1
|
Midekssa FS, Davidson CD, Wieger ME, Kamen JL, Hanna KM, Jayco DKP, Hu MM, Friend NE, Putnam AJ, Helms AS, Shikanov A, Baker BM. Semi-synthetic fibrous fibrin composites promote 3D microvascular assembly, survival, and host integration of endothelial cells without mesenchymal cell support. Bioact Mater 2025; 49:652-669. [PMID: 40235652 PMCID: PMC11999628 DOI: 10.1016/j.bioactmat.2025.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/14/2025] [Accepted: 02/19/2025] [Indexed: 04/17/2025] Open
Abstract
Vasculogenic assembly of 3D capillary networks remains a promising approach to vascularizing tissue-engineered grafts, a significant outstanding challenge in tissue engineering and regenerative medicine. Current approaches for vasculogenic assembly rely on the inclusion of supporting mesenchymal cells alongside endothelial cells, co-encapsulated within vasculo-conducive materials such as low-density fibrin hydrogels. Here, we established a material-based approach to circumvent the need for supporting mesenchymal cells and report that the inclusion of synthetic matrix fibers in dense (>3 mg mL-1) 3D fibrin hydrogels can enhance vasculogenic assembly in endothelial cell monocultures. Surprisingly, we found that the addition of non-cell-adhesive synthetic matrix fibers compared to cell-adhesive synthetic fibers best encouraged vasculogenic assembly, proliferation, lumenogenesis, a vasculogenic transcriptional program, and additionally promoted cell-matrix interactions and intercellular force transmission. Implanting fiber-reinforced prevascularized constructs to assess graft-host vascular integration, we demonstrate additive effects of enhanced vascular network assembly during in vitro pre-culture, fiber-mediated improvements in endothelial cell survival and vascular maintenance post-implantation, and enhanced host cell infiltration that collectively enabled graft vessel integration with host circulation. This work establishes synthetic matrix fibers as an inexpensive alternative to sourcing and expanding secondary supporting cell types for the prevascularization of tissue constructs.
Collapse
Affiliation(s)
- Firaol S. Midekssa
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Christopher D. Davidson
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Megan E. Wieger
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Jordan L. Kamen
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Kaylin M. Hanna
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Danica Kristen P. Jayco
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Michael M. Hu
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Nicole E. Friend
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Andrew J. Putnam
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Adam S. Helms
- Division of Cardiovascular Medicine, University of Michigan Ann Arbor, MI 48109, United States
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Brendon M. Baker
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| |
Collapse
|
2
|
Yao Y. Laminin Receptors in the CNS and Vasculature. Stroke 2025. [PMID: 40421534 DOI: 10.1161/strokeaha.125.051560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Laminin exerts a variety of important functions via binding to its receptors, including integrins and dystroglycan. With the advance in gene-targeting technology, many integrin/dystroglycan knockout/mutant mice were generated in the past 3 decades. These mutants enable loss-of-function studies and have substantially enriched our knowledge of integrin/dystroglycan functions. In this review, we summarize the functions of laminin receptors during embryonic development and in the CNS and vasculature. First, the biochemical properties of integrins and dystroglycan are briefly introduced. Next, we discuss loss-of-function studies on laminin receptors, including integrin-α3, integrin-α6, integrin-α7, integrin-β1, integrin-β4, and dystroglycan, focusing on embryonic development, the CNS, and vasculature. The phenotypes of compound knockout mice are described and compared with that of single mutants. Last, important questions and challenges in the field as well as potential future directions are discussed. Our goal is to provide a synthetic review on loss-of-function studies of laminin receptors in the CNS and vasculature, which could serve as a reference for future research, encourage the formation of new hypotheses, and stimulate new research in this field.
Collapse
Affiliation(s)
- Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| |
Collapse
|
3
|
Qiu B, Pompe S, Xenaki KT, Di Maggio A, Moreno CB, van Bergen En Henegouwen PMP, Mastrobattista E, Oliveira S, Caiazzo M. Receptor-mediated transcytosis of nanobodies targeting the heparin-binding EGF-like growth factor in human blood-brain barrier models. J Control Release 2025; 383:113852. [PMID: 40393531 DOI: 10.1016/j.jconrel.2025.113852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/20/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025]
Abstract
Transport of molecules into the brain is regulated by the blood-brain barrier (BBB). Receptor-mediated transcytosis (RMT) is a targeted vesicular transport mechanism of brain endothelial cells that can be employed to specifically transport large therapeutic molecules into the brain. ProHB-EGF is the transmembrane precursor of the heparin-binding EGF-like growth factor (HB-EGF) present on the intraluminal side of the brain endothelial cells. This molecule is characterized as an internalizing transport receptor with so far no discovery of endogenous ligands. In this study, we describe the selection and characterization of two nanobodies (named F12 and H7) with high binding affinity for proHB-EGF and their BBB transcytosis potential were tested in vitro. For the human BBB model, we found that a polarized co-culture environment was crucial for the expression and cell surface display of proHB-EGF. The ability of F12 and H7 to pass the BBB via RMT was demonstrated in both a primary human brain microvascular endothelial cell-based BBB model and a human induced pluripotent stem cell (hiPSC)-derived iBBB model. Our studies demonstrate that the proHB-EGF targeting Nbs are promising BBB shuttle molecules for delivery of therapeutic molecules into the brain.
Collapse
Affiliation(s)
- Boning Qiu
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, the Netherlands.
| | - Sara Pompe
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Katerina T Xenaki
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, the Netherlands; Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH Utrecht, the Netherlands.
| | - Alessia Di Maggio
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH Utrecht, the Netherlands.
| | - Clara Belinchón Moreno
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, the Netherlands; Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Paul M P van Bergen En Henegouwen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH Utrecht, the Netherlands.
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, the Netherlands.
| | - Sabrina Oliveira
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, the Netherlands; Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH Utrecht, the Netherlands.
| | - Massimiliano Caiazzo
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, the Netherlands; Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
4
|
Metkari AS, Witt RL, Cognetti DM, Dhong C, Jia X. Promoting Polarization and Differentiation of Primary Human Salivary Gland Stem/Progenitor Cells in Protease-Degradable Hydrogels via ROCK Inhibition. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18083-18095. [PMID: 40095914 DOI: 10.1021/acsami.4c22507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Toward the goal of in vitro engineering of functional salivary gland tissues, we cultured primary human salivary stem/progenitor cells (hS/PCs) in hyaluronic acid-based matrices with varying percentages of proteolytically degradable crosslinks in the presence of Rho kinase (ROCK) inhibitor. Single cells encapsulated in the hydrogel grew into organized multicellular structures by day 15, and over 60% of the structures developed in the nondegradable and 50% degradable hydrogels contained a central lumen. Importantly, ROCK inhibition led to the establishment of multicellular structures that were correctly polarized, as evidenced by apical localization of a Golgi marker GM130, apical/lateral localization of tight junction protein zonula occludens-1 (ZO-1), and basal localization of integrin β1 and basement membrane proteins laminin α1 and collagen IV. Cultures maintained in 50% degradable gels with ROCK inhibition exhibited an increased expression of acinar markers aquaporin 5 (AQP5, AQP5) and sodium-potassium-chloride cotransporter 1 (SLC12A2, NKCC1) at the transcript and the protein levels, respectively, as compared to those without ROCK inhibition. Upon stimulation with isoproterenol, α-amylase secretion into the lumen was observed. Particle-tracking microrheology was employed to analyze the stiffness of cells using mitochondria as the passive tracer particles. Our results indicated that cells grown in 100% degradable gels were stiffer than those maintained in nondegradable gels, and cells cultured with the ROCK inhibitor were softer than those maintained without the inhibitor. We conclude that reducing cellular contractility via ROCK inhibition while retaining some degree of matrix confinement promotes the establishment of multicellular structures containing pro-acinar cells with correct apicobasal polarization.
Collapse
Affiliation(s)
- Apoorva S Metkari
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Robert L Witt
- Helen F. Graham Cancer Center and Research Institute, Christiana Care, Newark, Delaware 19713, United States
- Department of Otolaryngology, Thomas Jefferson University, Philadelphia, Pennsylvania 19130, United States
| | - David M Cognetti
- Department of Otolaryngology, Thomas Jefferson University, Philadelphia, Pennsylvania 19130, United States
| | - Charles Dhong
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
- Delaware Biotechnology Institute, 590 Avenue 1743, Newark, Delaware 19713, United States
| |
Collapse
|
5
|
Piao L, Li J, Li X, Su Y, Yuan X, Chang S, Cheng X, Fu S, Kong R. Discovery and Functional Characterization of a Recombinant Fragment of Human Collagen Type XVII. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6724-6735. [PMID: 40066849 DOI: 10.1021/acs.jafc.5c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
COL17A1 is predominantly expressed in skin epithelial cells and primarily localized within hemidesmosomes. It plays an essential role in epidermal-dermal attachment. Consequently, a recombinant human-like COL17A1 protein (rhCOL17) with low molecular weight and high biocompatibility presents a promising and competitive biomaterial. The aim of this study is to gain more insight into the biological functions and underlying molecular mechanisms of rhCOL17, which primarily consists of amino acid residues Gly659-Leu720. Using a combination of surface plasmon resonance (SPR) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified the interacting partner proteins of rhCOL17 in HaCaT cells. These included several collagens, integrins, and cell polarity proteins. Upon rhCOL17 treatment, the expression levels of laminin-332, integrin β1, and the cell polarity proteins PAR-3 and PAR-6B were upregulated, while the PRKCZ, AKT, and TGF-β1 signaling pathways were activated. Furthermore, rhCOL17 was found to promote cell proliferation and mitigate UV radiation-induced damage, partly by modulating these interacting proteins and their associated signaling pathways. Additional analyses using AlphaFold2 and molecular dynamics simulations revealed that the rhCOL17 peptide bound stably and tightly to the canonical ligand-binding site between the integrin α3 and β1 subunits. These findings highlight the potential versatility and applications of rhCOL17 in the field of antiaging.
Collapse
Affiliation(s)
- Lianhua Piao
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou 213001, China
- Primary Biotechnology Co., Ltd., Changzhou 213125, China
| | - Jiajia Li
- TRAUTEC Medical Technology CO., Ltd., Changzhou 213000, China
| | - Xiaojing Li
- Proya Cosmetics Co., Ltd, Hangzhou 310000, China
| | - Yangyang Su
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Xiaofeng Yuan
- Department of Orthopaedics, The Third Affiliated Hospital of SooChow University, Changzhou, Jiangsu 213000, China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou 213001, China
- Primary Biotechnology Co., Ltd., Changzhou 213125, China
| | - Xinyi Cheng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shengwei Fu
- TRAUTEC Medical Technology CO., Ltd., Changzhou 213000, China
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou 213001, China
- Primary Biotechnology Co., Ltd., Changzhou 213125, China
| |
Collapse
|
6
|
Liu Z, Zhang X, Ben T, Li M, Jin Y, Wang T, Song Y. Focal adhesion in the tumour metastasis: from molecular mechanisms to therapeutic targets. Biomark Res 2025; 13:38. [PMID: 40045379 PMCID: PMC11884212 DOI: 10.1186/s40364-025-00745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025] Open
Abstract
The tumour microenvironment is the "hotbed" of tumour cells, providing abundant extracellular support for growth and metastasis. However, the tumour microenvironment is not static and is constantly remodelled by a variety of cellular components, including tumour cells, through mechanical, biological and chemical means to promote metastasis. Focal adhesion plays an important role in cell-extracellular matrix adhesion. An in-depth exploration of the role of focal adhesion in tumour metastasis, especially their contribution at the biomechanical level, is an important direction of current research. In this review, we first summarize the assembly of focal adhesions and explore their kinetics in tumour cells. Then, we describe in detail the role of focal adhesion in various stages of tumour metastasis, especially its key functions in cell migration, invasion, and matrix remodelling. Finally, we describe the anti-tumour strategies targeting focal adhesion and the current progress in the development of some inhibitors against focal adhesion proteins. In this paper, we summarize for the first time that focal adhesion play a positive feedback role in pro-tumour metastatic matrix remodelling by summarizing the five processes of focal adhesion assembly in a multidimensional way. It is beneficial for researchers to have a deeper understanding of the role of focal adhesion in the biological behaviour of tumour metastasis and the potential of focal adhesion as a therapeutic target, providing new ideas for the prevention and treatment of metastases.
Collapse
Affiliation(s)
- Zonghao Liu
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
- The First Clinical College, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Xiaofang Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Tianru Ben
- The First Clinical College, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Mo Li
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
| | - Yi Jin
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
| | - Tianlu Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
- Department of Radiotherapy, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning Province, 110042, People's Republic of China.
