1
|
Sun Y, Wei H, Yu W, Gao H, Li J, Li X, Zhang H, Zhang H, Miao S, Zhao L, Yang R, Xu J, Lu Y, Wei F, Zhou H, Gao D, Jin Y, Zhang L. The actin-binding protein drebrin disrupts NF2-LATS kinases complex assembly to facilitate liver tumorigenesis. Hepatology 2025; 81:1433-1451. [PMID: 39325963 DOI: 10.1097/hep.0000000000001063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/17/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND AND AIMS The Hippo signaling has emerged as a crucial regulator of tissue homeostasis, regeneration, and tumorigenesis, representing a promising therapeutic target. Neurofibromin 2 (NF2), a component of Hippo signaling, is directly linked to human cancers but has been overlooked as a target for cancer therapy. APPROACH AND RESULTS Through a high-content RNA interference genome-wide screen, the actin-binding protein Drebrin (DBN1) has been identified as a novel modulator of YAP localization. Further investigations have revealed that DBN1 directly interacts with NF2, disrupting the activation of large tumor suppressor kinases (LATS1/2) by competing with LATS kinases for NF2 binding. Consequently, DBN1 knockout considerably promotes YAP nuclear exclusion and repression of target gene expression, thereby preventing cell proliferation and liver tumorigenesis. We identified three lysine residues (K238, K248, and K252) essential for DBN1-NF2 interaction and developed a mutant DBN1 (DBN1-3K mut ) that is defective in NF2 binding and incompetent to trigger NF2-dependent YAP activation and tumorigenesis both in vitro and in vivo. Furthermore, BTP2, a DBN1 inhibitor, successfully restored NF2-LATS kinase binding and elicited potent antitumor activity. The combination of sorafenib and BTP2 exerted synergistic inhibitory effects against HCC. CONCLUSIONS Our study identifies a novel DBN1-NF2-LATS axis, and pharmacological inhibition of DBN1 represents a promising alternative intervention targeting the Hippo pathway in cancer treatment.
Collapse
Affiliation(s)
- Yang Sun
- Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Minghang, Shanghai, China
| | - Henan Wei
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wentao Yu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Haoran Gao
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jinhui Li
- HuidaGene Therapeutics Co., Ltd., Shanghai, China
| | - Xiaoyu Li
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Haijiao Zhang
- Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Minghang, Shanghai, China
| | - Haoen Zhang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Sen Miao
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Lihua Zhao
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Ruizeng Yang
- Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Minghang, Shanghai, China
| | - Jinjin Xu
- Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Minghang, Shanghai, China
| | - Yi Lu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fang Wei
- Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Minghang, Shanghai, China
| | - Hu Zhou
- State Key Laboratory of Drug Research, Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Daming Gao
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yunyun Jin
- Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Minghang, Shanghai, China
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Lei Zhang
- Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Minghang, Shanghai, China
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
2
|
Liu OX, Lin LB, Bunk S, Chew T, Wu SK, Motegi F, Low BC. A ZO-2 scaffolding mechanism regulates the Hippo signalling pathway. FEBS J 2025; 292:1587-1601. [PMID: 39462647 DOI: 10.1111/febs.17304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/06/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024]
Abstract
Contact inhibition of proliferation is a critical cell density control mechanism governed by the Hippo signalling pathway. The biochemical signalling underlying cell density-dependent cues regulating Hippo signalling and its downstream effectors, YAP, remains poorly understood. Here, we reveal that the tight junction protein ZO-2 is required for the contact-mediated inhibition of proliferation. We additionally determined that the well-established molecular players of this process, namely Hippo kinase LATS1 and YAP, are regulated by ZO-2 and that the scaffolding function of ZO-2 promotes the interaction with and phosphorylation of YAP by LATS1. Mechanistically, YAP is phosphorylated when ZO-2 brings LATS1 and YAP together via its SH3 and PDZ domains, respectively, subsequently leading to the cytoplasmic retention and inactivation of YAP. In conclusion, we demonstrate that ZO-2 maintains Hippo signalling pathway activation by promoting the stability of LATS1 to inactivate YAP.
Collapse
Affiliation(s)
- Olivia Xuan Liu
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | - Soumya Bunk
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Tiweng Chew
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Selwin K Wu
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Fumio Motegi
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- Temasek Life-Sciences Laboratory, Singapore, Singapore
- Institute for Genetic Medicine, Hokkaido University, Japan
| | - Boon Chuan Low
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- NUS College, National University of Singapore, Singapore
| |
Collapse
|
3
|
Lao Z, Chen X, Pan B, Fang B, Yang W, Qian Y. Pharmacological regulators of Hippo pathway: Advances and challenges of drug development. FASEB J 2025; 39:e70438. [PMID: 40100056 DOI: 10.1096/fj.202401895rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/20/2025]
Abstract
The Hippo signaling pathway is crucial in regulating organ size, tumor progression, tissue regeneration, and bone homeostasis. Inactivation of the Hippo pathway results in the nuclear translocation and activation of YAP/TAZ. This activation not only promotes tumor progression but also enhances tissue regeneration, wound healing, and maintenance of bone stability Although its discovery occurred over two decades ago, developing effective inhibitors or activators for the Hippo pathway remains challenging. Recently, however, the pace of advancements in developing Hippo signaling-related agonists and antagonists has accelerated, with some drugs that target TEAD advancing to clinical trials and showing promise for treating related diseases. This review summarizes the progress in research on Hippo signaling-related agonists and inhibitors, offering an in-depth analysis of their regulatory mechanisms, pharmacological properties, and potential in vivo applications.
Collapse
Affiliation(s)
- Zhaobai Lao
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Xin Chen
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Bin Pan
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Bin Fang
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Wanlei Yang
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Yu Qian
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Li X, Cho YS, Han Y, Zhou M, Liu Y, Yang Y, Zhuo S, Jiang J. The Hippo pathway effector YAP inhibits NF-κB signaling and ccRCC growth by opposing ZHX2. J Biol Chem 2025; 301:108430. [PMID: 40120683 PMCID: PMC12018991 DOI: 10.1016/j.jbc.2025.108430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/07/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025] Open
Abstract
The prevailing view in the cancer field is that Hippo (Hpo) signaling pathway functions as a tumor suppressor pathway by blocking the oncogenic potential of the pathway effectors Yes1-associated transcriptional regulator (YAP)/transcriptional coactivator with PDZ-binding motif. However, YAP can also function as a context-dependent tumor suppressor in several types of cancer including clear cell renal cell carcinomas (ccRCCs). We find that, in addition to inhibiting hypoxia-inducible factor 2α, a major oncogenic driver in Von Hippel-Lindau-/- ccRCC, YAP also blocks nuclear factor κB (NF-κB) signaling in ccRCC to inhibit cancer cell growth under conditions where hypoxia-inducible factor 2α is dispensable. Mechanistically, YAP inhibits the expression of Zinc fingers and homeoboxes 2 (ZHX2), a Von Hippel-Lindau substrate and critical cofactor of NF-κB in ccRCC. Furthermore, YAP competes with ZHX2 for binding to the NF-κB subunit p65. Consequently, elevated nuclear YAP blocks the cooperativity between ZHX2 and the NF-κB subunit p65, leading to diminished NF-κB target gene expression. Pharmacological inhibition of Hpo kinase blocked NF-κB transcriptional program and suppressed ccRCC cell growth, which can be rescued by overexpression of ZHX2 or p65. Our study uncovers a crosstalk between the Hpo and NF-κB/ZHX2 pathways and its involvement in ccRCC growth inhibition, suggesting that targeting the Hpo pathway may provide a therapeutical opportunity for ccRCC treatment.
Collapse
Affiliation(s)
- Xu Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Yong Suk Cho
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Math and Sciences, Tarrant County College-NE Campus, Hurst, Texas, USA
| | - Yuhong Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mengmeng Zhou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yuchen Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Boston, Massachusetts, USA; Dana-Farber/Harvard Cancer Center, Boston, Massachusetts, USA
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Boston, Massachusetts, USA; Dana-Farber/Harvard Cancer Center, Boston, Massachusetts, USA
| | - Shu Zhuo
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jin Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
5
|
Guo P, Wan S, Guan KL. The Hippo pathway: Organ size control and beyond. Pharmacol Rev 2025; 77:100031. [PMID: 40148032 DOI: 10.1016/j.pharmr.2024.100031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 03/29/2025] Open
Abstract
The Hippo signaling pathway is a highly conserved signaling network for controlling organ size, tissue homeostasis, and regeneration. It integrates a wide range of intracellular and extracellular signals, such as cellular energy status, cell density, hormonal signals, and mechanical cues, to modulate the activity of YAP/TAZ transcriptional coactivators. A key aspect of Hippo pathway regulation involves its spatial organization at the plasma membrane, where upstream regulators localize to specific membrane subdomains to regulate the assembly and activation of the pathway components. This spatial organization is critical for the precise control of Hippo signaling, as it dictates the dynamic interactions between pathway components and their regulators. Recent studies have also uncovered the role of biomolecular condensation in regulating Hippo signaling, adding complexity to its control mechanisms. Dysregulation of the Hippo pathway is implicated in various pathological conditions, particularly cancer, where alterations in YAP/TAZ activity contribute to tumorigenesis and drug resistance. Therapeutic strategies targeting the Hippo pathway have shown promise in both cancer treatment, by inhibiting YAP/TAZ signaling, and regenerative medicine, by enhancing YAP/TAZ activity to promote tissue repair. The development of small molecule inhibitors targeting the YAP-TEAD interaction and other upstream regulators offers new avenues for therapeutic intervention. SIGNIFICANCE STATEMENT: The Hippo signaling pathway is a key regulator of organ size, tissue homeostasis, and regeneration, with its dysregulation linked to diseases such as cancer. Understanding this pathway opens new possibilities for therapeutic approaches in regenerative medicine and oncology, with the potential to translate basic research into improved clinical outcomes.
Collapse
Affiliation(s)
- Pengfei Guo
- School of Life Sciences, Westlake University, Hangzhou, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| | - Sicheng Wan
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Kun-Liang Guan
- School of Life Sciences, Westlake University, Hangzhou, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
6
|
Dawson LE, Sekar A, Fulford AD, Lambert RI, Burgess HS, Ribeiro PS. The deubiquitylating enzyme Fat facets promotes Fat signalling and restricts tissue growth. Nat Commun 2025; 16:1938. [PMID: 39994229 PMCID: PMC11850632 DOI: 10.1038/s41467-025-57164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
Tissue growth is regulated by many signals, including polarity cues. The Hippo signalling pathway restricts tissue growth and receives inputs from the planar cell polarity-controlling Fat signalling pathway. The atypical cadherin Fat restricts growth via several mechanisms that ultimately control the activity of the pro-growth transcriptional co-activator Yorkie. Fat signalling activates the Yorkie inhibitory kinase Warts, and modulates the function of the FERM protein Expanded, which promotes Hippo signalling and also directly inhibits Yorkie. Although several Fat pathway activity modulators are known to be involved in ubiquitylation, the role of this post-translational modification in the pathway remains unclear. Moreover, no deubiquitylating enzymes have been described in this pathway. Here, using in vivo RNAi screening, we identify the deubiquitylating enzyme Fat facets as a positive regulator of Fat signalling with roles in tissue growth control. Fat facets interacts genetically and physically with Fat signalling components and regulates Yorkie target gene expression. Thus, we uncover a role for reversible ubiquitylation in the control of Fat signalling and tissue growth regulation.
Collapse
Affiliation(s)
- Lauren E Dawson
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London, UK
| | - Aashika Sekar
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London, UK
| | - Alexander D Fulford
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel I Lambert
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Hannah S Burgess
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Paulo S Ribeiro
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK.
| |
Collapse
|
7
|
Selmi I, Texier M, Aguirrenbegoa M, Merce C, Fraisse-Lepourry L, Mugat B, Mohamed M, Chambeyron S, Cribbs D, Di Stefano L. The histone demethylase dLsd1 regulates organ size by silencing transposable elements. Commun Biol 2025; 8:272. [PMID: 39979483 PMCID: PMC11842725 DOI: 10.1038/s42003-025-07724-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 02/12/2025] [Indexed: 02/22/2025] Open
Abstract
The specific role of chromatin modifying factors in the timely execution of transcriptional changes in gene expression to regulate organ size remains largely unknown. Here, we report that in Drosophila melanogaster depletion of the histone demethylase dLsd1 results in the reduction of wing size. dLsd1 depletion affects cell proliferation and causes an increase in DNA damage and cell death. Mechanistically, we have identified Transposable Elements (TEs) as critical dLsd1 targets for organ size determination. We found that upon dLsd1 loss many TE families are upregulated, and new TE insertions appear. By blocking this new TE activity, we could rescue the wing size phenotype. Collectively, our results reveal that the histone demethylase dLsd1 and maintenance of TE homeostasis are required to ensure proper wing size.
