1
|
Wilson P, Vishwakarma V, Norcross R, Khaire K, Pham VN, Weinstein BM, Jung HM, Galperin E. Signaling scaffold Shoc2 regulates lymphangiogenesis by suppressing mTORC1-mediated IFN responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645567. [PMID: 40196569 PMCID: PMC11974843 DOI: 10.1101/2025.03.26.645567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
An interplay of growth factors and signaling pathways governs the development and maintenance of the lymphatic vasculature, ensuring proper fluid homeostasis and immune function. Disruption of these regulatory mechanisms can lead to congenital lymphatic disorders and contribute to various pathological conditions. However, the mechanisms underlying the molecular regulation of these processes remain elusive. Here we reveal a critical and previously unappreciated role for the signaling scaffold protein Shoc2 in lymphangiogenesis. We demonstrate that loss of Shoc2 leads to nearly a complete loss of lymphatic vasculature in vivo and senescence of lymphatic endothelial cells in vitro. Mechanistically, Shoc2 is required for balancing signaling through the ERK1/2 pathway, and its loss results in increased mTORC1 signaling. This dysregulation impairs mitochondrial respiration and triggers an IRF/IFN-II response, ultimately leading to cellular senescence. Strikingly, expression of the Noonan Syndrome with Loose anagen Hair (NSLH)-causing Shoc2 variant S2G phenocopies the effects of Shoc2 loss. Together, these studies establish the critical role of Shoc2 in lymphangiogenesis and uncover a novel mechanistic link between Shoc2 signaling, mitochondrial function, innate immune response, and lymphatic development, with significant implications for Ras-pathway-related congenital disorders.
Collapse
|
2
|
de la Cruz E, Cadenas V, Temiño S, Oliver G, Torres M. Epicardial VEGFC/D signaling is essential for coronary lymphangiogenesis. EMBO Rep 2025:10.1038/s44319-025-00431-7. [PMID: 40128409 DOI: 10.1038/s44319-025-00431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/08/2025] [Accepted: 03/03/2025] [Indexed: 03/26/2025] Open
Abstract
The contractile ability of the mammalian heart critically relies on blood coronary circulation, essential to provide oxygen and nutrients to myocardial cells. In addition, the lymphatic vasculature is essential for the myocardial immune response, extracellular fluid homeostasis and response to injury. Recent studies identified different origins of coronary lymphatic endothelial cells, however, the cues that govern coronary lymphangiogenesis remain unknown. Here we show that the coronary lymphatic vasculature develops in intimate contact with the epicardium and with epicardial-derived cells. The epicardium expresses the lymphangiogenic cytokine VEGFC and its conditional deletion in the epicardium abrogates coronary lymphatic vasculature development. Interestingly, VEGFD is also expressed in the epicardium and cooperates with VEGFC in coronary lymphangiogenesis, but it does so only in females, uncovering an unsuspected sex-specific role for this cytokine. These results identify the epicardium/subepicardium as a signaling niche required for coronary lymphangiogenesis and VEGFC/D as essential mediators of this role.
Collapse
Affiliation(s)
- Ester de la Cruz
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Vanessa Cadenas
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Susana Temiño
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, 60611, USA
| | - Miguel Torres
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
3
|
Lee J, Goeckel ME, Levitas A, Colijn S, Shin J, Hindes A, Mun G, Burton Z, Chintalapati B, Yin Y, Abello J, Solnica-Krezel L, Stratman AN. CXCR3-CXCL11 Signaling Restricts Angiogenesis and Promotes Pericyte Recruitment. Arterioscler Thromb Vasc Biol 2024; 44:2577-2595. [PMID: 39360413 PMCID: PMC11594002 DOI: 10.1161/atvbaha.124.321434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Endothelial cell (EC)-pericyte interactions are known to remodel in response to hemodynamic forces; yet there is a lack of mechanistic understanding of the signaling pathways that underlie these events. Here, we have identified a novel signaling network regulated by blood flow in ECs-the chemokine receptor CXCR3 (CXC motif chemokine receptor 3) and one of its ligands, CXCL11 (CXC motif chemokine ligand 11)-that delimits EC angiogenic potential and promotes pericyte recruitment to ECs during development. METHODS We investigated the role of CXCR3 on vascular development using both 2- and 3-dimensional in vitro assays, to study EC-pericyte interactions and EC behavioral responses to blood flow. Additionally, genetic mutants and pharmacological modulators were used in zebrafish in vivo to study the impacts of CXCR3 loss and gain of function on vascular development. RESULTS In vitro modeling of EC-pericyte interactions demonstrates that suppression of EC-specific CXCR3 signaling leads to loss of pericyte association with EC tubes. In vivo, phenotypic defects are particularly noted in the cranial vasculature, where we see a loss of pericyte association with ECs and expansion of the vasculature in zebrafish treated with the Cxcr3 inhibitor AMG487 or in homozygous cxcr3.1/3.2/3.3 triple mutants. We also demonstrate that CXCR3-deficient ECs are more elongated, move more slowly, and have impaired EC-EC junctions compared with their control counterparts. CONCLUSIONS Our results suggest that CXCR3 signaling in ECs helps promote vascular stabilization events during development by preventing EC overgrowth and promoting pericyte recruitment.
Collapse
Affiliation(s)
- Jihui Lee
- Department of Cell Biology and Physiology (J.L., M.E.G., A.L., S.C., G.M., Z.B., B.C., Y.Y., J.A., A.N.S.), Washington University School of Medicine, St. Louis, MO
| | - Megan E. Goeckel
- Department of Cell Biology and Physiology (J.L., M.E.G., A.L., S.C., G.M., Z.B., B.C., Y.Y., J.A., A.N.S.), Washington University School of Medicine, St. Louis, MO
| | - Allison Levitas
- Department of Cell Biology and Physiology (J.L., M.E.G., A.L., S.C., G.M., Z.B., B.C., Y.Y., J.A., A.N.S.), Washington University School of Medicine, St. Louis, MO
| | - Sarah Colijn
- Department of Cell Biology and Physiology (J.L., M.E.G., A.L., S.C., G.M., Z.B., B.C., Y.Y., J.A., A.N.S.), Washington University School of Medicine, St. Louis, MO
| | - Jimann Shin
- Department of Developmental Biology (J.S., A.H., L.S.-K.), Washington University School of Medicine, St. Louis, MO
| | - Anna Hindes
- Department of Developmental Biology (J.S., A.H., L.S.-K.), Washington University School of Medicine, St. Louis, MO
| | - Geonyoung Mun
- Department of Cell Biology and Physiology (J.L., M.E.G., A.L., S.C., G.M., Z.B., B.C., Y.Y., J.A., A.N.S.), Washington University School of Medicine, St. Louis, MO
| | - Zarek Burton
- Department of Cell Biology and Physiology (J.L., M.E.G., A.L., S.C., G.M., Z.B., B.C., Y.Y., J.A., A.N.S.), Washington University School of Medicine, St. Louis, MO
| | - Bharadwaj Chintalapati
- Department of Cell Biology and Physiology (J.L., M.E.G., A.L., S.C., G.M., Z.B., B.C., Y.Y., J.A., A.N.S.), Washington University School of Medicine, St. Louis, MO
| | - Ying Yin
- Department of Cell Biology and Physiology (J.L., M.E.G., A.L., S.C., G.M., Z.B., B.C., Y.Y., J.A., A.N.S.), Washington University School of Medicine, St. Louis, MO
| | - Javier Abello
- Department of Cell Biology and Physiology (J.L., M.E.G., A.L., S.C., G.M., Z.B., B.C., Y.Y., J.A., A.N.S.), Washington University School of Medicine, St. Louis, MO
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology (J.S., A.H., L.S.-K.), Washington University School of Medicine, St. Louis, MO
- Center of Regenerative Medicine (L.S.-K.), Washington University School of Medicine, St. Louis, MO
| | - Amber N. Stratman
- Department of Cell Biology and Physiology (J.L., M.E.G., A.L., S.C., G.M., Z.B., B.C., Y.Y., J.A., A.N.S.), Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
4
|
Panara V, Varaliová Z, Wilting J, Koltowska K, Jeltsch M. The relationship between the secondary vascular system and the lymphatic vascular system in fish. Biol Rev Camb Philos Soc 2024; 99:2108-2133. [PMID: 38940420 DOI: 10.1111/brv.13114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
New technologies have resulted in a better understanding of blood and lymphatic vascular heterogeneity at the cellular and molecular levels. However, we still need to learn more about the heterogeneity of the cardiovascular and lymphatic systems among different species at the anatomical and functional levels. Even the deceptively simple question of the functions of fish lymphatic vessels has yet to be conclusively answered. The most common interpretation assumes a similar dual setup of the vasculature in zebrafish and mammals: a cardiovascular circulatory system, and a lymphatic vascular system (LVS), in which the unidirectional flow is derived from surplus interstitial fluid and returned into the cardiovascular system. A competing interpretation questions the identity of the lymphatic vessels in fish as at least some of them receive their flow from arteries via specialised anastomoses, neither requiring an interstitial source for the lymphatic flow nor stipulating unidirectionality. In this alternative view, the 'fish lymphatics' are a specialised subcompartment of the cardiovascular system, called the secondary vascular system (SVS). Many of the contradictions found in the literature appear to stem from the fact that the SVS develops in part or completely from an embryonic LVS by transdifferentiation. Future research needs to establish the extent of embryonic transdifferentiation of lymphatics into SVS blood vessels. Similarly, more insight is needed into the molecular regulation of vascular development in fish. Most fish possess more than the five vascular endothelial growth factor (VEGF) genes and three VEGF receptor genes that we know from mice or humans, and the relative tolerance of fish to whole-genome and gene duplications could underlie the evolutionary diversification of the vasculature. This review discusses the key elements of the fish lymphatics versus the SVS and attempts to draw a picture coherent with the existing data, including phylogenetic knowledge.