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning Province, 116024, P. R. China.
| | - Yingqiu Song
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
- Department of Radiotherapy, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
| |
Collapse
|
7
|
Ławkowska K, Bonowicz K, Jerka D, Bai Y, Gagat M. Integrins in Cardiovascular Health and Disease: Molecular Mechanisms and Therapeutic Opportunities. Biomolecules 2025; 15:233. [PMID: 40001536 PMCID: PMC11853560 DOI: 10.3390/biom15020233] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Cardiovascular diseases, including atherosclerosis, hypertension, and heart failure, remain the leading cause of global mortality, with endothelial dysfunction and vascular remodeling as critical contributors. Integrins, as transmembrane adhesion proteins, are central regulators of cell adhesion, migration, and signaling, playing a pivotal role in maintaining vascular homeostasis and mediating pathological processes such as inflammation, angiogenesis, and extracellular matrix remodeling. This article comprehensively examines the role of integrins in the pathogenesis of cardiovascular diseases, focusing on their dysfunction in endothelial cells and interactions with inflammatory mediators, such as TNF-α. Molecular mechanisms of integrin action are discussed, including their involvement in mechanotransduction, leukocyte adhesion, and signaling pathways that regulate vascular integrity. The review also highlights experimental findings, such as the use of specific integrin-targeting plasmids and immunofluorescence to elucidate integrin functions under inflammatory conditions. Additionally, potential therapeutic strategies are explored, including the development of integrin inhibitors, monoclonal antibodies, and their application in regenerative medicine. These approaches aim not only to mitigate pathological vascular remodeling but also to promote tissue repair and angiogenesis. By bridging insights from molecular studies with their translational potential, this work underscores the promise of integrin-based therapies in advancing the management and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Karolina Ławkowska
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Klaudia Bonowicz
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
- Collegium Medicum, Mazovian Academy in Płock, 09-402 Płock, Poland
| | - Dominika Jerka
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Yidong Bai
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX 78229, USA;
| | - Maciej Gagat
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
- Collegium Medicum, Mazovian Academy in Płock, 09-402 Płock, Poland
| |
Collapse
|
8
|
Alvarez-Olmedo D, Kamaliddin C, Verhey TB, Ho M, De Vinney R, Chaconas G. Transendothelial migration of the Lyme disease spirochete involves spirochete internalization as an intermediate step through a transcellular pathway that involves Cdc42 and Rac1. Microbiol Spectr 2025; 13:e0222124. [PMID: 39727396 PMCID: PMC11792520 DOI: 10.1128/spectrum.02221-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Despite its importance in pathogenesis, the hematogenous dissemination pathway of Borrelia burgdorferi is still largely uncharacterized. To probe the molecular details of transendothelial migration more easily, we studied this process using cultured primary or telomerase-immortalized human microvascular endothelial cells in a medium that maintains both the human cells and the spirochetes. In B. burgdorferi-infected monolayers, we observed ~55% of wild-type spirochetes crossing the monolayer. Microscopic characterization revealed entrance points across the cellular surface rather than at cellular junctions, supporting a transcellular route. In support of this pathway, locking the endothelial junctions using a vascular endothelial protein tyrosine phosphatase (VE-PTP) inhibitor did not reduce transendothelial migration. We also used inhibitors to block the most common endocytic pathways to elucidate effectors that might be involved in B. burgdorferi uptake and/or transmigration. Directly inhibiting Cdc42 reduced spirochete transmigration by impeding internalization. However, blocking Rac1 alone dramatically reduced transmigration by ~84% and resulted in a concomitant doubling in spirochete accumulation in the cell. Our combined results support that B. burgdorferi internalization is an intermediate step in the transendothelial migration process, which requires both Cdc42 and Rac1; Cdc42 is needed for spirochete internalization, while Rac1 is required for cellular egress. These are the first two host proteins implicated in B. burgdorferi transmigration across endothelial cells.IMPORTANCELyme borreliosis is caused by Borrelia burgdorferi and related bacteria. It is the most common tick-transmitted illness in the Northern Hemisphere. The ability of this pathogen to spread to a wide variety of locations results in a diverse set of clinical manifestations, yet little is known regarding vascular escape of the spirochete, an important pathway for dissemination. Our current work has studied the traversal of B. burgdorferi across a monolayer of microvascular endothelial cells grown using a new culture system. We show that this occurs by passage of the spirochetes directly through cells rather than at cellular junctions and that internalization of B. burgdorferi is an intermediate step in transmigration. We also identify the first two host proteins, Cdc42 and Rac1, that are used by the spirochetes to promote traversal of the cellular monolayer. Our new experimental system also provides a new avenue for further studies of this important process.
Collapse
Affiliation(s)
- Daiana Alvarez-Olmedo
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Claire Kamaliddin
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, The University of Calgary, Calgary, Alberta, Canada
| | - Theodore B. Verhey
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - May Ho
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, The University of Calgary, Calgary, Alberta, Canada
| | - Rebekah De Vinney
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, The University of Calgary, Calgary, Alberta, Canada
| | - George Chaconas
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, The University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Romero A, Walker BL, Krneta-Stankic V, Gerner-Mauro K, Youmans L, Miller RK. The dynamics of tubulogenesis in development and disease. Development 2025; 152:DEV202820. [PMID: 39959988 PMCID: PMC11883272 DOI: 10.1242/dev.202820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
Tubes are crucial for the function of many organs in animals given their fundamental roles in transporting and exchanging substances to maintain homeostasis within an organism. Therefore, the development and maintenance of these tube-like structures within organs is a vital process. Tubes can form in diverse ways, and advances in our understanding of the molecular and cellular mechanisms underpinning these different modes of tubulogenesis have significant impacts in many biological contexts, including development and disease. This Review discusses recent progress in understanding developmental mechanisms underlying tube formation.
Collapse
Affiliation(s)
- Adrian Romero
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
| | - Brandy L. Walker
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Program in Genetics and Epigenetics, Houston, TX 77030, USA
| | - Vanja Krneta-Stankic
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kamryn Gerner-Mauro
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Baylor College of Medicine, Program in Development, Disease Models & Therapeutics, Houston, TX 77030, USA
| | - Lydia Youmans
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
| | - Rachel K. Miller
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Program in Genetics and Epigenetics, Houston, TX 77030, USA
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Molecular and Translational Biology, Houston, TX 77030, USA
| |
Collapse
|
10
|
Winn NC, Roby DA, McClatchey PM, Williams IM, Bracy DP, Bedenbaugh MN, Lantier L, Plosa EJ, Pozzi A, Zent R, Wasserman DH. Endothelial β1-integrins are necessary for microvascular function and glucose uptake. Am J Physiol Endocrinol Metab 2024; 327:E746-E759. [PMID: 39441242 PMCID: PMC11684869 DOI: 10.1152/ajpendo.00322.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Microvascular insulin delivery to myocytes is rate limiting for the onset of insulin-stimulated muscle glucose uptake. The structural integrity of capillaries of the microvasculature is regulated, in part, by a family of transmembrane adhesion receptors known as integrins, which are composed of an α and a β subunit. The integrin β1 (itgβ1) subunit is highly expressed in endothelial cells (ECs). EC itgβ1 is necessary for the formation of capillary networks during embryonic development, and its knockdown in adult mice blunts the reactive hyperemia that manifests during ischemia reperfusion. In this study, we investigated the contribution of EC itgβ1 in microcirculatory function and glucose uptake, with an emphasis on skeletal muscle. We hypothesized that loss of EC itgβ1 would impair microvascular hemodynamics and glucose uptake during insulin stimulation, creating "delivery"-mediated insulin resistance. An itgβ1 knockdown mouse model was developed to avoid the lethality of embryonic gene knockout and the deteriorating health resulting from early postnatal inducible gene deletion. We found that mice with (itgβ1fl/flSCLcre) and without (itgβ1fl/fl) inducible stem cell leukemia cre recombinase (SLCcre) expression at 10 days post cre induction have comparable exercise tolerance and pulmonary and cardiac functions. We quantified microcirculatory hemodynamics using intravital microscopy and the ability of mice to respond to the high metabolic demands of insulin-stimulated muscle using a hyperinsulinemic-euglycemia clamp. We show that itgβ1fl/flSCLcre mice compared with itgβ1fl/fl littermates have 1) deficits in capillary flow rate, flow heterogeneity, and capillary density; 2) impaired insulin-stimulated glucose uptake despite sufficient transcapillary insulin efflux; and 3) reduced insulin-stimulated glucose uptake due to perfusion-limited glucose delivery. Thus, EC itgβ1 is necessary for microcirculatory function and to meet the metabolic challenge of insulin stimulation.NEW & NOTEWORTHY The microvasculature is an important site of resistance to muscle glucose uptake. We show that microvasculature integrins determine the exchange of glucose between the circulation and muscle. Specifically, a 30% reduction in the expression of endothelial integrin β1 subunit is sufficient to cause microcirculatory dysfunction and lead to insulin resistance. This emphasizes the importance of endothelial integrins in microcirculatory function and the importance of microcirculatory function for the ability of muscle to consume glucose.
Collapse
Affiliation(s)
- Nathan C Winn
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Deborah A Roby
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - P Mason McClatchey
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Ian M Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Deanna P Bracy
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Michelle N Bedenbaugh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
- Vanderbilt Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, Tennessee, United States
| | - Erin J Plosa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Ambra Pozzi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Veterans Affairs, Vanderbilt University, Nashville, Tennessee, United States
| | - Roy Zent
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Veterans Affairs, Vanderbilt University, Nashville, Tennessee, United States
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
- Vanderbilt Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
11
|
Metkari AS, Witt RL, Cognetti DM, Dhong C, Jia X. Promoting Polarization and Differentiation of Primary Human Salivary Gland Stem/Progenitor Cells in Protease-Degradable Hydrogels via ROCK Inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.24.625065. [PMID: 39651209 PMCID: PMC11623551 DOI: 10.1101/2024.11.24.625065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Towards the goal of in vitro engineering of functional salivary gland tissues, we cultured primary human salivary stem/progenitor cells (hS/PCs) in hyaluronic acid-based matrices with varying percentages of proteolytically degradable crosslinks in the presence of Rho kinase (ROCK) inhibitor. Single cells encapsulated in the hydrogel grew into organized multicellular structures by day 15, and over 60% of the structures developed in the non-degradable and 50% degradable hydrogels contained a central lumen. Importantly, ROCK inhibition led to the establishment of multicellular structures that were correctly polarized, as evidenced by apical localization of a Golgi marker GM130, apical/lateral localization of tight junction protein zonula occludens-1 (ZO-1), and basal localization of integrin β1 and basement membrane proteins laminin α1 and collagen IV. Cultures maintained in 50% degradable gels with ROCK inhibition exhibited an increased expression of acinar markers AQP5 and SLC12A2 (at the transcript level) and AQP5 and NKCC1 (at the protein level) as compared to those without ROCK inhibition. Upon stimulation with isoproterenol, α-amylase secretion into the lumen was observed. Particle-tracking microrheology was employed to analyze the stiffness of cells using mitochondria as the passive tracer particles. Our results indicated that cells grown in 100% degradable gels were stiffer than those maintained in non-degradable gels, and cells cultured with the ROCK inhibitor were softer than those maintained without the inhibitor. We conclude that reducing cellular contractility via ROCK inhibition while retaining some degree of matrix confinement promotes the establishment of multicellular structures containing pro-acinar cells with correct apicobasal polarization.
Collapse
|
12
|
Monroy-Romero AX, Nieto-Rivera B, Xiao W, Hautefeuille M. Microvascular Engineering for the Development of a Nonembedded Liver Sinusoid with a Lumen: When Endothelial Cells Do Not Lose Their Edge. ACS Biomater Sci Eng 2024; 10:7054-7072. [PMID: 39390649 DOI: 10.1021/acsbiomaterials.4c00939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Microvascular engineering seeks to exploit known cell-cell and cell-matrix interactions in the context of vasculogenesis to restore homeostasis or disease development of reliable capillary models in vitro. However, current systems generally focus on recapitulating microvessels embedded in thick gels of extracellular matrix, overlooking the significance of discontinuous capillaries, which play a vital role in tissue-blood exchanges particularly in organs like the liver. In this work, we introduce a novel method to stimulate the spontaneous organization of endothelial cells into nonembedded microvessels. By creating an anisotropic micropattern at the edge of a development-like matrix dome using Marangoni flow, we achieved a long, nonrandom orientation of endothelial cells, laying a premise for stable lumenized microvessels. Our findings revealed a distinctive morphogenetic process leading to mature lumenized capillaries, demonstrated with both murine and human immortalized liver sinusoidal endothelial cell lines (LSECs). The progression of cell migration, proliferation, and polarization was clearly guided by the pattern, initiating the formation of a multicellular cord that caused a deformation spanning extensive regions and generated a wave-like folding of the gel, hinged at a laminin-depleted zone, enveloping the cord with gel proteins. This event marked the onset of lumenogenesis, regulated by the gradual apico-basal polarization of the wrapped cells, leading to the maturation of vessel tight junctions, matrix remodeling, and ultimately the formation of a lumen─recapitulating the development of vessels in vivo. Furthermore, we demonstrate that the process strongly relies on the initial gel edge topography, while the geometry of the vessels can be tuned from a curved to a straight structure. We believe that our facile engineering method, guiding an autonomous self-organization of vessels without the need for supporting cells or complex prefabricated scaffolds, holds promise for future integration into microphysiological systems featuring discontinuous, fenestrated capillaries.
Collapse
Affiliation(s)
- Ana Ximena Monroy-Romero
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, 03100 Mexico, México
- Laboratoire de Biologie du Développement (UMR 7622), Institut de Biologie Paris Seine, Sorbonne Université, 75005 Paris, France
| | - Brenda Nieto-Rivera
- Laboratoire de Biologie du Développement (UMR 7622), Institut de Biologie Paris Seine, Sorbonne Université, 75005 Paris, France
| | - Wenjin Xiao
- Laboratoire de Biologie du Développement (UMR 7622), Institut de Biologie Paris Seine, Sorbonne Université, 75005 Paris, France
| | - Mathieu Hautefeuille
- Laboratoire de Biologie du Développement (UMR 7622), Institut de Biologie Paris Seine, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
13
|
Mierke CT. Mechanosensory entities and functionality of endothelial cells. Front Cell Dev Biol 2024; 12:1446452. [PMID: 39507419 PMCID: PMC11538060 DOI: 10.3389/fcell.2024.1446452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The endothelial cells of the blood circulation are exposed to hemodynamic forces, such as cyclic strain, hydrostatic forces, and shear stress caused by the blood fluid's frictional force. Endothelial cells perceive mechanical forces via mechanosensors and thus elicit physiological reactions such as alterations in vessel width. The mechanosensors considered comprise ion channels, structures linked to the plasma membrane, cytoskeletal spectrin scaffold, mechanoreceptors, and junctional proteins. This review focuses on endothelial mechanosensors and how they alter the vascular functions of endothelial cells. The current state of knowledge on the dysregulation of endothelial mechanosensitivity in disease is briefly presented. The interplay in mechanical perception between endothelial cells and vascular smooth muscle cells is briefly outlined. Finally, future research avenues are highlighted, which are necessary to overcome existing limitations.