Collapse
Affiliation(s)
- Ines Selmi
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Manuela Texier
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marion Aguirrenbegoa
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Clémentine Merce
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- Telethon Kids Institute, Nedlands, WA, Australia
| | | | - Bruno Mugat
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Mourdas Mohamed
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Séverine Chambeyron
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - David Cribbs
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Luisa Di Stefano
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
8
|
Chen H, Xu Y, Chen D, Xiao D, Yang B, Wang W, Han H. The Hippo pathway promotes platinum-based chemotherapy by inhibiting MTF1-dependent heavy metal response. BMC Cancer 2025; 25:223. [PMID: 39920630 PMCID: PMC11806854 DOI: 10.1186/s12885-025-13661-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/05/2025] [Indexed: 02/09/2025] Open
Abstract
The platinum-based compounds are widely used in treating various types of cancer through their heavy metal component platinum. However, the development of chemoresistance often limits their clinical effectiveness. In this study, we report the roles of heavy metal response and its associated Hippo pathway in regulating platinum-based chemotherapy. Our data show that the MTF1-dependent heavy metal response induces cancer cell resistance to platinum-based compounds both in vitro and in vivo. This resistance is mitigated by Hippo pathway-mediated phosphorylation of MTF1. Moreover, pharmacological activation of the Hippo pathway sensitizes cancer cells to platinum-based compounds. Clinically, lung adenocarcinoma (LUAD) patients with high MTF1 activity exhibit poor overall survival rates, and Hippo pathway inactivation is positively correlated with elevated MTF1 transcriptional activity in platinum-treated LUAD patients. Collectively, our findings not only unveil a critical role of the Hippo-MTF1 pathway in regulating the response to platinum-based chemotherapy, but also suggest new strategies to enhance its efficacy by targeting the heavy metal response.
Collapse
Affiliation(s)
- Hui Chen
- Department of Pathophysiology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, Hubei, China
| | - Yue Xu
- Department of Pathophysiology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, Hubei, China
| | - Dingshan Chen
- Department of Pathophysiology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, Hubei, China
| | - Di Xiao
- Department of Pathophysiology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, Hubei, China
| | - Bing Yang
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA.
| | - Han Han
- Department of Pathophysiology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
9
|
Li X, Cho YS, Han Y, Zhou M, Liu Y, Yang Y, Zhuo S, Jiang J. The Hippo pathway effector YAP inhibits NF-κB signaling and ccRCC growth by opposing ZHX2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.21.600079. [PMID: 38979373 PMCID: PMC11230290 DOI: 10.1101/2024.06.21.600079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The prevailing view in the cancer field is that Hippo signaling pathway functions as a tumor suppressor pathway by blocking the oncogenic potential of the pathway effectors Yes1 associated transcriptional regulator (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ). However, YAP can also function as a context-dependent tumor suppressor in several types of cancer including clear cell renal cell carcinomas (ccRCC). We find that, in additional to inhibiting hypoxia-inducible factor 2α (HIF2α), a major oncogenic driver in Von Hippel-Lindau (VHL)-/- ccRCC, YAP also blocks nuclear factor κB (NF-κB ) signaling in ccRCC to inhibit cancer cell growth under conditions where HIF2α is dispensable. Mechanistically, YAP inhibits the expression of Zinc fingers and homeoboxes 2 (ZHX2), a VHL substrate and critical co-factor of NF-κB in ccRCC. Furthermore, YAP competes with ZHX2 for binding to the NF-κB subunit p65. Consequently, elevated nuclear YAP blocks the cooperativity between ZHX2 and the NF-κB subunit p65, leading to diminished NF-κB target gene expression. Pharmacological inhibition of Hippo kinase blocked NF-κB transcriptional program and suppressed ccRCC cancer cell growth, which can be rescued by overexpression of ZHX2 or p65. Our study uncovers a crosstalk between the Hippo and NF-κB/ZHX2 pathways and its involvement in ccRCC growth inhibition, suggesting that targeting the Hippo pathway may provide a therapeutical opportunity for ccRCC treatment.
Collapse
Affiliation(s)
- Xu Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yong Suk Cho
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Math and Sciences, Tarrant County College-NE Campus, 828 W Harwood Rd, Hurst, TX 76054, USA
| | - Yuhong Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mengmeng Zhou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuchen Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave. Boston, MA 02215, USA
- Harvard Stem Cell Institute, 188 Longwood Ave. Boston, MA 02215, USA
- Dana-Farber/Harvard Cancer Center, 188 Longwood Ave. Boston, MA 02215, USA
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave. Boston, MA 02215, USA
- Harvard Stem Cell Institute, 188 Longwood Ave. Boston, MA 02215, USA
- Dana-Farber/Harvard Cancer Center, 188 Longwood Ave. Boston, MA 02215, USA
| | - Shu Zhuo
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jin Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
10
|
Parisot N, Ribeiro Lopes M, Peignier S, Baa-Puyoulet P, Charles H, Calevro F, Callaerts P. Annotation of transcription factors, chromatin-associated factors, and basal transcription machinery in the pea aphid, Acyrthosiphon pisum, and development of the ATFdb database, a resource for studies of transcriptional regulation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 177:104217. [PMID: 39579797 DOI: 10.1016/j.ibmb.2024.104217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/15/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
The pea aphid, Acyrthosiphon pisum, is an emerging model system in functional and comparative genomics, in part due to the availability of new genomic approaches and the different sequencing and annotation efforts that the community has dedicated to this important crop pest insect. The pea aphid is also used as a model to study fascinating biological traits of aphids, such as their extensive polyphenisms, their bacteriocyte-confined nutritional symbiosis, or their adaptation to the highly unbalanced diet represented by phloem sap. To get insights into the molecular basis of all these processes, it is important to have an appropriate annotation of transcription factors (TFs), which would enable the reconstruction/inference of gene regulatory networks in aphids. Using the latest version of the A. pisum genome assembly and annotation, which represents the first chromosome-level pea aphid genome, we annotated the complete repertoire of A. pisum TFs and complemented this information by annotating genes encoding chromatin-associated and basal transcription machinery proteins. These annotations were done combining information from the model Drosophila melanogaster, for which we also provide a revisited list of these proteins, and de novo prediction. The comparison between the two model systems allowed the identification of major losses or expansions in each genome, while a deeper analysis was made of ZNF TFs (with certain families expanded in the pea aphid), and the Hox gene cluster (showing reorganization in gene position in the pea aphid compared to D. melanogaster). All annotations are available to the community through the Aphid Transcription Factors database (ATFdb), consolidating the various annotations we generated. ATFdb serves as a valuable resource for gene regulation studies in aphids.
Collapse
Affiliation(s)
- Nicolas Parisot
- INSA Lyon, INRAE, BF2I, UMR0203, F-69621, Villeurbanne, France.
| | | | - Sergio Peignier
- INSA Lyon, INRAE, BF2I, UMR0203, F-69621, Villeurbanne, France
| | | | - Hubert Charles
- INSA Lyon, INRAE, BF2I, UMR0203, F-69621, Villeurbanne, France
| | | | - Patrick Callaerts
- KU Leuven, University of Leuven, Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, B-3000, Leuven, Belgium.
| |
Collapse
|
11
|
Wang J, Shen D, Jiang J, Hu L, Fang K, Xie C, Shen N, Zhou Y, Wang Y, Du S, Meng S. Dietary Palmitic Acid Drives a Palmitoyltransferase ZDHHC15-YAP Feedback Loop Promoting Tumor Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409883. [PMID: 39686664 PMCID: PMC11809420 DOI: 10.1002/advs.202409883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Indexed: 12/18/2024]
Abstract
Elevated uptake of saturated fatty acid palmitic acid (PA) is associated with tumor metastasis; however, the precise mechanisms remain partially understood, hindering the development of therapy for PA-driven tumor metastasis. The Hippo-Yes-associated protein (Hippo/YAP) pathway is implicated in cancer progression. Here it is shown that a high-palm oil diet potentiates tumor metastasis in murine xenografts in part through YAP. It is found that the palmitoyltransferase ZDHHC15 is a YAP-regulated gene that forms a feedback loop with YAP. Notably, PA drives the ZDHHC15-YAP feedback loop, thus enforces YAP signaling, and hence promotes tumor metastasis in murine xenografts. In addition, it is shown that ZDHHC15 associates with Kidney and brain protein (KIBRA, also known as WW- and C2 domain-containing protein 1, WWC1), an upstream component of Hippo signaling, and mediates its palmitoylation. KIBRA palmitoylation leads to its degradation and regulates its subcellular localization and activity toward the Hippo/YAP pathway. Moreover, PA enhances KIBRA palmitoylation and degradation. It is further shown that combinatorial targeting of YAP and fatty acid synthesis exhibits augmented effects against metastasis formation in mice fed with a Palm diet. Collectively, these findings uncover a ZDHHC15-YAP feedback loop as a previously unrecognized mechanism underlying PA-promoted tumor metastasis and support targeting YAP and fatty acid synthesis as potential therapeutic targets in PA-driven tumor metastasis.
Collapse
Affiliation(s)
- Jianxin Wang
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Dachuan Shen
- Department of OncologyAffiliated Zhongshan Hospital of Dalian UniversityDalian116001China
| | - Jian Jiang
- Central Hospital of Dalian University of TechnologyDepartment of Spine SurgeryDalian116033China
| | - Lulu Hu
- Department of Laboratory MedicineQingdao Central HospitalUniversity of Health and Rehabilitation Sciences NO.369Dengyun Road, Qingdao National High‐tech Industrial Development ZoneQingdaoChina
| | - Kun Fang
- Central LaboratoryCancer Hospital of China Medical UniversityCancer Hospital of Dalian University of TechnologyLiaoning Cancer Hospital & InstituteShenyang110042China
| | - Chunrui Xie
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Ning Shen
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Yuzhao Zhou
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Yifei Wang
- Department of Obstetrics and GynecologyAffiliated Zhongshan Hospital of Dalian UniversityDalian116001China
| | - Sha Du
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Songshu Meng
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| |
Collapse
|
12
|
Jiang D, Li P, Lu Y, Tao J, Hao X, Wang X, Wu W, Xu J, Zhang H, Li X, Chen Y, Jin Y, Zhang L. A feedback loop between Paxillin and Yorkie sustains Drosophila intestinal homeostasis and regeneration. Nat Commun 2025; 16:570. [PMID: 39794306 PMCID: PMC11724037 DOI: 10.1038/s41467-024-55255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/04/2024] [Indexed: 01/13/2025] Open
Abstract
Balanced self-renewal and differentiation of stem cells are crucial for maintaining tissue homeostasis, but the underlying mechanisms of this process remain poorly understood. Here, from an RNA interference (RNAi) screen in adult Drosophila intestinal stem cells (ISCs), we identify a factor, Pax, which is orthologous to mammalian PXN, coordinates the proliferation and differentiation of ISCs during both normal homeostasis and injury-induced midgut regeneration in Drosophila. Loss of Pax promotes ISC proliferation while suppressing its differentiation into absorptive enterocytes (ECs). Mechanistically, our findings demonstrate that Pax is a conserved target gene of the Hippo signaling pathway in both Drosophila and mammals. Subsequent investigations have revealed Pax interacts with Yki and enhances its cytoplasmic localization, thereby establishing a feedback regulatory mechanism that attenuates Yki activity and ultimately inhibits ISCs proliferation. Additionally, Pax induces the differentiation of ISCs into ECs by activating Notch expression, thus facilitating the differentiation process. Overall, our study highlights Pax as a pivotal component of the Hippo and Notch pathways in regulating midgut homeostasis, shedding light on this growth-related pathway in tissue maintenance and intestinal function.
Collapse
Affiliation(s)
- Dan Jiang
- The Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang, Shanghai, 200240, China
| | - Pengyue Li
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yi Lu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jiaxin Tao
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xue Hao
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaodong Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wei Wu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jinjin Xu
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang, Shanghai, 200240, China
| | - Haoen Zhang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaoyu Li
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yixing Chen
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yunyun Jin
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang, Shanghai, 200240, China.
| | - Lei Zhang
- The Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China.
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang, Shanghai, 200240, China.
