and suppressing the degradation of the old cuticle. Quantitative real-time PCR results suggested that the mRNA expression of E75 early gene and chitinase 5 gene decreased and that of chitin synthase 1 gene was markedly upregulated after knockdown of LmNvd. Our results suggest that LmNvd participates in the biosynthesis process of molting hormone, which is involved in regulating chitin synthesis and degradation in molting cycles.
Collapse
Affiliation(s)
- Jia Lv
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticides, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China
| | - Qi-Hui He
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticides, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China
| | - Peng Shi
- Shanxi Academy of Forestry and Grassland, China
| | - Feng Zhou
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Ting-Ting Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticides, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China
| | - Min Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticides, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China.
| | - Xue-Yao Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticides, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China.
| |
Collapse
|
5
|
Godoy LF, Hochbaum D. Transcriptional and spatiotemporal regulation of the dauer program. Transcription 2023; 14:27-48. [PMID: 36951297 PMCID: PMC10353326 DOI: 10.1080/21541264.2023.2190295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/24/2023] Open
Abstract
Caenorhabditis elegans can enter a diapause stage called "dauer" when it senses that the environment is not suitable for development. This implies a detour from the typical developmental trajectory and requires a tight control of the developmental clock and a massive tissue remodeling. In the last decades, core components of the signaling pathways that govern the dauer development decision have been identified, but the tissues where they function for the acquisition of dauer-specific traits are still under intense study. Growing evidence demonstrates that these pathways engage in complex cross-talk and feedback loops. In this review, we summarize the current knowledge regarding the transcriptional regulation of the dauer program and the relevant tissues for its achievement. A better understanding of this process will provide insight on how developmental plasticity is achieved and how development decisions are under a robust regulation to ensure an all-or-nothing response. Furthermore, this developmental decision can also serve as a simplified model for relevant developmental disorders.Abbreviations: AID Auxin Induced Degron DA dafachronic acid Daf-c dauer formation constitutive Daf-d dauer formation defective DTC Distal Tip Cells ECM modified extracellular matrix GPCRs G protein-coupled receptors IIS insulin/IGF-1 signaling ILPs insulin-like peptides LBD Ligand Binding Domain PDL4 Post Dauer L4 TGF-β transforming growth factor beta WT wild-type.
Collapse
Affiliation(s)
- Luciana F Godoy
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Daniel Hochbaum
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
6
|
Al-Horani RA. Steroid sulfatase inhibitors and sulfated C19 steroids for proteotoxicity-related diseases: a patent spotlight. Pharm Pat Anal 2023; 12:213-218. [PMID: 37982638 PMCID: PMC10782412 DOI: 10.4155/ppa-2023-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/11/2023] [Indexed: 11/21/2023]
Abstract
Aging and proteotoxicity go hand in hand. Inhibiting proteotoxicity has been proposed to extend lifespan. This invention describes a new strategy to limit proteotoxicity and to extend the lifespan. Loss of function of sul-2, the Caenorhabditis elegans steroid sulfatase, elevates the pool of sulfated steroid hormones, increases longevity and ameliorates protein aggregation diseases. The present invention provides a group of molecules for use in the prevention of aging-associated proteotoxicity caused by protein aggregation diseases and/or to increase the lifespan of a eukaryotic organism. These molecules are either steroid sulfatase inhibitors or sulfated C19 steroids, both of which reproduce the phenotype of sul-2 mutants. One particular representative example is STX-64. Potential applications of the claims have been demonstrated in animal models of Parkinson's disease, Huntington's disease and Alzheimer's disease.
Collapse
Affiliation(s)
- Rami A Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| |
Collapse
|
7
|
Mordvinov V, Pakharukova M. Xenobiotic-Metabolizing Enzymes in Trematodes. Biomedicines 2022; 10:biomedicines10123039. [PMID: 36551794 PMCID: PMC9775572 DOI: 10.3390/biomedicines10123039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Trematode infections occur worldwide causing considerable deterioration of human health and placing a substantial financial burden on the livestock industry. The hundreds of millions of people afflicted with trematode infections rely entirely on only two drugs (praziquantel and triclabendazole) for treatment. An understanding of anthelmintic biotransformation pathways in parasites should clarify factors that can modulate therapeutic potency of anthelmintics currently in use and may lead to the discovery of synergistic compounds for combination treatments. Despite the pronounced epidemiological significance of trematodes, there is still no adequate understanding of the functionality of their metabolic systems, including xenobiotic-metabolizing enzymes. The review is focused on the structure and functional significance of the xenobiotic-metabolizing system in trematodes. Knowledge in this field can solve practical problems related to the search for new targets for antiparasitic therapy based on a focused action on certain elements of the parasite's metabolic system. Knowledge of the functionality of this system is required to understand the adaptation of the biochemical processes of parasites residing in the host and mechanisms of drug resistance development, as well as to select a promising molecular target for the discovery and development of new anthelmintic drugs.
Collapse
Affiliation(s)
- Viatcheslav Mordvinov
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics SB RAS, 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Maria Pakharukova
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics SB RAS, 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia
- Correspondence: ; Tel.: +7-(913)-394-6669
| |
Collapse
|
8
|
Karengera A, Verburg I, Sterken MG, Riksen JAG, Murk AJ, Dinkla IJT. Determining Toxic Potencies of Water-Soluble Contaminants in Wastewater Influents and Effluent Using Gene Expression Profiling in C. elegans as a Bioanalytical Tool. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 83:284-294. [PMID: 36190544 PMCID: PMC9556352 DOI: 10.1007/s00244-022-00959-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
With chemical analysis, it is impossible to qualify and quantify the toxic potency of especially hydrophilic bioactive contaminants. In this study, we applied the nematode C. elegans as a model organism for detecting the toxic potency of whole influent wastewater samples. Gene expression in the nematode was used as bioanalytical tool to reveal the presence, type and potency of molecular pathways induced by 24-h exposure to wastewater from a hospital (H), nursing home (N), community (C), and influent (I) and treated effluent (E) from a local wastewater treatment plant. Exposure to influent water significantly altered expression of 464 genes, while only two genes were differentially expressed in nematodes treated with effluent. This indicates a significant decrease in bioactive pollutant-load after wastewater treatment. Surface water receiving the effluent did not induce any genes in exposed nematodes. A subset of 209 genes was differentially expressed in all untreated wastewaters, including cytochromes P450 and C-type lectins related to the nematode's xenobiotic metabolism and immune response, respectively. Different subsets of genes responded to particular waste streams making them candidates to fingerprint-specific wastewater sources. This study shows that gene expression profiling in C. elegans can be used for mechanism-based identification of hydrophilic bioactive compounds and fingerprinting of specific wastewaters. More comprehensive than with chemical analysis, it can demonstrate the effective overall removal of bioactive compounds through wastewater treatment. This bioanalytical tool can also be applied in the process of identification of the bioactive compounds via a process of toxicity identification evaluation.
Collapse
Affiliation(s)
- Antoine Karengera
- Department of Animal Sciences, Marine Animal Ecology Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Ilse Verburg
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Mark G. Sterken
- Plant Sciences, Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Joost A. G. Riksen
- Plant Sciences, Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Albertinka J. Murk
- Department of Animal Sciences, Marine Animal Ecology Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Inez J. T. Dinkla
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| |
Collapse
|
9
|
Lok JB, Kliewer SA, Mangelsdorf DJ. The 'nuclear option' revisited: Confirmation of Ss-daf-12 function and therapeutic potential in Strongyloides stercoralis and other parasitic nematode infections. Mol Biochem Parasitol 2022; 250:111490. [PMID: 35697206 DOI: 10.1016/j.molbiopara.2022.111490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/19/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022]
Abstract
Mechanisms governing morphogenesis and development of infectious third-stage larvae (L3i) of parasitic nematodes have been likened to those regulating dauer development in Caenorhabditis elegans. Dauer regulatory signal transduction comprises initial G protein-coupled receptor (GPCR) signaling in chemosensory neurons of the amphidial complex that regulates parallel insulin- and TGFβ-like signaling in the tissues. Insulin- and TGFβ-like signals converge to co-regulate steroid signaling through the nuclear receptor (NR) DAF-12. Discovery of the steroid ligands of DAF-12 opened a new avenue of small molecule physiology in C. elegans. These signaling pathways are conserved in parasitic nematodes and an increasing body of evidence supports their function in formation and developmental regulation of L3i during the infectious process in soil transmitted species. This review presents these lines of evidence for G protein-coupled receptor (GPCR), insulin- and TGFβ-like signaling in brief and focuses primarily on signaling through parasite orthologs of DAF-12. We discuss in some depth the deployment of sensitive analytical techniques to identify Δ7-dafachronic acid as the natural ligand of DAF-12 homologs in Strongyloides stercoralis and Haemonchus contortus and of targeted mutagenesis by CRISPR/Cas9 to assign dauer-like regulatory function to the NR Ss-DAF-12, its coactivator Ss-DIP-1 and the key ligand biosynthetic enzyme Ss-CYP-22a9. Finally, we present published evidence of the potential of Ss-DAF-12 signaling as a chemotherapeutic target in human strongyloidiasis.