Collapse
Affiliation(s)
- Virginia Panara
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
- Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 A, Uppsala, 752 36, Sweden
| | - Zuzana Varaliová
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
- Drug Research Program, University of Helsinki, Viikinkaari 5E, Helsinki, 00790, Finland
| | - Jörg Wilting
- Institute of Anatomy and Embryology, University Medical School Göttingen, Kreuzbergring 36, Göttingen, 37075, Germany
| | - Katarzyna Koltowska
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
- Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
| | - Michael Jeltsch
- Drug Research Program, University of Helsinki, Viikinkaari 5E, Helsinki, 00790, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland
- Wihuri Research Institute, Haartmaninkatu 8, Helsinki, 00290, Finland
- Helsinki One Health, University of Helsinki, P.O. Box 4, Helsinki, 00014, Finland
- Helsinki Institute of Sustainability Science, Yliopistonkatu 3, Helsinki, 00100, Finland
| |
Collapse
|
5
|
Do LNH, Delgado E, Lim CG, Bkhache M, Peluzzo AM, Hua Y, Oza M, Mohsin S, Chen H, Autieri MV, Kim S, Liu X. A neuro-lymphatic communication guides lymphatic development by CXCL12 and CXCR4 signaling. Development 2024; 151:dev202901. [PMID: 39470100 PMCID: PMC11634036 DOI: 10.1242/dev.202901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/11/2024] [Indexed: 10/30/2024]
Abstract
Lymphatic vessels grow through active sprouting and mature into a vascular complex that includes lymphatic capillaries and collecting vessels that ensure fluid transport. However, the signaling cues that direct lymphatic sprouting and patterning remain unclear. In this study, we demonstrate that chemokine signaling, specifically through CXCL12 and CXCR4, plays crucial roles in regulating lymphatic development. We show that LEC-specific Cxcr4-deficient mouse embryos and CXCL12 mutant embryos exhibit severe defects in lymphatic sprouting, migration and lymphatic valve formation. We also discovered that CXCL12, originating from peripheral nerves, directs the migration of dermal lymphatic vessels to align with nerves in developing skin. Deletion of Cxcr4 or blockage of CXCL12 and CXCR4 activity results in reduced VEGFR3 levels on the LEC surface. This, in turn, impairs VEGFC-mediated VEGFR3 signaling and downstream PI3K and AKT activities. Taken together, these data identify previously unknown chemokine signaling originating from peripheral nerves that guides dermal lymphatic sprouting and patterning. Our work identifies for the first time a neuro-lymphatics communication during mouse development and reveals a previously unreported mechanism by which CXCR4 modulates VEGFC, VEGFR3 and AKT signaling.
Collapse
Affiliation(s)
- Long Nguyen Hoang Do
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Esteban Delgado
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Casey G. Lim
- Center for Neural Development and Repair, Department of Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Meriem Bkhache
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Amanda M. Peluzzo
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Yiming Hua
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Manisha Oza
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Sadia Mohsin
- Aging+Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael V. Autieri
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Seonhee Kim
- Center for Neural Development and Repair, Department of Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Xiaolei Liu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| |
Collapse
|
6
|
Vallecillo-García P, Kühnlein MN, Orgeur M, Hansmeier NR, Kotsaris G, Meisen ZG, Timmermann B, Giesecke-Thiel C, Hägerling R, Stricker S. Mesenchymal Osr1+ cells regulate embryonic lymphatic vessel formation. Development 2024; 151:dev202747. [PMID: 39221968 PMCID: PMC11441984 DOI: 10.1242/dev.202747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
The lymphatic system is formed during embryonic development by the commitment of specialized lymphatic endothelial cells (LECs) and their subsequent assembly in primary lymphatic vessels. Although lymphatic cells are in continuous contact with mesenchymal cells during development and in adult tissues, the role of mesenchymal cells in lymphatic vasculature development remains poorly characterized. Here, we show that a subpopulation of mesenchymal cells expressing the transcription factor Osr1 are in close association with migrating LECs and established lymphatic vessels in mice. Lineage tracing experiments revealed that Osr1+ cells precede LEC arrival during lymphatic vasculature assembly in the back of the embryo. Using Osr1-deficient embryos and functional in vitro assays, we show that Osr1 acts in a non-cell-autonomous manner controlling proliferation and early migration of LECs to peripheral tissues. Thereby, mesenchymal Osr1+ cells control, in a bimodal manner, the production of extracellular matrix scaffold components and signal ligands crucial for lymphatic vessel formation.
Collapse
Affiliation(s)
- Pedro Vallecillo-García
- Institute for Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany
- Department of Hematology, Oncology and Tumorimmunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353Berlin, Germany
| | - Mira Nicola Kühnlein
- Institute for Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany
| | - Mickael Orgeur
- Unit for Integrated Mycobacterial Pathogenomics,Institut Pasteur, Université Paris Cité, CNRS UMR 6047, 75015 Paris, France
| | - Nils Rouven Hansmeier
- Research Group ‘Lymphovascular Medicine and Translational 3D-Histopathology’, Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies,Berlin Institute of Health at Charité-Universitätsmedizin Berlin,Augustenburger Platz 1, 13353 Berlin, Germany
- Research Group ‘Development and Disease’,Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Georgios Kotsaris
- Institute for Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany
| | - Zarah Gertrud Meisen
- Institute for Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany
| | - Bernd Timmermann
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | | | - René Hägerling
- Research Group ‘Lymphovascular Medicine and Translational 3D-Histopathology’, Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies,Berlin Institute of Health at Charité-Universitätsmedizin Berlin,Augustenburger Platz 1, 13353 Berlin, Germany
- Research Group ‘Development and Disease’,Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
- BIH Academy, Clinician Scientist Program, Berlin Institute of Health at Charité-Universitätsmedizin Berlin,Charitéplatz 1, 10117 Berlin, Germany
| | - Sigmar Stricker
- Institute for Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany
| |
Collapse
|
7
|
Phng LK, Hogan BM. Endothelial cell transitions in zebrafish vascular development. Dev Growth Differ 2024; 66:357-368. [PMID: 39072708 PMCID: PMC11457512 DOI: 10.1111/dgd.12938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
In recent decades, developmental biologists have come to view vascular development as a series of progressive transitions. Mesoderm differentiates into endothelial cells; arteries, veins and lymphatic endothelial cells are specified from early endothelial cells; and vascular networks diversify and invade developing tissues and organs. Our understanding of this elaborate developmental process has benefitted from detailed studies using the zebrafish as a model system. Here, we review a number of key developmental transitions that occur in zebrafish during the formation of the blood and lymphatic vessel networks.