Collapse
|
14
|
Miao L, Lu Y, Nusrat A, Zhao L, Castillo M, Xiao Y, Guo H, Liu Y, Gunaratne P, Schwartz RJ, Burns AR, Kumar A, DiPersio CM, Wu M. β1 integrins regulate cellular behaviour and cardiomyocyte organization during ventricular wall formation. Cardiovasc Res 2024; 120:1279-1294. [PMID: 38794925 PMCID: PMC11416060 DOI: 10.1093/cvr/cvae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/30/2024] [Accepted: 03/17/2024] [Indexed: 05/26/2024] Open
Abstract
AIMS The mechanisms regulating the cellular behaviour and cardiomyocyte organization during ventricular wall morphogenesis are poorly understood. Cardiomyocytes are surrounded by extracellular matrix (ECM) and interact with ECM via integrins. This study aims to determine whether and how β1 integrins regulate cardiomyocyte behaviour and organization during ventricular wall morphogenesis in the mouse. METHODS AND RESULTS We applied mRNA deep sequencing and immunostaining to determine the expression repertoires of α/β integrins and their ligands in the embryonic heart. Integrin β1 subunit (β1) and some of its ECM ligands are asymmetrically distributed and enriched in the luminal side of cardiomyocytes, and fibronectin surrounds cardiomyocytes, creating a network for them. Itgb1, which encodes the β1, was deleted via Nkx2.5Cre/+ to generate myocardial-specific Itgb1 knockout (B1KO) mice. B1KO hearts display an absence of a trabecular zone but a thicker compact zone. The levels of hyaluronic acid and versican, essential for trabecular initiation, were not significantly different between control and B1KO. Instead, fibronectin, a ligand of β1, was absent in the myocardium of B1KO hearts. Furthermore, B1KO cardiomyocytes display a random cellular orientation and fail to undergo perpendicular cell division, be organized properly, and establish the proper tissue architecture to form trabeculae. Mosaic clonal lineage tracing showed that Itgb1 regulates cardiomyocyte transmural migration and proliferation autonomously. CONCLUSION β1 is asymmetrically localized in the cardiomyocytes, and some of its ECM ligands are enriched along the luminal side of the myocardium, and fibronectin surrounds cardiomyocytes. β1 integrins are required for cardiomyocytes to attach to the ECM network. This engagement provides structural support for cardiomyocytes to maintain shape, undergo perpendicular division, and establish cellular organization. Deletion of Itgb1 leads to loss of β1 and fibronectin and prevents cardiomyocytes from engaging the ECM network, resulting in failure to establish tissue architecture to form trabeculae.
Collapse
Affiliation(s)
- Lianjie Miao
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5039, USA
| | - Yangyang Lu
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5039, USA
| | - Anika Nusrat
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5039, USA
| | - Luqi Zhao
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5039, USA
| | - Micah Castillo
- Department of Biology and Biochemistry, University of Houston Sequencing and Gene Editing Core, University of Houston, Houston, TX 77204-5001, USA
| | - Yongqi Xiao
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5039, USA
| | - Hongyang Guo
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5039, USA
| | - Yu Liu
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5039, USA
| | - Preethi Gunaratne
- Department of Biology and Biochemistry, University of Houston Sequencing and Gene Editing Core, University of Houston, Houston, TX 77204-5001, USA
| | - Robert J Schwartz
- Department of Biology and Biochemistry, University of Houston Sequencing and Gene Editing Core, University of Houston, Houston, TX 77204-5001, USA
| | - Alan R Burns
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA
| | - Ashok Kumar
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5039, USA
| | | | - Mingfu Wu
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5039, USA
| |
Collapse
|
15
|
Alvarez-Olmedo D, Kamaliddin C, Verhey TB, Ho M, DeVinney R, Chaconas G. Transendothelial migration of the Lyme disease spirochete involves spirochete internalization as an intermediate step through a transcellular pathway that involves Cdc42 and Rac1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612329. [PMID: 39314306 PMCID: PMC11419014 DOI: 10.1101/2024.09.10.612329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Despite its importance in pathogenesis, the hematogenous dissemination pathway of B. burgdorferi is still largely uncharacterized. To probe the molecular details of transendothelial migration more easily, we studied this process using cultured primary or telomerase-immortalized human microvascular endothelial cells in a medium that maintains both the human cells and the spirochetes. In B. burgdorferi infected monolayers we observed ∼55% of wild-type spirochetes crossing the monolayer. Microscopic characterization revealed entrance points across the cellular surface rather than at cellular junctions, supporting a transcellular route. In support of this pathway, locking the endothelial junctions using a VE-PTP inhibitor did not reduce transendothelial migration. We also used inhibitors to block the most common endocytic pathways to elucidate effectors that might be involved in B. burgdorferi uptake and/or transmigration. Directly inhibiting Cdc42 reduced spirochete transmigration by impeding internalization. However, blocking Rac1 alone dramatically reduced transmigration and resulted in a concomitant increase in spirochete accumulation in the cell. Our combined results support that B. burgdorferi internalization is an intermediate step in the transendothelial migration process which requires both Cdc42 and Rac1; Cdc42 is needed for spirochete internalization while Rac1 is required for cellular egress. These are the first two host proteins implicated in B. burgdorferi transmigration across endothelial cells. IMPORTANCE Lyme borreliosis is caused by Borrelia burgdorferi and related bacteria. It is the most common tick-transmitted illness in the Northern Hemisphere. The ability of this pathogen to spread to a wide variety of locations results in a diverse set of clinical manisfestations, yet little is known regarding vascular escape of the spirochete, an important pathway for dissemination. Our current work has studied the traversal of B. burgdorferi across a monolayer of microvascular endothelial cells grown in culture. We show that this occurs by passage of the spirochetes directly through these cells rather than at cellular junctions and that internalization of B. burgdorferi is an intermediate step in the transmigration process. We also identify the first two host proteins, Cdc42 and Rac1, that are used by the spirochetes to promote traversal of the cellular monolayer. Our new experimental system also provides a new avenue for further studies of this important process.
Collapse
|
16
|
Winn NC, Roby DA, McClatchey PM, Williams IM, Bracy DP, Bedenbaugh MN, Lantier L, Plosa EJ, Pozzi A, Zent R, Wasserman DH. Endothelial β1 Integrins are Necessary for Microvascular Function and Glucose Uptake. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.18.607045. [PMID: 39229013 PMCID: PMC11370432 DOI: 10.1101/2024.08.18.607045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Microvascular insulin delivery to myocytes is rate limiting for the onset of insulin-stimulated muscle glucose uptake. The structural integrity of capillaries of the microvasculature is regulated, in part, by a family of transmembrane adhesion receptors known as integrins, which are composed of an α and β subunit. The integrin β1 (itgβ1) subunit is highly expressed in endothelial cells (EC). EC itgβ1 is necessary for the formation of capillary networks during embryonic during development and its knockdown in adult mice blunts the reactive hyperemia that manifests during ischemia reperfusion. In this study we investigated the contribution of skeletal muscle EC itgβ1 in microcirculatory function and glucose uptake. We hypothesized that loss of EC itgβ1 would impair microvascular hemodynamics and glucose uptake during insulin stimulation, creating 'delivery'-mediated insulin resistance. An itgβ1 knockdown mouse model was developed to avoid lethality of embryonic gene knockout and the deteriorating health resulting from early post-natal inducible gene deletion. We found that mice with (itgβ1fl/flSCLcre) and without (itgβ1fl/fl) inducible stem cell leukemia cre recombinase (SLCcre) expression at 10 days post cre induction have comparable exercise tolerance and pulmonary and cardiac functions. We quantified microcirculatory hemodynamics using intravital microscopy and the ability of mice to respond to the high metabolic demands of insulin-stimulated muscle using a hyperinsulinemic-euglycemia clamp. We show that itgβ1fl/flSCLcre mice compared to itgβ1fl/fl littermates have, i) deficits in capillary flow rate, flow heterogeneity, and capillary density; ii) impaired insulin-stimulated glucose uptake despite sufficient transcapillary insulin efflux; and iii) reduced insulin-stimulated glucose uptake due to perfusion-limited glucose delivery. Thus, EC itgβ1 is necessary for microcirculatory function and to meet the metabolic challenge of insulin stimulation.
Collapse
Affiliation(s)
- Nathan C. Winn
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Deborah A. Roby
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - P. Mason McClatchey
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Ian M. Williams
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Deanna P. Bracy
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Michelle N. Bedenbaugh
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Louise Lantier
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN, USA
| | - Erin J. Plosa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ambra Pozzi
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs, Nashville, TN, USA
| | - Roy Zent
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs, Nashville, TN, USA
| | - David H. Wasserman
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
17
|
Sidibé A, Mykuliak VV, Zhang P, Hytönen VP, Wu J, Wehrle-Haller B. Acetyl-NPKY of integrin-β1 binds KINDLIN2 to control endothelial cell proliferation and junctional integrity. iScience 2024; 27:110129. [PMID: 38904068 PMCID: PMC11187247 DOI: 10.1016/j.isci.2024.110129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/09/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Integrin-dependent crosstalk between cell-matrix adhesions and cell-cell junctions is critical for controlling endothelial permeability and proliferation in cancer and inflammatory diseases but remains poorly understood. Here, we investigated how acetylation of the distal NPKY-motif of Integrin-β1 influences endothelial cell physiology and barrier function. Expression of an acetylation-mimetic β1-K794Q-GFP mutant led to the accumulation of immature cell-matrix adhesions accompanied by a transcriptomic reprograming of endothelial cells, involving genes associated with cell adhesion, proliferation, polarity, and barrier function. β1-K794Q-GFP induced constitutive MAPK signaling, junctional impairment, proliferation, and reduced contact inhibition at confluence. Structural analysis of Integrin-β1 interaction with KINDLIN2, biochemical pulldown assay, and binding energy determination by using molecular dynamics simulation showed that acetylation of K794 and the K794Q-mutant increased KINDLIN2 binding affinity to the Integrin-β1. Thus, enhanced recruitment of KINDLIN2 to Lysine-acetylated Integrin-β1 and resulting modulation of barrier function, offers new therapeutic possibilities for controlling vascular permeability and disease conditions.
Collapse
Affiliation(s)
- Adama Sidibé
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Vasyl V. Mykuliak
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
| | - Pingfeng Zhang
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
| | - Vesa P. Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| | - Jinhua Wu
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| |
Collapse
|
18
|
Benwell CJ, Johnson RT, Taylor JAGE, Lambert J, Robinson SD. A proteomics approach to isolating neuropilin-dependent α5 integrin trafficking pathways: neuropilin 1 and 2 co-traffic α5 integrin through endosomal p120RasGAP to promote polarised fibronectin fibrillogenesis in endothelial cells. Commun Biol 2024; 7:629. [PMID: 38789481 PMCID: PMC11126613 DOI: 10.1038/s42003-024-06320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Integrin trafficking to and from membrane adhesions is a crucial mechanism that dictates many aspects of a cell's behaviour, including motility, polarisation, and invasion. In endothelial cells (ECs), the intracellular traffic of α5 integrin is regulated by both neuropilin 1 (NRP1) and neuropilin 2 (NRP2), yet the redundancies in function between these co-receptors remain unclear. Moreover, the endocytic complexes that participate in NRP-directed traffic remain poorly annotated. Here we identify an important role for the GTPase-activating protein p120RasGAP in ECs, promoting the recycling of α5 integrin from early endosomes. Mechanistically, p120RasGAP enables transit of endocytosed α5 integrin-NRP1-NRP2 complexes to Rab11+ recycling endosomes, promoting cell polarisation and fibronectin (FN) fibrillogenesis. Silencing of both NRP receptors, or p120RasGAP, resulted in the accumulation of α5 integrin in early endosomes, a loss of α5 integrin from surface adhesions, and attenuated EC polarisation. Endothelial-specific deletion of both NRP1 and NRP2 in the postnatal retina recapitulated our in vitro findings, severely impairing FN fibrillogenesis and polarised sprouting. Our data assign an essential role for p120RasGAP during integrin traffic in ECs and support a hypothesis that NRP receptors co-traffic internalised cargoes. Importantly, we utilise comparative proteomics analyses to isolate a comprehensive map of NRP1-dependent and NRP2-dependent α5 integrin interactions in ECs.