Collapse
Affiliation(s)
- James B Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA, USA.
| | - Steven A Kliewer
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David J Mangelsdorf
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX USA
| |
Collapse
|
10
|
Elzoheiry MA, Elmehankar MS, Aboukamar WA, El-Gamal R, Sheta H, Zenezan D, Nabih N, Elhenawy AA. Fluconazole as Schistosoma mansoni cytochrome P450 inhibitor: In vivo murine experimental study. Exp Parasitol 2022; 239:108291. [PMID: 35660528 DOI: 10.1016/j.exppara.2022.108291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/04/2022]
Abstract
Schistosomiasis is a chronic disease caused by blood flukes of the Schistosoma spp. New approaches against this morbid infection are needed. In this study, we investigated fluconazole (FLZ) as an inhibitor of Schistosoma mansoni cytochrome P450 (S. mansoni CYP450) enzyme at different life cycle stages. We compared FLZ (10 mg/kg for two days) effects when administrated early 5 days post-infection (dpi) (Early I) and 21 dpi (Early II) versus late administration 60 dpi on S. mansoni CYP450 gene expression. These different FLZ treatment regimens were evaluated in experimentally infected mice with S. mansoni. This study showed that administration of FLZ, whether early or late during schistosomal infection, resulted in significant inhibition of S. mansoni CYP450 expression in the adult stage (P < 0.001). Early exposure to FLZ during the first week of infection significantly decreased the number of schistosomula that reached the adult stage compared to the infected control group and resulted in significant inhibition of S. mansoni CYP450 expression (P < 0.001) in the adult stage. In the Early I group, the fewest number of eggs per liver tissue gram was recorded. Our data suggested that FLZ is a S. mansoni CYP450 gene expression inhibitor with greater effect on schistosomula stages.
Collapse
Affiliation(s)
- Manal A Elzoheiry
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Egypt
| | - Manar S Elmehankar
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Egypt
| | - Wafaa A Aboukamar
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Egypt
| | - Randa El-Gamal
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Egypt
| | - Heba Sheta
- Department of Pathology, Faculty of Medicine, Mansoura University, Egypt
| | - Dina Zenezan
- Department of Pathology, Faculty of Medicine, Suez Canal University, Egypt
| | - Nairmen Nabih
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Egypt.
| | - Abeer A Elhenawy
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Egypt
| |
Collapse
|
11
|
Liu T, Xu Y, Yi CX, Tong Q, Cai D. The hypothalamus for whole-body physiology: from metabolism to aging. Protein Cell 2022; 13:394-421. [PMID: 33826123 PMCID: PMC9095790 DOI: 10.1007/s13238-021-00834-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/01/2021] [Indexed: 01/05/2023] Open
Abstract
Obesity and aging are two important epidemic factors for metabolic syndrome and many other health issues, which contribute to devastating diseases such as cardiovascular diseases, stroke and cancers. The brain plays a central role in controlling metabolic physiology in that it integrates information from other metabolic organs, sends regulatory projections and orchestrates the whole-body function. Emerging studies suggest that brain dysfunction in sensing various internal cues or processing external cues may have profound effects on metabolic and other physiological functions. This review highlights brain dysfunction linked to genetic mutations, sex, brain inflammation, microbiota, stress as causes for whole-body pathophysiology, arguing brain dysfunction as a root cause for the epidemic of aging and obesity-related disorders. We also speculate key issues that need to be addressed on how to reveal relevant brain dysfunction that underlines the development of these disorders and diseases in order to develop new treatment strategies against these health problems.
Collapse
Affiliation(s)
- Tiemin Liu
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, Institute of Metabolism and Integrative Biology, Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yong Xu
- grid.39382.330000 0001 2160 926XChildren’s Nutrition Research Center, Department of Pediatrics, Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Chun-Xia Yi
- grid.7177.60000000084992262Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, Netherlands
| | - Qingchun Tong
- grid.453726.10000 0004 5906 7293Brown Foundation Institute of Molecular Medicine, Department of Neurobiology and Anatomy, University of Texas McGovern Medical School, Graduate Program in Neuroscience of MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030 USA
| | - Dongsheng Cai
- grid.251993.50000000121791997Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 USA
| |
Collapse
|
12
|
Wang ZY, Pergande MR, Ragsdale CW, Cologna SM. Steroid hormones of the octopus self-destruct system. Curr Biol 2022; 32:2572-2579.e4. [PMID: 35561680 DOI: 10.1016/j.cub.2022.04.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/15/2022] [Accepted: 04/14/2022] [Indexed: 02/08/2023]
Abstract
Among all invertebrates, soft-bodied cephalopods have the largest central nervous systems and the greatest brain-to-body mass ratios, yet unlike other big-brained animals, cephalopods are unusually short lived.1-5 Primates and corvids survive for many decades, but shallow-water octopuses, such as the California two-spot octopus (Octopus bimaculoides), typically live for only 1 year.6,7 Lifespan and reproduction are controlled by the principal neuroendocrine center of the octopus: the optic glands, which are functional analogs to the vertebrate pituitary gland.8-10 After mating, females steadfastly brood their eggs, begin fasting, and undergo rapid physiological decline, featuring repeated self-injury and leading to death.11 Removal of the optic glands completely reverses this life history trajectory,10 but the signaling factors underlying this major life transition are unknown. Here, we characterize the major secretions and steroidogenic pathways of the female optic gland using mass spectrometry techniques. We find that at least three pathways are mobilized to increase synthesis of select sterol hormones after reproduction. One pathway generates pregnane steroids, known in other animals to support reproduction.12-16 Two other pathways produce 7-dehydrocholesterol and bile acid intermediates, neither of which were previously known to be involved in semelparity. Our results provide insight into invertebrate cholesterol pathways and confirm a remarkable unity of steroid hormone biology in life history processes across Bilateria.
Collapse
Affiliation(s)
- Z Yan Wang
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; Department of Psychology, University of Washington, Seattle, WA 98195, USA; Department of Biology, University of Washington, Seattle, WA 98195, USA.
| | - Melissa R Pergande
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Clifton W Ragsdale
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
13
|
Zhang MG, Sternberg PW. Both entry to and exit from diapause arrest in Caenorhabditis elegans are regulated by a steroid hormone pathway. Development 2022; 149:274989. [PMID: 35394033 PMCID: PMC9148571 DOI: 10.1242/dev.200173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/24/2022] [Indexed: 11/20/2022]
Abstract
Diapause arrest in animals such as Caenorhabditis elegans is tightly regulated so that animals make appropriate developmental decisions amidst environmental challenges. Fully understanding diapause requires mechanistic insight of both entry and exit from the arrested state. Although a steroid hormone pathway regulates the entry decision into C. elegans dauer diapause, its role in the exit decision is less clear. A complication to understanding steroid hormonal regulation of dauer has been the peculiar fact that steroid hormone mutants such as daf-9 form partial dauers under normal growth conditions. Here, we corroborate previous findings that daf-9 mutants remain capable of forming full dauers under unfavorable growth conditions and establish that the daf-9 partial dauer state is likely a partially exited dauer that has initiated but cannot complete the dauer exit process. We show that the steroid hormone pathway is both necessary for and promotes complete dauer exit, and that the spatiotemporal dynamics of steroid hormone regulation during dauer exit resembles that of dauer entry. Overall, dauer entry and dauer exit are distinct developmental decisions that are both controlled by steroid hormone signaling. Summary: In animals such as Caenorhabditis elegans, a steroid hormone pathway controls both the entry and exit decisions into and out of the developmentally arrested dauer state in response to environmental signaling.
Collapse
Affiliation(s)
- Mark G. Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paul W. Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
14
|
Wang Z, Cheong MC, Tsien J, Deng H, Qin T, Stoltzfus JDC, Jaleta TG, Li X, Lok JB, Kliewer SA, Mangelsdorf DJ. Characterization of the endogenous DAF-12 ligand and its use as an anthelmintic agent in Strongyloides stercoralis. eLife 2021; 10:e73535. [PMID: 34874004 PMCID: PMC8651287 DOI: 10.7554/elife.73535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/12/2021] [Indexed: 12/27/2022] Open
Abstract
A prevalent feature of Strongyloides stercoralis is a life-long and potentially lethal infection that is due to the nematode parasite's ability to autoinfect and, thereby, self-replicate within its host. Here, we investigated the role of the parasite's nuclear receptor, Ss-DAF-12, in governing infection. We identified Δ7-DA as the endogenous Ss-DAF-12 ligand and elucidated the hormone's biosynthetic pathway. Genetic loss of function of the ligand's rate-limiting enzyme demonstrated that Δ7-DA synthesis is necessary for parasite reproduction, whereas its absence is required for the development of infectious larvae. Availability of the ligand permits Ss-DAF-12 to function as an on/off switch governing autoinfection, making it vulnerable to therapeutic intervention. In a preclinical model of hyperinfection, pharmacologic activation of DAF-12 suppressed autoinfection and markedly reduced lethality. Moreover, when Δ7-DA was administered with ivermectin, the current but limited drug of choice for treating strongyloidiasis, the combinatorial effects of the two drugs resulted in a near cure of the disease.