Collapse
Affiliation(s)
- Li-Kun Phng
- Laboratory for Vascular Morphogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Benjamin M Hogan
- Organogenesis and Cancer Programme, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology and the Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Chen J, Ding J, Li Y, Feng F, Xu Y, Wang T, He J, Cang J, Luo L. Epidermal growth factor-like domain 7 drives brain lymphatic endothelial cell development through integrin αvβ3. Nat Commun 2024; 15:5986. [PMID: 39013903 PMCID: PMC11252342 DOI: 10.1038/s41467-024-50389-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
In zebrafish, brain lymphatic endothelial cells (BLECs) are essential for meningeal angiogenesis and cerebrovascular regeneration. Although epidermal growth factor-like domain 7 (Egfl7) has been reported to act as a pro-angiogenic factor, its roles in lymphangiogenesis remain unclear. Here, we show that Egfl7 is expressed in both blood and lymphatic endothelial cells. We generate an egfl7 cq180 mutant with a 13-bp-deletion in exon 3 leading to reduced expression of Egfl7. The egfl7 cq180 mutant zebrafish exhibit defective formation of BLEC bilateral loop-like structures, although trunk and facial lymphatic development remains unaffected. Moreover, while the egfl7 cq180 mutant displays normal BLEC lineage specification, the migration and proliferation of these cells are impaired. Additionally, we identify integrin αvβ3 as the receptor for Egfl7. αvβ3 is expressed in the CVP and sprouting BLECs, and blocking this integrin inhibits the formation of BLEC bilateral loop-like structures. Thus, this study identifies a role for Egfl7 in BLEC development that is mediated through the integrin αvβ3.
Collapse
Affiliation(s)
- Jingying Chen
- School of Life Sciences, Department of Anaesthesia of Zhongshan Hospital, Fudan University, 200438, Shanghai, China.
| | - Jing Ding
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715, Chongqing, China
| | - Yongyu Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715, Chongqing, China
| | - Fujuan Feng
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715, Chongqing, China
| | - Yuhang Xu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715, Chongqing, China
| | - Tao Wang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715, Chongqing, China
| | - Jianbo He
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715, Chongqing, China
| | - Jing Cang
- School of Life Sciences, Department of Anaesthesia of Zhongshan Hospital, Fudan University, 200438, Shanghai, China
| | - Lingfei Luo
- School of Life Sciences, Department of Anaesthesia of Zhongshan Hospital, Fudan University, 200438, Shanghai, China.
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715, Chongqing, China.
| |
Collapse
|
9
|
Jing Y, Tai Z, Liu JX. Copper nanoparticles and silver nanoparticles impair lymphangiogenesis in zebrafish. Cell Commun Signal 2024; 22:67. [PMID: 38273312 PMCID: PMC10809531 DOI: 10.1186/s12964-023-01403-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/19/2023] [Indexed: 01/27/2024] Open
Abstract
Lymphatic system distributes in almost all vertebrate tissues and organs, and plays important roles in the regulation of body fluid balance, lipid absorption and immune monitoring. Although CuNPs or AgNPs accumulation has been reported to be closely associated with delayed hatching and motor dysfunction in zebrafish embryos, their biological effects on lymphangiogenesis remain unknown. In this study, thoracic duct was observed to be partially absent in both CuNPs and AgNPs stressed zebrafish larvae. Specifically, CuNPs stress induced hypermethylation of E2F7/8 binding sites on CCBE1 promoters via their producing ROS, thereby leading to the reduction of binding enrichment of E2F7/8 on CCBE1 promoter and its subsequently reduced expression, then resulting in defective lymphatic vessel formation. Differently, AgNPs stress induced down-regulated CCBE1 expression via down-regulating mRNA and protein levels of E2F7/8 transcription factors, thereby resulting in defective lymphatic vessel formation. This study may be the first to demonstrate that CuNPs and AgNPs damaged lymphangiogenesis during zebrafish embryogenesis, mechanistically, CuNPs epigenetically regulated the expression of lymphangiogenesis regulator CCBE1 via hypermethylating its promoter binding sites of E2F7/8, while AgNPs via regulating E2F7/8 expression. Meanwhile, overexpression of ccbe1 mRNA effectively rescued the lymphangiogenesis defects in both AgNPs and CuNPs stressed larvae, while overexpression of e2f7/8 mRNA effectively rescued the lymphangiogenesis defects in AgNPs rather than CuNPs stressed larvae. The results in this study will shed some light on the safety assessment of nanomaterials applied in medicine and on the ecological security assessments of nanomaterials. Video Abstract.
Collapse
Affiliation(s)
- YuanYuan Jing
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - ZhiPeng Tai
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
10
|
Hu Z, Zhao X, Wu Z, Qu B, Yuan M, Xing Y, Song Y, Wang Z. Lymphatic vessel: origin, heterogeneity, biological functions, and therapeutic targets. Signal Transduct Target Ther 2024; 9:9. [PMID: 38172098 PMCID: PMC10764842 DOI: 10.1038/s41392-023-01723-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Lymphatic vessels, comprising the secondary circulatory system in human body, play a multifaceted role in maintaining homeostasis among various tissues and organs. They are tasked with a serious of responsibilities, including the regulation of lymph absorption and transport, the orchestration of immune surveillance and responses. Lymphatic vessel development undergoes a series of sophisticated regulatory signaling pathways governing heterogeneous-origin cell populations stepwise to assemble into the highly specialized lymphatic vessel networks. Lymphangiogenesis, as defined by new lymphatic vessels sprouting from preexisting lymphatic vessels/embryonic veins, is the main developmental mechanism underlying the formation and expansion of lymphatic vessel networks in an embryo. However, abnormal lymphangiogenesis could be observed in many pathological conditions and has a close relationship with the development and progression of various diseases. Mechanistic studies have revealed a set of lymphangiogenic factors and cascades that may serve as the potential targets for regulating abnormal lymphangiogenesis, to further modulate the progression of diseases. Actually, an increasing number of clinical trials have demonstrated the promising interventions and showed the feasibility of currently available treatments for future clinical translation. Targeting lymphangiogenic promoters or inhibitors not only directly regulates abnormal lymphangiogenesis, but improves the efficacy of diverse treatments. In conclusion, we present a comprehensive overview of lymphatic vessel development and physiological functions, and describe the critical involvement of abnormal lymphangiogenesis in multiple diseases. Moreover, we summarize the targeting therapeutic values of abnormal lymphangiogenesis, providing novel perspectives for treatment strategy of multiple human diseases.
Collapse
Affiliation(s)
- Zhaoliang Hu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xushi Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Bicheng Qu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Minxian Yuan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yanan Xing
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
11
|
Kossack ME, Tian L, Bowie K, Plavicki JS. Defining the cellular complexity of the zebrafish bipotential gonad. Biol Reprod 2023; 109:586-600. [PMID: 37561446 PMCID: PMC10651076 DOI: 10.1093/biolre/ioad096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023] Open
Abstract
Zebrafish are routinely used to model reproductive development, function, and disease, yet we still lack a clear understanding of the fundamental steps that occur during early bipotential gonad development, including when endothelial cells, pericytes, and macrophage arrive at the bipotential gonad to support gonad growth and differentiation. Here, we use a combination of transgenic reporters and single-cell sequencing analyses to define the arrival of different critical cell types to the larval zebrafish gonad. We determined that blood initially reaches the gonad via a vessel formed from the swim bladder artery, which we have termed the gonadal artery. We find that vascular and lymphatic development occurs concurrently in the bipotential zebrafish gonad and our data suggest that similar to what has been observed in developing zebrafish embryos, lymphatic endothelial cells in the gonad may be derived from vascular endothelial cells. We mined preexisting sequencing datasets to determine whether ovarian pericytes had unique gene expression signatures. We identified 215 genes that were uniquely expressed in ovarian pericytes, but not expressed in larval pericytes. Similar to what has been shown in the mouse ovary, our data suggest that pdgfrb+ pericytes may support the migration of endothelial tip cells during ovarian angiogenesis. Using a macrophage-driven photoconvertible protein, we found that macrophage established a nascent resident population as early as 12 dpf and can be observed removing cellular material during gonadal differentiation. This foundational information demonstrates that the early bipotential gonad contains complex cellular interactions, which likely shape the health and function of the mature gonad.