Collapse
Affiliation(s)
- Christopher J Benwell
- Food Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Robert T Johnson
- Food Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - James A G E Taylor
- Food Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jordi Lambert
- Food Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- Section of Cardiorespiratory Medicine, University of Cambridge, VPD Heart & Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge, UK
| | - Stephen D Robinson
- Food Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
19
|
Hagelaars MJ, Nikolic M, Vermeulen M, Dekker S, Bouten CVC, Loerakker S. A computational analysis of the role of integrins and Rho-GTPases in the emergence and disruption of apical-basal polarization in renal epithelial cells. PLoS Comput Biol 2024; 20:e1012140. [PMID: 38768266 PMCID: PMC11142725 DOI: 10.1371/journal.pcbi.1012140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/31/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Apical-basal polarization in renal epithelial cells is crucial to renal function and an important trigger for tubule formation in kidney development. Loss of polarity can induce epithelial-to-mesenchymal transition (EMT), which can lead to kidney pathologies. Understanding the relative and combined roles of the involved proteins and their interactions that govern epithelial polarity may provide insights for controlling the process of polarization via chemical or mechanical manipulations in an in vitro or in vivo setting. Here, we developed a computational framework that integrates several known interactions between integrins, Rho-GTPases Rho, Rac and Cdc42, and polarity complexes Par and Scribble, to study their mutual roles in the emergence of polarization. The modeled protein interactions were shown to induce the emergence of polarized distributions of Rho-GTPases, which in turn led to the accumulation of apical and basal polarity complexes Par and Scribble at their respective poles, effectively recapitulating polarization. Our multiparametric sensitivity analysis suggested that polarization depends foremost on the mutual inhibition between Rac and Rho. Next, we used the computational framework to investigate the role of integrins and GTPases in the generation and disruption of polarization. We found that a minimum concentration of integrins is required to catalyze the process of polarization. Furthermore, loss of polarization was found to be only inducible via complete degradation of the Rho-GTPases Rho and Cdc42, suggesting that polarization is fairly stable once it is established. Comparison of our computational predictions against data from in vitro experiments in which we induced EMT in renal epithelial cells while quantifying the relative Rho-GTPase levels, displayed that EMT coincides with a large reduction in the Rho-GTPase Rho. Collectively, these results demonstrate the essential roles of integrins and Rho-GTPases in the establishment and disruption of apical-basal polarity and thereby provide handles for the in vitro or in vivo regulation of polarity.
Collapse
Affiliation(s)
- Maria J. Hagelaars
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven, The Netherlands
| | - Milica Nikolic
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven, The Netherlands
| | - Maud Vermeulen
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
| | - Sylvia Dekker
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
| | - Carlijn V. C. Bouten
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven, The Netherlands
| | - Sandra Loerakker
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven, The Netherlands
| |
Collapse
|
20
|
Liu Y, Murazzi I, Fuller AM, Pan H, Irizarry-Negron VM, Devine A, Katti R, Skuli N, Ciotti GE, Pak K, Pack MA, Simon MC, Weber K, Cooper K, Eisinger-Mathason TK. Sarcoma Cells Secrete Hypoxia-Modified Collagen VI to Weaken the Lung Endothelial Barrier and Promote Metastasis. Cancer Res 2024; 84:977-993. [PMID: 38335278 PMCID: PMC10984776 DOI: 10.1158/0008-5472.can-23-0910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 12/21/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Intratumoral hypoxia correlates with metastasis and poor survival in patients with sarcoma. Using an impedance sensing assay and a zebrafish intravital microinjection model, we demonstrated here that the hypoxia-inducible collagen-modifying enzyme lysyl hydroxylase PLOD2 and its substrate collagen type VI (COLVI) weaken the lung endothelial barrier and promote transendothelial migration. Mechanistically, hypoxia-induced PLOD2 in sarcoma cells modified COLVI, which was then secreted into the vasculature. Upon reaching the apical surface of lung endothelial cells, modified COLVI from tumor cells activated integrin β1 (ITGβ1). Furthermore, activated ITGβ1 colocalized with Kindlin2, initiating their interaction with F-actin and prompting its polymerization. Polymerized F-actin disrupted endothelial adherens junctions and induced barrier dysfunction. Consistently, modified and secreted COLVI was required for the late stages of lung metastasis in vivo. Analysis of patient gene expression and survival data from The Cancer Genome Atlas (TCGA) revealed an association between the expression of both PLOD2 and COLVI and patient survival. Furthermore, high levels of COLVI were detected in surgically resected sarcoma metastases from patient lungs and in the blood of tumor-bearing mice. Together, these data identify a mechanism of sarcoma lung metastasis, revealing opportunities for therapeutic intervention. SIGNIFICANCE Collagen type VI modified by hypoxia-induced PLOD2 is secreted by sarcoma cells and binds to integrin β1 on endothelial cells to induce barrier dysfunction, which promotes sarcoma vascular dissemination and metastasis.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pathology & Laboratory Medicine
- Penn Sarcoma Program
- Abramson Family Cancer Research Institute
- Perelman School of Medicine
- University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ashley M. Fuller
- Department of Pathology & Laboratory Medicine
- Penn Sarcoma Program
- Abramson Family Cancer Research Institute
- Perelman School of Medicine
- University of Pennsylvania, Philadelphia, PA, USA
| | - Hehai Pan
- Department of Pathology & Laboratory Medicine
- Penn Sarcoma Program
- Abramson Family Cancer Research Institute
- Perelman School of Medicine
- University of Pennsylvania, Philadelphia, PA, USA
| | - Valerie M Irizarry-Negron
- Department of Pathology & Laboratory Medicine
- Penn Sarcoma Program
- Abramson Family Cancer Research Institute
- Perelman School of Medicine
- University of Pennsylvania, Philadelphia, PA, USA
| | - Ann Devine
- Department of Pathology & Laboratory Medicine
- Penn Sarcoma Program
- Abramson Family Cancer Research Institute
- Perelman School of Medicine
- University of Pennsylvania, Philadelphia, PA, USA
| | - Rohan Katti
- Department of Pathology & Laboratory Medicine
- Penn Sarcoma Program
- Abramson Family Cancer Research Institute
- Perelman School of Medicine
- University of Pennsylvania, Philadelphia, PA, USA
| | - Nicolas Skuli
- Penn Sarcoma Program
- Abramson Family Cancer Research Institute
- Perelman School of Medicine
- Department of Cell and Developmental Biology
- University of Pennsylvania, Philadelphia, PA, USA
| | - Gabrielle E. Ciotti
- Department of Pathology & Laboratory Medicine
- Penn Sarcoma Program
- Abramson Family Cancer Research Institute
- Perelman School of Medicine
- University of Pennsylvania, Philadelphia, PA, USA
| | - Koreana Pak
- Department of Pathology & Laboratory Medicine
- Penn Sarcoma Program
- Abramson Family Cancer Research Institute
- Perelman School of Medicine
- University of Pennsylvania, Philadelphia, PA, USA
| | - Michael A. Pack
- Perelman School of Medicine
- Department of Medicine
- University of Pennsylvania, Philadelphia, PA, USA
| | - M. Celeste Simon
- Penn Sarcoma Program
- Abramson Family Cancer Research Institute
- Perelman School of Medicine
- Department of Cell and Developmental Biology
- University of Pennsylvania, Philadelphia, PA, USA
| | - Kristy Weber
- Penn Sarcoma Program
- Perelman School of Medicine
- Department of Orthopedic Surgery
- University of Pennsylvania, Philadelphia, PA, USA
| | - Kumarasen Cooper
- Department of Pathology & Laboratory Medicine
- Perelman School of Medicine
- University of Pennsylvania, Philadelphia, PA, USA
| | - T.S. Karin Eisinger-Mathason
- Department of Pathology & Laboratory Medicine
- Penn Sarcoma Program
- Abramson Family Cancer Research Institute
- Perelman School of Medicine
- University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
21
|
Miao L, Castillo M, Lu Y, Xiao Y, Liu Y, Burns AR, Kumar A, Gunaratne P, Michael DiPersio C, Wu M. β1 integrins regulate cellular behaviors and cardiomyocyte organization during ventricular wall formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555112. [PMID: 37693495 PMCID: PMC10491119 DOI: 10.1101/2023.08.28.555112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Aims The mechanisms regulating the cellular behavior and cardiomyocyte organization during ventricular wall morphogenesis are poorly understood. Cardiomyocytes are surrounded by extracellular matrix (ECM) and interact with ECM via integrins. This study aims to determine whether and how β1 integrins regulate cardiomyocyte behavior and organization during ventricular wall morphogenesis in the mouse. Methods and Results We applied mRNA deep sequencing and immunostaining to determine the expression repertoires of α/β integrins and their ligands in the embryonic heart. Integrin β1 subunit (β1) and some of its ECM ligands are asymmetrically distributed and enriched in the luminal side of cardiomyocytes, while fibronectin surrounds cardiomyocytes, creating a network for them. Itgb1 , which encodes the β1 integrin subunit, was deleted via Nkx2.5 Cre/+ to generate myocardial-specific Itgb1 knockout (B1KO) mice. B1KO hearts display an absence of trabecular zone but a thicker compact zone. The abundances of hyaluronic acid and versican are not significantly different. Instead, fibronectin, a ligand of β1, was absent in B1KO. We examined cellular behaviors and organization via various tools. B1KO cardiomyocytes display a random cellular orientation and fail to undergo perpendicular cell division, be organized properly, and establish the proper tissue architecture to form trabeculae. The reduction of Notch1 activation was not the cause of the abnormal cellular organization in B1KO hearts. Mosaic clonal lineage tracing shows that Itgb1 regulates cardiomyocyte transmural migration and proliferation autonomously. Conclusions β1 is asymmetrically localized in the cardiomyocytes, and its ECM ligands are enriched in the luminal side of the myocardium and surrounding cardiomyocytes. β1 integrins are required for cardiomyocytes to attach to the ECM network. This engagement provides structural support for cardiomyocytes to maintain shape, undergo perpendicular division, and establish cellular organization. Deletion of Itgb1 , leading to ablation of β1 integrins, causes the dissociation of cardiomyocytes from the ECM network and failure to establish tissue architecture to form trabeculae.
Collapse
|
22
|
Lungu CN, Mehedinti MC. Molecular Motifs in Vascular Morphogenesis: Vascular Endothelial Growth Factor A (VEGFA) as the Leading Promoter of Angiogenesis. Int J Mol Sci 2023; 24:12169. [PMID: 37569543 PMCID: PMC10418718 DOI: 10.3390/ijms241512169] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Tissular hypoxia stimulates vascular morphogenesis. Vascular morphogenesis shapes the cell and, consecutively, tissue growth. The development of new blood vessels is intermediated substantially through the tyrosine kinase pathway. There are several types of receptors inferred to be located in the blood vessel structures. Vascular endothelial growth factor A (VEGF-A) is the leading protagonist of angiogenesis. VEGF-A's interactions with its receptors VEGFR1, VEGFR2, and VEGFR3, together with disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1), connective tissue growth factor (CTGF), and neuropilin-1 (NRP1), independently, are studied computationally. Peripheral artery disease (PAD), which results in tissue ischemia, is more prevalent in the senior population. Presently, medical curatives used to treat cases of PAD-antiplatelet and antithrombotic agents, statins, antihypertensive remedies with ACE (angiotensin-converting enzyme) impediments, angiotensin receptor blockers (ARB) or β- blockers, blood glucose control, and smoking cessation-are not effective. These curatives were largely established from the treatment of complaint cases of coronary disease. However, these medical curatives do not ameliorate lower limb perfusion in cases of PAD. Likewise, surgical or endovascular procedures may be ineffective in relieving symptoms. Eventually, after successful large vessel revascularization, the residual microvascular circulation may well limit the effectiveness of curatives in cases of PAD. It would thus feel rational to attempt to ameliorate perfusion in PAD by enhancing vascular rejuvenescence and function. Likewise, stimulating specific angiogenesis in these cases (PAD) can ameliorate the patient's symptomatology. Also, the quality of life of PAD patients can be improved by developing new vasodilative and angiogenetic molecules that stimulate the tyrosine kinase pathway. In this respect, the VEGFA angiogenetic pathway was explored computationally. Docking methodologies, molecular dynamics, and computational molecular design methodologies were used. VEGFA's interaction with its target was primarily studied. Common motifs in the vascular morphogenesis pathway are suggested using conformational energy and Riemann spaces. The results show that interaction with VEGFR2 and ADAMTS1 is pivotal in the angiogenetic process. Also, the informational content of two VEGFA complexes, VEGFR2 and ADAMTS1, is crucial in the angiogenesis process.
Collapse
Affiliation(s)
- Claudiu N. Lungu
- Departament of Functional and Morphological Science, Faculty of Medicine and Pharamacy, Dunarea de Jos University, 800010 Galati, Romania
| | | |
Collapse
|
23
|
Kuwar R, Wen X, Zhang N, Sun D. Integrin binding peptides facilitate growth and interconnected vascular-like network formation of rat primary cortical vascular endothelial cells in vitro. Neural Regen Res 2023; 18:1052-1056. [PMID: 36254992 PMCID: PMC9827785 DOI: 10.4103/1673-5374.355760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 11/07/2022] Open
Abstract
Neovascularization and angiogenesis in the brain are important physiological processes for normal brain development and repair/regeneration following insults. Integrins are cell surface adhesion receptors mediating important function of cells such as survival, growth and development during tissue organization, differentiation and organogenesis. In this study, we used an integrin-binding array platform to identify the important types of integrins and their binding peptides that facilitate adhesion, growth, development, and vascular-like network formation of rat primary brain microvascular endothelial cells. Brain microvascular endothelial cells were isolated from rat brain on post-natal day 7. Cells were cultured in a custom-designed integrin array system containing short synthetic peptides binding to 16 types of integrins commonly expressed on cells in vertebrates. After 7 days of culture, the brain microvascular endothelial cells were processed for immunostaining with markers for endothelial cells including von Willibrand factor and platelet endothelial cell adhesion molecule. 5-Bromo-2'-dexoyuridine was added to the culture at 48 hours prior to fixation to assess cell proliferation. Among 16 integrins tested, we found that α5β1, αvβ5 and αvβ8 greatly promoted proliferation of endothelial cells in culture. To investigate the effect of integrin-binding peptides in promoting neovascularization and angiogenesis, the binding peptides to the above three types of integrins were immobilized to our custom-designed hydrogel in three-dimensional (3D) culture of brain microvascular endothelial cells with the addition of vascular endothelial growth factor. Following a 7-day 3D culture, the culture was fixed and processed for double labeling of phalloidin with von Willibrand factor or platelet endothelial cell adhesion molecule and assessed under confocal microscopy. In the 3D culture in hydrogels conjugated with the integrin-binding peptide, brain microvascular endothelial cells formed interconnected vascular-like network with clearly discernable lumens, which is reminiscent of brain microvascular network in vivo. With the novel integrin-binding array system, we identified the specific types of integrins on brain microvascular endothelial cells that mediate cell adhesion and growth followed by functionalizing a 3D hydrogel culture system using the binding peptides that specifically bind to the identified integrins, leading to robust growth and lumenized microvascular-like network formation of brain microvascular endothelial cells in 3D culture. This technology can be used for in vitro and in vivo vascularization of transplants or brain lesions to promote brain tissue regeneration following neurological insults.