Collapse
Affiliation(s)
- Zhu Wang
- Department of Pharmacology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Mi Cheong Cheong
- Department of Pharmacology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Jet Tsien
- Department of Biochemistry, University of Texas Southwestern Medical CenterDallasUnited States
| | - Heping Deng
- Department of Biochemistry, University of Texas Southwestern Medical CenterDallasUnited States
| | - Tian Qin
- Department of Biochemistry, University of Texas Southwestern Medical CenterDallasUnited States
| | - Jonathan DC Stoltzfus
- Department of Biology, Millersville University of PennsylvaniaMillersvilleUnited States
| | - Tegegn G Jaleta
- Department of Pathobiology, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Xinshe Li
- Department of Pathobiology, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - James B Lok
- Department of Pathobiology, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Steven A Kliewer
- Department of Pharmacology, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Molecular Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - David J Mangelsdorf
- Department of Pharmacology, University of Texas Southwestern Medical CenterDallasUnited States
- Howard Hughes Medical Institute, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
15
|
Vlaar LE, Bertran A, Rahimi M, Dong L, Kammenga JE, Helder J, Goverse A, Bouwmeester HJ. On the role of dauer in the adaptation of nematodes to a parasitic lifestyle. Parasit Vectors 2021; 14:554. [PMID: 34706780 PMCID: PMC8555053 DOI: 10.1186/s13071-021-04953-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022] Open
Abstract
Nematodes are presumably the most abundant Metazoa on Earth, and can even be found in some of the most hostile environments of our planet. Various types of hypobiosis evolved to adapt their life cycles to such harsh environmental conditions. The five most distal major clades of the phylum Nematoda (Clades 8-12), formerly referred to as the Secernentea, contain many economically relevant parasitic nematodes. In this group, a special type of hypobiosis, dauer, has evolved. The dauer signalling pathway, which culminates in the biosynthesis of dafachronic acid (DA), is intensively studied in the free-living nematode Caenorhabditis elegans, and it has been hypothesized that the dauer stage may have been a prerequisite for the evolution of a wide range of parasitic lifestyles among other nematode species. Biosynthesis of DA is not specific for hypobiosis, but if it results in exit of the hypobiotic state, it is one of the main criteria to define certain behaviour as dauer. Within Clades 9 and 10, the involvement of DA has been validated experimentally, and dauer is therefore generally accepted to occur in those clades. However, for other clades, such as Clade 12, this has hardly been explored. In this review, we provide clarity on the nomenclature associated with hypobiosis and dauer across different nematological subfields. We discuss evidence for dauer-like stages in Clades 8 to 12 and support this with a meta-analysis of available genomic data. Furthermore, we discuss indications for a simplified dauer signalling pathway in parasitic nematodes. Finally, we zoom in on the host cues that induce exit from the hypobiotic stage and introduce two hypotheses on how these signals might feed into the dauer signalling pathway for plant-parasitic nematodes. With this work, we contribute to the deeper understanding of the molecular mechanisms underlying hypobiosis in parasitic nematodes. Based on this, novel strategies for the control of parasitic nematodes can be developed.
Collapse
Affiliation(s)
- Lieke E Vlaar
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Andre Bertran
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Mehran Rahimi
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Lemeng Dong
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Jan E Kammenga
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Johannes Helder
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Harro J Bouwmeester
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Karp X. Hormonal Regulation of Diapause and Development in Nematodes, Insects, and Fishes. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.735924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diapause is a state of developmental arrest adopted in response to or in anticipation of environmental conditions that are unfavorable for growth. In many cases, diapause is facultative, such that animals may undergo either a diapause or a non-diapause developmental trajectory, depending on environmental cues. Diapause is characterized by enhanced stress resistance, reduced metabolism, and increased longevity. The ability to postpone reproduction until suitable conditions are found is important to the survival of many animals, and both vertebrate and invertebrate species can undergo diapause. The decision to enter diapause occurs at the level of the whole animal, and thus hormonal signaling pathways are common regulators of the diapause decision. Unlike other types of developmental arrest, diapause is programmed, such that the diapause developmental trajectory includes a pre-diapause preparatory phase, diapause itself, recovery from diapause, and post-diapause development. Therefore, developmental pathways are profoundly affected by diapause. Here, I review two conserved hormonal pathways, insulin/IGF signaling (IIS) and nuclear hormone receptor signaling (NHR), and their role in regulating diapause across three animal phyla. Specifically, the species reviewed are Austrofundulus limnaeus and Nothobranchius furzeri annual killifishes, Caenorhabditis elegans nematodes, and insect species including Drosophila melanogaster, Culex pipiens, and Bombyx mori. In addition, the developmental changes that occur as a result of diapause are discussed, with a focus on how IIS and NHR pathways interact with core developmental pathways in C. elegans larvae that undergo diapause.
Collapse
|
17
|
Ow MC, Nichitean AM, Hall SE. Somatic aging pathways regulate reproductive plasticity in Caenorhabditis elegans. eLife 2021; 10:e61459. [PMID: 34236316 PMCID: PMC8291976 DOI: 10.7554/elife.61459] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 06/26/2021] [Indexed: 01/21/2023] Open
Abstract
In animals, early-life stress can result in programmed changes in gene expression that can affect their adult phenotype. In C. elegans nematodes, starvation during the first larval stage promotes entry into a stress-resistant dauer stage until environmental conditions improve. Adults that have experienced dauer (postdauers) retain a memory of early-life starvation that results in gene expression changes and reduced fecundity. Here, we show that the endocrine pathways attributed to the regulation of somatic aging in C. elegans adults lacking a functional germline also regulate the reproductive phenotypes of postdauer adults that experienced early-life starvation. We demonstrate that postdauer adults reallocate fat to benefit progeny at the expense of the parental somatic fat reservoir and exhibit increased longevity compared to controls. Our results also show that the modification of somatic fat stores due to parental starvation memory is inherited in the F1 generation and may be the result of crosstalk between somatic and reproductive tissues mediated by the germline nuclear RNAi pathway.
Collapse
Affiliation(s)
- Maria C Ow
- Department of Biology, Syracuse UniversitySyracuseUnited States
| | | | - Sarah E Hall
- Department of Biology, Syracuse UniversitySyracuseUnited States
| |
Collapse
|
18
|
Aghayeva U, Bhattacharya A, Sural S, Jaeger E, Churgin M, Fang-Yen C, Hobert O. DAF-16/FoxO and DAF-12/VDR control cellular plasticity both cell-autonomously and via interorgan signaling. PLoS Biol 2021; 19:e3001204. [PMID: 33891586 PMCID: PMC8099054 DOI: 10.1371/journal.pbio.3001204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/05/2021] [Accepted: 03/23/2021] [Indexed: 01/08/2023] Open
Abstract
Many cell types display the remarkable ability to alter their cellular phenotype in response to specific external or internal signals. Such phenotypic plasticity is apparent in the nematode Caenorhabditis elegans when adverse environmental conditions trigger entry into the dauer diapause stage. This entry is accompanied by structural, molecular, and functional remodeling of a number of distinct tissue types of the animal, including its nervous system. The transcription factor (TF) effectors of 3 different hormonal signaling systems, the insulin-responsive DAF-16/FoxO TF, the TGFβ-responsive DAF-3/SMAD TF, and the steroid nuclear hormone receptor, DAF-12/VDR, a homolog of the vitamin D receptor (VDR), were previously shown to be required for entering the dauer arrest stage, but their cellular and temporal focus of action for the underlying cellular remodeling processes remained incompletely understood. Through the generation of conditional alleles that allowed us to spatially and temporally control gene activity, we show here that all 3 TFs are not only required to initiate tissue remodeling upon entry into the dauer stage, as shown before, but are also continuously required to maintain the remodeled state. We show that DAF-3/SMAD is required in sensory neurons to promote and then maintain animal-wide tissue remodeling events. In contrast, DAF-16/FoxO or DAF-12/VDR act cell-autonomously to control anatomical, molecular, and behavioral remodeling events in specific cell types. Intriguingly, we also uncover non-cell autonomous function of DAF-16/FoxO and DAF-12/VDR in nervous system remodeling, indicating the presence of several insulin-dependent interorgan signaling axes. Our findings provide novel perspectives into how hormonal systems control tissue remodeling.
Collapse
Affiliation(s)
- Ulkar Aghayeva
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Abhishek Bhattacharya
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Surojit Sural
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Eliza Jaeger
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Matthew Churgin
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christopher Fang-Yen
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
19
|
Steroid hormones sulfatase inactivation extends lifespan and ameliorates age-related diseases. Nat Commun 2021; 12:49. [PMID: 33397961 PMCID: PMC7782729 DOI: 10.1038/s41467-020-20269-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Aging and fertility are two interconnected processes. From invertebrates to mammals, absence of the germline increases longevity. Here we show that loss of function of sul-2, the Caenorhabditis elegans steroid sulfatase (STS), raises the pool of sulfated steroid hormones, increases longevity and ameliorates protein aggregation diseases. This increased longevity requires factors involved in germline-mediated longevity (daf-16, daf-12, kri-1, tcer-1 and daf-36 genes) although sul-2 mutations do not affect fertility. Interestingly, sul-2 is only expressed in sensory neurons, suggesting a regulation of sulfated hormones state by environmental cues. Treatment with the specific STS inhibitor STX64, as well as with testosterone-derived sulfated hormones reproduces the longevity phenotype of sul-2 mutants. Remarkably, those treatments ameliorate protein aggregation diseases in C. elegans, and STX64 also Alzheimer’s disease in a mammalian model. These results open the possibility of reallocating steroid sulfatase inhibitors or derivates for the treatment of aging and aging related diseases. Sul-2 is a steroid sulfatase in c.elegans. Here the authors show that, in the absence of sul-2 enzymatic activity, worm lifespan is increased, and that chemical inhibition ameliorates symptoms of neurodegenerative disorders in worms and mice.
Collapse
|
20
|
Baugh LR, Hu PJ. Starvation Responses Throughout the Caenorhabditiselegans Life Cycle. Genetics 2020; 216:837-878. [PMID: 33268389 PMCID: PMC7768255 DOI: 10.1534/genetics.120.303565] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
Caenorhabditis elegans survives on ephemeral food sources in the wild, and the species has a variety of adaptive responses to starvation. These features of its life history make the worm a powerful model for studying developmental, behavioral, and metabolic starvation responses. Starvation resistance is fundamental to life in the wild, and it is relevant to aging and common diseases such as cancer and diabetes. Worms respond to acute starvation at different times in the life cycle by arresting development and altering gene expression and metabolism. They also anticipate starvation during early larval development, engaging an alternative developmental program resulting in dauer diapause. By arresting development, these responses postpone growth and reproduction until feeding resumes. A common set of signaling pathways mediates systemic regulation of development in each context but with important distinctions. Several aspects of behavior, including feeding, foraging, taxis, egg laying, sleep, and associative learning, are also affected by starvation. A variety of conserved signaling, gene regulatory, and metabolic mechanisms support adaptation to starvation. Early life starvation can have persistent effects on adults and their descendants. With its short generation time, C. elegans is an ideal model for studying maternal provisioning, transgenerational epigenetic inheritance, and developmental origins of adult health and disease in humans. This review provides a comprehensive overview of starvation responses throughout the C. elegans life cycle.
