1
|
Weiner E, Berryman E, González Solís A, Shi Y, Otegui MS. The green ESCRTs: Newly defined roles for ESCRT proteins in plants. J Biol Chem 2025; 301:108465. [PMID: 40157538 PMCID: PMC12051064 DOI: 10.1016/j.jbc.2025.108465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/19/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025] Open
Abstract
Endocytosis and endosomal trafficking of plasma membrane proteins for degradation regulate cellular homeostasis and development. As part of these processes, ubiquitinated plasma membrane proteins (cargo) are recognized, clustered, and sorted into intraluminal vesicles of multivesicular endosomes by endosomal sorting complexes required for transport (ESCRT) proteins. At endosomes, ESCRT proteins recognize ubiquitinated cargo and mediate the deformation of the endosomal membrane in a negative geometry, away from the cytosol. ESCRTs are organized in five major complexes that are sequentially recruited to the endosomal membrane where they mediate its vesiculation and cargo sequestration. ESCRTs also participate in other membrane remodeling events and are widely conserved across organisms, both eukaryotes and prokaryotes. Plants contain both conserved and unique ESCRT components and show a general trend toward gene family expansion. Plant endosomes show a wide range of membrane budding patterns with potential implications in cargo sequestration efficiency, plant development, and hormone signaling. Understanding the diversification and specialization of plant ESCRT proteins can provide valuable insights in the mechanisms of ESCRT-mediated membrane bending. In this review, we discuss the endosomal function of ESCRT proteins, their unique features in plants, and the potential connections to the modes of plant endosomal vesiculation.
Collapse
Affiliation(s)
- Ethan Weiner
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin, USA
| | - Elizabeth Berryman
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin, USA
| | - Ariadna González Solís
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin, USA
| | - Yuchen Shi
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin, USA.
| |
Collapse
|
2
|
Kundu S, Rohokale R, Lin C, Chen S, Biswas S, Guo Z. Bifunctional glycosphingolipid (GSL) probes to investigate GSL-interacting proteins in cell membranes. J Lipid Res 2024; 65:100570. [PMID: 38795858 PMCID: PMC11261293 DOI: 10.1016/j.jlr.2024.100570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/28/2024] Open
Abstract
Glycosphingolipids (GSLs) are abundant glycolipids on cells and essential for cell recognition, adhesion, signal transduction, and so on. However, their lipid anchors are not long enough to cross the membrane bilayer. To transduce transmembrane signals, GSLs must interact with other membrane components, whereas such interactions are difficult to investigate. To overcome this difficulty, bifunctional derivatives of II3-β-N-acetyl-D-galactosamine-GA2 (GalNAc-GA2) and β-N-acetyl-D-glucosamine-ceramide (GlcNAc-Cer) were synthesized as probes to explore GSL-interacting membrane proteins in live cells. Both probes contain photoreactive diazirine in the lipid moiety, which can crosslink with proximal membrane proteins upon photoactivation, and clickable alkyne in the glycan to facilitate affinity tag addition for crosslinked protein pull-down and characterization. The synthesis is highlighted by the efficient assembly of simple glycolipid precursors followed by on-site lipid remodeling. These probes were employed to profile GSL-interacting membrane proteins in HEK293 cells. The GalNAc-GA2 probe revealed 312 distinct proteins, with GlcNAc-Cer probe-crosslinked proteins as controls, suggesting the potential influence of the glycan on GSL functions. Many of the proteins identified with the GalNAc-GA2 probe are associated with GSLs, and some have been validated as being specific to this probe. The versatile probe design and experimental protocols are anticipated to be widely applicable to GSL research.
Collapse
Affiliation(s)
- Sayan Kundu
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Rajendra Rohokale
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Chuwei Lin
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA; Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Shayak Biswas
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
Prever L, Squillero G, Hirsch E, Gulluni F. Linking phosphoinositide function to mitosis. Cell Rep 2024; 43:114273. [PMID: 38843397 DOI: 10.1016/j.celrep.2024.114273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 05/09/2024] [Indexed: 07/02/2024] Open
Abstract
Phosphoinositides (PtdIns) are a family of differentially phosphorylated lipid second messengers localized to the cytoplasmic leaflet of both plasma and intracellular membranes. Kinases and phosphatases can selectively modify the PtdIns composition of different cellular compartments, leading to the recruitment of specific binding proteins, which control cellular homeostasis and proliferation. Thus, while PtdIns affect cell growth and survival during interphase, they are also emerging as key drivers in multiple temporally defined membrane remodeling events of mitosis, like cell rounding, spindle orientation, cytokinesis, and abscission. In this review, we summarize and discuss what is known about PtdIns function during mitosis and how alterations in the production and removal of PtdIns can interfere with proper cell division.
Collapse
Affiliation(s)
- Lorenzo Prever
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy
| | - Gabriele Squillero
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy
| | - Emilio Hirsch
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy.
| | - Federico Gulluni
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy.
| |
Collapse
|
4
|
Spada SJ, Rose KM, Sette P, O'Connor SK, Dussupt V, Siddartha Yerramilli V, Nagashima K, Sjoelund VH, Cruz P, Kabat J, Ganesan S, Smelkinson M, Nita-Lazar A, Hoyt F, Scarlata S, Hirsch V, Best SM, Grigg ME, Bouamr F. Human ESCRT-I and ALIX function as scaffolding helical filaments in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592080. [PMID: 38903125 PMCID: PMC11188096 DOI: 10.1101/2024.05.01.592080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The Endosomal Sorting Complex Required for Transport (ESCRT) is an evolutionarily conserved machinery that performs reverse-topology membrane scission in cells universally required from cytokinesis to budding of enveloped viruses. Upstream acting ESCRT-I and ALIX control these events and link recruitment of viral and cellular partners to late-acting ESCRT-III CHMP4 through incompletely understood mechanisms. Using structure-function analyses combined with super-resolution imaging, we show that ESCRT-I and ALIX function as distinct helical filaments in vivo . Together, they are essential for optimal structural scaffolding of HIV-1 nascent virions, the retention of viral and human genomes through defined functional interfaces, and recruitment of CHMP4 that itself assembles into corkscrew-like filaments intertwined with ESCRT-I or ALIX helices. Disruption of filament assembly or their conformationally clustered RNA binding interfaces in human cells impaired membrane abscission, resulted in major structural instability and leaked nucleic acid from nascent virions and nuclear envelopes. Thus, ESCRT-I and ALIX function as helical filaments in vivo and serve as both nucleic acid-dependent structural scaffolds as well as ESCRT-III assembly templates. Significance statement When cellular membranes are dissolved or breached, ESCRT is rapidly deployed to repair membranes to restore the integrity of intracellular compartments. Membrane sealing is ensured by ESCRT-III filaments assembled on the inner face of membrane; a mechanism termed inverse topology membrane scission. This mechanism, initiated by ESCRT-I and ALIX, is universally necessary for cytokinesis, wound repair, budding of enveloped viruses, and more. We show ESCRT-I and ALIX individually oligomerize into helical filaments that cluster newly discovered nucleic acid-binding interfaces and scaffold-in genomes within nascent virions and nuclear envelopes. These oligomers additionally appear to serve as ideal templates for ESCRT-III polymerization, as helical filaments of CHMP4B were found intertwined ESCRT-I or ALIX filaments in vivo . Similarly, corkscrew-like filaments of ALIX are also interwoven with ESCRT-I, supporting a model of inverse topology membrane scission that is synergistically reinforced by inward double filament scaffolding.
Collapse
|
5
|
Makarova KS, Tobiasson V, Wolf YI, Lu Z, Liu Y, Zhang S, Krupovic M, Li M, Koonin EV. Diversity, origin, and evolution of the ESCRT systems. mBio 2024; 15:e0033524. [PMID: 38380930 PMCID: PMC10936438 DOI: 10.1128/mbio.00335-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Endosomal sorting complexes required for transport (ESCRT) play key roles in protein sorting between membrane-bounded compartments of eukaryotic cells. Homologs of many ESCRT components are identifiable in various groups of archaea, especially in Asgardarchaeota, the archaeal phylum that is currently considered to include the closest relatives of eukaryotes, but not in bacteria. We performed a comprehensive search for ESCRT protein homologs in archaea and reconstructed ESCRT evolution using the phylogenetic tree of Vps4 ATPase (ESCRT IV) as a scaffold and using sensitive protein sequence analysis and comparison of structural models to identify previously unknown ESCRT proteins. Several distinct groups of ESCRT systems in archaea outside of Asgard were identified, including proteins structurally similar to ESCRT-I and ESCRT-II, and several other domains involved in protein sorting in eukaryotes, suggesting an early origin of these components. Additionally, distant homologs of CdvA proteins were identified in Thermoproteales which are likely components of the uncharacterized cell division system in these archaea. We propose an evolutionary scenario for the origin of eukaryotic and Asgard ESCRT complexes from ancestral building blocks, namely, the Vps4 ATPase, ESCRT-III components, wH (winged helix-turn-helix fold) and possibly also coiled-coil, and Vps28-like domains. The last archaeal common ancestor likely encompassed a complex ESCRT system that was involved in protein sorting. Subsequent evolution involved either simplification, as in the TACK superphylum, where ESCRT was co-opted for cell division, or complexification as in Asgardarchaeota. In Asgardarchaeota, the connection between ESCRT and the ubiquitin system that was previously considered a eukaryotic signature was already established.IMPORTANCEAll eukaryotic cells possess complex intracellular membrane organization. Endosomal sorting complexes required for transport (ESCRT) play a central role in membrane remodeling which is essential for cellular functionality in eukaryotes. Recently, it has been shown that Asgard archaea, the archaeal phylum that includes the closest known relatives of eukaryotes, encode homologs of many components of the ESCRT systems. We employed protein sequence and structure comparisons to reconstruct the evolution of ESCRT systems in archaea and identified several previously unknown homologs of ESCRT subunits, some of which can be predicted to participate in cell division. The results of this reconstruction indicate that the last archaeal common ancestor already encoded a complex ESCRT system that was involved in protein sorting. In Asgard archaea, ESCRT systems evolved toward greater complexity, and in particular, the connection between ESCRT and the ubiquitin system that was previously considered a eukaryotic signature was established.
Collapse
Affiliation(s)
- Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Victor Tobiasson
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Zhongyi Lu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Siyu Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université de Paris, Paris, France
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Brugger M, Lauri A, Zhen Y, Gramegna LL, Zott B, Sekulić N, Fasano G, Kopajtich R, Cordeddu V, Radio FC, Mancini C, Pizzi S, Paradisi G, Zanni G, Vasco G, Carrozzo R, Palombo F, Tonon C, Lodi R, La Morgia C, Arelin M, Blechschmidt C, Finck T, Sørensen V, Kreiser K, Strobl-Wildemann G, Daum H, Michaelson-Cohen R, Ziccardi L, Zampino G, Prokisch H, Abou Jamra R, Fiorini C, Arzberger T, Winkelmann J, Caporali L, Carelli V, Stenmark H, Tartaglia M, Wagner M. Bi-allelic variants in SNF8 cause a disease spectrum ranging from severe developmental and epileptic encephalopathy to syndromic optic atrophy. Am J Hum Genet 2024; 111:594-613. [PMID: 38423010 PMCID: PMC10940020 DOI: 10.1016/j.ajhg.2024.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is essential for membrane remodeling and autophagy and it comprises three multi-subunit complexes (ESCRT I-III). We report nine individuals from six families presenting with a spectrum of neurodevelopmental/neurodegenerative features caused by bi-allelic variants in SNF8 (GenBank: NM_007241.4), encoding the ESCRT-II subunit SNF8. The phenotypic spectrum included four individuals with severe developmental and epileptic encephalopathy, massive reduction of white matter, hypo-/aplasia of the corpus callosum, neurodevelopmental arrest, and early death. A second cohort shows a milder phenotype with intellectual disability, childhood-onset optic atrophy, or ataxia. All mildly affected individuals shared the same hypomorphic variant, c.304G>A (p.Val102Ile). In patient-derived fibroblasts, bi-allelic SNF8 variants cause loss of ESCRT-II subunits. Snf8 loss of function in zebrafish results in global developmental delay and altered embryo morphology, impaired optic nerve development, and reduced forebrain size. In vivo experiments corroborated the pathogenicity of the tested SNF8 variants and their variable impact on embryo development, validating the observed clinical heterogeneity. Taken together, we conclude that loss of ESCRT-II due to bi-allelic SNF8 variants is associated with a spectrum of neurodevelopmental/neurodegenerative phenotypes mediated likely via impairment of the autophagic flux.