Collapse
Affiliation(s)
- Michelle E Kossack
- Pathology and Laboratory Medicine Department, Brown University, Providence, RI, USA
| | - Lucy Tian
- Pathology and Laboratory Medicine Department, Brown University, Providence, RI, USA
| | - Kealyn Bowie
- Pathology and Laboratory Medicine Department, Brown University, Providence, RI, USA
| | - Jessica S Plavicki
- Pathology and Laboratory Medicine Department, Brown University, Providence, RI, USA
| |
Collapse
|
12
|
Wei Z, Hong Q, Ding Z, Liu J. cxcl12a plays an essential role in pharyngeal cartilage development. Front Cell Dev Biol 2023; 11:1243265. [PMID: 37860819 PMCID: PMC10582265 DOI: 10.3389/fcell.2023.1243265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
Background: Neural crest cells constitute a distinct set of multipotent cells that undergo migration along predefined pathways, culmination in the differentiation into a plethora of cell types, including components of the pharyngeal cartilage. The neurocranium is composite structure derived from both cranial neural crest and mesoderm cells, whereas the pharyngeal skeletal elements-including the mandibular and branchial arches-are exclusively formed by craniofacial neural crest cells. Previous studies have elucidated the critical involvement of the chemokine signaling axis Cxcl12b/Cxcr4a in craniofacial development in zebrafish (Danio rerio). Nonetheless, the function contribution of Cxcl12a and Cxcr4b-the homologous counterparts of Cxcl12b and Cxcr4a-remain largely unexplored. Methods: In the present study, mutant lines for cxcl12a and cxcr4b were generated employing CRISPR/Cas9 system. Temporal and spatial expression patterns of specific genes were assessed using in situ hybridization and dual-color fluorescence in situ hybridization techniques. High-resolution confocal microscopy was utilized for in vivo imaging to detect the pharyngeal arch or pouch patterning. Additionally, cartilage formation within the craniofacial region was analyzed via Alcian blue staining, and the proliferation and apoptosis rates of craniofacial neural crest cells were quantified through BrdU incorporation and TUNEL staining. Results: Our data reveals that the deletion of the chemokine gene cxcl12a results in a marked diminution of pharyngeal cartilage elements, attributable to compromised proliferation of post-migratory craniofacial neural crest cells. Subsequent experiments confirmed that Cxcl12a and Cxcl12b exhibit a synergistic influence on pharyngeal arch and pouch formation. Conclusion: Collectively, the present investigation furnishes compelling empirical evidence supporting the indispensable role of Cxcl2a in craniofacial cartilage morphogenesis, albeit cxcr4b mutants exert a minimal impact on this biological process. We delineate that Cxcl12a is essential for chondrogenesis in zebrafish, primarily by promoting the proliferation of craniofacial neural crest cells. Furthermore, we proposed a conceptual framework wherein Cxcl12a and Cxcl12b function synergistically in orchestrating both the pharyngeal arch and pouch morphogenesis.
Collapse
Affiliation(s)
- Zhaohui Wei
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qiang Hong
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Zijiao Ding
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Jingwen Liu
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
13
|
Travisano SI, Harrison MRM, Thornton ME, Grubbs BH, Quertermous T, Lien CL. Single-nuclei multiomic analyses identify human cardiac lymphatic endothelial cells associated with coronary arteries in the epicardium. Cell Rep 2023; 42:113106. [PMID: 37676760 DOI: 10.1016/j.celrep.2023.113106] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/31/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Cardiac lymphatic vessels play important roles in fluid homeostasis, inflammation, disease, and regeneration of the heart. The developing cardiac lymphatics in human fetal hearts are closely associated with coronary arteries, similar to those in zebrafish hearts. We identify a population of cardiac lymphatic endothelial cells (LECs) that reside in the epicardium. Single-nuclei multiomic analysis of the human fetal heart reveals the plasticity and heterogeneity of the cardiac endothelium. Furthermore, we find that VEGFC is highly expressed in arterial endothelial cells and epicardium-derived cells, providing a molecular basis for the arterial association of cardiac lymphatic development. Using a cell-type-specific integrative analysis, we identify a population of cardiac lymphatic endothelial cells marked by the PROX1 and the lymphangiocrine RELN and enriched in binding motifs of erythroblast transformation specific (ETS) variant (ETV) transcription factors. We report the in vivo molecular characterization of human cardiac lymphatics and provide a valuable resource to understand fetal heart development.
Collapse
Affiliation(s)
| | - Michael R M Harrison
- The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Matthew E Thornton
- Maternal-Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Brendan H Grubbs
- Maternal-Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Thomas Quertermous
- Division of Cardiovascular Medicine and the Cardiovascular Institute, School of Medicine, Stanford University, Falk CVRC, Stanford, CA 94305, USA
| | - Ching-Ling Lien
- The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Departments of Surgery, Biochemistry, and Molecular Medicine, Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
14
|
Goeckel ME, Lee J, Levitas A, Colijn S, Mun G, Burton Z, Chintalapati B, Yin Y, Abello J, Stratman A. CXCR3-CXCL11 signaling restricts angiogenesis and promotes pericyte recruitment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.16.557842. [PMID: 37745440 PMCID: PMC10516035 DOI: 10.1101/2023.09.16.557842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Endothelial cell (EC)-pericyte interactions are known to remodel in response to hemodynamic forces, yet there is a lack of mechanistic understanding of the signaling pathways that underlie these events. Here, we have identified a novel signaling network regulated by blood flow in ECs-the chemokine receptor, CXCR3, and one of its ligands, CXCL11-that delimits EC angiogenic potential and suppresses pericyte recruitment during development through regulation of pdgfb expression in ECs. In vitro modeling of EC-pericyte interactions demonstrates that suppression of EC-specific CXCR3 signaling leads to loss of pericyte association with EC tubes. In vivo, phenotypic defects are particularly noted in the cranial vasculature, where we see a loss of pericyte association with and expansion of the vasculature in zebrafish treated with the Cxcr3 inhibitor AMG487. We also demonstrate using flow modeling platforms that CXCR3-deficient ECs are more elongated, move more slowly, and have impaired EC-EC junctions compared to their control counterparts. Together these data suggest that CXCR3 signaling in ECs drives vascular stabilization events during development.
Collapse
Affiliation(s)
- Megan E. Goeckel
- Department of Cell Biology and Physiology, Washington University School of Medicine St. Louis, MO, 63110
- University of Nebraska Medical Center, Graduate Studies, Nebraska Medical Center, Omaha, NE 68198
| | - Jihui Lee
- Department of Cell Biology and Physiology, Washington University School of Medicine St. Louis, MO, 63110
| | - Allison Levitas
- Department of Cell Biology and Physiology, Washington University School of Medicine St. Louis, MO, 63110
| | - Sarah Colijn
- Department of Cell Biology and Physiology, Washington University School of Medicine St. Louis, MO, 63110
| | - Geonyoung Mun
- Department of Cell Biology and Physiology, Washington University School of Medicine St. Louis, MO, 63110
| | - Zarek Burton
- Department of Cell Biology and Physiology, Washington University School of Medicine St. Louis, MO, 63110
| | - Bharadwaj Chintalapati
- Department of Cell Biology and Physiology, Washington University School of Medicine St. Louis, MO, 63110
| | - Ying Yin
- Department of Cell Biology and Physiology, Washington University School of Medicine St. Louis, MO, 63110
| | - Javier Abello
- Department of Cell Biology and Physiology, Washington University School of Medicine St. Louis, MO, 63110
| | - Amber Stratman
- Department of Cell Biology and Physiology, Washington University School of Medicine St. Louis, MO, 63110
| |
Collapse
|
15
|
Kossack ME, Tian L, Bowie K, Plavicki JS. Defining the cellular complexity of the zebrafish bipotential gonad. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524593. [PMID: 36712047 PMCID: PMC9882255 DOI: 10.1101/2023.01.18.524593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Zebrafish are routinely used to model reproductive development, function, and disease, yet we still lack a clear understanding of the fundamental steps that occur during early bipotential gonad development, including when endothelial cells, pericytes, and macrophage cells arrive at the bipotential gonad to support gonad growth and differentiation. Here, we use a combination of transgenic reporters and single-cell sequencing analyses to define the arrival of different critical cell types to the larval zebrafish gonad. We determined that blood initially reaches the gonad via a vessel formed from the swim bladder artery, which we have termed the gonadal artery. We find that vascular and lymphatic development occurs concurrently in the bipotential zebrafish gonad and our data suggest that similar to what has been observed in developing zebrafish embryos, lymphatic endothelial cells in the gonad may be derived from vascular endothelial cells. We mined preexisting sequencing data sets to determine whether ovarian pericytes had unique gene expression signatures. We identified 215 genes that were uniquely expressed in ovarian pericytes that were not expressed in larval pericytes. Similar to what has been shown in the mouse ovary, our data suggest that pdgfrb+ pericytes may support the migration of endothelial tip cells during ovarian angiogenesis. Using a macrophage-driven photoconvertible protein, we found that macrophage established a nascent resident population as early as 12 dpf and can be observed removing cellular material during gonadal differentiation. This foundational information demonstrates that the early bipotential gonad contains complex cellular interactions, which likely shape the health and function of the mature, differentiated gonad.