Collapse
Affiliation(s)
- L Ryan Baugh
- Department of Biology, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708 and
| | - Patrick J Hu
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
21
|
Mao S, Song Z, Wu M, Wang X, Lu F, Qin HM. Expression, Purification, Refolding, and Characterization of a Neverland Protein From Caenorhabditis elegans. Front Bioeng Biotechnol 2020; 8:593041. [PMID: 33195160 PMCID: PMC7609953 DOI: 10.3389/fbioe.2020.593041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/24/2020] [Indexed: 11/23/2022] Open
Abstract
Steroid hormones that serve as vital compounds are necessary for the development and metabolism of a variety of organisms. The neverland (NVD) family genes encode the conserved Rieske-type oxygenases, which are accountable for the dehydrogenation during the synthesis and regulation of steroid hormones. However, the His-tagged NVD protein from Caenorhabditis elegans expresses as inclusion bodies in Escherichia coli BL21 (DE3). This bottleneck can be solved through refolding by urea or the introduction of a maltose-binding protein (MBP) tag at the N-terminus. Through further research on purification after the introduction of a MBP tag at the N-terminus, the CD measurement and fluorescence-based thermal shift assay indicated that MBP was favorable for the NVD proteins' solubility and stability, which may be beneficial for the large-scale manufacture of NVD protein for further research. The structural model contained the Rieske [2Fe-2S] domain and non-heme iron-binding motif, which were similar to 3-ketosteroid 9 α-hydroxylase.
Collapse
Affiliation(s)
- Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin, China
| | - Zhan Song
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Mian Wu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaorui Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin, China
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin, China
| |
Collapse
|
22
|
Lebedev R, Trabelcy B, Langier Goncalves I, Gerchman Y, Sapir A. Metabolic Reconfiguration in C. elegans Suggests a Pathway for Widespread Sterol Auxotrophy in the Animal Kingdom. Curr Biol 2020; 30:3031-3038.e7. [PMID: 32559444 DOI: 10.1016/j.cub.2020.05.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/24/2020] [Accepted: 05/20/2020] [Indexed: 12/23/2022]
Abstract
Cholesterol is one of the hallmarks of animals. In vertebrates, the cholesterol synthesis pathway (CSP) is the primary source of cholesterol that has numerous structural and regulative roles [1]. Nevertheless, the few invertebrates tested for cholesterol synthesis show complete sterol auxotrophy [2-6], raising questions about how animals thrive without cholesterol synthesis and about the prevalence of sterol auxotrophy in animals. In the nematode Caenorhabditis elegans (C. elegans), sterols are the precursors of the steroid hormone dafachronic acid that coordinates development to adulthood [7, 8]; thus, sterol-deprived C. elegans arrest at the diapause "dauer" larval stage [9]. Using this system, we have identified a pathway that converts plant and fungal sterols into cholesterol through the activity of enzymes with sequence similarity to specific human CSP enzymes. Based on this finding, we propose that two critical steps shaped the evolution of animal sterol auxotrophy: (1) the loss of the orthologs of the first three enzymes of the CSP and (2) the co-opting of other downstream enzymes of the CSP for the utilization of dietary sterols. Using this mechanistic signature, we studied the evolution of cholesterol auxotrophy across the animal kingdom. Complete sets of CSP enzymes in basal animals suggest that the loss of cholesterol synthesis occurred during animal evolution. A sterol auxothropy signature in the genomes of many invertebrates, including nematodes and most arthropods, suggests widespread cholesterol auxotrophy in animals. Thus, we propose that this co-opted pathway supports widespread cholesterol auxotrophy by interkingdom interactions between cholesterol-auxotrophic animals and sterol-producing fungi and plants.
Collapse
Affiliation(s)
- Ron Lebedev
- Department of Biology and the Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Tivon 36006, Israel
| | - Benjamin Trabelcy
- Department of Biology and the Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Tivon 36006, Israel
| | - Irina Langier Goncalves
- Department of Biology and the Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Tivon 36006, Israel
| | - Yoram Gerchman
- Department of Biology and the Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Tivon 36006, Israel
| | - Amir Sapir
- Department of Biology and the Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Tivon 36006, Israel.
| |
Collapse
|
23
|
Otarigho B, Aballay A. Cholesterol Regulates Innate Immunity via Nuclear Hormone Receptor NHR-8. iScience 2020; 23:101068. [PMID: 32361270 PMCID: PMC7195545 DOI: 10.1016/j.isci.2020.101068] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/09/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
Cholesterol is an essential nutrient for the function of diverse biological processes and for steroid biosynthesis across metazoans. However, the role of cholesterol in immune function remains understudied. Using the nematode Caenorhabditis elegans, which depends on the external environment for cholesterol, we studied the relationship between cholesterol and innate immunity. We found that the transporter CHUP-1 is required for the effect of cholesterol in the development of innate immunity and that the cholesterol-mediated immune response requires the nuclear hormone receptor NHR-8. Cholesterol acts through NHR-8 to transcriptionally regulate immune genes that are controlled by conserved immune pathways, including a p38/PMK-1 MAPK pathway, a DAF-2/DAF-16 insulin pathway, and an Nrf/SKN-1 pathway. Our results indicate that cholesterol plays a key role in the activation of conserved microbicidal pathways that are essential for survival against bacterial infections.
Collapse
Affiliation(s)
- Benson Otarigho
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alejandro Aballay
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
24
|
Park S, Park JY, Paik YK. A Molecular Basis for Reciprocal Regulation between Pheromones and Hormones in Response to Dietary Cues in C. elegans. Int J Mol Sci 2020; 21:ijms21072366. [PMID: 32235409 PMCID: PMC7177881 DOI: 10.3390/ijms21072366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 01/31/2023] Open
Abstract
Under stressful conditions, the early larvae of C. elegans enter dauer diapause, a non-aging period, driven by the seemingly opposite influence of ascaroside pheromones (ASCRs) and steroid hormone dafachronic acids (DAs). However, the molecular basis of how these small molecules engage in competitive crosstalk in coordination with insulin/IGF-1 signaling (IIS) remains elusive. Here we report a novel transcriptional regulatory pathway that seems to operate between the ASCR and DA biosynthesis under ad libitum (AL) feeding conditions or bacterial deprivation (BD). Although expression of the ASCR and DA biosynthetic genes reciprocally inhibit each other, ironically and interestingly, such dietary cue-mediated modulation requires the presence of the competitors. Under BD, induction of ASCR biosynthetic gene expression required DA, while ASCR suppresses the expression of the DA biosynthetic gene daf-36. The negative regulation of DA by ASCR was IIS-dependent, whereas daf-36 regulation appeared to be independent of IIS. These observations suggest that the presence of ASCR determines the IIS-dependency of DA gene expression regardless of dietary conditions. Thus, our work defines a molecular basis for a novel reciprocal gene regulation of pheromones and hormones to cope with stressful conditions during development and aging.
Collapse
|
25
|
Elucidating the molecular and developmental biology of parasitic nematodes: Moving to a multiomics paradigm. ADVANCES IN PARASITOLOGY 2020; 108:175-229. [PMID: 32291085 DOI: 10.1016/bs.apar.2019.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the past two decades, significant progress has been made in the sequencing, assembly, annotation and analyses of genomes and transcriptomes of parasitic worms of socioeconomic importance. This progress has somewhat improved our knowledge and understanding of these pathogens at the molecular level. However, compared with the free-living nematode Caenorhabditis elegans, the areas of functional genomics, transcriptomics, proteomics and metabolomics of parasitic nematodes are still in their infancy, and there are major gaps in our knowledge and understanding of the molecular biology of parasitic nematodes. The information on signalling molecules, molecular pathways and microRNAs (miRNAs) that are known to be involved in developmental processes in C. elegans and the availability of some molecular resources (draft genomes, transcriptomes and some proteomes) for selected parasitic nematodes provide a basis to start exploring the developmental biology of parasitic nematodes. Indeed, some studies have identified molecules and pathways that might associate with developmental processes in related, parasitic nematodes, such as Haemonchus contortus (barber's pole worm). However, detailed information is often scant and 'omics resources are limited, preventing a proper integration of 'omic data sets and comprehensive analyses. Moreover, little is known about the functional roles of pheromones, hormones, signalling pathways and post-transcriptional/post-translational regulations in the development of key parasitic nematodes throughout their entire life cycles. Although C. elegans is an excellent model to assist molecular studies of parasitic nematodes, its use is limited when it comes to explorations of processes that are specific to parasitism within host animals. A deep understanding of parasitic nematodes, such as H. contortus, requires substantially enhanced resources and the use of integrative 'omics approaches for analyses. The improved genome and well-established in vitro larval culture system for H. contortus provide unprecedented opportunities for comprehensive studies of the transcriptomes (mRNA and miRNA), proteomes (somatic, excretory/secretory and phosphorylated proteins) and lipidomes (e.g., polar and neutral lipids) of this nematode. Such resources should enable in-depth explorations of its developmental biology at a level, not previously possible. The main aims of this review are (i) to provide a background on the development of nematodes, with a particular emphasis on the molecular aspects involved in the dauer formation and exit in C. elegans; (ii) to critically appraise the current state of knowledge of the developmental biology of parasitic nematodes and identify key knowledge gaps; (iii) to cover salient aspects of H. contortus, with a focus on the recent advances in genomics, transcriptomics, proteomics and lipidomics as well as in vitro culturing systems; (iv) to review recent advances in our knowledge and understanding of the molecular and developmental biology of H. contortus using an integrative multiomics approach, and discuss the implications of this approach for detailed explorations of signalling molecules, molecular processes and pathways likely associated with nematode development, adaptation and parasitism, and for the identification of novel intervention targets against these pathogens. Clearly, the multiomics approach established recently is readily applicable to exploring a wide range of interesting and socioeconomically significant parasitic worms (including also trematodes and cestodes) at the molecular level, and to elucidate host-parasite interactions and disease processes.