Collapse
Affiliation(s)
- Melanie Brugger
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Antonella Lauri
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Yan Zhen
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Laura L Gramegna
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma Neuroimmagini Funzionali e Molecolari, Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Benedikt Zott
- Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; Institute of Neuroscience, Technical University of Munich, Munich, Germany
| | - Nikolina Sekulić
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, Norway
| | - Giulia Fasano
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Robert Kopajtich
- Institute of Human Genetics, Technical University of Munich, Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Viviana Cordeddu
- Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | | | - Cecilia Mancini
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Simone Pizzi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Graziamaria Paradisi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Ginevra Zanni
- Unit of Muscular and Neurodegenerative Disorders and Unit of Developmental Neurology Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Gessica Vasco
- Department of Neurorehabilitation and Robotics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Rosalba Carrozzo
- Translational Pediatrics and Clinical Genetics Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Flavia Palombo
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Caterina Tonon
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma Neuroimmagini Funzionali e Molecolari, Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Raffaele Lodi
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma Neuroimmagini Funzionali e Molecolari, Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Chiara La Morgia
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy; IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Maria Arelin
- Department for Women and Child Health, Hospital for Children and Adolescents, University Hospitals, University of Leipzig, Leipzig, Germany
| | | | - Tom Finck
- Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Vigdis Sørensen
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kornelia Kreiser
- Department of Radiology and Neuroradiology, Rehabilitation and University Hospital Ulm, Ulm, Germany
| | | | - Hagit Daum
- Department of Genetics, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rachel Michaelson-Cohen
- Department of Gynecology, Shaare Zedek Medical Center, Jerusalem, Israel; Medical Genetics Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Università Cattolica Sacro Cuore, Rome, Italy
| | - Holger Prokisch
- Institute of Human Genetics, Technical University of Munich, Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany
| | - Claudio Fiorini
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Thomas Arzberger
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University, Munich, Germany; Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Juliane Winkelmann
- Institute of Human Genetics, Technical University of Munich, Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Leonardo Caporali
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy; IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy; IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Harald Stenmark
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy.
| | - Matias Wagner
- Institute of Human Genetics, Technical University of Munich, Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany; Division of Pediatric Neurology, LMU Center for Development and Children with Medical Complexity, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
7
|
Makarova KS, Tobiasson V, Wolf YI, Lu Z, Liu Y, Zhang S, Krupovic M, Li M, Koonin EV. Diversity, Origin and Evolution of the ESCRT Systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579148. [PMID: 38903064 PMCID: PMC11188069 DOI: 10.1101/2024.02.06.579148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Endosomal Sorting Complexes Required for Transport (ESCRT) play key roles in protein sorting between membrane-bounded compartments of eukaryotic cells. Homologs of many ESCRT components are identifiable in various groups of archaea, especially in Asgardarchaeota, the archaeal phylum that is currently considered to include the closest relatives of eukaryotes, but not in bacteria. We performed a comprehensive search for ESCRT protein homologs in archaea and reconstructed ESCRT evolution using the phylogenetic tree of Vps4 ATPase (ESCRT IV) as a scaffold, using sensitive protein sequence analysis and comparison of structural models to identify previously unknown ESCRT proteins. Several distinct groups of ESCRT systems in archaea outside of Asgard were identified, including proteins structurally similar to ESCRT-I and ESCRT-II, and several other domains involved in protein sorting in eukaryotes, suggesting an early origin of these components. Additionally, distant homologs of CdvA proteins were identified in Thermoproteales which are likely components of the uncharacterized cell division system in these archaea. We propose an evolutionary scenario for the origin of eukaryotic and Asgard ESCRT complexes from ancestral building blocks, namely, the Vps4 ATPase, ESCRT-III components, wH (winged helix-turn-helix fold) and possibly also coiled-coil, and Vps28-like domains. The Last Archaeal Common Ancestor likely encompassed a complex ESCRT system that was involved in protein sorting. Subsequent evolution involved either simplification, as in the TACK superphylum, where ESCRT was co-opted for cell division, or complexification as in Asgardarchaeota. In Asgardarchaeota, the connection between ESCRT and the ubiquitin system that was previously considered a eukaryotic signature was already established.
Collapse
Affiliation(s)
- Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Victor Tobiasson
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Zhongyi Lu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Siyu Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université de Paris, F-75015 Paris, France
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| |
Collapse
|
8
|
Lin SJ, Lin MC, Liu TJ, Tsai YT, Tsai MT, Lee FJS. Endosomal Arl4A attenuates EGFR degradation by binding to the ESCRT-II component VPS36. Nat Commun 2023; 14:7859. [PMID: 38030597 PMCID: PMC10687025 DOI: 10.1038/s41467-023-42979-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Ligand-induced epidermal growth factor receptor (EGFR) endocytosis followed by endosomal EGFR signaling and lysosomal degradation plays important roles in controlling multiple biological processes. ADP-ribosylation factor (Arf)-like protein 4 A (Arl4A) functions at the plasma membrane to mediate cytoskeletal remodeling and cell migration, whereas its localization at endosomal compartments remains functionally unknown. Here, we report that Arl4A attenuates EGFR degradation by binding to the endosomal sorting complex required for transport (ESCRT)-II component VPS36. Arl4A plays a role in prolonging the duration of EGFR ubiquitinylation and deterring endocytosed EGFR transport from endosomes to lysosomes under EGF stimulation. Mechanistically, the Arl4A-VPS36 direct interaction stabilizes VPS36 and ESCRT-III association, affecting subsequent recruitment of deubiquitinating-enzyme USP8 by CHMP2A. Impaired Arl4A-VPS36 interaction enhances EGFR degradation and clearance of EGFR ubiquitinylation. Together, we discover that Arl4A negatively regulates EGFR degradation by binding to VPS36 and attenuating ESCRT-mediated late endosomal EGFR sorting.
Collapse
Affiliation(s)
- Shin-Jin Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, 10002, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, 10002, Taipei, Taiwan
| | - Ming-Chieh Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, 10002, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, 10002, Taipei, Taiwan
| | - Tsai-Jung Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, 10002, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, 10002, Taipei, Taiwan
| | - Yueh-Tso Tsai
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, 10002, Taipei, Taiwan
| | - Ming-Ting Tsai
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, 10002, Taipei, Taiwan
| | - Fang-Jen S Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, 10002, Taipei, Taiwan.
- Department of Medical Research, National Taiwan University Hospital, 10002, Taipei, Taiwan.
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan.
| |
Collapse
|
9
|
Hudait A, Hurley JH, Voth GA. Dynamics of upstream ESCRT organization at the HIV-1 budding site. Biophys J 2023; 122:2655-2674. [PMID: 37218128 PMCID: PMC10397573 DOI: 10.1016/j.bpj.2023.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/27/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
In the late stages of the HIV-1 life cycle, membrane localization and self-assembly of Gag polyproteins induce membrane deformation and budding. Release of the virion requires direct interaction between immature Gag lattice and upstream ESCRT machinery at the viral budding site, followed by assembly of downstream ESCRT-III factors, culminating in membrane scission. However, molecular details of upstream ESCRT assembly dynamics at the viral budding site remain unclear. In this work, using coarse-grained (CG) molecular dynamics (MD) simulations, we investigated the interactions between Gag, ESCRT-I, ESCRT-II, and membrane to delineate the dynamical mechanisms by which upstream ESCRTs assemble templated by late-stage immature Gag lattice. We first systematically derived "bottom-up" CG molecular models and interactions of upstream ESCRT proteins from experimental structural data and extensive all-atom MD simulations. Using these molecular models, we performed CG MD simulations of ESCRT-I oligomerization and ESCRT-I/II supercomplex formation at the neck of the budding virion. Our simulations demonstrate that ESCRT-I can effectively oligomerize to higher-order complexes templated by the immature Gag lattice both in the absence of ESCRT-II and when multiple copies of ESCRT-II are localized at the bud neck. The ESCRT-I/II supercomplexes formed in our simulations exhibit predominantly columnar structures, which has important implications for the nucleation pathway of downstream ESCRT-III polymers. Importantly, ESCRT-I/II supercomplexes bound to Gag initiate membrane neck constriction by pulling the inner edge of the bud neck closer to the ESCRT-I headpiece ring. Our findings serve to elucidate a network of interactions between upstream ESCRT machinery, immature Gag lattice, and membrane neck that regulate protein assembly dynamics at the HIV-1 budding site.
Collapse
Affiliation(s)
- Arpa Hudait
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - James H Hurley
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
10
|
Huang LJ, Zhan ST, Pan YQ, Bao W, Yang Y. The role of Vps4 in cancer development. Front Oncol 2023; 13:1203359. [PMID: 37404768 PMCID: PMC10315677 DOI: 10.3389/fonc.2023.1203359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
VPS4 series proteins play a crucial role in the endosomal sorting complexes required for the transport (ESCRT) pathway, which is responsible for sorting and trafficking cellular proteins and is involved in various cellular processes, including cytokinesis, membrane repair, and viral budding. VPS4 proteins are ATPases that mediate the final steps of membrane fission and protein sorting as part of the ESCRT machinery. They disassemble ESCRT-III filaments, which are vital for forming multivesicular bodies (MVBs) and the release of intraluminal vesicles (ILVs), ultimately leading to the sorting and degradation of various cellular proteins, including those involved in cancer development and progression. Recent studies have shown a potential relationship between VPS4 series proteins and cancer. Evidence suggests that these proteins may have crucial roles in cancer development and progression. Several experiments have explored the association between VPS4 and different types of cancer, including gastrointestinal and reproductive system tumors, providing insight into the underlying mechanisms. Understanding the structure and function of VPS4 series proteins is critical in assessing their potential role in cancer. The evidence supporting the involvement of VPS4 series proteins in cancer provides a promising avenue for future research and therapeutic development. However, further researches are necessary to fully understand the mechanisms underlying the relationship between VPS4 series proteins and cancer and to develop effective strategies for targeting these proteins in cancer therapy. This article aims to review the structures and functions of VPS4 series proteins and the previous experiments to analyze the relationship between VPS4 series proteins and cancer.