Collapse
|
16
|
Deng T, Shi Z, Xiao Y. Research progress in the cardiac lymphatic system and myocardial repair after myocardial infarction. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:920-929. [PMID: 37587078 PMCID: PMC10930442 DOI: 10.11817/j.issn.1672-7347.2023.220636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Indexed: 08/18/2023]
Abstract
The lymphatic system of the heart plays an important role in the repair process after myocardial injury and may regulate normal tissue homeostasis and natural regeneration via maintaining fluid homeostasis and controlling the inflammatory response. The lymphatic system in the heart is activated after myocardial injury and is involved in the scarring process of the heart. Recent studies on the lymphatic system and myocardial repair of the heart have developed rapidly, and the mechanisms for lymphangiogenesis and lymphatic endothelial cell secretion have been elucidated by different animal models. A deep understanding of the structural, molecular, and functional characteristics of the lymphatic system of the heart can help develop therapies that target the lymphatic system in the heart. Summarizing the progress in studies on targets related to myocardial repair and the cardiac lymphatic system is helpful to provide potential new targets and strategies for myocardial repair therapy after myocardial infarction.
Collapse
Affiliation(s)
- Tingyu Deng
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha 410011.
- Xiangya School of Medicine, Central South University, Changsha 410013, China.
| | - Zhaofeng Shi
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha 410011
- Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Yichao Xiao
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha 410011.
| |
Collapse
|
17
|
Grimm L, Mason E, Yu H, Dudczig S, Panara V, Chen T, Bower NI, Paterson S, Rondon Galeano M, Kobayashi S, Senabouth A, Lagendijk AK, Powell J, Smith KA, Okuda KS, Koltowska K, Hogan BM. Single-cell analysis of lymphatic endothelial cell fate specification and differentiation during zebrafish development. EMBO J 2023:e112590. [PMID: 36912146 DOI: 10.15252/embj.2022112590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
During development, the lymphatic vasculature forms as a second network derived chiefly from blood vessels. The transdifferentiation of embryonic venous endothelial cells (VECs) into lymphatic endothelial cells (LECs) is a key step in this process. Specification, differentiation and maintenance of LEC fate are all driven by the transcription factor Prox1, yet the downstream mechanisms remain to be elucidated. We here present a single-cell transcriptomic atlas of lymphangiogenesis in zebrafish, revealing new markers and hallmarks of LEC differentiation over four developmental stages. We further profile single-cell transcriptomic and chromatin accessibility changes in zygotic prox1a mutants that are undergoing a LEC-VEC fate shift. Using maternal and zygotic prox1a/prox1b mutants, we determine the earliest transcriptomic changes directed by Prox1 during LEC specification. This work altogether reveals new downstream targets and regulatory regions of the genome controlled by Prox1 and presents evidence that Prox1 specifies LEC fate primarily by limiting blood vascular and haematopoietic fate. This extensive single-cell resource provides new mechanistic insights into the enigmatic role of Prox1 and the control of LEC differentiation in development.
Collapse
Affiliation(s)
- Lin Grimm
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.,Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Elizabeth Mason
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Hujun Yu
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Stefanie Dudczig
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Virginia Panara
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Tyrone Chen
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Neil I Bower
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Scott Paterson
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.,Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Maria Rondon Galeano
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Sakurako Kobayashi
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Anne Senabouth
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD, Australia.,Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Anne K Lagendijk
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Joseph Powell
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD, Australia.,Garvan Institute of Medical Research, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Kensington, Sydney, NSW, Australia.,Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Kelly A Smith
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Kazuhide S Okuda
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Katarzyna Koltowska
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Benjamin M Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.,Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD, Australia.,Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Chiang IKN, Graus MS, Kirschnick N, Davidson T, Luu W, Harwood R, Jiang K, Li B, Wong YY, Moustaqil M, Lesieur E, Skoczylas R, Kouskoff V, Kazenwadel J, Arriola‐Martinez L, Sierecki E, Gambin Y, Alitalo K, Kiefer F, Harvey NL, Francois M. The blood vasculature instructs lymphatic patterning in a SOX7-dependent manner. EMBO J 2023; 42:e109032. [PMID: 36715213 PMCID: PMC9975944 DOI: 10.15252/embj.2021109032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 01/31/2023] Open
Abstract
Despite a growing catalog of secreted factors critical for lymphatic network assembly, little is known about the mechanisms that modulate the expression level of these molecular cues in blood vascular endothelial cells (BECs). Here, we show that a BEC-specific transcription factor, SOX7, plays a crucial role in a non-cell-autonomous manner by modulating the transcription of angiocrine signals to pattern lymphatic vessels. While SOX7 is not expressed in lymphatic endothelial cells (LECs), the conditional loss of SOX7 function in mouse embryos causes a dysmorphic dermal lymphatic phenotype. We identify novel distant regulatory regions in mice and humans that contribute to directly repressing the transcription of a major lymphangiogenic growth factor (Vegfc) in a SOX7-dependent manner. Further, we show that SOX7 directly binds HEY1, a canonical repressor of the Notch pathway, suggesting that transcriptional repression may also be modulated by the recruitment of this protein partner at Vegfc genomic regulatory regions. Our work unveils a role for SOX7 in modulating downstream signaling events crucial for lymphatic patterning, at least in part via the transcriptional repression of VEGFC levels in the blood vascular endothelium.
Collapse
Affiliation(s)
- Ivy K N Chiang
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Matthew S Graus
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Nils Kirschnick
- European Institute for Molecular Imaging (EIMI)University of MünsterMünsterGermany
| | - Tara Davidson
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Winnie Luu
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Richard Harwood
- Sydney Microscopy and MicroanalysisUniversity of SydneySydneyNSWAustralia
| | - Keyi Jiang
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Bitong Li
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Yew Yan Wong
- The Genome Imaging CenterThe Centenary InstituteSydneyNSWAustralia
| | - Mehdi Moustaqil
- EMBL Australia Node in Single Molecule Science, and School of Medical SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Emmanuelle Lesieur
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQLDAustralia
| | - Renae Skoczylas
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQLDAustralia
| | - Valerie Kouskoff
- Division of Developmental Biology & MedicineThe University of ManchesterManchesterUK
| | - Jan Kazenwadel
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSAAustralia
| | - Luis Arriola‐Martinez
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSAAustralia
| | - Emma Sierecki
- EMBL Australia Node in Single Molecule Science, and School of Medical SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Science, and School of Medical SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Friedmann Kiefer
- European Institute for Molecular Imaging (EIMI)University of MünsterMünsterGermany
| | - Natasha L Harvey
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSAAustralia
| | - Mathias Francois
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
- The Genome Imaging CenterThe Centenary InstituteSydneyNSWAustralia
| |
Collapse
|
19
|
Shiiya T, Hirashima M. From lymphatic endothelial cell migration to formation of tubular lymphatic vascular network. Front Physiol 2023; 14:1124696. [PMID: 36895637 PMCID: PMC9989012 DOI: 10.3389/fphys.2023.1124696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
During development, lymphatic endothelial cell (LEC) progenitors differentiate from venous endothelial cells only in limited regions of the body. Thus, LEC migration and subsequent tube formation are essential processes for the development of tubular lymphatic vascular network throughout the body. In this review, we discuss chemotactic factors, LEC-extracellular matrix interactions and planar cell polarity regulating LEC migration and formation of tubular lymphatic vessels. Insights into molecular mechanisms underlying these processes will help in understanding not only physiological lymphatic vascular development but lymphangiogenesis associated with pathological conditions such as tumors and inflammation.
Collapse
Affiliation(s)
- Tomohiro Shiiya
- Division of Pharmacology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masanori Hirashima
- Division of Pharmacology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
20
|
Britto DD, He J, Misa JP, Chen W, Kakadia PM, Grimm L, Herbert CD, Crosier KE, Crosier PS, Bohlander SK, Hogan BM, Hall CJ, Torres-Vázquez J, Astin JW. Plexin D1 negatively regulates zebrafish lymphatic development. Development 2022; 149:dev200560. [PMID: 36205097 PMCID: PMC9720674 DOI: 10.1242/dev.200560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Lymphangiogenesis is a dynamic process that involves the directed migration of lymphatic endothelial cells (LECs) to form lymphatic vessels. The molecular mechanisms that underpin lymphatic vessel patterning are not fully elucidated and, to date, no global regulator of lymphatic vessel guidance is known. In this study, we identify the transmembrane cell signalling receptor Plexin D1 (Plxnd1) as a negative regulator of both lymphatic vessel guidance and lymphangiogenesis in zebrafish. plxnd1 is expressed in developing lymphatics and is required for the guidance of both the trunk and facial lymphatic networks. Loss of plxnd1 is associated with misguided intersegmental lymphatic vessel growth and aberrant facial lymphatic branches. Lymphatic guidance in the trunk is mediated, at least in part, by the Plxnd1 ligands, Semaphorin 3AA and Semaphorin 3C. Finally, we show that Plxnd1 normally antagonises Vegfr/Erk signalling to ensure the correct number of facial LECs and that loss of plxnd1 results in facial lymphatic hyperplasia. As a global negative regulator of lymphatic vessel development, the Sema/Plxnd1 signalling pathway is a potential therapeutic target for treating diseases associated with dysregulated lymphatic growth.