Collapse
|
26
|
Lee S, Kim Y, Choi J. Effect of soil microbial feeding on gut microbiome and cadmium toxicity in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109777. [PMID: 31670241 DOI: 10.1016/j.ecoenv.2019.109777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 05/19/2023]
Abstract
Microbial community of an organism plays an important role on its fitness, including stress responses. In this study, we investigated the effect of the culturable subset of soil microbial community (SMB) on the stress response of the soil nematode Caenorhabditis elegans, upon exposure to one of the major soil contaminants, cadmium (Cd). Life history traits and the stress responses to Cd exposure were compared between SMB- and Escherichia coli strain OP50-fed worms. SMB-fed worms showed higher reproduction rates and longer lifespans. Also, the SMB-fed worms showed more tolerant response to Cd exposure. Gene expression profiling suggested that the chemical stress and immune response of worms were boosted upon SMB feeding. Finally, we investigated C. elegans gut microbial communities in the presence and absence of Cd in OP50- and SMB-fed C. elegans. In the OP50-fed worms, changes in microbial community by Cd exposure was severe, whereas in the SMB-fed worms, it was comparatively weak. Our results suggest that the SMB affects the response of C. elegans to Cd exposure and highlight the importance of the gut microbiome in host stress response.
Collapse
Affiliation(s)
- Seungbaek Lee
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Youngho Kim
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, Republic of Korea.
| |
Collapse
|
27
|
Rogers MS, Lipscomb JD. Salicylate 5-Hydroxylase: Intermediates in Aromatic Hydroxylation by a Rieske Monooxygenase. Biochemistry 2019; 58:5305-5319. [PMID: 31066545 PMCID: PMC6856394 DOI: 10.1021/acs.biochem.9b00292] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rieske oxygenases (ROs) catalyze a large range of oxidative chemistry. We have shown that cis-dihydrodiol-forming Rieske dioxygenases first react with their aromatic substrates via an active site nonheme Fe(III)-superoxide; electron transfer from the Rieske cluster then completes the product-forming reaction. Alternatively, two-electron-reduced Fe(III)-peroxo or hydroxo-Fe(V)-oxo activated oxygen intermediates are possible and may be utilized by other ROs to expand the catalytic range. Here, the reaction of a Rieske monooxygenase, salicylate 5-hydroxylase, that does not form a cis-dihydrodiol is examined. Single-turnover kinetic studies show fast binding of salicylate and O2. Transfer of the Rieske electron required to form the gentisate product occurs through bonds over ∼12 Å and must also be very fast. However, the observed rate constant for this reaction is much slower than expected and sensitive to substrate type. This suggests that initial reaction with salicylate occurs using the same Fe(III)-superoxo-level intermediate as Rieske dioxygenases and that this reaction limits the observed rate of electron transfer. A transient intermediate (λmax = 700 nm) with an electron paramagnetic resonance (EPR) at g = 4.3 is observed after the product is formed in the active site. The use of 17O2 (I = 5/2) results in hyperfine broadening of the g = 4.3 signal, showing that gentisate binds to the mononuclear iron via its C5-OH in the intermediate. The chromophore and EPR signal allow study of product release in the catalytic cycle. Comparison of the kinetics of single- and multiple-turnover reactions shows that re-reduction of the metal centers accelerates product release ∼300-fold, providing insight into the regulatory mechanism of ROs.
Collapse
Affiliation(s)
- Melanie S. Rogers
- Department of Biochemistry, Molecular Biology, and Biophysics and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
28
|
Silvestrini MJ, Johnson JR, Kumar AV, Thakurta TG, Blais K, Neill ZA, Marion SW, St Amand V, Reenan RA, Lapierre LR. Nuclear Export Inhibition Enhances HLH-30/TFEB Activity, Autophagy, and Lifespan. Cell Rep 2019; 23:1915-1921. [PMID: 29768192 PMCID: PMC5991088 DOI: 10.1016/j.celrep.2018.04.063] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/30/2018] [Accepted: 04/13/2018] [Indexed: 02/07/2023] Open
Abstract
Transcriptional modulation of the process of autophagy involves the transcription factor HLH-30/TFEB. In order to systematically determine the regulatory network of HLH-30/TFEB, we performed a genome-wide RNAi screen in C. elegans and found that silencing the nuclear export protein XPO-1/XPO1 enhances autophagy by significantly enriching HLH-30 in the nucleus, which is accompanied by proteostatic benefits and improved longevity. Lifespan extension via xpo-1 silencing requires HLH-30 and autophagy, overlapping mechanistically with several established longevity models. Selective XPO1 inhibitors recapitulated the effect on autophagy and life-span observed by silencing xpo-1 and protected ALS-afflicted flies from neurodegeneration. XPO1 inhibition in HeLa cells enhanced TFEB nuclear localization, autophagy, and lysosome biogenesis without affecting mTOR activity, revealing a conserved regulatory mechanism for HLH-30/TFEB. Altogether, our study demonstrates that altering the nuclear export of HLH-30/TFEB can regulate autophagy and establishes the rationale of targeting XPO1 to stimulate autophagy in order to prevent neurodegeneration.
Collapse
Affiliation(s)
- Melissa J Silvestrini
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Joseph R Johnson
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Anita V Kumar
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Tara G Thakurta
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Karine Blais
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Zachary A Neill
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Sarah W Marion
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Victoria St Amand
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Robert A Reenan
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Louis R Lapierre
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
29
|
Zhu Z, Li C, Cheng X, Chen Y, Zhu M, Liu X, Mao S, Qin HM, Lu F. Soluble expression, purification and biochemical characterization of a C-7 cholesterol dehydrogenase from Drosophila melanogaster. Steroids 2019; 152:108495. [PMID: 31521708 DOI: 10.1016/j.steroids.2019.108495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/30/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
The C-7 cholesterol dehydrogenase (NVD), which converts cholesterol to 7-dehydrocholesterol (7-DHC) by 7,8-dehydrogenation, plays a pivotal role in the metabolism of cholesterol and steroid intermediates. The NVD protein was successfully expressed in insect Sf9 cells. To reduce the production cost for industrial application, the NVD gene was cloned into E. coli BL21(DE3). However, the His-tagged NVD protein showed poor binding to Ni-NTA resin, mainly due to the formation of inclusion bodies. Consequently, the expression and solubility of NVD were optimized by respectively fusing it with maltose-binding protein (MBP), glutathione S-transferase (GST), and the nonspecific DNA binding protein from Sulfolobus solfataricus (Sso7d) as solubility tags. The NVD fusion with MBP at the N-terminus and His-tag at the C-terminus achieved a high yield of the soluble enzyme. It was further purified by ion-exchange chromatography with 95.4% purity and with a 10.4% yield. The product 7-DHC, which is produced in a reaction catalyzed by NVD and ferredoxin reductase KshB, was initially identified by GC-MS. An analysis of the amino acid sequence alignment revealed a distinct Rieske-type iron-sulfur cluster and non-heme Fe2+-binding domain, which are evolutionarily conserved among NVD family enzymes.
Collapse
Affiliation(s)
- Zhangliang Zhu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Chao Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Xiaotao Cheng
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Ying Chen
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Menglu Zhu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Xin Liu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China.
| |
Collapse
|
30
|
Honjoh S, Ihara A, Kajiwara Y, Yamamoto T, Nishida E. The Sexual Dimorphism of Dietary Restriction Responsiveness in Caenorhabditis elegans. Cell Rep 2019; 21:3646-3652. [PMID: 29281814 DOI: 10.1016/j.celrep.2017.11.108] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 02/07/2017] [Accepted: 11/29/2017] [Indexed: 12/25/2022] Open
Abstract
Organismal lifespan is highly plastic in response to environmental cues, and dietary restriction (DR) is the most robust way to extend lifespan in various species. Recent studies have shown that sex also is an important factor for lifespan regulation; however, it remains largely unclear how these two factors, food and sex, interact in lifespan regulation. The nematode Caenorhabditis elegans has two sexes, hermaphrodite and male, and only the hermaphrodites are essential for the short-term succession of the species. Here, we report an extreme sexual dimorphism in the responsiveness to DR in C. elegans; the essential hermaphrodites show marked longevity responses to various forms of DR, but the males show few longevity responses and sustain reproductive ability. Our analysis reveals that the sex determination pathway and the steroid hormone receptor DAF-12 regulate the sex-specific DR responsiveness, integrating sex and environmental cues to determine organismal lifespan.