Collapse
Affiliation(s)
- Li Juan Huang
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou, Shanghai, China
| | - Shi Tong Zhan
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou, Shanghai, China
| | - Yu Qin Pan
- Surgical Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou, Shanghai, China
| | - Wei Bao
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou, Shanghai, China
| | - Ye Yang
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou, Shanghai, China
| |
Collapse
|
11
|
Zeng EZ, Chen I, Chen X, Yuan X. Exosomal MicroRNAs as Novel Cell-Free Therapeutics in Tissue Engineering and Regenerative Medicine. Biomedicines 2022; 10:2485. [PMID: 36289747 PMCID: PMC9598823 DOI: 10.3390/biomedicines10102485] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/06/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound vesicles (50-1000 nm) that can be secreted by all cell types. Microvesicles and exosomes are the major subsets of EVs that exhibit the cell-cell communications and pathological functions of human tissues, and their therapeutic potentials. To further understand and engineer EVs for cell-free therapy, current developments in EV biogenesis and secretion pathways are discussed to illustrate the remaining gaps in EV biology. Specifically, microRNAs (miRs), as a major EV cargo that exert promising therapeutic results, are discussed in the context of biological origins, sorting and packing, and preclinical applications in disease progression and treatments. Moreover, advanced detection and engineering strategies for exosomal miRs are also reviewed. This article provides sufficient information and knowledge for the future design of EVs with specific miRs or protein cargos in tissue repair and regeneration.
Collapse
Affiliation(s)
- Eric Z. Zeng
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Isabelle Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- Los Altos High School, Los Altos, CA 94022, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Xuegang Yuan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles (UCLA), Los Angeles, CA 95616, USA
| |
Collapse
|
12
|
Shukla S, Larsen KP, Ou C, Rose K, Hurley JH. In vitro reconstitution of calcium-dependent recruitment of the human ESCRT machinery in lysosomal membrane repair. Proc Natl Acad Sci U S A 2022; 119:e2205590119. [PMID: 35994655 PMCID: PMC9436306 DOI: 10.1073/pnas.2205590119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is centrally involved in the repair of damage to both the plasma and lysosome membranes. ESCRT recruitment to sites of damage occurs on a fast time scale, and Ca2+ has been proposed to play a key signaling role in the process. Here, we show that the Ca2+-binding regulatory protein ALG-2 binds directly to negatively charged membranes in a Ca2+-dependent manner. Next, by monitoring the colocalization of ALIX with ALG-2 on negatively charged membranes, we show that ALG-2 recruits ALIX to the membrane. Furthermore, we show that ALIX recruitment to the membrane orchestrates the downstream assembly of late-acting CHMP4B, CHMP3, and CHMP2A subunits along with the AAA+ ATPase VPS4B. Finally, we show that ALG-2 can also recruit the ESCRT-III machinery to the membrane via the canonical ESCRT-I/II pathway. Our reconstitution experiments delineate the minimal sets of components needed to assemble the entire membrane repair machinery and open an avenue for the mechanistic understanding of endolysosomal membrane repair.
Collapse
Affiliation(s)
- Sankalp Shukla
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Kevin P. Larsen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Chenxi Ou
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Kevin Rose
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - James H. Hurley
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
| |
Collapse
|
13
|
Hatano T, Palani S, Papatziamou D, Salzer R, Souza DP, Tamarit D, Makwana M, Potter A, Haig A, Xu W, Townsend D, Rochester D, Bellini D, Hussain HMA, Ettema TJG, Löwe J, Baum B, Robinson NP, Balasubramanian M. Asgard archaea shed light on the evolutionary origins of the eukaryotic ubiquitin-ESCRT machinery. Nat Commun 2022; 13:3398. [PMID: 35697693 PMCID: PMC9192718 DOI: 10.1038/s41467-022-30656-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
The ESCRT machinery, comprising of multiple proteins and subcomplexes, is crucial for membrane remodelling in eukaryotic cells, in processes that include ubiquitin-mediated multivesicular body formation, membrane repair, cytokinetic abscission, and virus exit from host cells. This ESCRT system appears to have simpler, ancient origins, since many archaeal species possess homologues of ESCRT-III and Vps4, the components that execute the final membrane scission reaction, where they have been shown to play roles in cytokinesis, extracellular vesicle formation and viral egress. Remarkably, metagenome assemblies of Asgard archaea, the closest known living relatives of eukaryotes, were recently shown to encode homologues of the entire cascade involved in ubiquitin-mediated membrane remodelling, including ubiquitin itself, components of the ESCRT-I and ESCRT-II subcomplexes, and ESCRT-III and Vps4. Here, we explore the phylogeny, structure, and biochemistry of Asgard homologues of the ESCRT machinery and the associated ubiquitylation system. We provide evidence for the ESCRT-I and ESCRT-II subcomplexes being involved in ubiquitin-directed recruitment of ESCRT-III, as it is in eukaryotes. Taken together, our analyses suggest a pre-eukaryotic origin for the ubiquitin-coupled ESCRT system and a likely path of ESCRT evolution via a series of gene duplication and diversification events.
Collapse
Grants
- MC_U105184326 Medical Research Council
- MC_UP_1201/27 Medical Research Council
- 203276/Z/16/Z Wellcome Trust
- Wellcome Trust
- WT101885MA Wellcome Trust
- Wellcome Trust (Wellcome)
- Leverhulme Trust
- Svenska Forskningsrådet Formas (Swedish Research Council Formas)
- Above funding attributed to the authors as follows (from paper acknowledgements): Computational analysis was facilitated by resources provided by the Swedish National Infrastructure for Computing (SNIC) at the Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX), partially funded by the Swedish Research Council through grant agreement no. 2018-05973. We thank the Warwick Proteomics RTP for mass spectrometry. MKB was supported by the Wellcome Trust (WT101885MA) and the European Research Council (ERC-2014-ADG No. 671083). Work by the NR laboratory was supported by start-up funds from the Division of Biomedical and Life Sciences (BLS, Lancaster University) and a Leverhulme Research Project Grant (RPG-2019-297). NR would like to thank Johanna Syrjanen for performing trial expressions of the Odinarchaeota ESCRT proteins, and Joseph Maman for helpful discussion regarding the SEC-MALS. NR, WX and AP would like to thank Charley Lai and Siu-Kei Yau for assistance with initial Odinarchaeota ESCRT protein purifications. DPS and BB would like to thank Chris Johnson at the MRC LMB Biophysics facility for performing the SEC-MALS assay on Heimdallarchaeotal Vps22. TH, HH, MB, RS, JL, D Tamarit, TE, DPS and BB received support from a Wellcome Trust collaborative award (203276/Z/16/Z). BB and DPS were supported by the MRC. D Tamarit was supported by the Swedish Research Council (International Postdoc grant 2018-06609).
Collapse
Affiliation(s)
- Tomoyuki Hatano
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Saravanan Palani
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Dimitra Papatziamou
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Ralf Salzer
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Diorge P Souza
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Daniel Tamarit
- Laboratory of Microbiology, Wageningen University, 6708 WE, Wageningen, The Netherlands
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden
| | - Mehul Makwana
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Antonia Potter
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Alexandra Haig
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Wenjue Xu
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - David Townsend
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK
| | - David Rochester
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK
| | - Dom Bellini
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Hamdi M A Hussain
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University, 6708 WE, Wageningen, The Netherlands
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Buzz Baum
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| | - Nicholas P Robinson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK.
| | - Mohan Balasubramanian
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
14
|
Gulluni F, Prever L, Li H, Krafcikova P, Corrado I, Lo WT, Margaria JP, Chen A, De Santis MC, Cnudde SJ, Fogerty J, Yuan A, Massarotti A, Sarijalo NT, Vadas O, Williams RL, Thelen M, Powell DR, Schüler M, Wiesener MS, Balla T, Baris HN, Tiosano D, McDermott BM, Perkins BD, Ghigo A, Martini M, Haucke V, Boura E, Merlo GR, Buchner DA, Hirsch E. PI(3,4)P2-mediated cytokinetic abscission prevents early senescence and cataract formation. Science 2021; 374:eabk0410. [PMID: 34882480 PMCID: PMC7612254 DOI: 10.1126/science.abk0410] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cytokinetic membrane abscission is a spatially and temporally regulated process that requires ESCRT (endosomal sorting complexes required for transport)–dependent control of membrane remodeling at the midbody, a subcellular organelle that defines the cleavage site. Alteration of ESCRT function can lead to cataract, but the underlying mechanism and its relation to cytokinesis are unclear. We found a lens-specific cytokinetic process that required PI3K-C2α (phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2α), its lipid product PI(3,4)P2 (phosphatidylinositol 3,4-bisphosphate), and the PI(3,4)P2–binding ESCRT-II subunit VPS36 (vacuolar protein-sorting-associated protein 36). Loss of each of these components led to impaired cytokinesis, triggering premature senescence in the lens of fish, mice, and humans. Thus, an evolutionarily conserved pathway underlies the cell type–specific control of cytokinesis that helps to prevent early onset cataract by protecting from senescence.
Collapse
Affiliation(s)
- Federico Gulluni
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Lorenzo Prever
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Huayi Li
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Petra Krafcikova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Praha, Czech Republic
| | - Ilaria Corrado
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Wen-Ting Lo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Jean Piero Margaria
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Anlu Chen
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Maria Chiara De Santis
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Sophie J. Cnudde
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Joseph Fogerty
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Alex Yuan
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Alberto Massarotti
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale, “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Nasrin Torabi Sarijalo
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen Nürnberg, Erlangen, Germany
| | - Oscar Vadas
- Section des Sciences Pharmaceutiques, University of Geneva, 1211 Geneva, Switzerland
| | - Roger L. Williams
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Marcus Thelen
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - David R. Powell
- Pharmaceutical Biology, Lexicon Pharmaceuticals, The Woodlands, TX 77381, USA
| | - Markus Schüler
- Division of Nephrology and Internal Intensive Care Medicine, Charite University, Berlin, Germany
| | - Michael S. Wiesener
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen Nürnberg, Erlangen, Germany
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hagit N. Baris
- Division of Pediatric Endocrinology, Ruth Children's Hospital, Rambam Medical Center, Haifa 30196, Israel
| | - Dov Tiosano
- Division of Pediatric Endocrinology, Ruth Children's Hospital, Rambam Medical Center, Haifa 30196, Israel
- Rappaport Family Faculty of Medicine, Technion - –Israel Institute of Technology, Haifa 30196, Israel
| | - Brian M. McDermott
- Department of Otolaryngology–Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Brian D. Perkins
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
- Freie Universität Berlin, Faculty of Biology, Chemistry and Pharmacy, 14195 Berlin, Germany
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Praha, Czech Republic
| | - Giorgio Roberto Merlo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - David A. Buchner
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| |
Collapse
|
15
|
Chang W, Xiao D, Fang X, Wang J. Phospholipids in small extracellular vesicles: emerging regulators of neurodegenerative diseases and cancer. Cytotherapy 2021; 24:93-100. [PMID: 34742629 DOI: 10.1016/j.jcyt.2021.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/26/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022]
Abstract
Small extracellular vesicles (sEVs) are generated by almost all cell types. They have a bilayer membrane structure that is similar to cell membranes. Thus, the phospholipids contained in sEVs are the main components of cell membranes and function as structural support elements. However, as in-depth research on sEV membrane components is conducted, some phospholipids have been found to participate in cellular biological processes and function as targets for cell-cell communication. Currently, sEVs are being developed as part of drug delivery systems and diagnostic factors for various diseases, especially neurodegenerative diseases and cancer. An understanding of the physiological and pathological roles of sEV phospholipids in cellular processes is essential for their future medical application. In this review, the authors discuss phospholipid components in sEVs of different origins and summarize the roles of phospholipids in sEV biogenesis. The authors further collect the current knowledge on the functional roles of sEV phospholipids in cell-cell communication and bioactivities as signals regulating neurodegenerative diseases and cancer and the possibility of using sEV phospholipids as biomarkers or in drug delivery systems for cancer diagnosis and treatment. Knowledge of sEV phospholipids is important to help us identify directions for future studies.