Collapse
Affiliation(s)
- Ram Kuwar
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Xuejun Wen
- Department of Chemical and Life Science Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Ning Zhang
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Dong Sun
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
24
|
Gnanaguru G, Tabor SJ, Bonilla GM, Sadreyev R, Yuda K, Köhl J, Connor KM. Microglia refine developing retinal astrocytic and vascular networks through the complement C3/C3aR axis. Development 2023; 150:dev201047. [PMID: 36762625 PMCID: PMC10110418 DOI: 10.1242/dev.201047] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Microglia, a resident immune cell of the central nervous system (CNS), play a pivotal role in facilitating neurovascular development through mechanisms that are not fully understood. Previous reports indicate a role for microglia in regulating astrocyte density. This current work resolves the mechanism through which microglia facilitate astrocyte spatial patterning and superficial vascular bed formation in the neuroretina during development. Ablation of microglia increased astrocyte density and altered spatial patterning. Mechanistically, we show that microglia regulate the formation of the spatially organized astrocyte template required for subsequent vascular growth, through the complement C3/C3aR axis during neuroretinal development. Lack of C3 or C3aR hindered the developmental phagocytic removal of astrocyte bodies and resulted in increased astrocyte density. In addition, increased astrocyte density was associated with elevated proangiogenic extracellular matrix gene expression in C3- and C3aR-deficient retinas, resulting in increased vascular density. These data demonstrate that microglia regulate developmental astrocyte and vascular network spatial patterning in the neuroretina via the complement axis.
Collapse
Affiliation(s)
- Gopalan Gnanaguru
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Steven J. Tabor
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Gracia M. Bonilla
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kentaro Yuda
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kip M. Connor
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
25
|
Abstract
The endothelium is a dynamic, semipermeable layer lining all blood vessels, regulating blood vessel formation and barrier function. Proper composition and function of the endothelial barrier are required for fluid homeostasis, and clinical conditions characterized by barrier disruption are associated with severe morbidity and high mortality rates. Endothelial barrier properties are regulated by cell-cell junctions and intracellular signaling pathways governing the cytoskeleton, but recent insights indicate an increasingly important role for integrin-mediated cell-matrix adhesion and signaling in endothelial barrier regulation. Here, we discuss diseases characterized by endothelial barrier disruption, and provide an overview of the composition of endothelial cell-matrix adhesion complexes and associated signaling pathways, their crosstalk with cell-cell junctions, and with other receptors. We further present recent insights into the role of cell-matrix adhesions in the developing and mature/adult endothelium of various vascular beds, and discuss how the dynamic regulation and turnover of cell-matrix adhesions regulates endothelial barrier function in (patho)physiological conditions like angiogenesis, inflammation and in response to hemodynamic stress. Finally, as clinical conditions associated with vascular leak still lack direct treatment, we focus on how understanding of endothelial cell-matrix adhesion may provide novel targets for treatment, and discuss current translational challenges and future perspectives.
Collapse
Affiliation(s)
- Jurjan Aman
- Department of Pulmonology, Amsterdam University Medical Center, the Netherlands (J.A.)
| | - Coert Margadant
- Department of Medical Oncology, Amsterdam University Medical Center, the NetherlandsInstitute of Biology, Leiden University, the Netherlands (C.M.)
| |
Collapse
|
26
|
Zhang F, Wang F, Li Y, Yuan L, Fan L, Zhou X, Wu H, Zhu X, Wang H, Gu N. Real-Time Cell Temperature Fluctuation Monitoring System Using Precision Pt Sensors Coated with Low Thermal Capacity, Low Thermal Resistance, and Self-Assembled Multilayer Films. ACS Sens 2023; 8:141-149. [PMID: 36640268 DOI: 10.1021/acssensors.2c01848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Real-time monitoring of cell temperature fluctuation can help researchers better understand physiological phenomena and the effects of drug treatment on cells, which is a novel and important tool for cellular informatics. The platinum (Pt) temperature sensor is widely used in temperature measurement with the advantages of strong stability, great accuracy, and high sensitivity. However, the commercially available Pt sensors have large thermal resistance and heat capacity which are difficult to be applied for cell temperature measurement because only a very small amount of heat flux is generated by live cells. In this study, we designed a system using precision Pt thin-film temperature sensors with low heat capacity and thermal resistance. The Pt thin-film sensors are covered by a silicon nitride insulation layer grafted with a self-assembled multilayer silane film for promoting cell adhesion. The temperature coefficient of resistance of the Pt temperature sensor was about 2100 ppm/°C. The four-wire lead design next to the sensor detection area ensured maximum accuracy, resulting in a system noise below 0.01 °C over a long time. HEK-293T and HeLa cells were cultured on the sensor surface, respectively. The temperature fluctuation of 293T cells was monitored in a cell culture medium, showing a temperature increase of about 0.05-0.12 °C. The temperature fluctuation of HeLa cells treated with cisplatin was also measured and recorded, indicating a temperature decrease of 0.01 °C first and then a gradual temperature increase of 0.04 °C. The Pt sensor system we developed demonstrated high sensitivity and long stability for cell temperature fluctuation monitoring, which can be widely used in cell activity and cellular informatics studies.
Collapse
Affiliation(s)
- Fangzhou Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China.,Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Fangxu Wang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Yan Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Lihua Yuan
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Li Fan
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Xiaojin Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Huijuan Wu
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Xingyue Zhu
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Hong Wang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| |
Collapse
|
27
|
Yadunandanan Nair N, Samuel V, Ramesh L, Marib A, David DT, Sundararaman A. Actin cytoskeleton in angiogenesis. Biol Open 2022; 11:bio058899. [PMID: 36444960 PMCID: PMC9729668 DOI: 10.1242/bio.058899] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Actin, one of the most abundant intracellular proteins in mammalian cells, is a critical regulator of cell shape and polarity, migration, cell division, and transcriptional response. Angiogenesis, or the formation of new blood vessels in the body is a well-coordinated multi-step process. Endothelial cells lining the blood vessels acquire several new properties such as front-rear polarity, invasiveness, rapid proliferation and motility during angiogenesis. This is achieved by changes in the regulation of the actin cytoskeleton. Actin remodelling underlies the switch between the quiescent and angiogenic state of the endothelium. Actin forms endothelium-specific structures that support uniquely endothelial functions. Actin regulators at endothelial cell-cell junctions maintain the integrity of the blood-tissue barrier while permitting trans-endothelial leukocyte migration. This review focuses on endothelial actin structures and less-recognised actin-mediated endothelial functions. Readers are referred to other recent reviews for the well-recognised roles of actin in endothelial motility, barrier functions and leukocyte transmigration. Actin generates forces that are transmitted to the extracellular matrix resulting in vascular matrix remodelling. In this review, we attempt to synthesize our current understanding of the roles of actin in vascular morphogenesis. We speculate on the vascular bed specific differences in endothelial actin regulation and its role in the vast heterogeneity in endothelial morphology and function across the various tissues of our body.
Collapse
Affiliation(s)
- Nidhi Yadunandanan Nair
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Victor Samuel
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Lariza Ramesh
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Areeba Marib
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Deena T. David
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Ananthalakshmy Sundararaman
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| |
Collapse
|
28
|
McCurdy S, Lin J, Shenkar R, Moore T, Lightle R, Faurobert E, Lopez-Ramirez MA, Awad I, Ginsberg MH. β1 integrin monoclonal antibody treatment ameliorates cerebral cavernous malformations. FASEB J 2022; 36:e22629. [PMID: 36349990 PMCID: PMC9674378 DOI: 10.1096/fj.202200907rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/24/2022] [Accepted: 10/15/2022] [Indexed: 11/10/2022]
Abstract
β1 integrins are important in blood vessel formation and function, finely tuning the adhesion of endothelial cells to each other and to the extracellular matrix. The role of integrins in the vascular disease, cerebral cavernous malformation (CCM) has yet to be explored in vivo. Endothelial loss of the gene KRIT1 leads to brain microvascular defects, resulting in debilitating and often fatal consequences. We tested administration of a monoclonal antibody that enforces the active β1 integrin conformation, (clone 9EG7), on a murine neonatal CCM mouse model, Krit1flox/flox ;Pdgfb-iCreERT2 (Krit1ECKO ), and on KRIT1-silenced human umbilical vein endothelial cells (HUVECs). In addition, endothelial deletion of the master regulator of integrin activation, Talin 1 (Tln1), in Krit1ECKO mice was performed to assess the effect of completely blocking endothelial integrin activation on CCM. Treatment with 9EG7 reduced lesion burden in the Krit1ECKO model and was accompanied by a strong reduction in the phosphorylation of the ROCK substrate, myosin light chain (pMLC), in both retina and brain endothelial cells. Treatment of KRIT1-silenced HUVECs with 9EG7 in vitro stabilized cell-cell junctions. Overnight treatment of HUVECs with 9EG7 resulted in significantly reduced total surface expression of β1 integrin, which was associated with reduced pMLC levels, supporting our in vivo findings. Genetic blockade of integrin activation by Tln1ECKO enhanced bleeding and did not reduce CCM lesion burden in Krit1ECKO mice. In sum, targeting β1 integrin with an activated-specific antibody reduces acute murine CCM lesion development, which we found to be associated with suppression of endothelial ROCK activity.
Collapse
Affiliation(s)
- Sara McCurdy
- Department of Medicine, University of California San Diego, LA Jolla CA
| | - Jenny Lin
- Department of Medicine, University of California San Diego, LA Jolla CA
| | - Robert Shenkar
- Department of Neurological Surgery, University of Chicago, Chicago IL
| | - Thomas Moore
- Department of Neurological Surgery, University of Chicago, Chicago IL
| | - Rhonda Lightle
- Department of Neurological Surgery, University of Chicago, Chicago IL
| | - Eva Faurobert
- Univ. Grenoble Alpes, CNRS 5309, Inserm 1209, Institute for Advanced Biosciences, Grenoble, France
| | | | - Issam Awad
- Department of Neurological Surgery, University of Chicago, Chicago IL
| | - Mark H. Ginsberg
- Department of Medicine, University of California San Diego, LA Jolla CA
| |
Collapse
|
29
|
Barrasa-Ramos S, Dessalles CA, Hautefeuille M, Barakat AI. Mechanical regulation of the early stages of angiogenesis. J R Soc Interface 2022; 19:20220360. [PMID: 36475392 PMCID: PMC9727679 DOI: 10.1098/rsif.2022.0360] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Favouring or thwarting the development of a vascular network is essential in fields as diverse as oncology, cardiovascular disease or tissue engineering. As a result, understanding and controlling angiogenesis has become a major scientific challenge. Mechanical factors play a fundamental role in angiogenesis and can potentially be exploited for optimizing the architecture of the resulting vascular network. Largely focusing on in vitro systems but also supported by some in vivo evidence, the aim of this Highlight Review is dual. First, we describe the current knowledge with particular focus on the effects of fluid and solid mechanical stimuli on the early stages of the angiogenic process, most notably the destabilization of existing vessels and the initiation and elongation of new vessels. Second, we explore inherent difficulties in the field and propose future perspectives on the use of in vitro and physics-based modelling to overcome these difficulties.
Collapse
Affiliation(s)
- Sara Barrasa-Ramos
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Claire A. Dessalles
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Mathieu Hautefeuille
- Laboratoire de Biologie du Développement (UMR7622), Institut de Biologie Paris Seine, Sorbonne Université, Paris, France,Facultad de Ciencias, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Abdul I. Barakat
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
30
|
Chau TCY, Keyser MS, Da Silva JA, Morris EK, Yordanov TE, Duscyz KP, Paterson S, Yap AS, Hogan BM, Lagendijk AK. Dynamically regulated focal adhesions coordinate endothelial cell remodelling in developing vasculature. Development 2022; 149:285926. [PMID: 36314606 DOI: 10.1242/dev.200454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 10/20/2022] [Indexed: 12/13/2022]
Abstract
The assembly of a mature vascular network involves coordinated endothelial cell (EC) shape changes, including the process of EC elongation. How EC elongation is dynamically regulated in vivo is not fully understood. Here, we have generated a zebrafish mutant that is deficient for the integrin adaptor protein Talin 1 (Tln1). Using a new focal adhesion (FA) marker line expressing endothelial Vinculinb-eGFP, we demonstrate that EC FAs function dynamically and are lost in our tln1 mutants, allowing us to uncouple the primary roles of FAs in EC morphogenesis from the secondary effects that occur due to systemic vessel failure or loss of blood flow. Tln1 loss led to compromised F-actin rearrangements, perturbed EC elongation and disrupted cell-cell junction linearisation in vessel remodelling. Finally, chemical induction of actin polymerisation restored actin dynamics and EC elongation during vascular morphogenesis. Together, we identify that FAs are essential for EC elongation and junction linearisation in flow-pressured vessels and that they influence actin polymerisation in cellular morphogenesis. These observations can explain the severely compromised vessel beds and vascular leakage observed in mutant models that lack integrin signalling. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Tevin C Y Chau
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Mikaela S Keyser
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jason A Da Silva
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Elysse K Morris
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Teodor E Yordanov
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Kinga P Duscyz
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Scott Paterson
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre and The PeterMac Callum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Alpha S Yap
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Benjamin M Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre and The PeterMac Callum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3000, Australia.,Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anne Karine Lagendijk
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
31
|
Alfonso-Pérez T, Baonza G, Herranz G, Martín-Belmonte F. Deciphering the interplay between autophagy and polarity in epithelial tubulogenesis. Semin Cell Dev Biol 2022; 131:160-172. [PMID: 35641407 DOI: 10.1016/j.semcdb.2022.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022]
Abstract
The Metazoan complexity arises from a primary building block, the epithelium, which comprises a layer of polarized cells that divide the organism into compartments. Most of these body compartments are organs formed by epithelial tubes that enclose an internal hollow space or lumen. Over the last decades, multiple studies have unmasked the paramount events required to form this lumen de novo. In epithelial cells, these events mainly involve recognizing external clues, establishing and maintaining apicobasal polarity, endo-lysosomal trafficking, and expanding the created lumen. Although canonical autophagy has been classically considered a catabolic process needed for cell survival, multiple studies have also emphasized its crucial role in epithelial polarity, morphogenesis and cellular homeostasis. Furthermore, non-canonical autophagy pathways have been recently discovered as atypical secretory routes. Both canonical and non-canonical pathways play essential roles in epithelial polarity and lumen formation. This review addresses how the molecular machinery for epithelial polarity and autophagy interplay in different processes and how autophagy functions influence lumenogenesis, emphasizing its role in the lumen formation key events.