Collapse
Affiliation(s)
- Sakiko Honjoh
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan; International Institute for Integrative Sleep Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Akiko Ihara
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yukiko Kajiwara
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takuya Yamamoto
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan; Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Eisuke Nishida
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
31
|
Farris M, Fang L, Aslamy A, Pineda V. Steroid signaling mediates longevity responses to the eat-2 genetic model of dietary restriction in Caenorhabditis elegans. TRANSLATIONAL MEDICINE OF AGING 2019. [DOI: 10.1016/j.tma.2019.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
32
|
|
33
|
Temperature-dependent vitamin D signaling regulates developmental trajectory associated with diapause in an annual killifish. Proc Natl Acad Sci U S A 2018; 115:12763-12768. [PMID: 30446615 DOI: 10.1073/pnas.1804590115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The mechanisms that integrate environmental signals into developmental programs remain largely uncharacterized. Nuclear receptors (NRs) are ligand-regulated transcription factors that orchestrate the expression of complex phenotypes. The vitamin D receptor (VDR) is an NR activated by 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], a hormone derived from 7-dehydrocholesterol (7-DHC). VDR signaling is best known for regulating calcium homeostasis in mammals, but recent evidence suggests a diversity of uncharacterized roles. In response to incubation temperature, embryos of the annual killifish Austrofundulus limnaeus can develop along two alternative trajectories: active development and diapause. These trajectories diverge early in development, from a biochemical, morphological, and physiological perspective. We manipulated incubation temperature to induce the two trajectories and profiled changes in gene expression using RNA sequencing and weighted gene coexpression network analysis. We report that transcripts involved in 1,25(OH)2D3 synthesis and signaling are expressed in a trajectory-specific manner. Furthermore, exposure of embryos to vitamin D3 analogs and Δ4-dafachronic acid directs continuous development under diapause-inducing conditions. Conversely, blocking synthesis of 1,25(OH)2D3 induces diapause in A. limnaeus and a diapause-like state in zebrafish, suggesting vitamin D signaling is critical for normal vertebrate development. These data support vitamin D signaling as a molecular pathway that can regulate developmental trajectory and metabolic dormancy in a vertebrate. Interestingly, the VDR is homologous to the daf-12 and ecdysone NRs that regulate dormancy in Caenorhabditis elegans and Drosophila We suggest that 7-DHC-derived hormones and their associated NRs represent a conserved pathway for the integration of environmental information into developmental programs associated with life history transitions in animals.
Collapse
|
34
|
Chakraborty J, Suzuki-Minakuchi C, Okada K, Nojiri H. Thermophilic bacteria are potential sources of novel Rieske non-heme iron oxygenases. AMB Express 2017; 7:17. [PMID: 28050858 PMCID: PMC5209329 DOI: 10.1186/s13568-016-0318-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/23/2016] [Indexed: 11/10/2022] Open
Abstract
Rieske non-heme iron oxygenases, which have a Rieske-type [2Fe-2S] cluster and a non-heme catalytic iron center, are an important family of oxidoreductases involved mainly in regio- and stereoselective transformation of a wide array of aromatic hydrocarbons. Though present in all domains of life, the most widely studied Rieske non-heme iron oxygenases are found in mesophilic bacteria. The present study explores the potential for isolating novel Rieske non-heme iron oxygenases from thermophilic sources. Browsing the entire bacterial genome database led to the identification of 45 homologs from thermophilic bacteria distributed mainly among Chloroflexi, Deinococcus-Thermus and Firmicutes. Thermostability, measured according to the aliphatic index, showed higher values for certain homologs compared with their mesophilic relatives. Prediction of substrate preferences indicated that a wide array of aromatic hydrocarbons could be transformed by most of the identified oxygenase homologs. Further identification of putative genes encoding components of a functional oxygenase system opens up the possibility of reconstituting functional thermophilic Rieske non-heme iron oxygenase systems with novel properties.
Collapse
|
35
|
Najle SR, Molina MC, Ruiz-Trillo I, Uttaro AD. Sterol metabolism in the filasterean Capsaspora owczarzaki has features that resemble both fungi and animals. Open Biol 2017; 6:rsob.160029. [PMID: 27383626 PMCID: PMC4967820 DOI: 10.1098/rsob.160029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/15/2016] [Indexed: 11/13/2022] Open
Abstract
Sterols are essential for several physiological processes in most eukaryotes. Sterols regulate membrane homeostasis and participate in different signalling pathways not only as precursors of steroid hormones and vitamins, but also through its role in the formation of lipid rafts. Two major types of sterols, cholesterol and ergosterol, have been described so far in the opisthokonts, the clade that comprise animals, fungi and their unicellular relatives. Cholesterol predominates in derived bilaterians, whereas ergosterol is what generally defines fungi. We here characterize, by a combination of bioinformatic and biochemical analyses, the sterol metabolism in the filasterean Capsaspora owczarzaki, a close unicellular relative of animals that is becoming a model organism. We found that C. owczarzaki sterol metabolism combines enzymatic activities that are usually considered either characteristic of fungi or exclusive to metazoans. Moreover, we observe a differential transcriptional regulation of this metabolism across its life cycle. Thus, C. owczarzaki alternates between synthesizing 7-dehydrocholesterol de novo, which happens at the cystic stage, and the partial conversion—via a novel pathway—of incorporated cholesterol into ergosterol, the characteristic fungal sterol, in the filopodial and aggregative stages.
Collapse
Affiliation(s)
- Sebastián R Najle
- Instituto de Biología Molecular y Celular de Rosario (IBR) CONICET and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda s/n, Rosario S2000FHQ, Argentina Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Passeig Marítim de la Barceloneta 37-49, Barcelona 08003, Catalonia, Spain
| | - María Celeste Molina
- Instituto de Biología Molecular y Celular de Rosario (IBR) CONICET and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda s/n, Rosario S2000FHQ, Argentina
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Passeig Marítim de la Barceloneta 37-49, Barcelona 08003, Catalonia, Spain Departament de Genètica, Universitat de Barcelona, Av. Diagonal, 645, Barcelona 08028, Catalonia, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, Barcelona 08010, Catalonia, Spain
| | - Antonio D Uttaro
- Instituto de Biología Molecular y Celular de Rosario (IBR) CONICET and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda s/n, Rosario S2000FHQ, Argentina
| |
Collapse
|
36
|
Sathapondecha P, Panyim S, Udomkit A. An essential role of Rieske domain oxygenase Neverland in the molting cycle of black tiger shrimp, Penaeus monodon. Comp Biochem Physiol A Mol Integr Physiol 2017; 213:11-19. [PMID: 28842223 DOI: 10.1016/j.cbpa.2017.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/08/2017] [Accepted: 08/15/2017] [Indexed: 11/26/2022]
|
37
|
Lin CT, He CW, Huang TT, Pan CL. Longevity control by the nervous system: Sensory perception, stress response and beyond. TRANSLATIONAL MEDICINE OF AGING 2017. [DOI: 10.1016/j.tma.2017.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
38
|
Watts JL, Ristow M. Lipid and Carbohydrate Metabolism in Caenorhabditis elegans. Genetics 2017; 207:413-446. [PMID: 28978773 PMCID: PMC5629314 DOI: 10.1534/genetics.117.300106] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022] Open
Abstract
Lipid and carbohydrate metabolism are highly conserved processes that affect nearly all aspects of organismal biology. Caenorhabditis elegans eat bacteria, which consist of lipids, carbohydrates, and proteins that are broken down during digestion into fatty acids, simple sugars, and amino acid precursors. With these nutrients, C. elegans synthesizes a wide range of metabolites that are required for development and behavior. In this review, we outline lipid and carbohydrate structures as well as biosynthesis and breakdown pathways that have been characterized in C. elegans We bring attention to functional studies using mutant strains that reveal physiological roles for specific lipids and carbohydrates during development, aging, and adaptation to changing environmental conditions.
Collapse
Affiliation(s)
- Jennifer L Watts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, 8603 Schwerzenbach-Zurich, Switzerland
| |
Collapse
|
39
|
Baxi K, Ghavidel A, Waddell B, Harkness TA, de Carvalho CE. Regulation of Lysosomal Function by the DAF-16 Forkhead Transcription Factor Couples Reproduction to Aging in Caenorhabditis elegans. Genetics 2017; 207:83-101. [PMID: 28696216 PMCID: PMC5586388 DOI: 10.1534/genetics.117.204222] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/03/2017] [Indexed: 02/06/2023] Open
Abstract
Aging in eukaryotes is accompanied by widespread deterioration of the somatic tissue. Yet, abolishing germ cells delays the age-dependent somatic decline in Caenorhabditis elegans In adult worms lacking germ cells, the activation of the DAF-9/DAF-12 steroid signaling pathway in the gonad recruits DAF-16 activity in the intestine to promote longevity-associated phenotypes. However, the impact of this pathway on the fitness of normally reproducing animals is less clear. Here, we explore the link between progeny production and somatic aging and identify the loss of lysosomal acidity-a critical regulator of the proteolytic output of these organelles-as a novel biomarker of aging in C. elegans The increase in lysosomal pH in older worms is not a passive consequence of aging, but instead is timed with the cessation of reproduction, and correlates with the reduction in proteostasis in early adult life. Our results further implicate the steroid signaling pathway and DAF-16 in dynamically regulating lysosomal pH in the intestine of wild-type worms in response to the reproductive cycle. In the intestine of reproducing worms, DAF-16 promotes acidic lysosomes by upregulating the expression of v-ATPase genes. These findings support a model in which protein clearance in the soma is linked to reproduction in the gonad via the active regulation of lysosomal acidification.