Collapse
Affiliation(s)
- Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China.
| | - Dandan Xiao
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China; School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| | - Xinyu Fang
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China; School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Meng B, Vallejo Ramirez PP, Scherer KM, Bruggeman E, Kenyon JC, Kaminski CF, Lever AM. EAP45 association with budding HIV-1: Kinetics and domain requirements. Traffic 2021; 22:439-453. [PMID: 34580994 DOI: 10.1111/tra.12820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/25/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022]
Abstract
A number of viruses including HIV use the ESCRT system to bud from the infected cell. We have previously confirmed biochemically that ESCRT-II is involved in this process in HIV-1 and have defined the molecular domains that are important for this. Here, using SNAP-tag fluorescent labelling and both fixed and live cell imaging we show that the ESCRT-II component EAP45 colocalises with the HIV protein Gag at the plasma membrane in a temporal and quantitative manner, similar to that previously shown for ALIX and Gag. We show evidence that a proportion of EAP45 may be packaged within virions, and we confirm the importance of the N terminus of EAP45 and specifically the H0 domain in this process. By contrast, the Glue domain of EAP45 is more critical for recruitment during cytokinesis, emphasising that viruses have ways of recruiting cellular components that may be distinct from those used by some cellular processes. This raises the prospect of selective interference with the pathway to inhibit viral function while leaving cellular functions relatively unperturbed.
Collapse
Affiliation(s)
- Bo Meng
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Pedro P Vallejo Ramirez
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Katharina M Scherer
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Ezra Bruggeman
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Julia C Kenyon
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore.,Homerton College, University of Cambridge, Cambridge, UK
| | - Clemens F Kaminski
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Andrew M Lever
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,Department of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
17
|
The Interplay between ESCRT and Viral Factors in the Enveloped Virus Life Cycle. Viruses 2021; 13:v13020324. [PMID: 33672541 PMCID: PMC7923801 DOI: 10.3390/v13020324] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Viruses are obligate parasites that rely on host cellular factors to replicate and spread. The endosomal sorting complexes required for transport (ESCRT) system, which is classically associated with sorting and downgrading surface proteins, is one of the host machineries hijacked by viruses across diverse families. Knowledge gained from research into ESCRT and viruses has, in turn, greatly advanced our understanding of many other cellular functions in which the ESCRT pathway is involved, e.g., cytokinesis. This review highlights the interplay between the ESCRT pathway and the viral factors of enveloped viruses with a special emphasis on retroviruses.
Collapse
|
18
|
Abstract
The endosomal sorting complexes required for transport (ESCRTs) I, -II and -III, and their associated factors are a collection of ∼20 proteins in yeast and ∼30 in mammals, responsible for severing membrane necks in processes that range from multivesicular body formation, HIV release and cytokinesis, to plasma and lysosomal membrane repair. ESCRTs are best known for 'reverse-topology' membrane scission, where they act on the inner surface of membrane necks, often when membranes are budded away from the cytosol. These events are driven by membrane-associated assemblies of dozens to hundreds of ESCRT molecules. ESCRT-III proteins form filaments with a variety of geometries and ESCRT-I has now been shown to also form helical structures. The complex nature of the system and the unusual topology of its action has made progress challenging, and led to controversies with regard to its underlying mechanism. This Review will focus on recent advances obtained by structural in vitro reconstitution and in silico mechanistic studies, and places them in their biological context. The field is converging towards a consensus on the broad outlines of a mechanism that is driven by a progressive ATP-dependent treadmilling exchange of ESCRT subunits, as well as compositional change and geometric transitions in ESCRT filaments.
Collapse
Affiliation(s)
- Mark Remec Pavlin
- Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - James H Hurley
- Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA .,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
19
|
How HIV-1 Gag Manipulates Its Host Cell Proteins: A Focus on Interactors of the Nucleocapsid Domain. Viruses 2020; 12:v12080888. [PMID: 32823718 PMCID: PMC7471995 DOI: 10.3390/v12080888] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/27/2022] Open
Abstract
The human immunodeficiency virus (HIV-1) polyprotein Gag (Group-specific antigen) plays a central role in controlling the late phase of the viral lifecycle. Considered to be only a scaffolding protein for a long time, the structural protein Gag plays determinate and specific roles in HIV-1 replication. Indeed, via its different domains, Gag orchestrates the specific encapsidation of the genomic RNA, drives the formation of the viral particle by its auto-assembly (multimerization), binds multiple viral proteins, and interacts with a large number of cellular proteins that are needed for its functions from its translation location to the plasma membrane, where newly formed virions are released. Here, we review the interactions between HIV-1 Gag and 66 cellular proteins. Notably, we describe the techniques used to evidence these interactions, the different domains of Gag involved, and the implications of these interactions in the HIV-1 replication cycle. In the final part, we focus on the interactions involving the highly conserved nucleocapsid (NC) domain of Gag and detail the functions of the NC interactants along the viral lifecycle.
Collapse
|
20
|
Flower TG, Takahashi Y, Hudait A, Rose K, Tjahjono N, Pak AJ, Yokom AL, Liang X, Wang HG, Bouamr F, Voth GA, Hurley JH. A helical assembly of human ESCRT-I scaffolds reverse-topology membrane scission. Nat Struct Mol Biol 2020; 27:570-580. [PMID: 32424346 PMCID: PMC7339825 DOI: 10.1038/s41594-020-0426-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/31/2020] [Indexed: 12/26/2022]
Abstract
The ESCRT complexes drive membrane scission in HIV-1 release, autophagosome closure, MVB biogenesis, cytokinesis, and other cell processes. ESCRT-I is the most upstream complex and bridges the system to HIV-1 Gag in virus release. The crystal structure of the headpiece of human ESCRT-I comprising TSG101–VPS28–VPS37B–MVB12A was determined, revealing an ESCRT-I helical assembly with a 12 molecule repeat. Electron microscopy confirmed that ESCRT-I subcomplexes form helical filaments in solution. Mutation of VPS28 helical interface residues blocks filament formation in vitro and autophagosome closure and HIV-1 release in human cells. Coarse grained simulations of ESCRT assembly at HIV-1 budding sites suggest that formation of a 12-membered ring of ESCRT-I molecules is a geometry-dependent checkpoint during late stages of Gag assembly and HIV-1 budding, and templates ESCRT-III assembly for membrane scission. These data show that ESCRT-I is not merely a bridging adaptor, but has an essential scaffolding and mechanical role in its own right. Further information on experimental design is available in the Nature Research Reporting Summary linked to this article.
Collapse
Affiliation(s)
- Thomas G Flower
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Yoshinori Takahashi
- Department of Pediatrics, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Arpa Hudait
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Kevin Rose
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas Tjahjono
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Alexander J Pak
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Adam L Yokom
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Xinwen Liang
- Department of Pediatrics, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Hong-Gang Wang
- Department of Pediatrics, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Fadila Bouamr
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gregory A Voth
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - James H Hurley
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA. .,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
21
|
Meng B, Ip NCY, Abbink TEM, Kenyon JC, Lever AML. ESCRT-II functions by linking to ESCRT-I in human immunodeficiency virus-1 budding. Cell Microbiol 2020; 22:e13161. [PMID: 31922351 PMCID: PMC7187348 DOI: 10.1111/cmi.13161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/29/2019] [Accepted: 11/14/2019] [Indexed: 01/05/2023]
Abstract
Human immunodeficiency virus (HIV) uses the ESCRT (endosomal sorting complexes required for transport) protein pathway to bud from infected cells. Despite the roles of ESCRT-I and -III in HIV budding being firmly established, participation of ESCRT-II in this process has been controversial. EAP45 is a critical component of ESCRT-II. Previously, we utilised a CRISPR-Cas9 EAP45 knockout cell line to assess the involvement of ESCRT-II in HIV replication. We demonstrated that the absence of ESCRT-II impairs HIV budding. Here, we show that virus spread is also defective in physiologically relevant CRISPR/Cas9 EAP45 knockout T cells. We further show reappearance of efficient budding by re-introduction of EAP45 expression into EAP45 knockout cells. Using expression of selected mutants of EAP45, we dissect the domain requirement responsible for this function. Our data show at the steady state that rescue of budding is only observed in the context of a Gag/Pol, but not a Gag expressor, indicating that the size of cargo determines the usage of ESCRT-II. EAP45 acts through the YPXL-ALIX pathway as partial rescue is achieved in a PTAP but not a YPXL mutant virus. Our study clarifies the role of ESCRT-II in the late stages of HIV replication and reinforces the notion that ESCRT-II plays an integral part during this process as it does in sorting ubiquitinated cargos and in cytokinesis.
Collapse
Affiliation(s)
- Bo Meng
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Natasha C Y Ip
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Truus E M Abbink
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Julia C Kenyon
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,Department of Microbiology and Immunology, National University of Singapore, Singapore.,Homerton College, Cambridge, UK
| | - Andrew M L Lever
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,Department of Medicine, National University of Singapore, Singapore
| |
Collapse
|
22
|
Hasegawa J, Imen J, Yamamoto H, Tsujita K, Tokuda E, Shibata H, Maki M, Itoh T. SH3YL1 cooperates with ESCRT-I in the sorting and degradation of the EGF receptor. J Cell Sci 2019; 132:jcs.229179. [DOI: 10.1242/jcs.229179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
Ubiquitinated membrane proteins such as epidermal growth factor receptor (EGFR) are delivered to early endosomes and then sorted to lysosomes via multivesicular bodies (MVBs) for degradation. The regulatory mechanism underlying formation of intralumenal vesicles en route to generation of MVBs is not fully understood. In this study, we found that SH3YL1, a phosphoinositide-binding protein, had a vesicular localization pattern overlapping with internalized EGF in endosomes in the degradative pathway. Deficiency of SH3YL1 prevents EGF trafficking from early to late endosomes and inhibits degradation of EGFR. Moreover, we show that SH3YL1 mediates EGFR sorting into MVBs in a manner dependent on its carboxy-terminal SH3 domain, which is necessary for the interaction with an ESCRT-I component, Vps37B. Taken together, our observations reveal an indispensable role of SH3YL1 in MVB-sorting and EGFR degradation mediated by ESCRT complexes.