Collapse
Affiliation(s)
- Tatiana Alfonso-Pérez
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo, Ochoa", CSIC-UAM, Madrid 28049, Spain; Ramon & Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - Gabriel Baonza
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo, Ochoa", CSIC-UAM, Madrid 28049, Spain
| | - Gonzalo Herranz
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo, Ochoa", CSIC-UAM, Madrid 28049, Spain; Ramon & Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - Fernando Martín-Belmonte
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo, Ochoa", CSIC-UAM, Madrid 28049, Spain; Ramon & Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid 28034, Spain.
| |
Collapse
|
32
|
Tan Y, Lu S, Wang B, Duan X, Zhang Y, Peng X, Li H, Lin A, Zhan Z, Liu X. Single-cell transcriptome atlas reveals protective characteristics of COVID-19 mRNA vaccine. J Med Virol 2022; 95:e28161. [PMID: 36124363 PMCID: PMC9538852 DOI: 10.1002/jmv.28161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 01/11/2023]
Abstract
Messenger RNA (mRNA) vaccines are promising alternatives to conventional vaccines in many aspects. We previously developed a lipopolyplex (LPP)-based mRNA vaccine (SW0123) that demonstrated robust immunogenicity and strong protective capacity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in mice and rhesus macaques. However, the immune profiles and mechanisms of pulmonary protection induced by SW0123 remain unclear. Through high-resolution single-cell analysis, we found that SW0123 vaccination effectively suppressed SARS-CoV-2-induced inflammatory responses by inhibiting the recruitment of proinflammatory macrophages and increasing the frequency of polymorphonuclear myeloid-derived suppressor cells. In addition, the apoptotic process in both lung epithelial and endothelial cells was significantly inhibited, which was proposed to be one major mechanism contributing to vaccine-induced lung protection. Cell-cell interaction in the lung compartment was also altered by vaccination. These data collectively unravel the mechanisms by which the SW0123 protects against lung damage caused by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yong Tan
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina,Department of Liver Surgery, Shanghai Institute of TransplantationRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shuaiyao Lu
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeYunnanChina
| | - Bo Wang
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Xuewen Duan
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Yunkai Zhang
- Department of Pathogen BiologyNaval Medical UniversityShanghaiChina,National Key Laboratory of Medical ImmunologyNaval Medical UniversityShanghaiChina
| | - Xiaozhong Peng
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeYunnanChina
| | | | - Ang Lin
- Vaccine Center, School of Basic Medicine and Clinical PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Zhenzhen Zhan
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina,Department of Liver Surgery, Shanghai Institute of TransplantationRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xingguang Liu
- Department of Pathogen BiologyNaval Medical UniversityShanghaiChina,National Key Laboratory of Medical ImmunologyNaval Medical UniversityShanghaiChina
| |
Collapse
|
33
|
Zhong T, Gongye X, Wang M, Yu J. Understanding the underlying mechanisms governing spindle orientation: How far are we from there? J Cell Mol Med 2022; 26:4904-4910. [PMID: 36029193 PMCID: PMC9549511 DOI: 10.1111/jcmm.17526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Proper spindle orientation is essential for cell fate determination and tissue morphogenesis. Recently, accumulating studies have elucidated several factors that regulate spindle orientation, including geometric, internal and external cues. Abnormality in these factors generally leads to defects in the physiological functions of various organs and the development of severe diseases. Herein, we first review models that are commonly used for studying spindle orientation. We then review a conservative heterotrimeric complex critically involved in spindle orientation regulation in different models. Finally, we summarize some cues that affect spindle orientation and explore whether we can establish a model that precisely elucidates the effects of spindle orientation without interfusing other spindle functions. We aim to summarize current models used in spindle orientation studies and discuss whether we can build a model that disturbs spindle orientation alone. This can substantially improve our understanding of how spindle orientation is regulated and provide insights to investigate this complex event.
Collapse
Affiliation(s)
- Tao Zhong
- Medical Integration and Practice Center, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Cancer Hospital and InstituteShandong First Medical University, Shandong Academy of Medical SciencesJinanChina
| | - Xiaoxiao Gongye
- Medical Integration and Practice Center, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Cancer Hospital and InstituteShandong First Medical University, Shandong Academy of Medical SciencesJinanChina
| | - Minglei Wang
- Shandong Cancer Hospital and InstituteShandong First Medical University, Shandong Academy of Medical SciencesJinanChina
| | - Jinming Yu
- Medical Integration and Practice Center, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Cancer Hospital and InstituteShandong First Medical University, Shandong Academy of Medical SciencesJinanChina
| |
Collapse
|
34
|
Integrin-specific hydrogels for growth factor-free vasculogenesis. NPJ Regen Med 2022; 7:57. [PMID: 36167724 PMCID: PMC9515164 DOI: 10.1038/s41536-022-00253-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Integrin-binding biomaterials have been extensively evaluated for their capacity to enable de novo formation of capillary-like structures/vessels, ultimately supporting neovascularization in vivo. Yet, the role of integrins as vascular initiators in engineered materials is still not well understood. Here, we show that αvβ3 integrin-specific 3D matrices were able to retain PECAM1+ cells from the stromal vascular fraction (SVF) of adipose tissue, triggering vasculogenesis in vitro in the absence of extrinsic growth factors. Our results suggest that αvβ3-RGD-driven signaling in the formation of capillary-like structures prevents the activation of the caspase 8 pathway and activates the FAK/paxillin pathway, both responsible for endothelial cells (ECs) survival and migration. We also show that prevascularized αvβ3 integrin-specific constructs inosculate with the host vascular system fostering in vivo neovascularization. Overall, this work demonstrates the ability of the biomaterial to trigger vasculogenesis in an integrin-specific manner, by activating essential pathways for EC survival and migration within a self-regulatory growth factor microenvironment. This strategy represents an improvement to current vascularization routes for Tissue Engineering constructs, potentially enhancing their clinical applicability.
Collapse
|
35
|
Ramchandran R. Endothelial cells and their role in the vasculature: Past, present and future. Front Cell Dev Biol 2022; 10:994133. [PMID: 36187473 PMCID: PMC9520988 DOI: 10.3389/fcell.2022.994133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022] Open
|
36
|
Villari G, Gioelli N, Valdembri D, Serini G. Vesicle choreographies keep up cell-to-extracellular matrix adhesion dynamics in polarized epithelial and endothelial cells. Matrix Biol 2022; 112:62-71. [PMID: 35961423 DOI: 10.1016/j.matbio.2022.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022]
Abstract
In metazoans, cell adhesion to the extracellular matrix (ECM) drives the development, functioning, and repair of different tissues, organs, and systems. Disruption or dysregulation of cell-to-ECM adhesion promote the initiation and progression of several diseases, such as bleeding, immune disorders and cancer. Integrins are major ECM transmembrane receptors, whose function depends on both allosteric changes and exo-endocytic traffic, which carries them to and from the plasma membrane. In apico-basally polarized cells, asymmetric adhesion to the ECM is maintained by continuous targeting of the plasma membrane by vesicles coming from the trans Golgi network and carrying ECM proteins. Active integrin-bound ECM is indeed endocytosed and replaced by the exocytosis of fresh ECM. Such vesicular traffic is finely driven by the teamwork of microtubules (MTs) and their associated kinesin and dynein motors. Here, we review the main cytoskeletal actors involved in the control of the spatiotemporal distribution of active integrins and their ECM ligands, highlighting the key role of the synchronous (ant)agonistic cooperation between MT motors transporting vesicular cargoes, in the same or in opposite direction, in the regulation of traffic logistics, and the establishment of epithelial and endothelial cell polarity.
Collapse
Affiliation(s)
- Giulia Villari
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 10060, Candiolo, Torino, Italy; Department of Oncology, University of Torino School of Medicine, 10060, Candiolo, Torino, Italy
| | - Noemi Gioelli
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 10060, Candiolo, Torino, Italy; Department of Oncology, University of Torino School of Medicine, 10060, Candiolo, Torino, Italy
| | - Donatella Valdembri
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 10060, Candiolo, Torino, Italy; Department of Oncology, University of Torino School of Medicine, 10060, Candiolo, Torino, Italy.
| | - Guido Serini
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 10060, Candiolo, Torino, Italy; Department of Oncology, University of Torino School of Medicine, 10060, Candiolo, Torino, Italy.
| |
Collapse
|
37
|
Bae E, Huang P, Müller-Greven G, Hambardzumyan D, Sloan AE, Nowacki AS, Marko N, Carlin CR, Gladson CL. Integrin α3β1 promotes vessel formation of glioblastoma-associated endothelial cells through calcium-mediated macropinocytosis and lysosomal exocytosis. Nat Commun 2022; 13:4268. [PMID: 35879332 PMCID: PMC9314429 DOI: 10.1038/s41467-022-31981-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 07/12/2022] [Indexed: 12/13/2022] Open
Abstract
Therapeutic targeting of angiogenesis in glioblastoma has yielded mixed outcomes. Investigation of tumor-associated angiogenesis has focused on the factors that stimulate the sprouting, migration, and hyperproliferation of the endothelial cells. However, little is known regarding the processes underlying the formation of the tumor-associated vessels. To address this issue, we investigated vessel formation in CD31+ cells isolated from human glioblastoma tumors. The results indicate that overexpression of integrin α3β1 plays a central role in the promotion of tube formation in the tumor-associated endothelial cells in glioblastoma. Blocking α3β1 function reduced sprout and tube formation in the tumor-associated endothelial cells and vessel density in organotypic cultures of glioblastoma. The data further suggest a mechanistic model in which integrin α3β1-promoted calcium influx stimulates macropinocytosis and directed maturation of the macropinosomes in a manner that promotes lysosomal exocytosis during nascent lumen formation. Altogether, our data indicate that integrin α3β1 may be a therapeutic target on the glioblastoma vasculature.
Collapse
Affiliation(s)
- Eunnyung Bae
- Department of Cancer Biology, Cleveland, Clinic, Cleveland, OH, USA
| | - Ping Huang
- Department of Cancer Biology, Cleveland, Clinic, Cleveland, OH, USA
| | | | - Dolores Hambardzumyan
- Departments of Oncological Sciences and Neurosurgery, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Andrew Edward Sloan
- Department of Neurosurgery, Seidman Cancer Center, Cleveland, OH, USA
- University Hospital-Cleveland Medical Center and the Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Amy S Nowacki
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Nicholas Marko
- Department of Neurosurgery, LewisGale Medical Center, Salem, VA, USA
| | - Cathleen R Carlin
- University Hospital-Cleveland Medical Center and the Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Candece L Gladson
- Department of Cancer Biology, Cleveland, Clinic, Cleveland, OH, USA.
- University Hospital-Cleveland Medical Center and the Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, OH, USA.
- The Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
38
|
Zhang C, He H, Dai J, Li Y, He J, Yang W, Dai J, Han F, Kong W, Wang X, Zheng X, Zhou J, Pan W, Chen Z, Singhal M, Zhang Y, Guo F, Hu J. KANK4 Promotes Arteriogenesis by Potentiating VEGFR2 Signaling in a TALIN-1-Dependent Manner. Arterioscler Thromb Vasc Biol 2022; 42:772-788. [PMID: 35477278 DOI: 10.1161/atvbaha.122.317711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Arteriogenesis plays a critical role in maintaining adequate tissue blood supply and is related to a favorable prognosis in arterial occlusive diseases. Strategies aimed at promoting arteriogenesis have thus far not been successful because the factors involved in arteriogenesis remain incompletely understood. Previous studies suggest that evolutionarily conserved KANK4 (KN motif and ankyrin repeat domain-containing proteins 4) might involve in vertebrate vessel development. However, how the KANK4 regulates vessel function remains unknown. We aim to determine the role of endothelial cell-specifically expressed KANK4 in arteriogenesis. METHODS The role of KANK4 in regulating arteriogenesis was evaluated using Kank4-/- and KANK4iECOE mice. Molecular mechanisms underlying KANK4-potentiated arteriogenesis were investigated by employing RNA transcriptomic profiling and mass spectrometry analysis. RESULTS By analyzing Kank4-EGFP reporter mice, we showed that KANK4 was specifically expressed in endothelial cells. In particular, KANK4 displayed a dynamic expression pattern from being ubiquitously expressed in all endothelial cells of the developing vasculature to being explicitly expressed in the endothelial cells of arterioles and arteries in matured vessels. In vitro microfluidic chip-based vascular morphology analysis and in vivo hindlimb ischemia assays using Kank4-/- and KANK4iECOE mice demonstrated that deletion of KANK4 impaired collateral artery growth and the recovery of blood perfusion, whereas KANK4 overexpression leads to increased vessel caliber and blood perfusion. Bulk RNA sequencing and Co-immunoprecipitation/mass spectrometry (Co-IP/MS) analysis identified that KANK4 promoted EC proliferation and collateral artery remodeling through coupling VEGFR2 (vascular endothelial growth factor receptor 2) to TALIN-1, which augmented the activation of the VEGFR2 signaling cascade. CONCLUSIONS This study reveals a novel role for KANK4 in arteriogenesis in response to ischemia. KANK4 links VEGFR2 to TALIN-1, resulting in enhanced VEGFR2 activation and increased EC proliferation, highlighting that KANK4 is a potential therapeutic target for promoting arteriogenesis for arterial occlusive diseases.