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
13
|
Liu M, Xie XJ, Li X, Ren X, Sun JL, Lin Z, Hemba-Waduge RUS, Ji JY. Transcriptional coupling of telomeric retrotransposons with the cell cycle. SCIENCE ADVANCES 2025; 11:eadr2299. [PMID: 39752503 PMCID: PMC11698117 DOI: 10.1126/sciadv.adr2299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025]
Abstract
Unlike most species that use telomerase for telomere maintenance, many dipterans, including Drosophila, rely on three telomere-specific retrotransposons (TRs)-HeT-A, TART, and TAHRE-to form tandem repeats at chromosome ends. Although TR transcription is crucial in their life cycle, its regulation remains poorly understood. This study identifies the Mediator complex, E2F1-Dp, and Scalloped/dTEAD as key regulators of TR transcription. Reducing the activity of the Mediator or Sd/dTEAD increases TR expression and telomere length, while overexpressing E2F1-Dp or depleting Rbf1 stimulates TR transcription. The Mediator and Sd/dTEAD regulate this process through E2F1-Dp. CUT&RUN (Cleavage under targets and release using nuclease) analysis shows direct binding of CDK8, Dp, and Sd/dTEAD to telomeric repeats, with motif enrichment revealing E2F- and TEAD-binding sites. These findings uncover the Mediator complex's role in controlling TR transcription and telomere length through E2F1-Dp and Sd, coupling the transcriptional regulation of the TR life cycle with host cell-cycle machinery to protect chromosome ends in Drosophila.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Xiao-Jun Xie
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Xiao Li
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Xingjie Ren
- Institute for Human Genetics and Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jasmine L. Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Zhen Lin
- Department of Pathology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Rajitha-Udakara-Sampath Hemba-Waduge
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Jun-Yuan Ji
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| |
Collapse
|
14
|
Zhu R, Jiao Z, Yu FX. Advances towards potential cancer therapeutics targeting Hippo signaling. Biochem Soc Trans 2024; 52:2399-2413. [PMID: 39641583 DOI: 10.1042/bst20240244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
Decades of research into the Hippo signaling pathway have greatly advanced our understanding of its roles in organ growth, tissue regeneration, and tumorigenesis. The Hippo pathway is frequently dysregulated in human cancers and is recognized as a prominent cancer signaling pathway. Hence, the Hippo pathway represents an ideal molecular target for cancer therapies. This review will highlight recent advancements in targeting the Hippo pathway for cancer treatment and discuss the potential opportunities for developing new therapeutic modalities.
Collapse
Affiliation(s)
- Rui Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhihan Jiao
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
15
|
Liu X, Chen B, Xie F, Wong KY, Cheung AH, Zhang J, Wu Q, Fang C, Hu J, Wang S, Xu D, Chen J, Wang Y, Wong CC, Chen H, Wu WK, Yu J, Chan MW, Tsang CM, Lo KW, Tse GM, To KF, Kang W. FOXP4 Is a Direct YAP1 Target That Promotes Gastric Cancer Stemness and Drives Metastasis. Cancer Res 2024; 84:3574-3588. [PMID: 39047223 PMCID: PMC11532785 DOI: 10.1158/0008-5472.can-23-3074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/16/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The Hippo-YAP1 pathway is an evolutionally conserved signaling cascade that controls organ size and tissue regeneration. Dysregulation of Hippo-YAP1 signaling promotes initiation and progression of several types of cancer, including gastric cancer. As the Hippo-YAP1 pathway regulates expression of thousands of genes, it is important to establish which target genes contribute to the oncogenic program driven by YAP1 to identify strategies to circumvent it. In this study, we identified a vital role of forkhead box protein 4 (FOXP4) in YAP1-driven gastric carcinogenesis by maintaining stemness and promoting peritoneal metastasis. Loss of FOXP4 impaired gastric cancer spheroid formation and reduced stemness marker expression, whereas FOXP4 upregulation potentiated cancer cell stemness. RNA sequencing analysis revealed SOX12 as a downstream target of FOXP4, and functional studies established that SOX12 supports stemness in YAP1-induced carcinogenesis. A small-molecule screen identified 42-(2-tetrazolyl) rapamycin as a FOXP4 inhibitor, and targeting FOXP4 suppressed gastric cancer tumor growth and enhanced the efficacy of 5-fluorouracil chemotherapy in vivo. Collectively, these findings revealed that FOXP4 upregulation by YAP1 in gastric cancer regulates stemness and tumorigenesis by upregulating SOX12. Targeting the YAP1-FOXP4-SOX12 axis represents a potential therapeutic strategy for gastric cancer. Significance: Hippo-YAP1 signaling maintains stemness in gastric cancer by upregulating FOXP4, identifying FOXP4 as a stemness biomarker and therapeutic target that could help improve patient outcomes.
Collapse
Affiliation(s)
- Xiaoli Liu
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, Shenzhen, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, Shenzhen, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, Shenzhen, China
| | - Kit Yee Wong
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Alvin H.K. Cheung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jinglin Zhang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Qian Wu
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Canbin Fang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jintao Hu
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Shouyu Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Dazhi Xu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianwu Chen
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Yuzhi Wang
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Chi Chun Wong
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Huarong Chen
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - William K.K. Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Michael W.Y. Chan
- Department of Life Science, National Chung Cheng University, Chiayi, Taiwan
| | - Chi Man Tsang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary M.K. Tse
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
16
|
Tang Y, Chen F, Fang G, Zhang H, Zhang Y, Zhu H, Zhang X, Han Y, Cao Z, Guo F, Wang W, Ye D, Ju J, Tan L, Li C, Zhao Y, Zhou Z, An L, Jiao S. A cofactor-induced repressive type of transcription factor condensation can be induced by synthetic peptides to suppress tumorigenesis. EMBO J 2024; 43:5586-5612. [PMID: 39358623 PMCID: PMC11574045 DOI: 10.1038/s44318-024-00257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 08/23/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Transcriptional factors (TFs) act as key determinants of cell death and survival by differentially modulating gene expression. Here, we identified many TFs, including TEAD4, that form condensates in stressed cells. In contrast to YAP-induced transcription-activating condensates of TEAD4, we found that co-factors such as VGLL4 and RFXANK alternatively induced repressive TEAD4 condensates to trigger cell death upon glucose starvation. Focusing on VGLL4, we demonstrated that heterotypic interactions between TEAD4 and VGLL4 favor the oligomerization and assembly of large TEAD4 condensates with a nonclassical inhibitory function, i.e., causing DNA/chromatin to be aggregated and entangled, which eventually impede gene expression. Based on these findings, we engineered a peptide derived from the TEAD4-binding motif of VGLL4 to selectively induce TEAD4 repressive condensation. This "glue" peptide displayed a strong antitumor effect in genetic and xenograft mouse models of gastric cancer via inhibition of TEAD4-related gene transcription. This new type of repressive TF phase separation exemplifies how cofactors can orchestrate opposite functions of a given TF, and offers potential new antitumor strategies via artificial induction of repressive condensation.
Collapse
Grants
- 2020YFA0803200 MOST | National Key Research and Development Program of China (NKPs)
- 2023YFC2505903 MOST | National Key Research and Development Program of China (NKPs)
- 32270747,92168116, 22077002, 82222052 MOST | National Natural Science Foundation of China (NSFC)
- 32200567, 31930026, 82150112 MOST | National Natural Science Foundation of China (NSFC)
- 32070710, 82372613 MOST | National Natural Science Foundation of China (NSFC)
- 82361168638, 32170706, 82002493 MOST | National Natural Science Foundation of China (NSFC)
- 22ZR1448100, 22QA1407200, 23ZR1448900 STCSM | Natural Science Foundation of Shanghai Municipality ()
- 22QA1407300, 23ZR1480400, 23YF1432900 STCSM | Natural Science Foundation of Shanghai Municipality ()
- STCSM | Natural Science Foundation of Shanghai Municipality (上海市自然科学基金)
Collapse
Affiliation(s)
- Yang Tang
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Fan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Gemin Fang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Hui Zhang
- Department of General Surgery, Hua'shan Hospital, Fudan University Shanghai Medical College, Shanghai, 200040, China
| | - Yanni Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Hanying Zhu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xinru Zhang
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yi Han
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhifa Cao
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Fenghua Guo
- Department of General Surgery, Hua'shan Hospital, Fudan University Shanghai Medical College, Shanghai, 200040, China
| | - Wenjia Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Dan Ye
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Junyi Ju
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Lijie Tan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Chuanchuan Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Liwei An
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
17
|
Umegaki T, Moriizumi H, Ogushi F, Takekawa M, Suzuki T. Molecular dynamics simulations of a multicellular model with cell-cell interactions and Hippo signaling pathway. PLoS Comput Biol 2024; 20:e1012536. [PMID: 39527559 PMCID: PMC11554158 DOI: 10.1371/journal.pcbi.1012536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
The transcriptional coactivator Yes-associated protein (YAP)/transcriptional co-activator with PDZ binding motif (TAZ) induces cell proliferation through nuclear localization at low cell density. Conversely, at extremely high cell density, the Hippo pathway, which regulates YAP/TAZ, is activated. This activation leads to the translocation of YAP/TAZ into the cytoplasm, resulting in cell cycle arrest. Various cancer cells have several times more YAP/TAZ than normal cells. However, it is not entirely clear whether this several-fold increase in YAP/TAZ alone is sufficient to overcome proliferation inhibition (contact inhibition) under high-density conditions, thereby allowing continuous proliferation. In this study, we construct a three-dimensional (3D) mathematical model of cell proliferation incorporating the Hippo-YAP/TAZ pathway. Herein, a significant innovation in our approach is the introduction of a novel modeling component that inputs cell density, which reflects cell dynamics, into the Hippo pathway and enables the simulation of cell proliferation as the output response. We assume such 3D model with cell-cell interactions by solving reaction and molecular dynamics (MD) equations by applying adhesion and repulsive forces that act between cells and frictional forces acting on each cell. We assume Lennard-Jones (12-6) potential with a softcore character so that each cell secures its exclusive domain. We set cell cycles composed of mitotic and cell growth phases in which cells divide and grow under the influence of cell kinetics. We perform mathematical simulations at various YAP/TAZ levels to investigate the extent of YAP/TAZ increase required for sustained proliferation at high density. The results show that a twofold increase in YAP/TAZ levels of cancer cells was sufficient to evade cell cycle arrest compared to normal cells, enabling cells to continue proliferating even under high-density conditions. Finally, this mathematical model, which incorporates cell-cell interactions and the Hippo-YAP/TAZ pathway, may be applicable for evaluating cancer malignancy based on YAP/TAZ levels, developing drugs to suppress the abnormal proliferation of cancer cells, and determining appropriate drug dosages. The source codes are freely available.
Collapse
Affiliation(s)
- Toshihito Umegaki
- The Center for Mathematical Modeling and Data Science, Osaka University, Osaka, Japan
| | - Hisashi Moriizumi
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Fumiko Ogushi
- Faculty of Mathematical Informatics, Meiji Gakuin University, Tokyo, Japan
| | | | - Takashi Suzuki
- The Center for Mathematical Modeling and Data Science, Osaka University, Osaka, Japan
| |
Collapse
|
18
|
Palanivel C, Somers TN, Gabler BM, Chen Y, Zeng Y, Cox JL, Seshacharyulu P, Dong J, Yan Y, Batra SK, Ouellette MM. Rac1 GTPase Regulates the βTrCP-Mediated Proteolysis of YAP Independently of the LATS1/2 Kinases. Cancers (Basel) 2024; 16:3605. [PMID: 39518045 PMCID: PMC11545309 DOI: 10.3390/cancers16213605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Oncogenic mutations in the KRAS gene are detected in >90% of pancreatic cancers (PC). In genetically engineered mouse models of PC, oncogenic KRAS drives the formation of precursor lesions and their progression to invasive PC. The Yes-associated Protein (YAP) is a transcriptional coactivator required for transformation by the RAS oncogenes and the development of PC. In Ras-driven tumors, YAP can also substitute for oncogenic KRAS to drive tumor survival after the repression of the oncogene. Ras oncoproteins exert their transforming properties through their downstream effectors, including the PI3K kinase, Rac1 GTPase, and MAPK pathways. Methods: To identify Ras effectors that regulate YAP, YAP levels were measured in PC cells exposed to inhibitors of oncogenic K-Ras and its effectors. Results: In PC cells, the inhibition of Rac1 leads to a time-dependent decline in YAP protein, which could be blocked by proteosome inhibitor MG132. This YAP degradation after Rac1 inhibition was observed in a range of cell lines using different Rac1 inhibitors, Rac1 siRNA, or expression of dominant negative Rac1T17N mutant. Several E3 ubiquitin ligases, including SCFβTrCP, regulate YAP protein stability. To be recognized by this ligase, the βTrCP degron of YAP (amino acid 383-388) requires its phosphorylation by casein kinase 1 at Ser384 and Ser387, but these events must first be primed by the phosphorylation of Ser381 by LATS1/2. Using Flag-tagged mutants of YAP, we show that YAP degradation after Rac1 inhibition requires the integrity of this degron and is blocked by the silencing of βTrCP1/2 and by the inhibition of casein kinase 1. Unexpectedly, YAP degradation after Rac1 inhibition was still observed after the silencing of LATS1/2 or in cells carrying a LATS1/2 double knockout. Conclusions: These results reveal Rac1 as an oncogenic KRAS effector that contributes to YAP stabilization in PC cells. They also show that this regulation of YAP by Rac1 requires the SCFβTrCP ligase but occurs independently of the LATS1/2 kinases.