Collapse
Affiliation(s)
- Kunal Baxi
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N5E2, Canada
| | - Ata Ghavidel
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N5E2, Canada
| | - Brandon Waddell
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N5E2, Canada
| | - Troy A Harkness
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N5E2, Canada
| | - Carlos E de Carvalho
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N5E2, Canada
| |
Collapse
|
40
|
Specific regulation of thermosensitive lipid droplet fusion by a nuclear hormone receptor pathway. Proc Natl Acad Sci U S A 2017; 114:8841-8846. [PMID: 28760992 DOI: 10.1073/pnas.1704277114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nuclear receptors play important roles in regulating fat metabolism and energy production in humans. The regulatory functions and endogenous ligands of many nuclear receptors are still unidentified, however. Here, we report that CYP-37A1 (ortholog of human cytochrome P450 CYP4V2), EMB-8 (ortholog of human P450 oxidoreductase POR), and DAF-12 (homolog of human nuclear receptors VDR/LXR) constitute a hormone synthesis and nuclear receptor pathway in Caenorhabditis elegans This pathway specifically regulates the thermosensitive fusion of fat-storing lipid droplets. CYP-37A1, together with EMB-8, synthesizes a lipophilic hormone not identical to Δ7-dafachronic acid, which represses the fusion-promoting function of DAF-12. CYP-37A1 also negatively regulates thermotolerance and lifespan at high temperature in a DAF-12-dependent manner. Human CYP4V2 can substitute for CYP-37A1 in C. elegans This finding suggests the existence of a conserved CYP4V2-POR-nuclear receptor pathway that functions in converting multilocular lipid droplets to unilocular ones in human cells; misregulation of this pathway may lead to pathogenic fat storage.
Collapse
|
41
|
Mordvinov VA, Shilov AG, Pakharukova MY. Anthelmintic activity of cytochrome P450 inhibitors miconazole and clotrimazole: in-vitro effect on the liver fluke Opisthorchis felineus. Int J Antimicrob Agents 2017; 50:97-100. [DOI: 10.1016/j.ijantimicag.2017.01.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/16/2016] [Accepted: 01/31/2017] [Indexed: 10/19/2022]
|
42
|
Small-molecule pheromones and hormones controlling nematode development. Nat Chem Biol 2017; 13:577-586. [PMID: 28514418 DOI: 10.1038/nchembio.2356] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/15/2017] [Indexed: 12/21/2022]
Abstract
The existence of small-molecule signals that influence development in Caenorhabditis elegans has been known for several decades, but only in recent years have the chemical structures of several of these signals been established. The identification of these signals has enabled connections to be made between these small molecules and fundamental signaling pathways in C. elegans that influence not only development but also metabolism, fertility, and lifespan. Spurred by these important discoveries and aided by recent advances in comparative metabolomics and NMR spectroscopy, the field of nematode chemistry has the potential to expand dramatically in the coming years. This Perspective will focus on small-molecule pheromones and hormones that influence developmental events in the nematode life cycle (ascarosides, dafachronic acids, and nemamides), will cover more recent work regarding the biosynthesis of these signals, and will explore how the discovery of these signals is transforming our understanding of nematode development and physiology.
Collapse
|
43
|
Hussey R, Stieglitz J, Mesgarzadeh J, Locke TT, Zhang YK, Schroeder FC, Srinivasan S. Pheromone-sensing neurons regulate peripheral lipid metabolism in Caenorhabditis elegans. PLoS Genet 2017; 13:e1006806. [PMID: 28545126 PMCID: PMC5456406 DOI: 10.1371/journal.pgen.1006806] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 06/02/2017] [Accepted: 05/05/2017] [Indexed: 12/03/2022] Open
Abstract
It is now established that the central nervous system plays an important role in regulating whole body metabolism and energy balance. However, the extent to which sensory systems relay environmental information to modulate metabolic events in peripheral tissues has remained poorly understood. In addition, it has been challenging to map the molecular mechanisms underlying discrete sensory modalities with respect to their role in lipid metabolism. In previous work our lab has identified instructive roles for serotonin signaling as a surrogate for food availability, as well as oxygen sensing, in the control of whole body metabolism. In this study, we now identify a role for a pair of pheromone-sensing neurons in regulating fat metabolism in C. elegans, which has emerged as a tractable and highly informative model to study the neurobiology of metabolism. A genetic screen revealed that GPA-3, a member of the Gα family of G proteins, regulates body fat content in the intestine, the major metabolic organ for C. elegans. Genetic and reconstitution studies revealed that the potent body fat phenotype of gpa-3 null mutants is controlled from a pair of neurons called ADL(L/R). We show that cAMP functions as the second messenger in the ADL neurons, and regulates body fat stores via the neurotransmitter acetylcholine, from downstream neurons. We find that the pheromone ascr#3, which is detected by the ADL neurons, regulates body fat stores in a GPA-3-dependent manner. We define here a third sensory modality, pheromone sensing, as a major regulator of body fat metabolism. The pheromone ascr#3 is an indicator of population density, thus we hypothesize that pheromone sensing provides a salient 'denominator' to evaluate the amount of food available within a population and to accordingly adjust metabolic rate and body fat levels. The central nervous system plays a vital role in regulating whole body metabolism and energy balance. However, the precise cellular, genetic and molecular mechanisms underlying these effects remain a major unsolved mystery. C. elegans has emerged as a tractable and highly informative model to study the neurobiology of metabolism. Previously, we have identified instructive roles for serotonin signaling as a surrogate for food availability, as well as oxygen sensing, in the control of whole body metabolism. In our current study we have identified a role for a pair of pheromone-sensing neurons in regulating fat metabolism in C. elegans. cAMP acts as a second messenger in these neurons, and regulates body fat stores via acetylcholine signaling in the nervous system. We find that the population-density-sensing pheromone detected by these neurons regulates body fat stores. Together, we define a third sensory modality, population density sensing, as a major regulator of body fat metabolism.
Collapse
Affiliation(s)
- Rosalind Hussey
- Department of Molecular Medicine and Department of Neuroscience, The Scripps Research Institute, La Jolla, California, United States of America
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jon Stieglitz
- Kellogg School of Science and Technology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jaleh Mesgarzadeh
- Department of Molecular Medicine and Department of Neuroscience, The Scripps Research Institute, La Jolla, California, United States of America
- Department of Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Tiffany T. Locke
- Department of Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Ying K. Zhang
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Frank C. Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Supriya Srinivasan
- Department of Molecular Medicine and Department of Neuroscience, The Scripps Research Institute, La Jolla, California, United States of America
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
44
|
Delaney CE, Chen AT, Graniel JV, Dumas KJ, Hu PJ. A histone H4 lysine 20 methyltransferase couples environmental cues to sensory neuron control of developmental plasticity. Development 2017; 144:1273-1282. [PMID: 28209779 PMCID: PMC5399626 DOI: 10.1242/dev.145722] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/02/2017] [Indexed: 01/23/2023]
Abstract
Animals change developmental fates in response to external cues. In the nematode Caenorhabditis elegans, unfavorable environmental conditions induce a state of diapause known as dauer by inhibiting the conserved DAF-2 insulin-like signaling (ILS) pathway through incompletely understood mechanisms. We have previously established a role for the C. elegans dosage compensation protein DPY-21 in the control of dauer arrest and DAF-2 ILS. Here, we show that the histone H4 lysine 20 methyltransferase SET-4, which also influences dosage compensation, promotes dauer arrest in part by repressing the X-linked ins-9 gene, which encodes a new agonist insulin-like peptide (ILP) expressed specifically in the paired ASI sensory neurons that are required for dauer bypass. ins-9 repression in dauer-constitutive mutants requires DPY-21, SET-4 and the FoxO transcription factor DAF-16, which is the main target of DAF-2 ILS. By contrast, autosomal genes encoding major agonist ILPs that promote reproductive development are not repressed by DPY-21, SET-4 or DAF-16/FoxO. Our results implicate SET-4 as a sensory rheostat that reinforces developmental fates in response to environmental cues by modulating autocrine and paracrine DAF-2 ILS.
Collapse
Affiliation(s)
- Colin E Delaney
- Departments of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Albert T Chen
- Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jacqueline V Graniel
- Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kathleen J Dumas
- Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Patrick J Hu
- Departments of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA .,Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Institute of Gerontology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
45
|
Saito J, Kimura R, Kaieda Y, Nishida R, Ono H. Characterization of candidate intermediates in the Black Box of the ecdysone biosynthetic pathway in Drosophila melanogaster: Evaluation of molting activities on ecdysteroid-defective larvae. JOURNAL OF INSECT PHYSIOLOGY 2016; 93-94:94-104. [PMID: 27662806 DOI: 10.1016/j.jinsphys.2016.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 09/10/2016] [Accepted: 09/19/2016] [Indexed: 06/06/2023]
Abstract
Early steps of the biosynthetic pathway of the insect steroid hormone ecdysone remains the "Black Box" wherein the characteristic ecdysteroid skeleton is built. 7-Dehydrocholesterol (7dC) is the precursor of uncharacterized intermediates in the Black Box. The oxidation step at C-3 has been hypothesized during conversion from 7dC to 3-oxo-2,22,25-trideoxyecdysone, yet 3-dehydroecdysone is undetectable in some insect species. Therefore, we first confirmed that the oxidation at C-3 occurs in the fruitfly, Drosophila melanogaster using deuterium-labeled cholesterol. We next investigated the molting activities of candidate intermediates, including oxidative products of 7dC, by feeding-rescue experiments for Drosophila larvae in which an expression level of a biosynthetic enzyme was knocked down by the RNAi technique. We found that the administration of cholesta-4,7-dien-3-one (3-oxo-Δ4,7C) could overcome the molting arrest of ecdysteroid-defective larvae in which the expression level of neverland was reduced. However, feeding 3-oxo-Δ4,7C to larvae in which the expression levels of shroud and Cyp6t3 were reduced inhibited molting at the first instar stage, suggesting that this steroid could be converted into an ecdysteroid-antagonist in loss of function studies of these biosynthetic enzymes. Administration of the highly conjugated cholesta-4,6,8(14)-trien-3-one, oxidized from 3-oxo-Δ4,7C, did not trigger molting of ecdysteroid-defective larvae. These results suggest that an oxidative product derived from 7dC is converted into ecdysteroids without the formation of this stable conjugated compound. We further found that the 14α-hydroxyl moiety of Δ4-steroids is required to overcome the molting arrest of larvae in loss of function studies of Neverland, Shroud, CYP6T3 or Spookier, suggesting that oxidation at C-14 is indispensable for conversion of these Δ4-steroids into ecdysteroids via 5β-reduction.