Collapse
Affiliation(s)
- Denver D. Britto
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Jia He
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - June P. Misa
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Wenxuan Chen
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Purvi M. Kakadia
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Lin Grimm
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
- Department of Anatomy and Physiology, University of Melbourne, Melbourne 3010, Australia
| | - Caitlin D. Herbert
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Kathryn E. Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Philip S. Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Stefan K. Bohlander
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Benjamin M. Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
- Department of Anatomy and Physiology, University of Melbourne, Melbourne 3010, Australia
| | - Christopher J. Hall
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Jesús Torres-Vázquez
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jonathan W. Astin
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
21
|
Chen J, He J, Luo L. Brain vascular damage-induced lymphatic ingrowth is directed by Cxcl12b/Cxcr4a. Development 2022; 149:275687. [PMID: 35694896 DOI: 10.1242/dev.200729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022]
Abstract
After ischemic stroke, promotion of vascular regeneration without causing uncontrolled vessel growth appears to be the major challenge for pro-angiogenic therapies. The molecular mechanisms underlying how nascent blood vessels (BVs) are correctly guided into the post-ischemic infarction area remain unknown. Here, using a zebrafish cerebrovascular injury model, we show that chemokine signaling provides crucial guidance cues to determine the growing direction of ingrown lymphatic vessels (iLVs) and, in turn, that of nascent BVs. The chemokine receptor Cxcr4a is transcriptionally activated in the iLVs after injury, whereas its ligand Cxcl12b is expressed in the residual central BVs, the destinations of iLV ingrowth. Mutant and mosaic studies indicate that Cxcl12b/Cxcr4a-mediated chemotaxis is necessary and sufficient to determine the growing direction of iLVs and nascent BVs. This study provides a molecular basis for how the vessel directionality of cerebrovascular regeneration is properly determined, suggesting potential application of Cxcl12b/Cxcr4a in the development of post-ischemic pro-angiogenic therapies.
Collapse
Affiliation(s)
- Jingying Chen
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, 400715 Chongqing, China.,University of Chinese Academy of Sciences (Chongqing), Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Beibei, 400714 Chongqing, China
| | - Jianbo He
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, 400715 Chongqing, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, 400715 Chongqing, China.,University of Chinese Academy of Sciences (Chongqing), Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Beibei, 400714 Chongqing, China
| |
Collapse
|
22
|
Ross Stewart KM, Walker SL, Baker AH, Riley PR, Brittan M. Hooked on heart regeneration: the zebrafish guide to recovery. Cardiovasc Res 2022; 118:1667-1679. [PMID: 34164652 PMCID: PMC9215194 DOI: 10.1093/cvr/cvab214] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
While humans lack sufficient capacity to undergo cardiac regeneration following injury, zebrafish can fully recover from a range of cardiac insults. Over the past two decades, our understanding of the complexities of both the independent and co-ordinated injury responses by multiple cardiac tissues during zebrafish heart regeneration has increased exponentially. Although cardiomyocyte regeneration forms the cornerstone of the reparative process in the injured zebrafish heart, recent studies have shown that this is dependent on prior neovascularization and lymphangiogenesis, which in turn require epicardial, endocardial, and inflammatory cell signalling within an extracellular milieu that is optimized for regeneration. Indeed, it is the amalgamation of multiple regenerative systems and gene regulatory patterns that drives the much-heralded success of the adult zebrafish response to cardiac injury. Increasing evidence supports the emerging paradigm that developmental transcriptional programmes are re-activated during adult tissue regeneration, including in the heart, and the zebrafish represents an optimal model organism to explore this concept. In this review, we summarize recent advances from the zebrafish cardiovascular research community with novel insight into the mechanisms associated with endogenous cardiovascular repair and regeneration, which may be of benefit to inform future strategies for patients with cardiovascular disease.
Collapse
Affiliation(s)
- Katherine M Ross Stewart
- Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Sophie L Walker
- Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Andrew H Baker
- Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Paul R Riley
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
| | - Mairi Brittan
- Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
23
|
Peng D, Ando K, Hußmann M, Gloger M, Skoczylas R, Mochizuki N, Betsholtz C, Fukuhara S, Schulte-Merker S, Lawson ND, Koltowska K. Proper migration of lymphatic endothelial cells requires survival and guidance cues from arterial mural cells. eLife 2022; 11:e74094. [PMID: 35316177 PMCID: PMC9042226 DOI: 10.7554/elife.74094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The migration of lymphatic endothelial cells (LECs) is key for the development of the complex and vast lymphatic vascular network that pervades most tissues in an organism. In zebrafish, arterial intersegmental vessels together with chemokines have been shown to promote lymphatic cell migration from the horizontal myoseptum (HM). We observed that emergence of mural cells around the intersegmental arteries coincides with lymphatic departure from HM which raised the possibility that arterial mural cells promote LEC migration. Our live imaging and cell ablation experiments revealed that LECs migrate slower and fail to establish the lymphatic vascular network in the absence of arterial mural cells. We determined that mural cells are a source for the C-X-C motif chemokine 12 (Cxcl12a and Cxcl12b), vascular endothelial growth factor C (Vegfc) and collagen and calcium-binding EGF domain-containing protein 1 (Ccbe1). We showed that chemokine and growth factor signalling function cooperatively to induce robust LEC migration. Specifically, Vegfc-Vegfr3 signalling, but not chemokines, induces extracellular signal-regulated kinase (ERK) activation in LECs, and has an additional pro-survival role in LECs during the migration. Together, the identification of mural cells as a source for signals that guide LEC migration and survival will be important in the future design for rebuilding lymphatic vessels in disease contexts.
Collapse
Affiliation(s)
- Di Peng
- Uppsala University, Immunology Genetics and PathologyUppsalaSweden
| | - Koji Ando
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical SchoolTokyoJapan
| | - Melina Hußmann
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU MünsterMünsterGermany
| | - Marleen Gloger
- Uppsala University, Immunology Genetics and PathologyUppsalaSweden
| | - Renae Skoczylas
- Uppsala University, Immunology Genetics and PathologyUppsalaSweden
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research InstituteSuitaJapan
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala UniversityUppsalaSweden
- Department of Medicine Huddinge (MedH), Karolinska Institutet, Campus FlemingsbergHuddingeSweden
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical SchoolTokyoJapan
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU MünsterMünsterGermany
| | - Nathan D Lawson
- Department of Molecular, Cellular, and Cancer Biology, University of Massachusetts Medical SchoolWorcesterUnited States
| | | |
Collapse
|
24
|
Paulissen SM, Castranova DM, Krispin SM, Burns MC, Menéndez J, Torres-Vázquez J, Weinstein BM. Anatomy and development of the pectoral fin vascular network in the zebrafish. Development 2022; 149:dev199676. [PMID: 35132436 PMCID: PMC8959142 DOI: 10.1242/dev.199676] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022]
Abstract
The pectoral fins of teleost fish are analogous structures to human forelimbs, and the developmental mechanisms directing their initial growth and patterning are conserved between fish and tetrapods. The forelimb vasculature is crucial for limb function, and it appears to play important roles during development by promoting development of other limb structures, but the steps leading to its formation are poorly understood. In this study, we use high-resolution imaging to document the stepwise assembly of the zebrafish pectoral fin vasculature. We show that fin vascular network formation is a stereotyped, choreographed process that begins with the growth of an initial vascular loop around the pectoral fin. This loop connects to the dorsal aorta to initiate pectoral vascular circulation. Pectoral fin vascular development continues with concurrent formation of three elaborate vascular plexuses, one in the distal fin that develops into the fin-ray vasculature and two near the base of the fin in association with the developing fin musculature. Our findings detail a complex, yet highly choreographed, series of steps involved in the development of a complete, functional, organ-specific vascular network.