Collapse
Affiliation(s)
- Chitra Palanivel
- Department Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (T.N.S.); (B.M.G.)
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Tabbatha N. Somers
- Department Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (T.N.S.); (B.M.G.)
| | - Bailey M. Gabler
- Department Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (T.N.S.); (B.M.G.)
| | - Yuanhong Chen
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (Y.C.); (Y.Z.); (J.D.)
| | - Yongji Zeng
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (Y.C.); (Y.Z.); (J.D.)
| | - Jesse L. Cox
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (S.K.B.)
| | - Jixin Dong
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (Y.C.); (Y.Z.); (J.D.)
| | - Ying Yan
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (S.K.B.)
| | - Michel M. Ouellette
- Department Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (T.N.S.); (B.M.G.)
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (S.K.B.)
| |
Collapse
|
19
|
Li Z, Lin J, Wu J, Suo J, Wang Z. The Hippo signalling pathway in bone homeostasis: Under the regulation of mechanics and aging. Cell Prolif 2024; 57:e13652. [PMID: 38700015 PMCID: PMC11471399 DOI: 10.1111/cpr.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
The Hippo signalling pathway is a conserved kinase cascade that orchestrates diverse cellular processes, such as proliferation, apoptosis, lineage commitment and stemness. With the onset of society ages, research on skeletal aging-mechanics-bone homeostasis has exploded. In recent years, aging and mechanical force in the skeletal system have gained groundbreaking research progress. Under the regulation of mechanics and aging, the Hippo signalling pathway has a crucial role in the development and homeostasis of bone. We synthesize the current knowledge on the role of the Hippo signalling pathway, particularly its downstream effectors yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), in bone homeostasis. We discuss the regulation of the lineage specification and function of different skeletal cell types by the Hippo signalling pathway. The interactions of the Hippo signalling pathway with other pathways, such as Wnt, transforming growth factor beta and nuclear factor kappa-B, are also mentioned because of their importance for modulating bone homeostasis. Furthermore, YAP/TAZ have been extensively studied as mechanotransducers. Due to space limitations, we focus on reviewing how mechanical forces and aging influence cell fate, communications and homeostasis through a dysregulated Hippo signalling pathway.
Collapse
Affiliation(s)
- Zhengda Li
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Jing'an District Central HospitalFudan UniversityShanghaiChina
| | - Junqing Lin
- Institute of Microsurgery on Extremities, and Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine ShanghaiShanghaiChina
| | - Jing Wu
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Jing'an District Central HospitalFudan UniversityShanghaiChina
| | - Jinlong Suo
- Institute of Microsurgery on Extremities, and Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine ShanghaiShanghaiChina
| | - Zuoyun Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Jing'an District Central HospitalFudan UniversityShanghaiChina
| |
Collapse
|
20
|
Zhai C, Wang Y, Qi S, Yang M, Wu S. Ca 2+-calpains axis regulates Yki stability and activity in Drosophila. J Genet Genomics 2024; 51:1020-1029. [PMID: 38663479 DOI: 10.1016/j.jgg.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 06/01/2024]
Abstract
Yorkie (Yki) is a key effector of the Hippo pathway that activates the expression of targets by associating with the transcription factor Scalloped. Various upstream signals, such as cell polarity and mechanical cues, control transcriptional programs by regulating Yki activity. Searching for Yki regulatory factors has far-reaching significance for studying the Hippo pathway in development and human diseases. In this study, we identify Calpain-A (CalpA) and Calpain-B (CalpB), two calcium (Ca2+)-dependent modulatory proteases of the calpain family, as critical regulators of Yki in Drosophila that interact with Yki, respectively. Ca2+ induces Yki cleavage in a CalpA/CalpB-dependent manner, and the protease activity of CalpA/CalpB is pivotal for the cleavage. Furthermore, overexpression of CalpA or CalpB in Drosophila partially restores the large wing phenotype caused by Yki overexpression, and F98 of Yki is an important cleavage site by the Ca2+-calpains axis. Our study uncovers a unique mechanism whereby the Ca2+-calpain axis modulates Yki activity through protein cleavage.
Collapse
Affiliation(s)
- Chaojun Zhai
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunfeng Wang
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shenao Qi
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Muhan Yang
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shian Wu
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
21
|
Bhattacharya R, Kumari J, Banerjee S, Tripathi J, Parihar SS, Mohan N, Sinha P. Hippo effector, Yorkie, is a tumor suppressor in select Drosophila squamous epithelia. Proc Natl Acad Sci U S A 2024; 121:e2319666121. [PMID: 39288176 PMCID: PMC11441523 DOI: 10.1073/pnas.2319666121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Mammalian Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) and Drosophila Yorkie (Yki) are transcription cofactors of the highly conserved Hippo signaling pathway. It has been long assumed that the YAP/TAZ/Yki signaling drives cell proliferation during organ growth. However, its instructive role in regulating developmentally programmed organ growth, if any, remains elusive. Out-of-context gain of YAP/TAZ/Yki signaling often turns oncogenic. Paradoxically, mechanically strained, and differentiated squamous epithelia display developmentally programmed constitutive nuclear YAP/TAZ/Yki signaling. The unknown, therefore, is how a growth-promoting YAP/TAZ/Yki signaling restricts proliferation in differentiated squamous epithelia. Here, we show that reminiscent of a tumor suppressor, Yki negatively regulates the cell growth-promoting PI3K/Akt/TOR signaling in the squamous epithelia of Drosophila tubular organs. Thus, downregulation of Yki signaling in the squamous epithelium of the adult male accessory gland (MAG) up-regulates PI3K/Akt/TOR signaling, inducing cell hypertrophy, exit from their cell cycle arrest, and, finally, culminating in squamous cell carcinoma (SCC). Thus, blocking PI3K/Akt/TOR signaling arrests Yki loss-induced MAG-SCC. Further, MAG-SCCs, like other lethal carcinomas, secrete a cachectin, Impl2-the Drosophila homolog of mammalian IGFBP7-inducing cachexia and shortening the lifespan of adult males. Moreover, in the squamous epithelium of other tubular organs, like the dorsal trunk of larval tracheal airways or adult Malpighian tubules, downregulation of Yki signaling triggers PI3K/Akt/TOR-induced cell hypertrophy. Our results reveal that Yki signaling plays an instructive, antiproliferative role in the squamous epithelia of tubular organs.
Collapse
Affiliation(s)
- Rachita Bhattacharya
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Jaya Kumari
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Shweta Banerjee
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Jyoti Tripathi
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Saurabh Singh Parihar
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Nitin Mohan
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Pradip Sinha
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| |
Collapse
|
22
|
Mitchell KA, Vissers JHA, Pojer JM, Brooks E, Hilmi AJS, Papenfuss AT, Schröder J, Harvey KF. The JNK and Hippo pathways control epithelial integrity and prevent tumor initiation by regulating an overlapping transcriptome. Curr Biol 2024; 34:3966-3982.e7. [PMID: 39146938 DOI: 10.1016/j.cub.2024.07.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 06/07/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024]
Abstract
Epithelial organs maintain their integrity and prevent tumor initiation by actively removing defective cells, such as those that have lost apicobasal polarity. Here, we identify how transcription factors of two key signaling pathways-Jun-N-terminal kinase (JNK) and Hippo-regulate epithelial integrity by controlling transcription of an overlapping set of target genes. Targeted DamID experiments reveal that, in proliferating cells of the Drosophila melanogaster eye, the AP-1 transcription factor Jun and the Hippo pathway transcription regulators Yorkie and Scalloped bind to a common suite of target genes that promote organ growth. In defective neoplastic cells, AP-1 transcription factors repress transcription of growth genes together with the C-terminal binding protein (CtBP) co-repressor. If gene repression by AP-1/CtBP fails, neoplastic tumor growth ensues, driven by Yorkie/Scalloped. Thus, AP-1/CtBP eliminates defective cells and prevents tumor initiation by acting in parallel to Yorkie/Scalloped to repress expression of a shared transcriptome. These findings shed new light on the maintenance of epithelial integrity and tumor suppression.
Collapse
Affiliation(s)
- Katrina A Mitchell
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Joseph H A Vissers
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Jonathan M Pojer
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Elliot Brooks
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Abdul Jabbar Saiful Hilmi
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Anthony T Papenfuss
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Walter and Eliza Hall Institute, Parkville, VIC 3010, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jan Schröder
- Walter and Eliza Hall Institute, Parkville, VIC 3010, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
23
|
Sun X, Zhou D, Sun Y, Zhao Y, Deng Y, Pang X, Liu Q, Zhou Z. Oxidative stress reprograms the transcriptional coactivator Yki to suppress cell proliferation. Cell Rep 2024; 43:114584. [PMID: 39106181 DOI: 10.1016/j.celrep.2024.114584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/09/2024] Open
Abstract
The transcriptional coactivator Yorkie (Yki) regulates organ size by promoting cell proliferation. It is unclear how cells control Yki activity when exposed to harmful stimuli such as oxidative stress. In this study, we show that oxidative stress inhibits the binding of Yki to Scalloped (Sd) but promotes the interaction of Yki with another transcription factor, forkhead box O (Foxo), ultimately leading to a halt in cell proliferation. Mechanistically, Foxo normally exhibits a low binding affinity for Yki, allowing Yki to form a complex with Sd and activate proliferative genes. Under oxidative stress, Usp7 deubiquitinates Foxo to promote its interaction with Yki, thereby activating the expression of proliferation suppressors. Finally, we show that Yki is essential for Drosophila survival under oxidative stress. In summary, these findings suggest that oxidative stress reprograms Yki from a proliferation-promoting factor to a proliferation suppressor, forming a self-protective mechanism.
Collapse
Affiliation(s)
- Xiaohan Sun
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Dafa Zhou
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yuanfei Sun
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yunhe Zhao
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yanran Deng
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Xiaolin Pang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Qingxin Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Zizhang Zhou
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
24
|
Singh S, Bernal Astrain G, Hincapie AM, Goudreault M, Smith MJ. Complex interplay between RAS GTPases and RASSF effectors regulates subcellular localization of YAP. EMBO Rep 2024; 25:3574-3600. [PMID: 39009833 PMCID: PMC11316025 DOI: 10.1038/s44319-024-00203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
RAS GTPases bind effectors to convert upstream cues to changes in cellular function. Effectors of classical H/K/NRAS are defined by RBD/RA domains which recognize the GTP-bound conformation of these GTPases, yet the specificity of RBD/RAs for over 160 RAS superfamily proteins remains poorly explored. We have systematically mapped interactions between BRAF and four RASSF effectors, the largest family of RA-containing proteins, with all RAS, RHO and ARF small GTPases. 39 validated complexes reveal plasticity in RASSF binding, while BRAF demonstrates tight specificity for classical H/K/NRAS. Complex between RASSF5 and diverse RAS GTPases at the plasma membrane can activate Hippo signalling and sequester YAP in the cytosol. RASSF8 undergoes liquid-liquid phase separation and resides in YAP-associated membraneless condensates, which also engage several RAS and RHO GTPases. The poorly studied RASSF3 has been identified as a first potential effector of mitochondrial MIRO proteins, and its co-expression with these GTPases impacts mitochondria and peroxisome distribution. These data reveal the complex nature of GTPase-effector interactions and show their systematic elucidation can reveal completely novel and biologically relevant cellular processes.