Collapse
Affiliation(s)
- Chonghe Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu).,University of Chinese Academy of Sciences, Beijing, China (C.Z., H.H., J.H., W.Y., J.D., Z.C., Y.Z., J. Hu)
| | - Hao He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu).,University of Chinese Academy of Sciences, Beijing, China (C.Z., H.H., J.H., W.Y., J.D., Z.C., Y.Z., J. Hu)
| | - Jianing Dai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu)
| | | | - Jing He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu).,University of Chinese Academy of Sciences, Beijing, China (C.Z., H.H., J.H., W.Y., J.D., Z.C., Y.Z., J. Hu)
| | - Wu Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu).,University of Chinese Academy of Sciences, Beijing, China (C.Z., H.H., J.H., W.Y., J.D., Z.C., Y.Z., J. Hu)
| | - Jialin Dai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu).,University of Chinese Academy of Sciences, Beijing, China (C.Z., H.H., J.H., W.Y., J.D., Z.C., Y.Z., J. Hu)
| | - Feng Han
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu)
| | - Wenyan Kong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu)
| | - Xiaohong Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, China (X.W., X.Z.)
| | - Xiangjian Zheng
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, China (X.W., X.Z.)
| | - Jing Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing (J.Z.)
| | - Weijun Pan
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China (W.P.)
| | - Zhongwen Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu).,University of Chinese Academy of Sciences, Beijing, China (C.Z., H.H., J.H., W.Y., J.D., Z.C., Y.Z., J. Hu)
| | - Mahak Singhal
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (M.S.).,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Germany (M.S.)
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu).,University of Chinese Academy of Sciences, Beijing, China (C.Z., H.H., J.H., W.Y., J.D., Z.C., Y.Z., J. Hu)
| | - Feng Guo
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China (F.G.)
| | - Junhao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu).,University of Chinese Academy of Sciences, Beijing, China (C.Z., H.H., J.H., W.Y., J.D., Z.C., Y.Z., J. Hu)
| |
Collapse
|
39
|
Edgar LT, Park H, Crawshaw JR, Osborne JM, Eichmann A, Bernabeu MO. Traffic Patterns of the Migrating Endothelium: How Force Transmission Regulates Vascular Malformation and Functional Shunting During Angiogenic Remodelling. Front Cell Dev Biol 2022; 10:840066. [PMID: 35663401 PMCID: PMC9160721 DOI: 10.3389/fcell.2022.840066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Angiogenesis occurs in distinct phases: initial spouting is followed by remodelling in which endothelial cells (ECs) composing blood vessels rearrange by migrating against the direction of flow. Abnormal remodelling can result in vascular malformation. Such is the case in mutation of the Alk1 receptor within the mouse retina which disrupts flow-migration coupling, creating mixed populations of ECs polarised with/against flow which aggregate into arteriovenous malformations (AVMs). The lack of live imaging options in vivo means that the collective EC dynamics that drive AVM and the consequences of mixed populations of polarity remain a mystery. Therefore, our goal is to present a novel agent-based model to provide theoretical insight into EC force transmission and collective dynamics during angiogenic remodelling. Force transmission between neighbouring agents consists of extrusive forces which maintain spacing and cohesive forces which maintain the collective. We performed migration simulations within uniformly polarised populations (against flow) and mixed polarity (with/against flow). Within uniformly polarised populations, extrusive forces stabilised the plexus by facilitating EC intercalation which ensures that cells remained evenly distributed. Excess cohesion disrupts intercalation, resulting in aggregations of cells and functional shunting. Excess cohesion between ECs prevents them from resolving diameter balances within the plexus, leading to prolonged flow reversals which exert a critical behaviour change within the system as they switch the direction of cell migration and traffic patterns at bifurcations. Introducing mixtures of cell polarity dramatically changed the role of extrusive forces within the system. At low extrusion, opposing ECs were able to move past each other; however, at high extrusion the pushing between cells resulted in migration speeds close to zero, forming traffic jams and disrupting migration. In our study, we produced vascular malformations and functional shunting with either excess cohesion between ECs or mixtures of cell polarity. At the centre of both these mechanisms are cell-cell adherens junctions, which are involved in flow sensing/polarity and must remodelling dynamically to allow rearrangements of cells during vascular patterning. Thus, our findings implicate junctional dysfunction as a new target in the treatment and prevention of vascular disease and AVMs.
Collapse
Affiliation(s)
- Lowell T. Edgar
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Lowell T. Edgar, ; Miguel O. Bernabeu,
| | - Hyojin Park
- Cardiovascular Research Center Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Jessica R. Crawshaw
- School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, Australia
| | - James M. Osborne
- School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, Australia
| | - Anne Eichmann
- Cardiovascular Research Center Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Yale University School of Medicine, Department of Cellular and Molecular Physiology, New Haven, CT, United States
- Université de Paris, PARCC, INSERM, Paris, France
| | - Miguel O. Bernabeu
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, United Kingdom
- The Bayes Centre, The University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Lowell T. Edgar, ; Miguel O. Bernabeu,
| |
Collapse
|
40
|
Endothelial Cell Metabolism in Vascular Functions. Cancers (Basel) 2022; 14:cancers14081929. [PMID: 35454836 PMCID: PMC9031281 DOI: 10.3390/cancers14081929] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Recent findings in the field of vascular biology are nourishing the idea that targeting the endothelial cell metabolism may be an alternative strategy to antiangiogenic therapy, as well as a novel therapeutic approach for cardiovascular disease. Deepening the molecular mechanisms regulating how ECs re-adapt their metabolic status in response to the changeable conditions of the tissue microenvironment may be beneficial to develop novel innovative treatments to counteract the aberrant growth of vasculature. Abstract The endothelium is the innermost layer of all blood and lymphatic vessels composed of a monolayer of specialized endothelial cells (ECs). It is regarded as a dynamic and multifunctional endocrine organ that takes part in essential processes, such as the control of blood fluidity, the modulation of vascular tone, the regulation of immune response and leukocyte trafficking into perivascular tissues, and angiogenesis. The inability of ECs to perform their normal biological functions, known as endothelial dysfunction, is multi-factorial; for instance, it implicates the failure of ECs to support the normal antithrombotic and anti-inflammatory status, resulting in the onset of unfavorable cardiovascular conditions such as atherosclerosis, coronary artery disease, hypertension, heart problems, and other vascular pathologies. Notably, it is emerging that the ability of ECs to adapt their metabolic status to persistent changes of the tissue microenvironment could be vital for the maintenance of vascular functions and to prevent adverse vascular events. The main purpose of the present article is to shed light on the unique metabolic plasticity of ECs as a prospective therapeutic target; this may lead to the development of novel strategies for cardiovascular diseases and cancer.
Collapse
|
41
|
Hernandez SJ, Fote G, Reyes-Ortiz AM, Steffan JS, Thompson LM. Cooperation of cell adhesion and autophagy in the brain: Functional roles in development and neurodegenerative disease. Matrix Biol Plus 2021; 12:100089. [PMID: 34786551 PMCID: PMC8579148 DOI: 10.1016/j.mbplus.2021.100089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/11/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
Cellular adhesive connections directed by the extracellular matrix (ECM) and maintenance of cellular homeostasis by autophagy are seemingly disparate functions that are molecularly intertwined, each regulating the other. This is an emerging field in the brain where the interplay between adhesion and autophagy functions at the intersection of neuroprotection and neurodegeneration. The ECM and adhesion proteins regulate autophagic responses to direct protein clearance and guide regenerative programs that go awry in brain disorders. Concomitantly, autophagic flux acts to regulate adhesion dynamics to mediate neurite outgrowth and synaptic plasticity with functional disruption contributed by neurodegenerative disease. This review highlights the cooperative exchange between cellular adhesion and autophagy in the brain during health and disease. As the mechanistic alliance between adhesion and autophagy has been leveraged therapeutically for metastatic disease, understanding overlapping molecular functions that direct the interplay between adhesion and autophagy might uncover therapeutic strategies to correct or compensate for neurodegeneration.
Collapse
Affiliation(s)
- Sarah J. Hernandez
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Gianna Fote
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Andrea M. Reyes-Ortiz
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Joan S. Steffan
- Psychaitry and Human Behavior, University of California Irvine, Irvine, CA 92697, USA
- Institute of Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92617, USA
| | - Leslie M. Thompson
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Psychaitry and Human Behavior, University of California Irvine, Irvine, CA 92697, USA
- Institute of Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92617, USA
| |
Collapse
|
42
|
Salminen AT, Tithof J, Izhiman Y, Masters EA, McCloskey MC, Gaborski TR, Kelley DH, Pietropaoli AP, Waugh RE, McGrath JL. Endothelial cell apicobasal polarity coordinates distinct responses to luminally versus abluminally delivered TNF-α in a microvascular mimetic. Integr Biol (Camb) 2021; 12:275-289. [PMID: 33164044 DOI: 10.1093/intbio/zyaa022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/28/2020] [Accepted: 10/05/2020] [Indexed: 12/27/2022]
Abstract
Endothelial cells (ECs) are an active component of the immune system and interact directly with inflammatory cytokines. While ECs are known to be polarized cells, the potential role of apicobasal polarity in response to inflammatory mediators has been scarcely studied. Acute inflammation is vital in maintaining healthy tissue in response to infection; however, chronic inflammation can lead to the production of systemic inflammatory cytokines and deregulated leukocyte trafficking, even in the absence of a local infection. Elevated levels of cytokines in circulation underlie the pathogenesis of sepsis, the leading cause of intensive care death. Because ECs constitute a key barrier between circulation (luminal interface) and tissue (abluminal interface), we hypothesize that ECs respond differentially to inflammatory challenge originating in the tissue versus circulation as in local and systemic inflammation, respectively. To begin this investigation, we stimulated ECs abluminally and luminally with the inflammatory cytokine tumor necrosis factor alpha (TNF-α) to mimic a key feature of local and systemic inflammation, respectively, in a microvascular mimetic (μSiM-MVM). Polarized IL-8 secretion and polymorphonuclear neutrophil (PMN) transmigration were quantified to characterize the EC response to luminal versus abluminal TNF-α. We observed that ECs uniformly secrete IL-8 in response to abluminal TNF-α and is followed by PMN transmigration. The response to abluminal treatment was coupled with the formation of ICAM-1-rich membrane ruffles on the apical surface of ECs. In contrast, luminally stimulated ECs secreted five times more IL-8 into the luminal compartment than the abluminal compartment and sequestered PMNs on the apical EC surface. Our results identify clear differences in the response of ECs to TNF-α originating from the abluminal versus luminal side of a monolayer for the first time and may provide novel insight into future inflammatory disease intervention strategies.
Collapse
Affiliation(s)
- Alec T Salminen
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, USA
| | - Yara Izhiman
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Elysia A Masters
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Molly C McCloskey
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Thomas R Gaborski
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Douglas H Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, USA
| | - Anthony P Pietropaoli
- Medicine, Pulmonary Disease and Critical Care, University of Rochester Medical Center, Rochester, NY, USA
| | - Richard E Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - James L McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
43
|
Henning C, Branopolski A, Follert P, Lewandowska O, Ayhan A, Benkhoff M, Flögel U, Kelm M, Heiss C, Lammert E. Endothelial β1 Integrin-Mediated Adaptation to Myocardial Ischemia. Thromb Haemost 2021; 121:741-754. [PMID: 33469904 PMCID: PMC8180378 DOI: 10.1055/s-0040-1721505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Short episodes of myocardial ischemia can protect from myocardial infarction. However, the role of endothelial β1 integrin in these cardioprotective ischemic events is largely unknown. OBJECTIVE In this study we investigated whether endothelial β1 integrin is required for cardiac adaptation to ischemia and protection from myocardial infarction. METHODS Here we introduced transient and permanent left anterior descending artery (LAD) occlusions in mice. We inhibited β1 integrin by intravenous injection of function-blocking antibodies and tamoxifen-induced endothelial cell (EC)-specific deletion of Itgb1. Furthermore, human ITGB1 was silenced in primary human coronary artery ECs using small interfering RNA. We analyzed the numbers of proliferating ECs and arterioles by immunohistochemistry, determined infarct size by magnetic resonance imaging (MRI) and triphenyl tetrazolium chloride staining, and analyzed cardiac function by MRI and echocardiography. RESULTS Transient LAD occlusions were found to increase EC proliferation and arteriole formation in the entire myocardium. These effects required β1 integrin on ECs, except for arteriole formation in the ischemic part of the myocardium. Furthermore, this integrin subunit was also relevant for basal and mechanically induced proliferation of human coronary artery ECs. Notably, β1 integrin was needed for cardioprotection induced by transient LAD occlusions, and the absence of endothelial β1 integrin resulted in impaired growth of blood vessels into the infarcted myocardium and reduced cardiac function after permanent LAD occlusion. CONCLUSION We showed that endothelial β1 integrin is required for adaptation of the heart to cardiac ischemia and protection from myocardial infarction.