Collapse
Affiliation(s)
- Junya Hasegawa
- Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Jebri Imen
- Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Hikaru Yamamoto
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Kazuya Tsujita
- Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Emi Tokuda
- Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Hideki Shibata
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Masatoshi Maki
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Toshiki Itoh
- Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
23
|
Pemberton JG, Balla T. Polyphosphoinositide-Binding Domains: Insights from Peripheral Membrane and Lipid-Transfer Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1111:77-137. [PMID: 30483964 DOI: 10.1007/5584_2018_288] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Within eukaryotic cells, biochemical reactions need to be organized on the surface of membrane compartments that use distinct lipid constituents to dynamically modulate the functions of integral proteins or influence the selective recruitment of peripheral membrane effectors. As a result of these complex interactions, a variety of human pathologies can be traced back to improper communication between proteins and membrane surfaces; either due to mutations that directly alter protein structure or as a result of changes in membrane lipid composition. Among the known structural lipids found in cellular membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the membrane-anchored precursor of low-abundance regulatory lipids, the polyphosphoinositides (PPIn), which have restricted distributions within specific subcellular compartments. The ability of PPIn lipids to function as signaling platforms relies on both non-specific electrostatic interactions and the selective stereospecific recognition of PPIn headgroups by specialized protein folds. In this chapter, we will attempt to summarize the structural diversity of modular PPIn-interacting domains that facilitate the reversible recruitment and conformational regulation of peripheral membrane proteins. Outside of protein folds capable of capturing PPIn headgroups at the membrane interface, recent studies detailing the selective binding and bilayer extraction of PPIn species by unique functional domains within specific families of lipid-transfer proteins will also be highlighted. Overall, this overview will help to outline the fundamental physiochemical mechanisms that facilitate localized interactions between PPIn lipids and the wide-variety of PPIn-binding proteins that are essential for the coordinate regulation of cellular metabolism and membrane dynamics.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
Emerman AB, Blower MD. The RNA-binding complex ESCRT-II in Xenopus laevis eggs recognizes purine-rich sequences through its subunit, Vps25. J Biol Chem 2018; 293:12593-12605. [PMID: 29903915 DOI: 10.1074/jbc.ra118.003718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/12/2018] [Indexed: 12/29/2022] Open
Abstract
RNA-binding proteins (RBP) are critical regulators of gene expression. Recent studies have uncovered hundreds of mRNA-binding proteins that do not contain annotated RNA-binding domains and have well-established roles in other cellular processes. Investigation of these nonconventional RBPs is critical for revealing novel RNA-binding domains and may disclose connections between RNA regulation and other aspects of cell biology. The endosomal sorting complex required for transport II (ESCRT-II) is a nonconventional RNA-binding complex that has a canonical role in multivesicular body formation. ESCRT-II was identified previously as an RNA-binding complex in Drosophila oocytes, but whether its RNA-binding properties extend beyond Drosophila is unknown. In this study, we found that the RNA-binding properties of ESCRT-II are conserved in Xenopus eggs, where ESCRT-II interacted with hundreds of mRNAs. Using a UV cross-linking approach, we demonstrated that ESCRT-II binds directly to RNA through its subunit, Vps25. UV cross-linking and immunoprecipitation (CLIP)-Seq revealed that Vps25 specifically recognizes a polypurine (i.e. GA-rich) motif in RNA. Using purified components, we could reconstitute the selective Vps25-mediated binding of the polypurine motif in vitro Our results provide insight into the mechanism by which ESCRT-II selectively binds to mRNA and also suggest an unexpected link between endosome biology and RNA regulation.
Collapse
Affiliation(s)
- Amy B Emerman
- From the Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114 and the Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Michael D Blower
- From the Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114 and the Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
25
|
Vandal SE, Zheng X, Ahmad ST. Molecular Genetics of Frontotemporal Dementia Elucidated by Drosophila Models-Defects in Endosomal⁻Lysosomal Pathway. Int J Mol Sci 2018; 19:ijms19061714. [PMID: 29890743 PMCID: PMC6032313 DOI: 10.3390/ijms19061714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 01/31/2023] Open
Abstract
Frontotemporal dementia (FTD) is the second most common senile neurodegenerative disease. FTD is a heterogeneous disease that can be classified into several subtypes. A mutation in CHMP2B locus (CHMP2Bintron5), which encodes a component of endosomal sorting complex required for transport-III (ESCRT-III), is associated with a rare hereditary subtype of FTD linked to chromosome 3 (FTD-3). ESCRT is involved in critical cellular processes such as multivesicular body (MVB) formation during endosomal–lysosomal pathway and autophagy. ESCRT mutants causes diverse physiological defects primarily due to accumulation of endosomes and defective MVBs resulting in misregulation of signaling pathways. Charged multivesicular body protein 2B (CHMP2B) is important for neuronal physiology which especially rely on precise regulation of protein homeostasis due to their post-mitotic status. Drosophila has proven to be an excellent model for charaterization of mechanistic underpinning of neurodegenerative disorders including FTD. In this review, current understanding of various FTD-related mutations is discussed with a focus on Drosophila models of CHMP2Bintron5-associated FTD.
Collapse
Affiliation(s)
- Sarah E Vandal
- Department of Biology, Colby College, 5720 Mayflower Hill, Waterville, ME 04901, USA.
| | - Xiaoyue Zheng
- Department of Biology, Colby College, 5720 Mayflower Hill, Waterville, ME 04901, USA.
| | - S Tariq Ahmad
- Department of Biology, Colby College, 5720 Mayflower Hill, Waterville, ME 04901, USA.
| |
Collapse
|
26
|
Tao S, Guo S, Zhang C. Modularized Extracellular Vesicles: The Dawn of Prospective Personalized and Precision Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700449. [PMID: 29619297 PMCID: PMC5827100 DOI: 10.1002/advs.201700449] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/18/2017] [Indexed: 05/20/2023]
Abstract
Extracellular vesicles (EVs) are ubiquitous nanosized membrane vesicles consisting of a lipid bilayer enclosing proteins and nucleic acids, which are active in intercellular communications. EVs are increasingly seen as a vital component of many biological functions that were once considered to require the direct participation of stem cells. Consequently, transplantation of EVs is gradually becoming considered an alternative to stem cell transplantation due to their significant advantages, including their relatively low probability of neoplastic transformation and abnormal differentiation. However, as research has progressed, it is realized that EVs derived from native-source cells may have various shortcomings, which can be corrected by modification and optimization. To date, attempts are made to modify or improve almost all the components of EVs, including the lipid bilayer, proteins, and nucleic acids, launching a new era of modularized EV therapy through the "modular design" of EV components. One high-yield technique, generating EV mimetic nanovesicles, will help to make industrial production of modularized EVs a reality. These modularized EVs have highly customized "modular design" components related to biological function and targeted delivery and are proposed as a promising approach to achieve personalized and precision medicine.
Collapse
Affiliation(s)
- Shi‐Cong Tao
- Department of Orthopaedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
| | - Shang‐Chun Guo
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
| | - Chang‐Qing Zhang
- Department of Orthopaedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
| |
Collapse
|
27
|
|
28
|
Saha N, Dutta S, Datta SP, Sarkar S. The minimal ESCRT machinery of Giardia lamblia has altered inter-subunit interactions within the ESCRT-II and ESCRT-III complexes. Eur J Cell Biol 2017; 97:44-62. [PMID: 29224850 DOI: 10.1016/j.ejcb.2017.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 11/19/2022] Open
Abstract
The ESCRT pathway functions at different subcellular membranes to induce their negative curvature, and it has been largely characterized in model eukaryotes belonging to Opisthokonta. But searches of the genomes of many nonopisthokonts belonging to various supergroups indicate that some of them may harbour fewer ESCRT components. Of the genomes explored thus far, one of the most minimal set of ESCRT components was identified in the human pathogen Giardia lamblia, which belongs to Excavata. Here we report that an ESCRT-mediated pathway most likely operates at the peripheral vesicles, which are located at the cell periphery and the bare zone of this protist. Functional comparison of all the identified putative giardial ESCRT components, with the corresponding well-characterized orthologues from Saccharomyces cerevisiae, indicated that only some of the ESCRT components could functionally substitute for the corresponding yeast proteins. While GlVps25, GlVps2, and all three paralogues of GlVps4, tested positive in functional complementation assays, GlVps22, GlVps20, and GlVps24 did not. Binary interactions of either GlVps22 or GlVps25, with other ESCRT-II components from Giardia or yeast indicate that the giardial Vps36 orthologue is either completely missing or highly diverged. Interactions within the giardial ESCRT-III components also differ from those in yeast; while GlVps46a interacts preferentially with Vps24 compared to Vps2, GlVps46b, like the yeast orthologue, interacts with both.
Collapse
Affiliation(s)
- Nabanita Saha
- Department of Biochemistry, Bose Institute, P 1/12 CIT Road Scheme VII M, Kolkata 700054, West Bengal, India.
| | - Somnath Dutta
- Department of Biochemistry, Bose Institute, P 1/12 CIT Road Scheme VII M, Kolkata 700054, West Bengal, India.
| | - Shankari P Datta
- Department of Biochemistry, Bose Institute, P 1/12 CIT Road Scheme VII M, Kolkata 700054, West Bengal, India.
| | - Srimonti Sarkar
- Department of Biochemistry, Bose Institute, P 1/12 CIT Road Scheme VII M, Kolkata 700054, West Bengal, India.
| |
Collapse
|
29
|
Stoten CL, Carlton JG. ESCRT-dependent control of membrane remodelling during cell division. Semin Cell Dev Biol 2017; 74:50-65. [PMID: 28843980 PMCID: PMC6015221 DOI: 10.1016/j.semcdb.2017.08.035] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/07/2017] [Accepted: 08/18/2017] [Indexed: 12/16/2022]
Abstract
The Endosomal Sorting Complex Required for Transport (ESCRT) proteins form an evolutionarily conserved membrane remodelling machinery. Identified originally for their role in cargo sorting and remodelling of endosomal membranes during yeast vacuolar sorting, an extensive body of work now implicates a sub-complex of this machinery (ESCRT-III), as a transplantable membrane fission machinery that is dispatched to various cellular locations to achieve a topologically unique membrane separation. Surprisingly, several ESCRT-III-regulated processes occur during cell division, when cells undergo a dramatic and co-ordinated remodelling of their membranes to allow the physical processes of division to occur. The ESCRT machinery functions in regeneration of the nuclear envelope during open mitosis and in the abscission phase of cytokinesis, where daughter cells are separated from each other in the last act of division. Roles for the ESCRT machinery in cell division are conserved as far back as Archaea, suggesting that the ancestral role of these proteins was as a membrane remodelling machinery that facilitated division and that was co-opted throughout evolution to perform a variety of other cell biological functions. Here, we will explore the function and regulation of the ESCRT machinery in cell division.
Collapse
|
30
|
Growing functions of the ESCRT machinery in cell biology and viral replication. Biochem Soc Trans 2017; 45:613-634. [PMID: 28620025 DOI: 10.1042/bst20160479] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 01/31/2023]
Abstract
The vast expansion in recent years of the cellular processes promoted by the endosomal sorting complex required for transport (ESCRT) machinery has reinforced its identity as a modular system that uses multiple adaptors to recruit the core membrane remodelling activity at different intracellular sites and facilitate membrane scission. Functional connections to processes such as the aurora B-dependent abscission checkpoint also highlight the importance of the spatiotemporal regulation of the ESCRT machinery. Here, we summarise the role of ESCRTs in viral budding, and what we have learned about the ESCRT pathway from studying this process. These advances are discussed in the context of areas of cell biology that have been transformed by research in the ESCRT field, including cytokinetic abscission, nuclear envelope resealing and plasma membrane repair.
Collapse
|
31
|
Banh BT, McDermott H, Woodman S, Gadila SKG, Saimani U, Short JCW, Kim K. Yeast dynamin interaction with ESCRT proteins at the endosome. Cell Biol Int 2017; 41:484-494. [PMID: 28185357 DOI: 10.1002/cbin.10738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 02/04/2017] [Indexed: 11/06/2022]
Abstract
The dynamin-like protein, Vps1, is a GTPase involved in cargo sorting and membrane remodeling in multiple cellular trafficking pathways. Recently, Vps1 has been shown to genetically interact with ESCRT subunits. We tested the hypothesis that the functional connection of Vps1 with some of these subunits of ESCRT complexes occurs via a physical interaction. By utilizing the yeast two-hybrid system, we revealed that Vps1 physically interacts with the ESCRT-II subunits, Vps22 and Vps36, and the ESCRT-III subunit Vps24. We found that Vps1 and ESCRT-II components colocalize with Pep12, an endosomal marker. Additionally, loss of Vps1 or depletion of the GTPase activity of Vps1 results in a moderate defect in Cps1 targeting to the vacuole. Here, we discussed the potential implications of Vps1 and ESCRT interaction and their roles in the endosome-to-vacuole traffic. In summary, yeast dynamin interacts with ESCRT II and III complexes, and it functions in Cps1 trafficking toward the vacuole.