Collapse
Affiliation(s)
- Swati Singh
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Gabriela Bernal Astrain
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Ana Maria Hincapie
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Marilyn Goudreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Matthew J Smith
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
25
|
Moure CJ, Vara B, Cheng MM, Sondey C, Muise E, Park E, Vela Ramirez JE, Su D, D'Souza S, Yan Q, Yeung CS, Zhang M, Mansueto MS, Linn D, Buchanan M, Foti R, DiMauro E, Long B, Simov V, Barry ER. Activation of Hepatocyte Growth Factor/MET Signaling as a Mechanism of Acquired Resistance to a Novel YAP1/TEAD Small Molecule Inhibitor. Mol Cancer Ther 2024; 23:1095-1108. [PMID: 38691847 DOI: 10.1158/1535-7163.mct-23-0538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/21/2023] [Accepted: 03/04/2024] [Indexed: 05/03/2024]
Abstract
Many tumor types harbor alterations in the Hippo pathway, including mesothelioma, where a high percentage of cases are considered YAP1/TEAD dependent. Identification of autopalmitoylation sites in the hydrophobic palmitate pocket of TEADs, which may be necessary for YAP1 protein interactions, has enabled modern drug discovery platforms to generate compounds that allosterically inhibit YAP1/TEAD complex formation and transcriptional activity. We report the discovery and characterization of a novel YAP1/TEAD inhibitor MRK-A from an aryl ether chemical series demonstrating potent and specific inhibition of YAP1/TEAD activity. In vivo, MRK-A showed a favorable tolerability profile in mice and demonstrated pharmacokinetics suitable for twice daily oral dosing in preclinical efficacy studies. Importantly, monotherapeutic targeting of YAP1/TEAD in preclinical models generated regressions in a mesothelioma CDX model; however, rapid resistance to therapy was observed. RNA-sequencing of resistant tumors revealed mRNA expression changes correlated with the resistance state and a marked increase of hepatocyte growth factor (HGF) expression. In vitro, exogenous HGF was able to fully rescue cytostasis induced by MRK-A in mesothelioma cell lines. In addition, co-administration of small molecule inhibitors of the MET receptor tyrosine kinase suppressed the resistance generating effect of HGF on MRK-A induced growth inhibition. In this work, we report the structure and characterization of MRK-A, demonstrating potent and specific inhibition of YAP1/TAZ-TEAD-mediated transcriptional responses, with potential implications for treating malignancies driven by altered Hippo signaling, including factors resulting in acquired drug resistance.
Collapse
Affiliation(s)
- Casey J Moure
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | - Brandon Vara
- Department of Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey
| | - Mangeng M Cheng
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | - Christopher Sondey
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | - Eric Muise
- Department of Data and Genome Sciences, Merck & Co., Inc., Rahway, New Jersey
| | - Eunsil Park
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | | | - Dan Su
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | - Shanti D'Souza
- Department of Discovery Oncology, Merck & Co., Inc., Rahway, New Jersey
| | - Qingyun Yan
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | - Charles S Yeung
- Department of Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey
| | - Minjia Zhang
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | - My Sam Mansueto
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | - Doug Linn
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | - Mark Buchanan
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | - Robert Foti
- Department of PPDM, Merck & Co., Inc., Rahway, New Jersey
| | - Erin DiMauro
- Department of Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey
| | - Brian Long
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| | - Vladimir Simov
- Department of Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey
| | - Evan R Barry
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey
| |
Collapse
|
26
|
Manning SA, Kroeger B, Deng Q, Brooks E, Fonseka Y, Hinde E, Harvey KF. The Drosophila Hippo pathway transcription factor Scalloped and its co-factors alter each other's chromatin binding dynamics and transcription in vivo. Dev Cell 2024; 59:1640-1654.e5. [PMID: 38670104 DOI: 10.1016/j.devcel.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/12/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
The Hippo pathway is an important regulator of organ growth and cell fate. The major mechanism by which Hippo is known to control transcription is by dictating the nucleo-cytoplasmic shuttling rate of Yorkie, a transcription co-activator, which promotes transcription with the DNA binding protein Scalloped. The nuclear biophysical behavior of Yorkie and Scalloped, and whether this is regulated by the Hippo pathway, remains unexplored. Using multiple live-imaging modalities on Drosophila tissues, we found that Scalloped interacts with DNA on a broad range of timescales, and enrichment of Scalloped at sites of active transcription is mediated by longer DNA dwell times. Further, Yorkie increased Scalloped's DNA dwell time, whereas the repressors Nervous fingers 1 (Nerfin-1) and Tondu-domain-containing growth inhibitor (Tgi) decreased it. Therefore, the Hippo pathway influences transcription not only by controlling nuclear abundance of Yorkie but also by modifying the DNA binding kinetics of the transcription factor Scalloped.
Collapse
Affiliation(s)
- Samuel A Manning
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Benjamin Kroeger
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Qiji Deng
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Elliot Brooks
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Yoshana Fonseka
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Elizabeth Hinde
- School of Physics, University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Pharmacology, Bio21 Institute, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Kieran F Harvey
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
27
|
Xue Y, Ruan Y, Wang Y, Xiao P, Xu J. Signaling pathways in liver cancer: pathogenesis and targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:20. [PMID: 38816668 PMCID: PMC11139849 DOI: 10.1186/s43556-024-00184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Liver cancer remains one of the most prevalent malignancies worldwide with high incidence and mortality rates. Due to its subtle onset, liver cancer is commonly diagnosed at a late stage when surgical interventions are no longer feasible. This situation highlights the critical role of systemic treatments, including targeted therapies, in bettering patient outcomes. Despite numerous studies on the mechanisms underlying liver cancer, tyrosine kinase inhibitors (TKIs) are the only widely used clinical inhibitors, represented by sorafenib, whose clinical application is greatly limited by the phenomenon of drug resistance. Here we show an in-depth discussion of the signaling pathways frequently implicated in liver cancer pathogenesis and the inhibitors targeting these pathways under investigation or already in use in the management of advanced liver cancer. We elucidate the oncogenic roles of these pathways in liver cancer especially hepatocellular carcinoma (HCC), as well as the current state of research on inhibitors respectively. Given that TKIs represent the sole class of targeted therapeutics for liver cancer employed in clinical practice, we have particularly focused on TKIs and the mechanisms of the commonly encountered phenomena of its resistance during HCC treatment. This necessitates the imperative development of innovative targeted strategies and the urgency of overcoming the existing limitations. This review endeavors to shed light on the utilization of targeted therapy in advanced liver cancer, with a vision to improve the unsatisfactory prognostic outlook for those patients.
Collapse
Affiliation(s)
- Yangtao Xue
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yeling Ruan
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yali Wang
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Peng Xiao
- Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Junjie Xu
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China.
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China.
- Zhejiang University Cancer Center, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.
| |
Collapse
|
28
|
Li M, Ding W, Deng Y, Zhao Y, Liu Q, Zhou Z. The AAA-ATPase Ter94 regulates wing size in Drosophila by suppressing the Hippo pathway. Commun Biol 2024; 7:533. [PMID: 38710747 PMCID: PMC11074327 DOI: 10.1038/s42003-024-06246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Insect wing development is a fascinating and intricate process that involves the regulation of wing size through cell proliferation and apoptosis. In this study, we find that Ter94, an AAA-ATPase, is essential for proper wing size dependently on its ATPase activity. Loss of Ter94 enables the suppression of Hippo target genes. When Ter94 is depleted, it results in reduced wing size and increased apoptosis, which can be rescued by inhibiting the Hippo pathway. Biochemical experiments reveal that Ter94 reciprocally binds to Mer, a critical upstream component of the Hippo pathway, and disrupts its interaction with Ex and Kib. This disruption prevents the formation of the Ex-Mer-Kib complex, ultimately leading to the inactivation of the Hippo pathway and promoting proper wing development. Finally, we show that hVCP, the human homolog of Ter94, is able to substitute for Ter94 in modulating Drosophila wing size, underscoring their functional conservation. In conclusion, Ter94 plays a positive role in regulating wing size by interfering with the Ex-Mer-Kib complex, which results in the suppression of the Hippo pathway.
Collapse
Affiliation(s)
- Mingming Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Wenhao Ding
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Yanran Deng
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Yunhe Zhao
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Qingxin Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an, China.
| | - Zizhang Zhou
- College of Life Sciences, Shandong Agricultural University, Tai'an, China.
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China.
| |
Collapse
|
29
|
Nita A, Moroishi T. Hippo pathway in cell-cell communication: emerging roles in development and regeneration. Inflamm Regen 2024; 44:18. [PMID: 38566194 PMCID: PMC10986044 DOI: 10.1186/s41232-024-00331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
The Hippo pathway is a central regulator of tissue growth that has been widely studied in mammalian organ development, regeneration, and cancer biology. Although previous studies have convincingly revealed its cell-autonomous functions in controlling cell fate, such as cell proliferation, survival, and differentiation, accumulating evidence in recent years has revealed its non-cell-autonomous functions. This pathway regulates cell-cell communication through direct interactions, soluble factors, extracellular vesicles, and the extracellular matrix, providing a range of options for controlling diverse biological processes. Consequently, the Hippo pathway not only dictates the fate of individual cells but also triggers multicellular responses involving both tissue-resident cells and infiltrating immune cells. Here, we have highlighted the recent understanding of the molecular mechanisms by which the Hippo pathway controls cell-cell communication and discuss its importance in tissue homeostasis, especially in development and regeneration.
Collapse
Affiliation(s)
- Akihiro Nita
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Toshiro Moroishi
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan.
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
30
|
Guo Z, Guo L. Abnormal activation of RFC3, A YAP1/TEAD downstream target, promotes gastric cancer progression. Int J Clin Oncol 2024; 29:442-455. [PMID: 38383698 DOI: 10.1007/s10147-024-02478-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/11/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Gastric cancer (GC) is a malignant tumor with a high mortality rate, and thus, it is necessary to explore molecular mechanisms underlying its progression. While replication factor C subunit 3 (RFC3) has been demonstrated to function as an oncogene in many cancers, its role in GC remains unclear. METHODS Tumor tissues were collected from clinical GC patients, and the expression of RFC3 was analyzed. NCI-N87 and HGC-27 cells were infected with lentivirus sh-RFC3 to knock down RFC3 expression. RFC3 expression levels were determined, in addition to cell biological behaviors both in vitro and in vivo. The relationship between RFC3 and the YAP1/TEAD signaling pathway was detected by dual luciferase reporter assay. RESULTS RFC3 was upregulated in GC tumor tissues. RFC3 knockdown inhibited cell proliferation, promoted cell apoptosis of GC cells, and suppressed cell migration and invasion. Moreover, depleted RFC3 suppressed tumor growth and metastasis in vivo. Mechanistically, the YAP1/TEAD axis activated RFC3 expression transcriptionally by binding to the RFC3 promoter. CONCLUSIONS RFC3 was transcriptional activated by the YAP1/TEAD signaling pathway, thus promoting GC progression. RFC3 may be a promising therapeutic target for GC.
Collapse
Affiliation(s)
- Zijun Guo
- Department of Operating Room, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, People's Republic of China
| | - Lin Guo
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China.
| |
Collapse
|
31
|
Zhong Z, Jiao Z, Yu FX. The Hippo signaling pathway in development and regeneration. Cell Rep 2024; 43:113926. [PMID: 38457338 DOI: 10.1016/j.celrep.2024.113926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
The Hippo signaling pathway is a central growth control mechanism in multicellular organisms. By integrating diverse mechanical, biochemical, and stress cues, the Hippo pathway orchestrates proliferation, survival, differentiation, and mechanics of cells, which in turn regulate organ development, homeostasis, and regeneration. A deep understanding of the regulation and function of the Hippo pathway therefore holds great promise for developing novel therapeutics in regenerative medicine. Here, we provide updates on the molecular organization of the mammalian Hippo signaling network, review the regulatory signals and functional outputs of the pathway, and discuss the roles of Hippo signaling in development and regeneration.