Collapse
Affiliation(s)
- Carina Henning
- Institute of Metabolic Physiology, Department of Biology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Anna Branopolski
- Institute of Metabolic Physiology, Department of Biology, Heinrich-Heine-University, Düsseldorf, Germany
- Division of Cardiology, Pulmonology, and Vascular Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| | - Paula Follert
- Institute of Metabolic Physiology, Department of Biology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Oksana Lewandowska
- Institute of Metabolic Physiology, Department of Biology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Aysel Ayhan
- Division of Cardiology, Pulmonology, and Vascular Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| | - Marcel Benkhoff
- Division of Cardiology, Pulmonology, and Vascular Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ulrich Flögel
- Institute for Molecular Cardiology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Malte Kelm
- Division of Cardiology, Pulmonology, and Vascular Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christian Heiss
- Division of Cardiology, Pulmonology, and Vascular Medicine, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Surrey and Sussex Healthcare NHS Trust, Redhill, Surrey, United Kingdom
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Department of Biology, Heinrich-Heine-University, Düsseldorf, Germany
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ)—Leibniz Center for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
44
|
Moore K, Fulmer D, Guo L, Koren N, Glover J, Moore R, Gensemer C, Beck T, Morningstar J, Stairley R, Norris RA. PDGFRα: Expression and Function during Mitral Valve Morphogenesis. J Cardiovasc Dev Dis 2021; 8:28. [PMID: 33805717 PMCID: PMC7999759 DOI: 10.3390/jcdd8030028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/24/2022] Open
Abstract
Mitral valve prolapse (MVP) is a common form of valve disease and can lead to serious secondary complications. The recent identification of MVP causal mutations in primary cilia-related genes has prompted the investigation of cilia-mediated mechanisms of disease inception. Here, we investigate the role of platelet-derived growth factor receptor-alpha (PDGFRα), a receptor known to be present on the primary cilium, during valve development using genetically modified mice, biochemical assays, and high-resolution microscopy. While PDGFRα is expressed throughout the ciliated valve interstitium early in development, its expression becomes restricted on the valve endocardium by birth and through adulthood. Conditional ablation of Pdgfra with Nfatc1-enhancer Cre led to significantly enlarged and hypercellular anterior leaflets with disrupted endothelial adhesions, activated ERK1/2, and a dysregulated extracellular matrix. In vitro culture experiments confirmed a role in suppressing ERK1/2 activation while promoting AKT phosphorylation. These data suggest that PDGFRα functions to suppress mesenchymal transformation and disease phenotypes by stabilizing the valve endocardium through an AKT/ERK pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Russell A. Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Suite 601 Basic Science Building, 173 Ashley Avenue, Charleston, SC 29425, USA; (K.M.); (D.F.); (L.G.); (N.K.); (J.G.); (R.M.); (C.G.); (T.B.); (J.M.); (R.S.)
| |
Collapse
|
45
|
Peng J, Li X, Zhang Y, Hu J, Shang Y, Yin Y, Xiao Z. Par3/integrin β1 regulates embryo adhesion via changing endometrial luminal epithelium polarity†. Biol Reprod 2021; 104:1228-1238. [PMID: 33675651 DOI: 10.1093/biolre/ioab033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/21/2020] [Accepted: 03/04/2021] [Indexed: 11/14/2022] Open
Abstract
The objective is to investigate the pathophysiological significance of Par3 and integrin β1 with regard to the functionality of the endometrial luminal epithelium (LE). Design: laboratory study; setting: university research laboratory. Analysis involved endometrial aspirates and endometrial adenocarcinoma cells (HEC-1A) and endometrial carcinoma cells (RL95-2). We first examined the expression and localization of Par3 and integrin β1 in HEC-1A cells and RL95-2 cells. Then we knocked down Par3 and integrin β1 in HEC-1A cells and RL95-2 cells, respectively, and found that Par3/integrin β1 affected embryo adhesion by regulating the intercellular tight junctions' (TJs') structure and thus the polarity of the endometrial LE. These findings were also confirmed in the endometrium specimens from human and mice. The main outcome measures were the expression and localization of Par3 and integrin β1 in the endometrial epithelial cell lines and endometrium specimens and the regulations of Par3 and integrin β1 on TJs, polarity, and embryo adhesion. Following the knockdown of Par3 in HEC-1A cells, there was a reduction in the complexity of the TJs and cell polarity, and the adhered blastocysts number was significantly increased. However, the reduction of integrin β1 in RL95-2 cells resulted in effects that directly opposed those following the knockdown of Par3 in HEC-1A cells. Estrogen and progesterone reduced the expression of Par3 and promoted the expression of integrin β1 in HEC-1A cells. Par3/integrin β1 regulates embryo adhesion by regulating intercellular TJs' structure and polarity of endometrial LE under the action of ovarian hormones.
Collapse
Affiliation(s)
- Jiali Peng
- Center of Reproductive Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoling Li
- Center of Reproductive Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yan Zhang
- Center of Reproductive Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jian Hu
- Center of Reproductive Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yunjie Shang
- Center of Reproductive Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuchen Yin
- Center of Reproductive Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhuoni Xiao
- Center of Reproductive Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
46
|
Barcelona‐Estaje E, Dalby MJ, Cantini M, Salmeron‐Sanchez M. You Talking to Me? Cadherin and Integrin Crosstalk in Biomaterial Design. Adv Healthc Mater 2021; 10:e2002048. [PMID: 33586353 DOI: 10.1002/adhm.202002048] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/20/2021] [Indexed: 12/21/2022]
Abstract
While much work has been done in the design of biomaterials to control integrin-mediated adhesion, less emphasis has been put on functionalization of materials with cadherin ligands. Yet, cell-cell contacts in combination with cell-matrix interactions are key in driving embryonic development, collective cell migration, epithelial to mesenchymal transition, and cancer metastatic processes, among others. This review focuses on the incorporation of both cadherin and integrin ligands in biomaterial design, to promote what is called the "adhesive crosstalk." First, the structure and function of cadherins and their role in eliciting mechanotransductive processes, by themselves or in combination with integrin mechanosensing, are introduced. Then, biomaterials that mimic cell-cell interactions, and recent applications to get insights in fundamental biology and tissue engineering, are critically discussed.
Collapse
Affiliation(s)
- Eva Barcelona‐Estaje
- Centre for the Cellular Microenvironment University of Glasgow Glasgow G12 8QQ UK
| | - Matthew J. Dalby
- Centre for the Cellular Microenvironment University of Glasgow Glasgow G12 8QQ UK
| | - Marco Cantini
- Centre for the Cellular Microenvironment University of Glasgow Glasgow G12 8QQ UK
| | | |
Collapse
|
47
|
Matsumura H, Liu N, Nanba D, Ichinose S, Takada A, Kurata S, Morinaga H, Mohri Y, De Arcangelis A, Ohno S, Nishimura EK. Distinct types of stem cell divisions determine organ regeneration and aging in hair follicles. ACTA ACUST UNITED AC 2021; 1:190-204. [PMID: 37118636 DOI: 10.1038/s43587-021-00033-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 01/11/2021] [Indexed: 01/10/2023]
Abstract
Hair follicles, mammalian mini-organs that grow hair, miniaturize during aging, leading to hair thinning and loss. Here we report that hair follicle stem cells (HFSCs) lose their regenerative capabilities during aging owing to the adoption of an atypical cell division program. Cell fate tracing and cell division axis analyses revealed that while HFSCs in young mice undergo typical symmetric and asymmetric cell divisions to regenerate hair follicles, upon aging or stress, they adopt an atypical 'stress-responsive' type of asymmetric cell division. This type of division is accompanied by the destabilization of hemidesmosomal protein COL17A1 and cell polarity protein aPKCλ and generates terminally differentiating epidermal cells instead of regenerating the hair follicle niche. With the repetition of these atypical divisions, HFSCs detach from the basal membrane causing their exhaustion, elimination and organ aging. The experimentally induced stabilization of COL17A1 rescued organ homeostasis through aPKCλ stabilization. These results demonstrate that distinct stem cell division programs may govern tissue and organ aging.
Collapse
|
48
|
Pulous FE, Carnevale JC, Al-Yafeai Z, Pearson BH, Hamilton JAG, Henry CJ, Orr AW, Petrich BG. Talin-dependent integrin activation is required for endothelial proliferation and postnatal angiogenesis. Angiogenesis 2021; 24:177-190. [PMID: 33113074 PMCID: PMC8441968 DOI: 10.1007/s10456-020-09756-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
Integrin activation contributes to key blood cell functions including adhesion, proliferation and migration. An essential step in the cell signaling pathway that activates integrin requires the binding of talin to the β-integrin cytoplasmic tail. Whereas this pathway is understood in platelets in detail, considerably less is known regarding how integrin-mediated adhesion in endothelium contributes to postnatal angiogenesis. We utilized an inducible EC-specific talin1 knock-out mouse (Tln1 EC-KO) and talin1 L325R knock-in mutant (Tln1 L325R) mouse, in which talin selectively lacks the capacity to activate integrins, to assess the role of integrin activation during angiogenesis. Deletion of talin1 during postnatal days 1-3 (P1-P3) caused lethality by P8 with extensive defects in retinal angiogenesis and widespread hemorrhaging. Tln1 EC-KO mice displayed reduced retinal vascular area, impaired EC sprouting and proliferation relative to Tln1 CTRLs. In contrast, induction of talin1 L325R in neonatal mice resulted in modest defects in retinal angiogenesis and mice survived to adulthood. Interestingly, deletion of talin1 or expression of talin1 L325R in ECs increased MAPK/ERK signaling. Strikingly, B16-F0 tumors grown in Tln1 L325R adult mice were 55% smaller and significantly less vascularized than tumors grown in littermate controls. EC talin1 is indispensable for postnatal development angiogenesis. The role of EC integrin activation appears context-dependent as its inhibition is compatible with postnatal development with mild defects in retinal angiogenesis but results in marked defects in tumor growth and angiogenesis. Inhibiting EC pan-integrin activation may be an effective approach to selectively target tumor blood vessel growth.
Collapse
Affiliation(s)
- Fadi E Pulous
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Jamie C Carnevale
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Zaki Al-Yafeai
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA, USA
| | - Brenna H Pearson
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA, USA
| | - Jamie A G Hamilton
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Curtis J Henry
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
| | - A Wayne Orr
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA, USA
- Department of Cell Biology and Anatomy, LSU Health Sciences Center, Shreveport, LA, USA
- Pathology and Translational Pathobiology, LSU Health Sciences Center, Shreveport, LA, USA
| | - Brian G Petrich
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
49
|
Shen AR, Zhong X, Tang TT, Wang C, Jing J, Liu BC, Lv LL. Integrin, Exosome and Kidney Disease. Front Physiol 2021; 11:627800. [PMID: 33569013 PMCID: PMC7868550 DOI: 10.3389/fphys.2020.627800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/30/2020] [Indexed: 12/28/2022] Open
Abstract
Integrins are transmembrane receptors that function as noncovalent heterodimers that mediate cellular adhesion and migration, cell to cell communication, and intracellular signaling activation. In kidney, latency associated peptide-transforming growth factor β (TGF-β) and soluble urokinase plasminogen activator receptor (suPAR) were found as the novel ligands of integrins that contribute to renal interstitial fibrosis and focal segmental glomerular sclerosis glomerulosclerosis (FSGS). Interestingly, recent studies revealed that integrins are the compositional cargo of exosomes. Increasing evidence suggested that exosomal integrin played critical roles in diverse pathophysiologic conditions such as tumor metastasis, neurological disorders, immunology regulation, and other processes. This review will focus on the biology and function of exosomal integrin, emphasizing its potential role in kidney disease as well as its implications in developing novel therapeutic and diagnosis approaches for kidney disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lin-Li Lv
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
50
|
Clapero F, Tortarolo D, Valdembri D, Serini G. Quantifying Polarized Extracellular Matrix Secretion in Cultured Endothelial Cells. Methods Mol Biol 2021; 2217:301-311. [PMID: 33215388 DOI: 10.1007/978-1-0716-0962-0_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
In endothelial cells (ECs), the onset of apicobasal polarity is primarily regulated by the interaction of integrins with the surrounding extracellular matrix (ECM). ECs secrete and polymerize fibronectin (FN), a unique, permissive substrate that allows for vascular morphogenesis and lumen formation. We previously identified a signaling pathway that, under the control of the adhesion site adaptor protein PPFIA1, integrates the polarized secretion of freshly synthesized FN with the recycling of conformationally active α5β1 integrin, the main FN receptor in ECs. To characterize the functional role of PPFIA1-dependent signaling in ECs, we set up a Transwell-based assay to quantify the polarized secretion of ECM proteins. To this aim, we allowed ECs to form a confluent monolayer on the Transwell membrane and checked its integrity by measuring transendothelial electric resistance and controlling the stability of tight junctions over time by fluorescent confocal microscope analysis. Finally, we quantified apical and basolateral FN secretion in control and PPFIA1-silenced EC culture medium by western blot analysis coupled to spike-in normalization.
Collapse
Affiliation(s)
- Fabiana Clapero
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.,Department of Oncology, University of Torino School of Medicine, Torino, Italy
| | - Dora Tortarolo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.,Department of Oncology, University of Torino School of Medicine, Torino, Italy
| | - Donatella Valdembri
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy. .,Department of Oncology, University of Torino School of Medicine, Torino, Italy.
| | - Guido Serini
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy. .,Department of Oncology, University of Torino School of Medicine, Torino, Italy.
| |
Collapse
|