Collapse
Affiliation(s)
- Bryan T Banh
- Department of Biology, Missouri State University, 901 S National, Springfield, Missouri, 65807
| | - Hyoeun McDermott
- Department of Biology, Missouri State University, 901 S National, Springfield, Missouri, 65807
| | - Sara Woodman
- Department of Biology, Missouri State University, 901 S National, Springfield, Missouri, 65807
| | - Shiva Kumar Goud Gadila
- Department of Biology, Missouri State University, 901 S National, Springfield, Missouri, 65807
| | - Uma Saimani
- Department of Biology, Missouri State University, 901 S National, Springfield, Missouri, 65807
| | - John C W Short
- Department of Biology, Missouri State University, 901 S National, Springfield, Missouri, 65807
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, Missouri, 65807
| |
Collapse
|
32
|
Christ L, Raiborg C, Wenzel EM, Campsteijn C, Stenmark H. Cellular Functions and Molecular Mechanisms of the ESCRT Membrane-Scission Machinery. Trends Biochem Sci 2017; 42:42-56. [DOI: 10.1016/j.tibs.2016.08.016] [Citation(s) in RCA: 300] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/24/2016] [Accepted: 08/31/2016] [Indexed: 12/22/2022]
|
33
|
Olmos Y, Perdrix-Rosell A, Carlton JG. Membrane Binding by CHMP7 Coordinates ESCRT-III-Dependent Nuclear Envelope Reformation. Curr Biol 2016; 26:2635-2641. [PMID: 27618263 PMCID: PMC5069351 DOI: 10.1016/j.cub.2016.07.039] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/25/2016] [Accepted: 07/15/2016] [Indexed: 10/27/2022]
Abstract
In addition to its role in membrane abscission during cytokinesis, viral budding, endosomal sorting, and plasma membrane repair [1], the endosomal sorting complex required for transport-III (ESCRT-III) machinery has recently been shown to seal holes in the reforming nuclear envelope (NE) during mitotic exit [2, 3]. ESCRT-III also acts during interphase to repair the NE upon migration-induced rupture [4, 5], highlighting its key role as an orchestrator of membrane integrity at this organelle. While NE localization of ESCRT-III is dependent upon the ESCRT-III component CHMP7 [3], it is unclear how this complex is able to engage nuclear membranes. Here we show that the N terminus of CHMP7 acts as a novel membrane-binding module. This membrane-binding ability allows CHMP7 to bind to the ER, an organelle continuous with the NE, and it provides a platform to direct NE recruitment of ESCRT-III during mitotic exit. CHMP7's N terminus comprises tandem Winged-Helix domains [6], and, by using homology modeling and structure-function analysis, we identify point mutations that disrupt membrane binding and prevent both ER localization of CHMP7 and its subsequent enrichment at the reforming NE. These mutations also prevent assembly of downstream ESCRT-III components at the reforming NE and proper establishment of post-mitotic nucleo-cytoplasmic compartmentalization. These data identify a novel membrane-binding activity within an ESCRT-III subunit that is essential for post-mitotic nuclear regeneration.
Collapse
Affiliation(s)
- Yolanda Olmos
- Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | | | - Jeremy G Carlton
- Division of Cancer Studies, King's College London, London SE1 1UL, UK.
| |
Collapse
|
34
|
Majumder P, Chakrabarti O. ESCRTs and associated proteins in lysosomal fusion with endosomes and autophagosomes. Biochem Cell Biol 2016; 94:443-450. [PMID: 27701906 DOI: 10.1139/bcb-2016-0099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endolysosomal and autophagosomal degradation pathways are highly connected at various levels, sharing multiple molecular effectors that modulate them individually or simultaneously. These two lysosomal degradative pathways are primarily involved in the disposal of cargo internalized from the cell surface or long-lived proteins or aggregates and aged organelles present in the cytosol. Both of these pathways involve a number of carefully regulated vesicular fusion events that are dependent on ESCRT proteins. The ESCRT proteins especially ESCRT-I and III participate in the regulation of fusion events between autophagosome/amphisome and lysosome. Along with these, a number of functionally diverse ESCRT associated and regulatory proteins such as, endosomal PtdIns (3) P 5-kinase Fab1, ALIX, mahogunin ring finger 1, atrogin 1, syntaxin 17, ATG12-ATG3 complex, and protein kinase CK2α are involved in fusion events in either or both the lysosomal degradative pathways.
Collapse
Affiliation(s)
- Priyanka Majumder
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal 700064, India.,Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal 700064, India
| | - Oishee Chakrabarti
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal 700064, India.,Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal 700064, India
| |
Collapse
|
35
|
Abstract
The narrow membrane necks formed during viral, exosomal and intra-endosomal budding from membranes, as well as during cytokinesis and related processes, have interiors that are contiguous with the cytosol. Severing these necks involves action from the opposite face of the membrane as occurs during the well-characterized formation of coated vesicles. This 'reverse' (or 'inverse')-topology membrane scission is carried out by the endosomal sorting complex required for transport (ESCRT) proteins, which form filaments, flat spirals, tubes and conical funnels that are thought to direct membrane remodelling and scission. Their assembly, and their disassembly by the ATPase vacuolar protein sorting-associated 4 (VPS4) have been intensively studied, but the mechanism of scission has been elusive. New insights from cryo-electron microscopy and various types of spectroscopy may finally be close to rectifying this situation.
Collapse
|
36
|
Christ L, Wenzel EM, Liestøl K, Raiborg C, Campsteijn C, Stenmark H. ALIX and ESCRT-I/II function as parallel ESCRT-III recruiters in cytokinetic abscission. J Cell Biol 2016; 212:499-513. [PMID: 26929449 PMCID: PMC4772496 DOI: 10.1083/jcb.201507009] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytokinetic abscission, the final stage of cell division, is mediated by the ESCRT machinery. Here, Christ et al. dissect the regulation of ESCRT-III recruitment and abscission timing and identify an intersection with abscission checkpoint signaling in cells with chromatin bridges. Cytokinetic abscission, the final stage of cell division where the two daughter cells are separated, is mediated by the endosomal sorting complex required for transport (ESCRT) machinery. The ESCRT-III subunit CHMP4B is a key effector in abscission, whereas its paralogue, CHMP4C, is a component in the abscission checkpoint that delays abscission until chromatin is cleared from the intercellular bridge. How recruitment of these components is mediated during cytokinesis remains poorly understood, although the ESCRT-binding protein ALIX has been implicated. Here, we show that ESCRT-II and the ESCRT-II–binding ESCRT-III subunit CHMP6 cooperate with ESCRT-I to recruit CHMP4B, with ALIX providing a parallel recruitment arm. In contrast to CHMP4B, we find that recruitment of CHMP4C relies predominantly on ALIX. Accordingly, ALIX depletion leads to furrow regression in cells with chromosome bridges, a phenotype associated with abscission checkpoint signaling failure. Collectively, our work reveals a two-pronged recruitment of ESCRT-III to the cytokinetic bridge and implicates ALIX in abscission checkpoint signaling.
Collapse
Affiliation(s)
- Liliane Christ
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, N-0379 Oslo, Norway Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, N-0379 Oslo, Norway
| | - Eva M Wenzel
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, N-0379 Oslo, Norway Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, N-0379 Oslo, Norway
| | - Knut Liestøl
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, N-0379 Oslo, Norway Department of Informatics, University of Oslo, N-0373 Oslo, Norway
| | - Camilla Raiborg
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, N-0379 Oslo, Norway Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, N-0379 Oslo, Norway
| | - Coen Campsteijn
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, N-0379 Oslo, Norway Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, N-0379 Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, N-0379 Oslo, Norway Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, N-0379 Oslo, Norway
| |
Collapse
|
37
|
Carlson LA, Bai Y, Keane SC, Doudna JA, Hurley JH. Reconstitution of selective HIV-1 RNA packaging in vitro by membrane-bound Gag assemblies. eLife 2016; 5. [PMID: 27343348 PMCID: PMC4946900 DOI: 10.7554/elife.14663] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 06/24/2016] [Indexed: 12/23/2022] Open
Abstract
HIV-1 Gag selects and packages a dimeric, unspliced viral RNA in the context of a large excess of cytosolic human RNAs. As Gag assembles on the plasma membrane, the HIV-1 genome is enriched relative to cellular RNAs by an unknown mechanism. We used a minimal system consisting of purified RNAs, recombinant HIV-1 Gag and giant unilamellar vesicles to recapitulate the selective packaging of the 5’ untranslated region of the HIV-1 genome in the presence of excess competitor RNA. Mutations in the CA-CTD domain of Gag which subtly affect the self-assembly of Gag abrogated RNA selectivity. We further found that tRNA suppresses Gag membrane binding less when Gag has bound viral RNA. The ability of HIV-1 Gag to selectively package its RNA genome and its self-assembly on membranes are thus interdependent on one another. DOI:http://dx.doi.org/10.7554/eLife.14663.001 HIV-1 is the virus that causes AIDS – short for acquired immune deficiency syndrome – in humans. When HIV-1 infects a person, it targets cells of the immune system, which normally act to defend the body against infections. As the virus spreads from one immune cell to the next, it weakens the immune system so that individuals become more vulnerable to other illnesses. A cell infected with HIV-1 creates new virus particles at its surface and then releases the particles so that they can infect other cells. HIV-1 viruses encode their genetic information as molecules of ribonucleic acid (RNA). However, the host cell also makes many other RNA molecules that do not contain virus genes so there must be a mechanism in place to ensure that the new virus particles only contain viral RNA. An HIV-1 protein called Gag is responsible for assembling new virus particles and several Gag proteins come together on the cell membrane to form a honeycomb-like structure called the immature lattice. However, it is not clear how Gag is able to select the right RNA molecules. To study how RNA is packaged into new HIV-1 particles, Carlson et al. used artificial versions of the cell membrane, viral RNA and the virus protein Gag to create a simple cell-free system. This system shows that all that is needed for viral RNA to be correctly packaged into new HIV-1 particles is for Gag to be attached to the cell membrane in such a way that the lattice forms correctly. Disturbing the immature lattice by altering the Gag proteins can result in a drastic loss of RNA selectivity. Further experiments show that other molecules in host cells called transfer RNAs enhance the ability of Gag to select the RNAs that encode virus genes. Carlson et al.’s findings reveal a link between the formation of the Gag lattice and the packaging of virus genes into new virus particles. Drugs that inhibit this process could have the potential to be used as therapies against HIV-1. A future challenge will be to re-create the entire process of HIV-1 assembly in a cell-free system, which would make it easier to develop new drugs that target the process. DOI:http://dx.doi.org/10.7554/eLife.14663.002
Collapse
Affiliation(s)
- Lars-Anders Carlson
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Yun Bai
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Sarah C Keane
- Howard Hughes Medical Institute, Baltimore, United States.,Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, United States
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Baltimore, United States.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - James H Hurley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
38
|
Park A, Yun T, Vigant F, Pernet O, Won ST, Dawes BE, Bartkowski W, Freiberg AN, Lee B. Nipah Virus C Protein Recruits Tsg101 to Promote the Efficient Release of Virus in an ESCRT-Dependent Pathway. PLoS Pathog 2016; 12:e1005659. [PMID: 27203423 PMCID: PMC4874542 DOI: 10.1371/journal.ppat.1005659] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/04/2016] [Indexed: 12/21/2022] Open
Abstract
The budding of Nipah virus, a deadly member of the Henipavirus genus within the Paramyxoviridae, has been thought to be independent of the host ESCRT pathway, which is critical for the budding of many enveloped viruses. This conclusion was based on the budding properties of the virus matrix protein in the absence of other virus components. Here, we find that the virus C protein, which was previously investigated for its role in antagonism of innate immunity, recruits the ESCRT pathway to promote efficient virus release. Inhibition of ESCRT or depletion of the ESCRT factor Tsg101 abrogates the C enhancement of matrix budding and impairs live Nipah virus release. Further, despite the low sequence homology of the C proteins of known henipaviruses, they all enhance the budding of their cognate matrix proteins, suggesting a conserved and previously unknown function for the henipavirus C proteins. Nipah virus is a deadly pathogen (40–100% mortality) that has yearly outbreaks in Southeast Asia, resulting from spillover from its natural fruit bat reservoir. The viral C protein is one of only nine virus proteins, but its role in promoting virus replication is not fully understood. Here, we found that the C protein promotes the efficient release of budding Nipah virus from infected cells. It does so by recruiting an essential factor in the host ESCRT complex, Tsg101. The ESCRT complex has well-characterized functions in mediating membrane pinching off events that resemble virus budding. Further, we found that the C proteins of related viruses within the same genus (Henipavirus) also promote virus budding, suggesting that this previously unknown function of the henipavirus C proteins is conserved. This work illuminates the basic biology of henipaviruses with significant outbreak and public health concern, and opens the door to further lines of inquiry.