Collapse
Affiliation(s)
- Zhenxing Zhong
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhihan Jiao
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
32
|
Phillips JE, Pan D. The Hippo kinase cascade regulates a contractile cell behavior and cell density in a close unicellular relative of animals. eLife 2024; 12:RP90818. [PMID: 38517944 PMCID: PMC10959527 DOI: 10.7554/elife.90818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
The genomes of close unicellular relatives of animals encode orthologs of many genes that regulate animal development. However, little is known about the function of such genes in unicellular organisms or the evolutionary process by which these genes came to function in multicellular development. The Hippo pathway, which regulates cell proliferation and tissue size in animals, is present in some of the closest unicellular relatives of animals, including the amoeboid organism Capsaspora owczarzaki. We previously showed that the Capsaspora ortholog of the Hippo pathway nuclear effector Yorkie/YAP/TAZ (coYki) regulates actin dynamics and the three-dimensional morphology of Capsaspora cell aggregates, but is dispensable for cell proliferation control (Phillips et al., 2022). However, the function of upstream Hippo pathway components, and whether and how they regulate coYki in Capsaspora, remained unknown. Here, we analyze the function of the upstream Hippo pathway kinases coHpo and coWts in Capsaspora by generating mutant lines for each gene. Loss of either kinase results in increased nuclear localization of coYki, indicating an ancient, premetazoan origin of this Hippo pathway regulatory mechanism. Strikingly, we find that loss of either kinase causes a contractile cell behavior and increased density of cell packing within Capsaspora aggregates. We further show that this increased cell density is not due to differences in proliferation, but rather actomyosin-dependent changes in the multicellular architecture of aggregates. Given its well-established role in cell density-regulated proliferation in animals, the increased density of cell packing in coHpo and coWts mutants suggests a shared and possibly ancient and conserved function of the Hippo pathway in cell density control. Together, these results implicate cytoskeletal regulation but not proliferation as an ancestral function of the Hippo pathway kinase cascade and uncover a novel role for Hippo signaling in regulating cell density in a proliferation-independent manner.
Collapse
Affiliation(s)
- Jonathan E Phillips
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
33
|
Ju J, Zhang H, Lin M, Yan Z, An L, Cao Z, Geng D, Yue J, Tang Y, Tian L, Chen F, Han Y, Wang W, Zhao S, Jiao S, Zhou Z. The alanyl-tRNA synthetase AARS1 moonlights as a lactyltransferase to promote YAP signaling in gastric cancer. J Clin Invest 2024; 134:e174587. [PMID: 38512451 PMCID: PMC11093599 DOI: 10.1172/jci174587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
Lactylation has been recently identified as a new type of posttranslational modification occurring widely on lysine residues of both histone and nonhistone proteins. The acetyltransferase p300 is thought to mediate protein lactylation, yet the cellular concentration of the proposed lactyl-donor, lactyl-coenzyme A, is about 1,000 times lower than that of acetyl-CoA, raising the question of whether p300 is a genuine lactyltransferase. Here, we report that alanyl-tRNA synthetase 1 (AARS1) moonlights as a bona fide lactyltransferase that directly uses lactate and ATP to catalyze protein lactylation. Among the candidate substrates, we focused on the Hippo pathway, which has a well-established role in tumorigenesis. Specifically, AARS1 was found to sense intracellular lactate and translocate into the nucleus to lactylate and activate the YAP-TEAD complex; and AARS1 itself was identified as a Hippo target gene that forms a positive-feedback loop with YAP-TEAD to promote gastric cancer (GC) cell proliferation. Consistently, the expression of AARS1 was found to be upregulated in GC, and elevated AARS1 expression was found to be associated with poor prognosis for patients with GC. Collectively, this work found AARS1 with lactyltransferase activity in vitro and in vivo and revealed how the metabolite lactate is translated into a signal of cell proliferation.
Collapse
Affiliation(s)
- Junyi Ju
- Department of Medical Ultrasound and Department of Stomatology, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Hui Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Moubin Lin
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zifeng Yan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Liwei An
- Department of Medical Ultrasound and Department of Stomatology, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Zhifa Cao
- Department of Medical Ultrasound and Department of Stomatology, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Dandan Geng
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Jingwu Yue
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Tang
- Department of Medical Ultrasound and Department of Stomatology, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Luyang Tian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fan Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Han
- Department of Medical Ultrasound and Department of Stomatology, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Wenjia Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shimin Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
34
|
Grove M, Kim H, Pang S, Amaya JP, Hu G, Zhou J, Lemay M, Son YJ. TEAD1 is crucial for developmental myelination, Remak bundles, and functional regeneration of peripheral nerves. eLife 2024; 13:e87394. [PMID: 38456457 PMCID: PMC10959528 DOI: 10.7554/elife.87394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/06/2024] [Indexed: 03/09/2024] Open
Abstract
Previously we showed that the hippo pathway transcriptional effectors, YAP and TAZ, are essential for Schwann cells (SCs) to develop, maintain and regenerate myelin . Although TEAD1 has been implicated as a partner transcription factor, the mechanisms by which it mediates YAP/TAZ regulation of SC myelination are unclear. Here, using conditional and inducible knockout mice, we show that TEAD1 is crucial for SCs to develop and regenerate myelin. It promotes myelination by both positively and negatively regulating SC proliferation, enabling Krox20/Egr2 to upregulate myelin proteins, and upregulating the cholesterol biosynthetic enzymes FDPS and IDI1. We also show stage-dependent redundancy of TEAD1 and that non-myelinating SCs have a unique requirement for TEAD1 to enwrap nociceptive axons in Remak bundles. Our findings establish TEAD1 as a major partner of YAP/TAZ in developmental myelination and functional nerve regeneration and as a novel transcription factor regulating Remak bundle integrity.
Collapse
Affiliation(s)
- Matthew Grove
- Department of Neural Sciences, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple UniversityPhiladelphiaUnited States
| | - Hyukmin Kim
- Department of Neural Sciences, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple UniversityPhiladelphiaUnited States
| | - Shuhuan Pang
- Department of Neural Sciences, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple UniversityPhiladelphiaUnited States
| | - Jose Paz Amaya
- Department of Bioengineering, Temple UniversityPhiladelphiaUnited States
| | - Guoqing Hu
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta UniversityAugustaUnited States
| | - Jiliang Zhou
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta UniversityAugustaUnited States
| | - Michel Lemay
- Department of Bioengineering, Temple UniversityPhiladelphiaUnited States
| | - Young-Jin Son
- Department of Neural Sciences, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple UniversityPhiladelphiaUnited States
| |
Collapse
|
35
|
Mannion AJ, Zhao H, Zhang Y, von Wright Y, Bergman O, Roy J, Saharinen P, Holmgren L. Regulation of YAP Promotor Accessibility in Endothelial Mechanotransduction. Arterioscler Thromb Vasc Biol 2024; 44:666-689. [PMID: 38299356 PMCID: PMC10880945 DOI: 10.1161/atvbaha.123.320300] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Endothelial cells are constantly exposed to mechanical forces in the form of fluid shear stress, extracellular stiffness, and cyclic strain. The mechanoresponsive activity of YAP (Yes-associated protein) and its role in vascular development are well described; however, whether changes to transcription or epigenetic regulation of YAP are involved in these processes remains unanswered. Furthermore, how mechanical forces are transduced to the nucleus to drive transcriptional reprogramming in endothelial cells is poorly understood. The YAP target gene, AmotL2 (angiomotin-like 2), is a junctional mechanotransducer that connects cell-cell junctions to the nuclear membrane via the actin cytoskeleton. METHODS We applied mechanical manipulations including shear flow, stretching, and substrate stiffness to endothelial cells to investigate the role of mechanical forces in modulating YAP transcription. Using in vitro and in vivo endothelial depletion of AmotL2, we assess nuclear morphology, chromatin organization (using transposase-accessible chromatin sequencing), and whole-mount immunofluorescent staining of the aorta to determine the regulation and functionality of YAP. Finally, we use genetic and chemical inhibition to uncouple the nuclear-cytoskeletal connection to investigate the role of this pathway on YAP transcription. RESULTS Our results reveal that mechanical forces sensed at cell-cell junctions by the YAP target gene AmotL2 are directly involved in changes in global chromatin accessibility and activity of the histone methyltransferase EZH2, leading to modulation of YAP promotor activity. Functionally, shear stress-induced proliferation of endothelial cells in vivo was reliant on AmotL2 and YAP/TAZ (transcriptional coactivator with PDZ-binding motif) expression. Mechanistically, uncoupling of the nuclear-cytoskeletal connection from junctions and focal adhesions led to altered nuclear morphology, chromatin accessibility, and YAP promotor activity. CONCLUSIONS Our findings reveal a role for AmotL2 and nuclear-cytoskeletal force transmission in modulating the epigenetic and transcriptional regulation of YAP to maintain a mechano-enforced positive feedback loop of vascular homeostasis. These findings may offer an explanation as to the proinflammatory phenotype that leads to aneurysm formation observed in AmotL2 endothelial deletion models.
Collapse
Affiliation(s)
- Aarren J. Mannion
- Departments of Oncology-Pathology (A.J.M., H.Z., Y.Z., L.H.), Karolinska Institute, Stockholm, Sweden
- Department of Cell and Tissue Dynamics, Max Planck Institute of Molecular Biomedicine, Münster, Germany (A.J.M.)
| | - Honglei Zhao
- Departments of Oncology-Pathology (A.J.M., H.Z., Y.Z., L.H.), Karolinska Institute, Stockholm, Sweden
| | - Yuanyuan Zhang
- Departments of Oncology-Pathology (A.J.M., H.Z., Y.Z., L.H.), Karolinska Institute, Stockholm, Sweden
| | - Ylva von Wright
- Wihuri Research Institute, Biomedicum Helsinki, Finland (Y.v.W., P.S.)
| | - Otto Bergman
- Medicine (O.B.), Karolinska Institute, Stockholm, Sweden
| | - Joy Roy
- Molecular Medicine and Surgery (J.R.), Karolinska Institute, Stockholm, Sweden
- Department of Vascular Surgery, Karolinska University Hospital, Stockholm, Sweden (J.R.)
| | - Pipsa Saharinen
- Wihuri Research Institute, Biomedicum Helsinki, Finland (Y.v.W., P.S.)
- Translational Cancer Medicine Program and Department of Biochemistry and Developmental Biology, University of Helsinki, Finland (P.S.)
| | - Lars Holmgren
- Departments of Oncology-Pathology (A.J.M., H.Z., Y.Z., L.H.), Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
36
|
Kroeger B, Manning SA, Fonseka Y, Oorschot V, Crawford SA, Ramm G, Harvey KF. Basal spot junctions of Drosophila epithelial tissues respond to morphogenetic forces and regulate Hippo signaling. Dev Cell 2024; 59:262-279.e6. [PMID: 38134928 DOI: 10.1016/j.devcel.2023.11.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/08/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Organ size is controlled by numerous factors including mechanical forces, which are mediated in part by the Hippo pathway. In growing Drosophila epithelial tissues, cytoskeletal tension influences Hippo signaling by modulating the localization of key pathway proteins to different apical domains. Here, we discovered a Hippo signaling hub at basal spot junctions, which form at the basal-most point of the lateral membranes and resemble adherens junctions in protein composition. Basal spot junctions recruit the central kinase Warts via Ajuba and E-cadherin, which prevent Warts activation by segregating it from upstream Hippo pathway proteins. Basal spot junctions are prominent when tissues undergo morphogenesis and are highly sensitive to fluctuations in cytoskeletal tension. They are distinct from focal adhesions, but the latter profoundly influences basal spot junction abundance by modulating the basal-medial actomyosin network and tension experienced by spot junctions. Thus, basal spot junctions couple morphogenetic forces to Hippo pathway activity and organ growth.
Collapse
Affiliation(s)
- Benjamin Kroeger
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, VIC 3800, Australia; Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Samuel A Manning
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, VIC 3800, Australia; Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Yoshana Fonseka
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Viola Oorschot
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Melbourne, VIC 3168, Australia
| | - Simon A Crawford
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Melbourne, VIC 3168, Australia
| | - Georg Ramm
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Melbourne, VIC 3168, Australia
| | - Kieran F Harvey
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, VIC 3800, Australia; Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia.
| |
Collapse
|
37
|
Grove M, Kim H, Pang S, Amaya JP, Hu G, Zhou J, Lemay M, Son YJ. TEAD1 is crucial for developmental myelination, Remak bundles, and functional regeneration of peripheral nerves. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.27.530298. [PMID: 38293102 PMCID: PMC10827063 DOI: 10.1101/2023.02.27.530298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Previously we showed that the hippo pathway transcriptional effectors, YAP and TAZ, are essential for Schwann cells (SCs) to develop, maintain and regenerate myelin (Grove et al., 2017; Grove, Lee, Zhao, & Son, 2020). Although TEAD1 has been implicated as a partner transcription factor, the mechanisms by which it mediates YAP/TAZ regulation of SC myelination are unclear. Here, using conditional and inducible knockout mice, we show that TEAD1 is crucial for SCs to develop and regenerate myelin. It promotes myelination by both positively and negatively regulating SC proliferation, enabling Krox20/Egr2 to upregulate myelin proteins, and upregulating the cholesterol biosynthetic enzymes FDPS and IDI1. We also show stage-dependent redundancy of TEAD1 and that non-myelinating SCs have a unique requirement for TEAD1 to enwrap nociceptive axons in Remak bundles. Our findings establish TEAD1 as a major partner of YAP/TAZ in developmental myelination and functional nerve regeneration and as a novel transcription factor regulating Remak bundle integrity.