Collapse
Affiliation(s)
- Scott M. Paulissen
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Daniel M. Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Shlomo M. Krispin
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Margaret C. Burns
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Javier Menéndez
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, NY 10016, USA
| | - Jesús Torres-Vázquez
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, NY 10016, USA
| | - Brant M. Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Zhou XB, Zhang YX, Zhou CX, Ma JJ. Chinese Herbal Medicine Adjusting Brain Microenvironment via Mediating Central Nervous System Lymphatic Drainage in Alzheimer's Disease. Chin J Integr Med 2022; 28:176-184. [PMID: 34731433 DOI: 10.1007/s11655-021-3342-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 02/05/2023]
Abstract
Due to its complex pathogenesis and lack of effective therapeutic methods, Alzheimer's disease (AD) has become a severe public health problem worldwide. Recent studies have discovered the function of central nervous system lymphatic drainage, which provides a new strategy for the treatment of AD. Chinese herbal medicine (CHM) has been considered as a cure for AD for hundreds of years in China, and its effect on scavenging β-amyloid protein in the brain of AD patients has been confirmed. In this review, the mechanism of central nervous system lymphatic drainage and the regulatory functions of CHM on correlation factors were briefly summarized. The advances in our understanding regarding the treatment of AD via regulating the central lymphatic system with CHM will promote the clinical application of CHM in AD patients and the discovery of new therapeutic drugs.
Collapse
Affiliation(s)
- Xi-Bin Zhou
- Department of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Yu-Xing Zhang
- Department of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Chun-Xiang Zhou
- Department of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
- Department of Traditional Chinese Medicine, Nanjing BenQ Hospital, Nanjing, 210036, China
| | - Jun-Jie Ma
- Department of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China.
| |
Collapse
|
26
|
Lei D, Zhang X, Rouf MA, Mahendra Y, Wen L, Li Y, Zhang X, Li L, Wang L, Zhang T, Wang G, Wang Y. Noncanonical protease-activated receptor 1 regulates lymphatic differentiation in zebrafish. iScience 2021; 24:103386. [PMID: 34816109 PMCID: PMC8593614 DOI: 10.1016/j.isci.2021.103386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/26/2021] [Accepted: 10/26/2021] [Indexed: 10/26/2022] Open
Abstract
The differentiation of lymphatic progenitors is a crucial step in lymphangiogenesis. However, its underlying mechanism remains unclear. Here, we found that noncanonical protease-activated receptor 1 (par1) regulates the differentiation of lymphatic progenitors in zebrafish embryos. Loss of par1 function impaired lymphatic differentiation by downregulating prox1a expression in parachordal lymphangioblasts and caused compromised thoracic duct formation in zebrafish. Meanwhile, the G protein gnai2a, a par1 downstream effector, was selectively required for lymphatic development in zebrafish, and its mutation mimicked the lymphatic phenotype observed in par1 mutants. Interestingly, mmp13, but not thrombin, was required for lymphatic development in zebrafish. Furthermore, analyses of genetic interactions confirmed that mmp13b serves as a par1 upstream protease to regulate lymphatic development in zebrafish embryos. Mechanistically, par1 promotes flt4 expression and phospho-Erk1/2 activity in the posterior cardinal vein. Taken together, our findings highlight a function of par1 in the regulation of lymphatic differentiation in zebrafish embryos.
Collapse
Affiliation(s)
- Daoxi Lei
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.,Department of Ophthalmology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Xiuru Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Muhammad Abdul Rouf
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yoga Mahendra
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Lin Wen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yan Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Xiaojuan Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Li Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Luming Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tao Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yeqi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| |
Collapse
|
27
|
Ducoli L, Detmar M. Beyond PROX1: transcriptional, epigenetic, and noncoding RNA regulation of lymphatic identity and function. Dev Cell 2021; 56:406-426. [PMID: 33621491 DOI: 10.1016/j.devcel.2021.01.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/08/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
The lymphatic vascular system acts as the major transportation highway of tissue fluids, and its activation or impairment is associated with a wide range of diseases. There has been increasing interest in understanding the mechanisms that control lymphatic vessel formation (lymphangiogenesis) and function in development and disease. Here, we discuss recent insights into new players whose identification has contributed to deciphering the lymphatic regulatory code. We reveal how lymphatic endothelial cells, the building blocks of lymphatic vessels, utilize their transcriptional, post-transcriptional, and epigenetic portfolio to commit to and maintain their vascular lineage identity and function, with a particular focus on development.
Collapse
Affiliation(s)
- Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland; Molecular Life Sciences PhD Program, Swiss Federal Institute of Technology and University of Zürich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
28
|
Francois M, Oszmiana A, Harvey NL. When form meets function: the cells and signals that shape the lymphatic vasculature during development. Development 2021; 148:268989. [PMID: 34080610 DOI: 10.1242/dev.167098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The lymphatic vasculature is an integral component of the cardiovascular system. It is essential to maintain tissue fluid homeostasis, direct immune cell trafficking and absorb dietary lipids from the digestive tract. Major advances in our understanding of the genetic and cellular events important for constructing the lymphatic vasculature during development have recently been made. These include the identification of novel sources of lymphatic endothelial progenitor cells, the recognition of lymphatic endothelial cell specialisation and heterogeneity, and discovery of novel genes and signalling pathways underpinning developmental lymphangiogenesis. Here, we review these advances and discuss how they inform our understanding of lymphatic network formation, function and dysfunction.
Collapse
Affiliation(s)
- Mathias Francois
- The David Richmond Laboratory for Cardiovascular Development: Gene Regulation and Editing Program, The Centenary Institute, The University of Sydney, SOLES, 2006 Camperdown, Australia
| | - Anna Oszmiana
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide 5001, Australia
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide 5001, Australia
| |
Collapse
|
29
|
Li W, Liu C, Burns N, Hayashi J, Yoshida A, Sajja A, González-Hernández S, Gao JL, Murphy PM, Kubota Y, Zou YR, Nagasawa T, Mukouyama YS. Alterations in the spatiotemporal expression of the chemokine receptor CXCR4 in endothelial cells cause failure of hierarchical vascular branching. Dev Biol 2021; 477:70-84. [PMID: 34015362 DOI: 10.1016/j.ydbio.2021.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022]
Abstract
The C-X-C chemokine receptor CXCR4 and its ligand CXCL12 play an important role in organ-specific vascular branching morphogenesis. CXCR4 is preferentially expressed by arterial endothelial cells, and local secretion of CXCL12 determines the organotypic pattern of CXCR4+ arterial branching. Previous loss-of-function studies clearly demonstrated that CXCL12-CXCR4 signaling is necessary for proper arterial branching in the developing organs such as the skin and heart. To further understand the role of CXCL12-CXCR4 signaling in organ-specific vascular development, we generated a mouse model carrying the Cre recombinase-inducible Cxcr4 transgene. Endothelial cell-specific Cxcr4 gain-of-function embryos exhibited defective vascular remodeling and formation of a hierarchical vascular branching network in the developing skin and heart. Ectopic expression of CXCR4 in venous endothelial cells, but not in lymphatic endothelial cells, caused blood-filled, enlarged lymphatic vascular phenotypes, accompanied by edema. These data suggest that CXCR4 expression is tightly regulated in endothelial cells for appropriate vascular development in an organ-specific manner.
Collapse
Affiliation(s)
- Wenling Li
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Development Biology Center, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, USA
| | - Nathan Burns
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Development Biology Center, USA
| | - Jeffery Hayashi
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Development Biology Center, USA
| | - Atsufumi Yoshida
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Development Biology Center, USA
| | - Aparna Sajja
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Development Biology Center, USA
| | - Sara González-Hernández
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Development Biology Center, USA
| | - Ji-Liang Gao
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoshiaki Kubota
- Department of Anatomy, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yong-Rui Zou
- The Feinstein Institute for Medical Research, Center for Autoimmune and Musculoskeletal Diseases, Manhasset, NY 11030, USA
| | - Takashi Nagasawa
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Osaka 565-0871, Japan
| | - Yoh-Suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Development Biology Center, USA.
| |
Collapse
|
30
|
Jafree DJ, Long DA, Scambler PJ, Ruhrberg C. Mechanisms and cell lineages in lymphatic vascular development. Angiogenesis 2021; 24:271-288. [PMID: 33825109 PMCID: PMC8205918 DOI: 10.1007/s10456-021-09784-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/10/2021] [Indexed: 12/20/2022]
Abstract
Lymphatic vessels have critical roles in both health and disease and their study is a rapidly evolving area of vascular biology. The consensus on how the first lymphatic vessels arise in the developing embryo has recently shifted. Originally, they were thought to solely derive by sprouting from veins. Since then, several studies have uncovered novel cellular mechanisms and a diversity of contributing cell lineages in the formation of organ lymphatic vasculature. Here, we review the key mechanisms and cell lineages contributing to lymphatic development, discuss the advantages and limitations of experimental techniques used for their study and highlight remaining knowledge gaps that require urgent attention. Emerging technologies should accelerate our understanding of how lymphatic vessels develop normally and how they contribute to disease.