Collapse
Affiliation(s)
- Arnold Park
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Tatyana Yun
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Frederic Vigant
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Olivier Pernet
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, California, United States of America
| | - Sohui T. Won
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Brian E. Dawes
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Wojciech Bartkowski
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, California, United States of America
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Benhur Lee
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
39
|
Lefebvre C, Largeau C, Michelet X, Fourrage C, Maniere X, Matic I, Legouis R, Culetto E. The ESCRT-II proteins are involved in shaping the sarcoplasmic reticulum in C. elegans. J Cell Sci 2016; 129:1490-9. [PMID: 26906413 DOI: 10.1242/jcs.178467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 02/15/2016] [Indexed: 12/22/2022] Open
Abstract
The sarcoplasmic reticulum is a network of tubules and cisternae localized in close association with the contractile apparatus, and regulates Ca(2+)dynamics within striated muscle cell. The sarcoplasmic reticulum maintains its shape and organization despite repeated muscle cell contractions, through mechanisms which are still under investigation. The ESCRT complexes are essential to organize membrane subdomains and modify membrane topology in multiple cellular processes. Here, we report for the first time that ESCRT-II proteins play a role in the maintenance of sarcoplasmic reticulum integrity inC. elegans ESCRT-II proteins colocalize with the sarcoplasmic reticulum marker ryanodine receptor UNC-68. The localization at the sarcoplasmic reticulum of ESCRT-II and UNC-68 are mutually dependent. Furthermore, the characterization of ESCRT-II mutants revealed a fragmentation of the sarcoplasmic reticulum network, associated with an alteration of Ca(2+)dynamics. Our data provide evidence that ESCRT-II proteins are involved in sarcoplasmic reticulum shaping.
Collapse
Affiliation(s)
- Christophe Lefebvre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France
| | - Céline Largeau
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France
| | - Xavier Michelet
- Brigham and Women's Hospital, 1 Jimmy Fund Way, Boston, MA 02115, USA
| | - Cécile Fourrage
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France
| | - Xavier Maniere
- Faculté de médecine Paris Descartes, Inserm U1001 - 24, rue du Faubourg St-Jacques, Paris 75014, France
| | - Ivan Matic
- Faculté de médecine Paris Descartes, Inserm U1001 - 24, rue du Faubourg St-Jacques, Paris 75014, France
| | - Renaud Legouis
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France
| | - Emmanuel Culetto
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France
| |
Collapse
|
40
|
Bud-neck scaffolding as a possible driving force in ESCRT-induced membrane budding. Biophys J 2015; 108:833-843. [PMID: 25692588 PMCID: PMC4336374 DOI: 10.1016/j.bpj.2014.12.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/20/2014] [Accepted: 12/23/2014] [Indexed: 01/03/2023] Open
Abstract
Membrane budding is essential for processes such as protein sorting and transport. Recent experimental results with ESCRT proteins reveal a novel budding mechanism, with proteins emerging in bud necks but separated from the entire bud surface. Using an elastic model, we show that ESCRT protein shapes are sufficient to spontaneously create experimentally observed structures, with protein-membrane interactions leading to protein scaffolds in bud-neck regions. Furthermore, the model reproduces experimentally observed budding directions and bud sizes. Finally, our results reveal that membrane-mediated sorting has the capability of creating structures more complicated than previously assumed.
Collapse
|
41
|
Meng B, Ip NCY, Prestwood LJ, Abbink TEM, Lever AML. Evidence that the endosomal sorting complex required for transport-II (ESCRT-II) is required for efficient human immunodeficiency virus-1 (HIV-1) production. Retrovirology 2015; 12:72. [PMID: 26268989 PMCID: PMC4535389 DOI: 10.1186/s12977-015-0197-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/31/2015] [Indexed: 11/17/2022] Open
Abstract
Background Egress of a number of different virus species from infected cells depends on proteins of the endosomal sorting complexes required for transport (ESCRT) pathway. HIV has also hijacked this system to bud viruses outward from the cell surface. How ESCRT-I activates ESCRT-III in this process remains unclear with conflicting published evidence for the requirement of ESCRT-II which fulfils this role in other systems. We investigated the role of ESCRT-II using knockdown mediated by siRNA and shRNA, mutants which prevent ESCRT-I/ESCRT-II interaction and a CRISPR/Cas9 EAP45 knockout cell line. Results Depletion or elimination of ESCRT-II components from an HIV infected cell produces two distinct effects. The overall production of HIV-1 Gag is reduced leading to a diminished amount of intracellular virion protein. In addition depletion of ESCRT-II produces an effect similar to that seen when ESCRT-I and -III components are depleted, that of a delayed Gag p26 to p24 +p2 cleavage associated with a reduction in export of virion particles and a visible reduction in budding efficiency in virus producing cells. Mutants that interfere with ESCRT-I interacting with ESCRT-II similarly reduce virus export. The export defect is independent of the decrease in overall Gag production. Using a mutant virus which cannot use the ALIX mediated export pathway exacerbates the decrease in virus export seen when ESCRT-II is depleted. ESCRT-II knockdown does not lead to complete elimination of virus release suggesting that the late domain role of ESCRT-II is required for optimal efficiency of viral budding but that there are additional pathways that the virus can employ to facilitate this. Conclusion ESCRT-II contributes to efficient HIV virion production and export by more than one pathway; both by a transcriptional or post transcriptional mechanism and also by facilitating efficient virus export from the cell through interactions with other ESCRT components. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0197-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bo Meng
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | - Natasha C Y Ip
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | - Liam J Prestwood
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | - Truus E M Abbink
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK. .,Centre for Childhood White Matter Disorders, VU University Medical Centre, Amsterdam, The Netherlands.
| | - Andrew M L Lever
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
42
|
Peterson TA, Yu L, Piper RC. Backbone and side-chain NMR assignments for the C-terminal domain of mammalian Vps28. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:21-24. [PMID: 24366722 PMCID: PMC4470380 DOI: 10.1007/s12104-013-9537-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/17/2013] [Indexed: 06/03/2023]
Abstract
Vps28 is one of four cytosolic proteins comprising the endosomal sorting complex required for transport I (ESCRT-I). ESCRT-I is involved in sorting ubiquitinated proteins to multivesicular bodies as well as in mediating budding of retroviruses. Here, we report the backbone and side-chain assignments of the mammalian C-terminal domain of Vps28 (mVps28(CTD)), which is involved in interactions with other ESCRT components. We also compare the predicted secondary structures of mVps28(CTD) with those of the published X-ray crystal structures of Saccharomyces cerevisiae and Xenopus laevis Vps28(CTD). These NMR resonance assignments will facilitate chemical shift mapping and structural determination of mammalian Vps28 interactions with other components of the endosomal sorting machinery that sorts ubiquitinated proteins for lysosomal degradation.
Collapse
Affiliation(s)
- Tabitha A. Peterson
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242
| | - Liping Yu
- Carver College of Medicine NMR Facility, University of Iowa, Iowa City, IA 52242
| | - Robert C. Piper
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
43
|
Mageswaran SK, Johnson NK, Odorizzi G, Babst M. Constitutively active ESCRT-II suppresses the MVB-sorting phenotype of ESCRT-0 and ESCRT-I mutants. Mol Biol Cell 2014; 26:554-68. [PMID: 25501366 PMCID: PMC4310745 DOI: 10.1091/mbc.e14-10-1469] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This study is a step toward understanding the minimal requirements for MVB biogenesis and for ESCRT machinery in this process. Early ESCRT complexes (ESCRT-0 and -I) seem to have redundant functions in cargo sorting. Furthermore, vesicle formation seems to require cargo sorting in addition to late ESCRT machinery. The endosomal sorting complex required for transport (ESCRT) protein complexes function at the endosome in the formation of intraluminal vesicles (ILVs) containing cargo proteins destined for the vacuolar/lysosomal lumen. The early ESCRTs (ESCRT-0 and -I) are likely involved in cargo sorting, whereas ESCRT-III and Vps4 function to sever the neck of the forming ILVs. ESCRT-II links these functions by initiating ESCRT-III formation in an ESCRT-I–regulated manner. We identify a constitutively active mutant of ESCRT-II that partially suppresses the phenotype of an ESCRT-I or ESCRT-0 deletion strain, suggesting that these early ESCRTs are not essential and have redundant functions. However, the ESCRT-III/Vps4 system alone is not sufficient for ILV formation but requires cargo sorting mediated by one of the early ESCRTs.