Collapse
|
38
|
Phillips JE, Pan D. The Hippo kinase cascade regulates a contractile cell behavior and cell density in a close unicellular relative of animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.25.550562. [PMID: 37546755 PMCID: PMC10402117 DOI: 10.1101/2023.07.25.550562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The genomes of close unicellular relatives of animals encode orthologs of many genes that regulate animal development. However, little is known about the function of such genes in unicellular organisms or the evolutionary process by which these genes came to function in multicellular development. The Hippo pathway, which regulates cell proliferation and tissue size in animals, is present in some of the closest unicellular relatives of animals, including the amoeboid organism Capsaspora owczarzaki. We previously showed that the Capsaspora ortholog of the Hippo pathway nuclear effector Yorkie/YAP/TAZ (coYki) regulates actin dynamics and the three-dimensional morphology of Capsaspora cell aggregates, but is dispensable for cell proliferation control (Phillips et al., 2022). However, the function of upstream Hippo pathway components, and whether and how they regulate coYki in Capsaspora, remained unknown. Here, we analyze the function of the upstream Hippo pathway kinases coHpo and coWts in Capsaspora by generating mutant lines for each gene. Loss of either kinase results in increased nuclear localization of coYki, indicating an ancient, premetazoan origin of this Hippo pathway regulatory mechanism. Strikingly, we find that loss of either kinase causes a contractile cell behavior and increased density of cell packing within Capsaspora aggregates. We further show that this increased cell density is not due to differences in proliferation, but rather actomyosin-dependent changes in the multicellular architecture of aggregates. Given its well-established role in cell density-regulated proliferation in animals, the increased density of cell packing in coHpo and coWts mutants suggests a shared and possibly ancient and conserved function of the Hippo pathway in cell density control. Together, these results implicate cytoskeletal regulation but not proliferation as an ancestral function of the Hippo pathway kinase cascade and uncover a novel role for Hippo signaling in regulating cell density in a proliferation-independent manner.
Collapse
Affiliation(s)
- Jonathan E Phillips
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
39
|
Yang Y, Zhou H, Huang X, Wu C, Zheng K, Deng J, Zheng Y, Wang J, Chi X, Ma X, Pan H, Shen R, Pan D, Liu B. Innate immune and proinflammatory signals activate the Hippo pathway via a Tak1-STRIPAK-Tao axis. Nat Commun 2024; 15:145. [PMID: 38168080 PMCID: PMC10761881 DOI: 10.1038/s41467-023-44542-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
The Hippo pathway controls developmental, homeostatic and regenerative tissue growth, and is frequently dysregulated in various diseases. Although this pathway can be activated by innate immune/inflammatory stimuli, the underlying mechanism is not fully understood. Here, we identify a conserved signaling cascade that leads to Hippo pathway activation by innate immune/inflammatory signals. We show that Tak1, a key kinase in innate immune/inflammatory signaling, activates the Hippo pathway by inducing the lysosomal degradation of Cka, an essential subunit of the STRIPAK PP2A complex that suppresses Hippo signaling. Suppression of STRIPAK results in the activation of Hippo pathway through Tao-Hpo signaling. We further show that Tak1-mediated Hippo signaling is involved in processes ranging from cell death to phagocytosis and innate immune memory. Our findings thus reveal a molecular connection between innate immune/inflammatory signaling and the evolutionally conserved Hippo pathway, thus contributing to our understanding of infectious, inflammatory and malignant diseases.
Collapse
Affiliation(s)
- Yinan Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Huijing Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiawei Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chengfang Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Kewei Zheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jingrong Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiahui Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiaofeng Chi
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xianjue Ma
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
| | - Huimin Pan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Rui Shen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Bo Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
40
|
Driskill JH, Pan D. Control of stem cell renewal and fate by YAP and TAZ. Nat Rev Mol Cell Biol 2023; 24:895-911. [PMID: 37626124 DOI: 10.1038/s41580-023-00644-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/27/2023]
Abstract
Complex physiological processes control whether stem cells self-renew, differentiate or remain quiescent. Two decades of research have placed the Hippo pathway, a highly conserved kinase signalling cascade, and its downstream molecular effectors YAP and TAZ at the nexus of this decision. YAP and TAZ translate complex biological cues acting on stem cells - from mechanical forces to cellular metabolism - into genome-wide effects to mediate stem cell functions. While aberrant YAP/TAZ activity drives stem cell dysfunction in ageing, tumorigenesis and disease, therapeutic targeting of Hippo signalling and YAP/TAZ can boost stem cell activity to enhance regeneration. In this Review, we discuss how YAP/TAZ control the self-renewal, fate and plasticity of stem cells in different contexts, how dysregulation of YAP/TAZ in stem cells leads to disease, and how therapeutic modalities targeting YAP/TAZ may benefit regenerative medicine and cancer therapy.
Collapse
Affiliation(s)
- Jordan H Driskill
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
41
|
Zlatanova I, Sun F, Wu RS, Chen X, Lau BH, Colombier P, Sinha T, Celona B, Xu SM, Materna SC, Huang GN, Black BL. An injury-responsive mmp14b enhancer is required for heart regeneration. SCIENCE ADVANCES 2023; 9:eadh5313. [PMID: 38019918 PMCID: PMC10686572 DOI: 10.1126/sciadv.adh5313] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Mammals have limited capacity for heart regeneration, whereas zebrafish have extraordinary regeneration abilities. During zebrafish heart regeneration, endothelial cells promote cardiomyocyte cell cycle reentry and myocardial repair, but the mechanisms responsible for promoting an injury microenvironment conducive to regeneration remain incompletely defined. Here, we identify the matrix metalloproteinase Mmp14b as an essential regulator of heart regeneration. We identify a TEAD-dependent mmp14b endothelial enhancer induced by heart injury in zebrafish and mice, and we show that the enhancer is required for regeneration, supporting a role for Hippo signaling upstream of mmp14b. Last, we show that MMP-14 function in mice is important for the accumulation of Agrin, an essential regulator of neonatal mouse heart regeneration. These findings reveal mechanisms for extracellular matrix remodeling that promote heart regeneration.
Collapse
Affiliation(s)
- Ivana Zlatanova
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Fei Sun
- Duke Regeneration Center, Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Roland S. Wu
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xiaoxin Chen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bryan H. Lau
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Pauline Colombier
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tanvi Sinha
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Barbara Celona
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shan-Mei Xu
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Stefan C. Materna
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Guo N. Huang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brian L. Black
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
42
|
Mohammed EE, Türkel N, Yigit UM, Dalan AB, Sahin F. Boron Derivatives Inhibit the Proliferation of Breast Cancer Cells and Affect Tumor-Specific T Cell Activity In Vitro by Distinct Mechanisms. Biol Trace Elem Res 2023; 201:5692-5707. [PMID: 36940038 DOI: 10.1007/s12011-023-03632-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/11/2023] [Indexed: 03/21/2023]
Abstract
Breast cancer is the most frequently diagnosed cancer among women worldwide. Despite the initial clinical response obtained with the widely used conventional chemotherapy, an improved prognosis for breast cancer patients has been missing in the clinic because of the high toxicity to normal cells, induction of drug resistance, and the potential immunosuppressive effects of these agents. Therefore, we aimed to investigate the potential anti-carcinogenic effect of some boron derivatives (sodium pentaborate pentahydrate (SPP) and sodium perborate tetrahydrate (SPT)), which showed a promising effect on some types of cancers in the literature, on breast cancer cell lines, as well as immuno-oncological side effects on tumor-specific T cell activity. These findings suggest that both SPP and SPT suppressed proliferation and induced apoptosis in MCF7 and MDA-MB-231 cancer cell lines through downregulation of the monopolar spindle-one-binder (MOB1) protein. On the other hand, these molecules increased the expression of PD-L1 protein through their effect on the phosphorylation level of Yes-associated protein (Phospho-YAP (Ser127). In addition, they reduced the concentrations of pro-inflammatory cytokines such as IFN-γ and cytolytic effector cytokines such as sFasL, perforin, granzyme A, Granzyme B, and granulysin and increased the expression of PD-1 surface protein in activated T cells. In conclusion, SPP, SPT, and their combination could have growth inhibitory (antiproliferative) effects and could be a potential treatment for breast cancer. However, their stimulatory effects on the PD-1/PD-L1 signaling pathway and their effects on cytokines could ultimately account for the observed repression of the charging of specifically activated effector T cells against breast cancer cells.
Collapse
Affiliation(s)
- Eslam Essam Mohammed
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, 34755, Turkey
| | - Nezaket Türkel
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, 34755, Turkey
| | | | - Altay Burak Dalan
- Department of Medical Genetics, Faculty of Medicine, Yeditepe University, Istanbul, 34755, Turkey
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, 34755, Turkey.
| |
Collapse
|
43
|
Rader AE, Bayarmagnai B, Frolov MV. Combined inactivation of RB and Hippo converts differentiating Drosophila photoreceptors into eye progenitor cells through derepression of homothorax. Dev Cell 2023; 58:2261-2274.e6. [PMID: 37848027 PMCID: PMC10842633 DOI: 10.1016/j.devcel.2023.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 08/06/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023]
Abstract
The retinoblastoma (RB) and Hippo pathways interact to regulate cell proliferation and differentiation. However, the mechanism of interaction is not fully understood. Drosophila photoreceptors with inactivated RB and Hippo pathways specify normally but fail to maintain their neuronal identity and dedifferentiate. We performed single-cell RNA sequencing to elucidate the cause of dedifferentiation and to determine the fate of these cells. We find that dedifferentiated cells adopt a progenitor-like fate due to inappropriate activation of the retinal differentiation suppressor homothorax (hth) by Yki/Sd. This results in the activation of a distinct Yki/Hth transcriptional program, driving photoreceptor dedifferentiation. We show that Rbf physically interacts with Yki and, together with the GAGA factor, inhibits the hth expression. Thus, RB and Hippo pathways cooperate to maintain photoreceptor differentiation by preventing inappropriate expression of hth in differentiating photoreceptors. Our work highlights the importance of both RB and Hippo pathway activities for maintaining the state of terminal differentiation.
Collapse
Affiliation(s)
- Alexandra E Rader
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Battuya Bayarmagnai
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Maxim V Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
44
|
Liu M, Xie XJ, Li X, Ren X, Sun J, Lin Z, Hemba-Waduge RUS, Ji JY. Transcriptional coupling of telomeric retrotransposons with the cell cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560321. [PMID: 37808851 PMCID: PMC10557779 DOI: 10.1101/2023.09.30.560321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Instead of employing telomerases to safeguard chromosome ends, dipteran species maintain their telomeres by transposition of telomeric-specific retrotransposons (TRs): in Drosophila , these are HeT-A , TART , and TAHRE . Previous studies have shown how these TRs create tandem repeats at chromosome ends, but the exact mechanism controlling TR transcription has remained unclear. Here we report the identification of multiple subunits of the transcription cofactor Mediator complex and transcriptional factors Scalloped (Sd, the TEAD homolog in flies) and E2F1-Dp as novel regulators of TR transcription and telomere length in Drosophila . Depletion of multiple Mediator subunits, Dp, or Sd increased TR expression and telomere length, while over-expressing E2F1-Dp or knocking down the E2F1 regulator Rbf1 (Retinoblastoma-family protein 1) stimulated TR transcription, with Mediator and Sd affecting TR expression through E2F1-Dp. The CUT&RUN analysis revealed direct binding of CDK8, Dp, and Sd to telomeric repeats. These findings highlight the essential role of the Mediator complex in maintaining telomere homeostasis by regulating TR transcription through E2F1-Dp and Sd, revealing the intricate coupling of TR transcription with the host cell-cycle machinery, thereby ensuring chromosome end protection and genomic stability during cell division.