Collapse
Affiliation(s)
- Junki Saito
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Ryota Kimura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yuya Kaieda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Ritsuo Nishida
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Hajime Ono
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
46
|
Lifespan-regulating genes in C. elegans. NPJ Aging Mech Dis 2016; 2:16010. [PMID: 28721266 PMCID: PMC5514992 DOI: 10.1038/npjamd.2016.10] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/29/2015] [Accepted: 01/27/2016] [Indexed: 01/20/2023] Open
Abstract
The molecular mechanisms underlying the aging process have garnered much attention in recent decades because aging is the most significant risk factor for many chronic diseases such as type 2 diabetes and cancer. Until recently, the aging process was not considered to be an actively regulated process; therefore, discovering that the insulin/insulin-like growth factor-1 signaling pathway is a lifespan-regulating genetic pathway in Caenorhabditis elegans was a major breakthrough that changed our understanding of the aging process. Currently, it is thought that animal lifespans are influenced by genetic and environmental factors. The genes involved in lifespan regulation are often associated with major signaling pathways that link the rate of aging to environmental factors. Although many of the major mechanisms governing the aging process have been identified from studies in short-lived model organisms such as yeasts, worms and flies, the same mechanisms are frequently observed in mammals, indicating that the genes and signaling pathways that regulate lifespan are highly conserved among different species. This review summarizes the lifespan-regulating genes, with a specific focus on studies in C. elegans.
Collapse
|
47
|
Kaplan REW, Baugh LR. L1 arrest, daf-16/FoxO and nonautonomous control of post-embryonic development. WORM 2016; 5:e1175196. [PMID: 27383290 DOI: 10.1080/21624054.2016.1175196] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 03/31/2016] [Indexed: 10/22/2022]
Abstract
Post-embryonic development is governed by nutrient availability. L1 arrest, dauer formation and aging illustrate how starvation, anticipation of starvation and caloric restriction have profound influence on C. elegans development, respectively. Insulin-like signaling through the Forkhead box O transcription factor daf-16/FoxO regulates each of these processes. We recently reported that ins-4, ins-6 and daf-28 promote L1 development from the intestine and chemosensory neurons, similar to their role in dauer development. daf-16 functions cell-nonautonomously in regulation of L1 arrest, dauer development and aging. Discrepancies in daf-16 sites of action have been reported in each context, but the consensus implicates epidermis, intestine and nervous system. We suggest technical limitations of the experimental approach responsible for discrepant results. Steroid hormone signaling through daf-12/NHR is known to function downstream of daf-16 in control of dauer development, but signaling pathways mediating cell-nonautonomous effects of daf-16 in aging and L1 arrest had not been identified. We recently showed that daf-16 promotes L1 arrest by inhibiting daf-12/NHR and dbl-1/TGF-β Sma/Mab signaling, two pathways that promote L1 development in fed larvae. We will review these results on L1 arrest and speculate on why there are so many signals and signaling centers regulating post-embryonic development.
Collapse
Affiliation(s)
| | - L Ryan Baugh
- Department of Biology, Duke University , Durham, NC, USA
| |
Collapse
|
48
|
Albarqi MMY, Stoltzfus JD, Pilgrim AA, Nolan TJ, Wang Z, Kliewer SA, Mangelsdorf DJ, Lok JB. Regulation of Life Cycle Checkpoints and Developmental Activation of Infective Larvae in Strongyloides stercoralis by Dafachronic Acid. PLoS Pathog 2016; 12:e1005358. [PMID: 26727267 PMCID: PMC4703199 DOI: 10.1371/journal.ppat.1005358] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/02/2015] [Indexed: 12/11/2022] Open
Abstract
The complex life cycle of the parasitic nematode Strongyloides stercoralis leads to either developmental arrest of infectious third-stage larvae (iL3) or growth to reproductive adults. In the free-living nematode Caenorhabditis elegans, analogous determination between dauer arrest and reproductive growth is governed by dafachronic acids (DAs), a class of steroid hormones that are ligands for the nuclear hormone receptor DAF-12. Biosynthesis of DAs requires the cytochrome P450 (CYP) DAF-9. We tested the hypothesis that DAs also regulate S. stercoralis development via DAF-12 signaling at three points. First, we found that 1 μM Δ7-DA stimulated 100% of post-parasitic first-stage larvae (L1s) to develop to free-living adults instead of iL3 at 37°C, while 69.4±12.0% (SD) of post-parasitic L1s developed to iL3 in controls. Second, we found that 1 μM Δ7-DA prevented post-free-living iL3 arrest and stimulated 85.2±16.9% of larvae to develop to free-living rhabditiform third- and fourth-stages, compared to 0% in the control. This induction required 24-48 hours of Δ7-DA exposure. Third, we found that the CYP inhibitor ketoconazole prevented iL3 feeding in host-like conditions, with only 5.6±2.9% of iL3 feeding in 40 μM ketoconazole, compared to 98.8±0.4% in the positive control. This inhibition was partially rescued by Δ7-DA, with 71.2±16.4% of iL3 feeding in 400 nM Δ7-DA and 35 μM ketoconazole, providing the first evidence of endogenous DA production in S. stercoralis. We then characterized the 26 CYP-encoding genes in S. stercoralis and identified a homolog with sequence and developmental regulation similar to DAF-9. Overall, these data demonstrate that DAF-12 signaling regulates S. stercoralis development, showing that in the post-parasitic generation, loss of DAF-12 signaling favors iL3 arrest, while increased DAF-12 signaling favors reproductive development; that in the post-free-living generation, absence of DAF-12 signaling is crucial for iL3 arrest; and that endogenous DA production regulates iL3 activation.
Collapse
Affiliation(s)
- Mennatallah M. Y. Albarqi
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Hollins University, Roanoke, Virginia, United States of America
| | - Jonathan D. Stoltzfus
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Hollins University, Roanoke, Virginia, United States of America
| | - Adeiye A. Pilgrim
- Department of Biology, Hollins University, Roanoke, Virginia, United States of America
| | - Thomas J. Nolan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zhu Wang
- Department of Pharmacology, University of Texas Southwest Medical Center, Dallas, Texas, United States of America
| | - Steven A. Kliewer
- Department of Pharmacology, University of Texas Southwest Medical Center, Dallas, Texas, United States of America
- Department of Molecular Biology, University of Texas Southwest Medical Center, Dallas, Texas, United States of America
| | - David J. Mangelsdorf
- Department of Pharmacology, University of Texas Southwest Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwest Medical Center, Dallas, Texas, United States of America
| | - James B. Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
49
|
Aguilaniu H, Fabrizio P, Witting M. The Role of Dafachronic Acid Signaling in Development and Longevity in Caenorhabditis elegans: Digging Deeper Using Cutting-Edge Analytical Chemistry. Front Endocrinol (Lausanne) 2016; 7:12. [PMID: 26903948 PMCID: PMC4749721 DOI: 10.3389/fendo.2016.00012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/25/2016] [Indexed: 12/05/2022] Open
Abstract
Steroid hormones regulate physiological processes in species ranging from plants to humans. A wide range of steroid hormones exist, and their contributions to processes, such as growth, reproduction, development, and aging, is almost always complex. Understanding the biosynthetic pathways that generate steroid hormones and the signaling pathways that mediate their effects is thus of fundamental importance. In this work, we review recent advances in (i) the biological role of steroid hormones in the roundworm Caenorhabditis elegans and (ii) the development of novel methods to facilitate the detection and identification of these molecules. Our current understanding of steroid signaling in this simple organism serves to illustrate the challenges we face moving forward. First, it seems clear that we have not yet identified all of the enzymes responsible for steroid biosynthesis and/or degradation. Second, perturbation of steroid signaling affects a wide range of phenotypes, and subtly different steroid molecules can have distinct effects. Finally, steroid hormone levels are critically important, and minute variations in quantity can profoundly impact a phenotype. Thus, it is imperative that we develop innovative analytical tools and combine them with cutting-edge approaches including comprehensive and highly selective liquid chromatography coupled to mass spectrometry based on new methods such as supercritical fluid chromatography coupled to mass spectrometry (SFC-MS) if we are to obtain a better understanding of the biological functions of steroid signaling.
Collapse
Affiliation(s)
- Hugo Aguilaniu
- UMR5262, Ecole Normale Supérieure de Lyon, CNRS, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon Claude Bernard, Lyon, France
- *Correspondence: Hugo Aguilaniu,
| | - Paola Fabrizio
- UMR5262, Ecole Normale Supérieure de Lyon, CNRS, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon Claude Bernard, Lyon, France
| | - Michael Witting
- Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
50
|
Mutation of C. elegans demethylase spr-5 extends transgenerational longevity. Cell Res 2015; 26:229-38. [PMID: 26691751 DOI: 10.1038/cr.2015.148] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 09/25/2015] [Accepted: 10/29/2015] [Indexed: 12/26/2022] Open
Abstract
Complex organismal properties such as longevity can be transmitted across generations by non-genetic factors. Here we demonstrate that deletion of the C. elegans histone H3 lysine 4 dimethyl (H3K4me2) demethylase, spr-5, causes a trans-generational increase in lifespan. We identify a chromatin-modifying network, which regulates this lifespan extension. We further show that this trans-generational lifespan extension is dependent on a hormonal signaling pathway involving the steroid dafachronic acid, an activator of the nuclear receptor DAF-12. These findings suggest that loss of the demethylase SPR-5 causes H3K4me2 mis-regulation and activation of a known lifespan-regulating signaling pathway, leading to trans-generational lifespan extension.
Collapse
|