Collapse
Affiliation(s)
- Shrawan Kumar Mageswaran
- Center for Cell and Genome Science and Department of Biology, University of Utah, Salt Lake City, UT 84112
| | - Natalie K Johnson
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309
| | - Greg Odorizzi
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309
| | - Markus Babst
- Center for Cell and Genome Science and Department of Biology, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
44
|
Handschuh K, Feenstra J, Koss M, Ferretti E, Risolino M, Zewdu R, Sahai MA, Bénazet JD, Peng XP, Depew MJ, Quintana L, Sharpe J, Wang B, Alcorn H, Rivi R, Butcher S, Manak JR, Vaccari T, Weinstein H, Anderson KV, Lacy E, Selleri L. ESCRT-II/Vps25 constrains digit number by endosome-mediated selective modulation of FGF-SHH signaling. Cell Rep 2014; 9:674-87. [PMID: 25373905 DOI: 10.1016/j.celrep.2014.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 08/06/2014] [Accepted: 09/09/2014] [Indexed: 10/24/2022] Open
Abstract
Sorting and degradation of receptors and associated signaling molecules maintain homeostasis of conserved signaling pathways during cell specification and tissue development. Yet, whether machineries that sort signaling proteins act preferentially on different receptors and ligands in different contexts remains mysterious. Here, we show that Vacuolar protein sorting 25, Vps25, a component of ESCRT-II (Endosomal Sorting Complex Required for Transport II), directs preferential endosome-mediated modulation of FGF signaling in limbs. By ENU-induced mutagenesis, we isolated a polydactylous mouse line carrying a hypomorphic mutation of Vps25 (Vps25(ENU)). Unlike Vps25-null embryos we generated, Vps25(ENU/ENU) mutants survive until late gestation. Their limbs display FGF signaling enhancement and consequent hyperactivation of the FGF-SHH feedback loop causing polydactyly, whereas WNT and BMP signaling remain unperturbed. Notably, Vps25(ENU/ENU) Mouse Embryonic Fibroblasts exhibit aberrant FGFR trafficking and degradation; however, SHH signaling is unperturbed. These studies establish that the ESCRT-II machinery selectively limits FGF signaling in vertebrate skeletal patterning.
Collapse
Affiliation(s)
- Karen Handschuh
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jennifer Feenstra
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Matthew Koss
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Elisabetta Ferretti
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Maurizio Risolino
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Rediet Zewdu
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Michelle A Sahai
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jean-Denis Bénazet
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Xiao P Peng
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Michael J Depew
- Department of Craniofacial Development, King's College London, Guy's Hospital, London Bridge, London SE1 9RT, UK; Department of Othopaedic Surgery, UCSF, San Francisco, CA 94110, USA
| | - Laura Quintana
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA; Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| | - James Sharpe
- Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institucio Catalana de Recerca i Estudis Avancats (ICREA), 08010 Barcelona, Spain
| | - Baolin Wang
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Heather Alcorn
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Roberta Rivi
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Stephen Butcher
- Departments of Biology and Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - J Robert Manak
- Departments of Biology and Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Thomas Vaccari
- IFOM-FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Harel Weinstein
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Elizabeth Lacy
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Licia Selleri
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
45
|
Stieler JT, Prange R. Involvement of ESCRT-II in hepatitis B virus morphogenesis. PLoS One 2014; 9:e91279. [PMID: 24614091 PMCID: PMC3948859 DOI: 10.1371/journal.pone.0091279] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/10/2014] [Indexed: 01/20/2023] Open
Abstract
The hepatitis B virus (HBV) is an enveloped DNA virus that replicates via reverse transcription of its pregenomic RNA (pgRNA). Budding of HBV is supposed to occur at intracellular membranes and requires scission functions of the endosomal sorting complex required for transport (ESCRT) provided by ESCRT-III and VPS4. Here, we have investigated the impact of the upstream-acting ESCRT-I and ESCRT-II complexes in HBV morphogenesis. RNA interference knockdown of the ESCRT-I subunits TSG101 and VPS28 did not block, but rather stimulate virus release. In contrast, RNAi-mediated depletion of the ESCRT-II components EAP20, EAP30 and EAP45 greatly reduced virus egress. By analyzing different steps of the HBV maturation pathway, we find that the knockdown of ESCRT-II not only inhibited the production and/or release of enveloped virions, but also impaired intracellular nucleocapsid formation. Transcription/translation studies revealed that the depletion of ESCRT-II neither affected the synthesis and nuclear export of HBV-specific RNAs nor the expression of the viral core and envelope proteins. Moreover, the absence of ESCRT-II had no effects on the assembly capability and integrity of HBV core/capsids. However, the level of encapsidated pgRNA was significantly reduced in ESCRT-II-depleted cells, implicating that ESCRT-II directs steps accompanying the formation of replication-competent nucleocapsids, like e.g. assisting in RNA trafficking and encapsidation. In support of this, the capsid protein was found to interact and colocalize with ESCRT-II subunits in virus-producing cells. Together, these results indicate an essential role for ESCRT-II in the HBV life cycle and suggest that ESCRT-II functions prior to the final HBV budding reaction.
Collapse
Affiliation(s)
- Jens T. Stieler
- Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Reinhild Prange
- Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- * E-mail:
| |
Collapse
|
46
|
Schuh AL, Audhya A. The ESCRT machinery: from the plasma membrane to endosomes and back again. Crit Rev Biochem Mol Biol 2014; 49:242-61. [PMID: 24456136 DOI: 10.3109/10409238.2014.881777] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The manipulation and reorganization of lipid bilayers are required for diverse cellular processes, ranging from organelle biogenesis to cytokinetic abscission, and often involves transient membrane disruption. A set of membrane-associated proteins collectively known as the endosomal sorting complex required for transport (ESCRT) machinery has been implicated in membrane scission steps, which transform a single, continuous bilayer into two distinct bilayers, while simultaneously segregating cargo throughout the process. Components of the ESCRT pathway, which include 5 distinct protein complexes and an array of accessory factors, each serve discrete functions. This review focuses on the molecular mechanisms by which the ESCRT proteins facilitate cargo sequestration and membrane remodeling and highlights their unique roles in cellular homeostasis.
Collapse
Affiliation(s)
- Amber L Schuh
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health , Madison, WI , USA
| | | |
Collapse
|
47
|
Anantharaman V, Iyer LM, Aravind L. Ter-dependent stress response systems: novel pathways related to metal sensing, production of a nucleoside-like metabolite, and DNA-processing. MOLECULAR BIOSYSTEMS 2013; 8:3142-65. [PMID: 23044854 DOI: 10.1039/c2mb25239b] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mode of action of the bacterial ter cluster and TelA genes, implicated in natural resistance to tellurite and other xenobiotic toxic compounds, pore-forming colicins and several bacteriophages, has remained enigmatic for almost two decades. Using comparative genomics, sequence-profile searches and structural analysis we present evidence that the ter gene products and their functional partners constitute previously underappreciated, chemical stress response and anti-viral defense systems of bacteria. Based on contextual information from conserved gene neighborhoods and domain architectures, we show that the ter gene products and TelA lie at the center of membrane-linked metal recognition complexes with regulatory ramifications encompassing phosphorylation-dependent signal transduction, RNA-dependent regulation, biosynthesis of nucleoside-like metabolites and DNA processing. Our analysis suggests that the multiple metal-binding and non-binding TerD paralogs and TerC are likely to constitute a membrane-associated complex, which might also include TerB and TerY, and feature several, distinct metal-binding sites. Versions of the TerB domain might also bind small molecule ligands and link the TerD paralog-TerC complex to biosynthetic modules comprising phosphoribosyltransferases (PRTases), ATP grasp amidoligases, TIM-barrel carbon-carbon lyases, and HAD phosphoesterases, which are predicted to synthesize novel nucleoside-like molecules. One of the PRTases is also likely to interact with RNA by means of its Pelota/Ribosomal protein L7AE-like domain. The von Willebrand factor A domain protein, TerY, is predicted to be part of a distinct phosphorylation switch, coupling a protein kinase and a PP2C phosphatase. We show, based on the evidence from numerous conserved gene neighborhoods and domain architectures, that both the TerB and TelA domains have been linked to diverse lipid-interaction domains, such as two novel PH-like and the Coq4 domains, in different bacteria, and are likely to comprise membrane-associated sensory complexes that might additionally contain periplasmic binding-protein-II and OmpA domains. We also show that the TerD and TerB domains and the TerY-associated phosphorylation system are functionally linked to many distinct DNA-processing complexes, which feature proteins with SWI2/SNF2 and RecQ-like helicases, multiple AAA+ ATPases, McrC-N-terminal domain proteins, several restriction endonuclease fold DNases, DNA-binding domains and a type-VII/Esx-like system, which is at the center of a predicted DNA transfer apparatus. These DNA-processing modules and associated genes are predicted to be involved in restriction or suicidal action in response to phages and possibly repairing xenobiotic-induced DNA damage. In some eukaryotes, certain components of the ter system appear to be recruited to function in conjunction with the ubiquitin system and calcium-signaling pathways.
Collapse
Affiliation(s)
- Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | | | | |
Collapse
|
48
|
Haglund K, Dikic I. The role of ubiquitylation in receptor endocytosis and endosomal sorting. J Cell Sci 2013; 125:265-75. [PMID: 22357968 DOI: 10.1242/jcs.091280] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ligand-induced activation of transmembrane receptors activates intracellular signaling cascades that control vital cellular processes, such as cell proliferation, differentiation, migration and survival. Receptor signaling is modulated by several mechanisms to ensure that the correct biological outcome is achieved. One such mechanism, which negatively regulates receptor signaling, involves the modification of receptors with ubiquitin. This post-translational modification can promote receptor endocytosis and targets receptors for lysosomal degradation, thereby ensuring termination of receptor signaling. In this Commentary, we review the roles of ubiquitylation in receptor endocytosis and degradative endosomal sorting by drawing on the epidermal growth factor receptor (EGFR) as a well-studied example. Furthermore, we elaborate on the molecular basis of ubiquitin recognition along the endocytic pathway through compartment-specific ubiquitin-binding proteins and highlight how endocytic sorting machineries control these processes. In addition, we discuss the importance of ubiquitin-dependent receptor endocytosis for the maintenance of cellular homeostasis and in the prevention of diseases such as cancer.
Collapse
Affiliation(s)
- Kaisa Haglund
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0310 Oslo, Norway.
| | | |
Collapse
|
49
|
Abstract
The endosomal sorting complexes required for transport (ESCRT) pathway was initially defined in yeast genetic screens that identified the factors necessary to sort membrane proteins into intraluminal endosomal vesicles. Subsequent studies have revealed that the mammalian ESCRT pathway also functions in a series of other key cellular processes, including formation of extracellular microvesicles, enveloped virus budding, and the abscission stage of cytokinesis. The core ESCRT machinery comprises Bro1 family proteins and ESCRT-I, ESCRT-II, ESCRT-III, and VPS4 complexes. Site-specific adaptors recruit these soluble factors to assemble on different cellular membranes, where they carry out membrane fission reactions. ESCRT-III proteins form filaments that draw membranes together from the cytoplasmic face, and mechanistic models have been advanced to explain how ESCRT-III filaments and the VPS4 ATPase can work together to catalyze membrane fission.
Collapse
Affiliation(s)
- John McCullough
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650, USA
| | | | | |
Collapse
|
50
|
Manil-Segalén M, Lefebvre C, Culetto E, Legouis R. Need an ESCRT for autophagosomal maturation? Commun Integr Biol 2013; 5:566-71. [PMID: 23336026 PMCID: PMC3541323 DOI: 10.4161/cib.21522] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Several reports in fly, nematode and mammalian cells have revealed that the inactivation of endosomal sorting complexes required for transport (ESCRT) blocks the endosomal maturation but also leads to the increased number of autophagosomal structures. In this review we compare these data and conclude that the way ESCRT mutations affect the relationships between autophagosomes and endosomes cannot be generalized but depends on the studied species. We propose that the effect of ESCRT mutations on autophagy is directly dependent of the level of interaction between autophagosomes and endosomes. In particular, the formation of amphisomes during autophagosomal maturation could be the key point to explain the differences observed between species. These observations highlight the importance of multiple model organisms to decipher the complexity of relationships between such dynamic vesicles.
Collapse
Affiliation(s)
- Marion Manil-Segalén
- Centre de Génétique Moléculaire; Université Paris-Sud; CNRS UPR3404; Gif-sur-Yvette Cedex, France
| | | | | | | |
Collapse
|