Collapse
|
45
|
Sayedyahossein S, Thines L, Sacks DB. Ca 2+ signaling and the Hippo pathway: Intersections in cellular regulation. Cell Signal 2023; 110:110846. [PMID: 37549859 PMCID: PMC10529277 DOI: 10.1016/j.cellsig.2023.110846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
The Hippo signaling pathway is a master regulator of organ size and tissue homeostasis. Hippo integrates a broad range of cellular signals to regulate numerous processes, such as cell proliferation, differentiation, migration and mechanosensation. Ca2+ is a fundamental second messenger that modulates signaling cascades involved in diverse cellular functions, some of which are also regulated by the Hippo pathway. Studies published over the last five years indicate that Ca2+ can influence core Hippo pathway components. Nevertheless, comprehensive understanding of the crosstalk between Ca2+ signaling and the Hippo pathway, and possible mechanisms through which Ca2+ regulates Hippo, remain to be elucidated. In this review, we summarize the multiple intersections between Ca2+ and the Hippo pathway and address the biological consequences.
Collapse
Affiliation(s)
- Samar Sayedyahossein
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Louise Thines
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
46
|
Le DDT, Le TPH, Lee SY. PIP5Kγ Mediates PI(4,5)P2/Merlin/LATS1 Signaling Activation and Interplays with Hsc70 in Hippo-YAP Pathway Regulation. Int J Mol Sci 2023; 24:14786. [PMID: 37834234 PMCID: PMC10572892 DOI: 10.3390/ijms241914786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The type I phosphatidylinositol 4-phosphate 5-kinase (PIP5K) family produces the critical lipid regulator phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) in the plasma membrane (PM). Here, we investigated the potential role of PIP5Kγ, a PIP5K isoform, in the Hippo pathway. The ectopic expression of PIP5Kγ87 or PIP5Kγ90, two major PIP5Kγ splice variants, activated large tumor suppressor kinase 1 (LATS1) and inhibited Yes-associated protein (YAP), whereas PIP5Kγ knockdown yielded opposite effects. The regulatory effects of PIP5Kγ were dependent on its catalytic activity and the presence of Merlin and LATS1. PIP5Kγ knockdown weakened the restoration of YAP phosphorylation upon stimulation with epidermal growth factor or lysophosphatidic acid. We further found that PIP5Kγ90 bound to the Merlin's band 4.1/ezrin/radixin/moesin (FERM) domain, forming a complex with PI(4,5)P2 and LATS1 at the PM. Notably, PIP5Kγ90, but not its kinase-deficient mutant, potentiated Merlin-LATS1 interaction and recruited LATS1 to the PM. Consistently, PIP5Kγ knockdown or inhibitor (UNC3230) enhanced colony formation in carcinoma cell lines YAP-dependently. In addition, PIP5Kγ90 interacted with heat shock cognate 71-kDa protein (Hsc70), which also contributed to Hippo pathway activation. Collectively, our results suggest that PIP5Kγ regulates the Hippo-YAP pathway by forming a functional complex with Merlin and LATS1 at the PI(4,5)P2-rich PM and via interplay with Hsc70.
Collapse
Affiliation(s)
- Duong Duy Thai Le
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Gyeonggi-do, Republic of Korea; (D.D.T.L.); (T.P.H.L.)
| | - Truc Phan Hoang Le
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Gyeonggi-do, Republic of Korea; (D.D.T.L.); (T.P.H.L.)
| | - Sang Yoon Lee
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Gyeonggi-do, Republic of Korea; (D.D.T.L.); (T.P.H.L.)
- Institute of Medical Science, Ajou University School of Medicine, Suwon 16499, Gyeonggi-do, Republic of Korea
| |
Collapse
|
47
|
Brown HE, Weasner BP, Weasner BM, Kumar JP. Polycomb safeguards imaginal disc specification through control of the Vestigial-Scalloped complex. Development 2023; 150:dev201872. [PMID: 37702007 PMCID: PMC10560572 DOI: 10.1242/dev.201872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023]
Abstract
A fundamental goal of developmental biology is to understand how cell and tissue fates are specified. The imaginal discs of Drosophila are excellent model systems for addressing this paradigm as their fate can be redirected when discs regenerate after injury or when key selector genes are misregulated. Here, we show that when Polycomb expression is reduced, the wing selector gene vestigial is ectopically activated. This leads to the inappropriate formation of the Vestigial-Scalloped complex, which forces the eye to transform into a wing. We further demonstrate that disrupting this complex does not simply block wing formation or restore eye development. Instead, immunohistochemistry and high-throughput genomic analysis show that the eye-antennal disc unexpectedly undergoes hyperplastic growth with multiple domains being organized into other imaginal discs and tissues. These findings provide insight into the complex developmental landscape that tissues must navigate before adopting their final fate.
Collapse
Affiliation(s)
- Haley E. Brown
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Bonnie M. Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Justin P. Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
48
|
Spitzer DC, Sun WY, Rodríguez-Vargas A, Hariharan IK. The cell adhesion molecule Echinoid promotes tissue survival and separately restricts tissue overgrowth in Drosophila imaginal discs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552072. [PMID: 37577631 PMCID: PMC10418178 DOI: 10.1101/2023.08.04.552072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The interactions that cells in Drosophila imaginal discs have with their neighbors are known to regulate their ability to survive. In a screen of genes encoding cell surface proteins for gene knockdowns that affect the size or shape of mutant clones, we found that clones of cells with reduced levels of echinoid (ed) are fewer, smaller, and can be eliminated during development. In contrast, discs composed mostly of ed mutant tissue are overgrown. We find that ed mutant tissue has lower levels of the anti-apoptotic protein Diap1 and has increased levels of apoptosis which is consistent with the observed underrepresentation of ed mutant clones and the slow growth of ed mutant tissue. The eventual overgrowth of ed mutant tissue results not from accelerated growth, but from prolonged growth resulting from a failure to arrest growth at the appropriate final size. Ed has previously been shown to physically interact with multiple Hippo-pathway components and it has been proposed to promote Hippo pathway signaling, to exclude Yorkie (Yki) from the nucleus, and restrain the expression of Yki-target genes. We did not observe changes in Yki localization in ed mutant tissue and found decreased levels of expression of several Yorkie-target genes, findings inconsistent with the proposed effect of Ed on Yki. We did, however, observe increased expression of several Yki-target genes in wild-type cells neighboring ed mutant cells, which may contribute to elimination of ed mutant clones. Thus, ed has two distinct functions: an anti-apoptotic function by maintaining Diap1 levels, and a function to arrest growth at the appropriate final size. Both of these are unlikely to be explained by a simple effect on the Hippo pathway.
Collapse
Affiliation(s)
- Danielle C. Spitzer
- Department of Molecular and Cell Biology, 515 Weill Hall, University of California, Berkeley, Berkeley CA 94720-3200
| | - William Y. Sun
- Department of Molecular and Cell Biology, 515 Weill Hall, University of California, Berkeley, Berkeley CA 94720-3200
| | - Anthony Rodríguez-Vargas
- Department of Molecular and Cell Biology, 515 Weill Hall, University of California, Berkeley, Berkeley CA 94720-3200
| | - Iswar K. Hariharan
- Department of Molecular and Cell Biology, 515 Weill Hall, University of California, Berkeley, Berkeley CA 94720-3200
| |
Collapse
|
49
|
Yamashita T, Ohde T, Nakamura T, Ishimaru Y, Watanabe T, Tomonari S, Nakamura Y, Noji S, Mito T. Involvement of the scalloped gene in morphogenesis of the wing margin via regulating cell growth in a hemimetabolous insect Gryllus bimaculatus. Dev Growth Differ 2023; 65:348-359. [PMID: 37310211 DOI: 10.1111/dgd.12869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023]
Abstract
The acquisition of wings was a key event in insect evolution. As hemimetabolous insects were the first group to acquire functional wings, establishing the mechanisms of wing formation in this group could provide useful insights into their evolution. In this study, we aimed to elucidate the expression and function of the gene scalloped (sd), which is involved in wing formation in Drosophila melanogaster, and in Gryllus bimaculatus mainly during postembryonic development. Expression analysis showed that sd is expressed in the tergal edge, legs, antennae, labrum, and cerci during embryogenesis and in the distal margin of the wing pads from at least the sixth instar in the mid to late stages. Because sd knockout caused early lethality, nymphal RNA interference experiments were performed. Malformations were observed in the wings, ovipositor, and antennae. By analyzing the effects on wing morphology, it was revealed that sd is mainly involved in the formation of the margin, possibly through the regulation of cell proliferation. In conclusion, sd might regulate the local growth of wing pads and influence wing margin morphology in Gryllus.
Collapse
Grants
- 17H03945 Ministry of Education, Culture, Sports, Science and Technology
- 19H02970 Ministry of Education, Culture, Sports, Science and Technology
- 19K06691 Ministry of Education, Culture, Sports, Science and Technology
- 20K21436 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Takahisa Yamashita
- Graduate School of Advanced Technology and Science, Tokushima University, Tokushima, Japan
| | - Takahiro Ohde
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Taro Nakamura
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Yoshiyasu Ishimaru
- Graduate School of Sciences and Technology for Innovation, Tokushima University, Tokushima, Japan
| | - Takahito Watanabe
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
| | - Sayuri Tomonari
- Technical Support Department, Tokushima University, Tokushima, Japan
| | - Yuki Nakamura
- Graduate School of Advanced Technology and Science, Tokushima University, Tokushima, Japan
| | - Sumihare Noji
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
| | - Taro Mito
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
| |
Collapse
|
50
|
Le TPH, Nguyen NTT, Le DDT, Anwar MA, Lee SY. Lipid kinase PIP5Kα contributes to Hippo pathway activation via interaction with Merlin and by mediating plasma membrane targeting of LATS1. Cell Commun Signal 2023; 21:149. [PMID: 37337213 DOI: 10.1186/s12964-023-01161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND The Hippo pathway plays a critical role in controlled cell proliferation. The tumor suppressor Merlin and large tumor suppressor kinase 1 (LATS1) mediate activation of Hippo pathway, consequently inhibiting the primary effectors, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). Phosphatidylinositol 4,5-bisphosphate (PIP2), a lipid present in the plasma membrane (PM), binds to and activates Merlin. Phosphatidylinositol 4-phosphate 5-kinase α (PIP5Kα) is an enzyme responsible for PIP2 production. However, the functional role of PIP5Kα in regulation of Merlin and LATS1 under Hippo signaling conditions remains unclear. METHODS PIP5Kα, Merlin, or LATS1 knockout or knockdown cells and transfected cells with them were used. LATS1, YAP, and TAZ activities were measured using biochemical methods and PIP2 levels were evaluated using cell imaging. Low/high cell density and serum starvation/stimulation conditions were tested. Colocalization of PIP5Kα and PIP2 with Merlin and LATS1, and their protein interactions were examined using transfection, confocal imaging, immunoprecipitation, western blotting, and/or pull-down experiments. Colony formation and adipocyte differentiation assays were performed. RESULTS We found that PIP5Kα induced LATS1 activation and YAP/TAZ inhibition in a kinase activity-dependent manner. Consistent with these findings, PIP5Kα suppressed cell proliferation and enhanced adipocyte differentiation of mesenchymal stem cells. Moreover, PIP5Kα protein stability and PIP2 levels were elevated at high cell density compared with those at low cell density, and both PIP2 and YAP phosphorylation levels initially declined, then recovered upon serum stimulation. Under these conditions, YAP/TAZ activity was aberrantly regulated by PIP5Kα deficiency. Mechanistically, either Merlin deficiency or LATS1 deficiency abrogated PIP5Kα-mediated YAP/TAZ inactivation. Additionally, the catalytic domain of PIP5Kα directly interacted with the band 4.1/ezrin/radixin/moesin domain of Merlin, and this interaction reinforced interaction of Merlin with LATS1. In accordance with these findings, PIP5Kα and PIP2 colocalized with Merlin and LATS1 in the PM. In PIP5Kα-deficient cells, Merlin colocalization with PIP2 was reduced, and LATS1 solubility increased. CONCLUSIONS Collectively, our results support that PIP5Kα serves as an activator of the Hippo pathway through interaction and colocalization with Merlin, which promotes PIP2-dependent Merlin activation and induces local recruitment of LATS1 to the PIP2-rich PM and its activation, thereby negatively regulating YAP/TAZ activity. Video Abstract.
Collapse
Affiliation(s)
- Truc Phan Hoang Le
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea
| | - Nga Thi Thanh Nguyen
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea
| | - Duong Duy Thai Le
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea
| | - Muhammad Ayaz Anwar
- Department of Applied Chemistry, Kyung Hee University International Campus, Yongin, Gyeonggi, 17104, Republic of Korea
| | - Sang Yoon Lee
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.
- Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi, 16499, Republic of Korea.
| |
Collapse
|