Collapse
Affiliation(s)
- Daniyal J Jafree
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- Faculty of Medical Sciences, University College London, London, UK
| | - David A Long
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Peter J Scambler
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| |
Collapse
|
31
|
Nakajima H, Chiba A, Fukumoto M, Morooka N, Mochizuki N. Zebrafish Vascular Development: General and Tissue-Specific Regulation. J Lipid Atheroscler 2021; 10:145-159. [PMID: 34095009 PMCID: PMC8159758 DOI: 10.12997/jla.2021.10.2.145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/07/2021] [Accepted: 01/29/2021] [Indexed: 01/03/2023] Open
Abstract
Circulation is required for the delivery of oxygen and nutrition to tissues and organs, as well as waste collection. Therefore, the heart and vessels develop first during embryogenesis. The circulatory system consists of the heart, blood vessels, and blood cells, which originate from the mesoderm. The gene expression pattern required for blood vessel development is predetermined by the hierarchical and sequential regulation of genes for the differentiation of mesodermal cells. Herein, we review how blood vessels form distinctly in different tissues or organs of zebrafish and how vessel formation is universally or tissue-specifically regulated by signal transduction pathways and blood flow. In addition, the unsolved issues of mutual contacts and interplay of circulatory organs during embryogenesis are discussed.
Collapse
Affiliation(s)
- Hiroyuki Nakajima
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Ayano Chiba
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Moe Fukumoto
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Nanami Morooka
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| |
Collapse
|
32
|
Castranova D, Samasa B, Venero Galanternik M, Jung HM, Pham VN, Weinstein BM. Live Imaging of Intracranial Lymphatics in the Zebrafish. Circ Res 2021; 128:42-58. [PMID: 33135960 PMCID: PMC7790877 DOI: 10.1161/circresaha.120.317372] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/30/2020] [Indexed: 11/16/2022]
Abstract
RATIONALE The recent discovery of meningeal lymphatics in mammals is reshaping our understanding of fluid homeostasis and cellular waste management in the brain, but visualization and experimental analysis of these vessels is challenging in mammals. Although the optical clarity and experimental advantages of zebrafish have made this an essential model organism for studying lymphatic development, the existence of meningeal lymphatics has not yet been reported in this species. OBJECTIVE Examine the intracranial space of larval, juvenile, and adult zebrafish to determine whether and where intracranial lymphatic vessels are present. METHODS AND RESULTS Using high-resolution optical imaging of the meninges in living animals, we show that zebrafish possess a meningeal lymphatic network comparable to that found in mammals. We confirm that this network is separate from the blood vascular network and that it drains interstitial fluid from the brain. We document the developmental origins and growth of these vessels into a distinct network separated from the external lymphatics. Finally, we show that these vessels contain immune cells and perform live imaging of immune cell trafficking and transmigration in meningeal lymphatics. CONCLUSIONS This discovery establishes the zebrafish as a important new model for experimental analysis of meningeal lymphatic development and opens up new avenues for probing meningeal lymphatic function in health and disease.
Collapse
Affiliation(s)
- Daniel Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | - Bakary Samasa
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | - Marina Venero Galanternik
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | - Hyun Min Jung
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | - Van N Pham
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| |
Collapse
|
33
|
Chemokine mediated signalling within arteries promotes vascular smooth muscle cell recruitment. Commun Biol 2020; 3:734. [PMID: 33277595 PMCID: PMC7719186 DOI: 10.1038/s42003-020-01462-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 11/05/2020] [Indexed: 01/13/2023] Open
Abstract
The preferential accumulation of vascular smooth muscle cells (vSMCs) on arteries versus veins during early development is a well-described phenomenon, but the molecular pathways underlying this polarization are not well understood. In zebrafish, the cxcr4a receptor (mammalian CXCR4) and its ligand cxcl12b (mammalian CXCL12) are both preferentially expressed on arteries at time points consistent with the arrival and differentiation of the first vSMCs during vascular development. We show that autocrine cxcl12b/cxcr4 activity leads to increased production of the vSMC chemoattractant ligand pdgfb by endothelial cells in vitro and increased expression of pdgfb by arteries of zebrafish and mice in vivo. Additionally, we demonstrate that expression of the blood flow-regulated transcription factor klf2a in primitive veins negatively regulates cxcr4/cxcl12 and pdgfb expression, restricting vSMC recruitment to the arterial vasculature. Together, this signalling axis leads to the differential acquisition of vSMCs at sites where klf2a expression is low and both cxcr4a and pdgfb are co-expressed, i.e. arteries during early development. Stratman et al. provide evidence linking the cxcl12b/cxcr4a signaling axis in endothelial cells to an increased release of platelet-derived growth factor b, leading to the recruitment of smooth muscle cells to developing arteries. This signalling axis is suppressed in the venous endothelium during early development by the high expression of blood flow-regulated transcription factor klf2a.
Collapse
|
34
|
Eiger DS, Boldizsar N, Honeycutt CC, Gardner J, Rajagopal S. Biased agonism at chemokine receptors. Cell Signal 2020; 78:109862. [PMID: 33249087 DOI: 10.1016/j.cellsig.2020.109862] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/07/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
In the human chemokine system, interactions between the approximately 50 known endogenous chemokine ligands and 20 known chemokine receptors (CKRs) regulate a wide range of cellular functions and biological processes including immune cell activation and homeostasis, development, angiogenesis, and neuromodulation. CKRs are a family of G protein-coupled receptors (GPCR), which represent the most common and versatile class of receptors in the human genome and the targets of approximately one third of all Food and Drug Administration-approved drugs. Chemokines and CKRs bind with significant promiscuity, as most CKRs can be activated by multiple chemokines and most chemokines can activate multiple CKRs. While these ligand-receptor interactions were previously regarded as redundant, it is now appreciated that many chemokine:CKR interactions display biased agonism, the phenomenon in which different ligands binding to the same receptor signal through different pathways with different efficacies, leading to distinct biological effects. Notably, these biased responses can be modulated through changes in ligand, receptor, and or the specific cellular context (system). In this review, we explore the biochemical mechanisms, functional consequences, and therapeutic potential of biased agonism in the chemokine system. An enhanced understanding of biased agonism in the chemokine system may prove transformative in the understanding of the mechanisms and consequences of biased signaling across all GPCR subtypes and aid in the development of biased pharmaceuticals with increased therapeutic efficacy and safer side effect profiles.
Collapse
Affiliation(s)
| | - Noelia Boldizsar
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA.
| | | | - Julia Gardner
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA.
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
35
|
Abstract
The lymphatic vasculature is a vital component of the vertebrate vascular system that mediates tissue fluid homeostasis, lipid uptake and immune surveillance. The development of the lymphatic vasculature starts in the early vertebrate embryo, when a subset of blood vascular endothelial cells of the cardinal veins acquires lymphatic endothelial cell fate. These cells sprout from the veins, migrate, proliferate and organize to give rise to a highly structured and unique vascular network. Cellular cross-talk, cell-cell communication and the interpretation of signals from surrounding tissues are all essential for coordinating these processes. In this chapter, we highlight new findings and review research progress with a particular focus on LEC migration and guidance, expansion of the LEC lineage, network remodeling and morphogenesis of the lymphatic vasculature.
Collapse
|
36
|
Heck AM, Ishida T, Hadland B. Location, Location, Location: How Vascular Specialization Influences Hematopoietic Fates During Development. Front Cell Dev Biol 2020; 8:602617. [PMID: 33282876 PMCID: PMC7691428 DOI: 10.3389/fcell.2020.602617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/30/2020] [Indexed: 01/22/2023] Open
Abstract
During embryonic development, sequential waves of hematopoiesis give rise to blood-forming cells with diverse lineage potentials and self-renewal properties. This process must accomplish two important yet divergent goals: the rapid generation of differentiated blood cells to meet the needs of the developing embryo and the production of a reservoir of hematopoietic stem cells to provide for life-long hematopoiesis in the adult. Vascular beds in distinct anatomical sites of extraembryonic tissues and the embryo proper provide the necessary conditions to support these divergent objectives, suggesting a critical role for specialized vascular niche cells in regulating disparate blood cell fates during development. In this review, we will examine the current understanding of how organ- and stage-specific vascular niche specialization contributes to the development of the hematopoietic system.
Collapse
Affiliation(s)
- Adam M. Heck
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Takashi Ishida
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Brandon Hadland
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
37
|
Chaudhury S, Okuda KS, Koltowska K, Lagendijk AK, Paterson S, Baillie GJ, Simons C, Smith KA, Hogan BM, Bower NI. Localised Collagen2a1 secretion supports lymphatic endothelial cell migration in the zebrafish embryo. Development 2020; 147:dev.190983. [PMID: 32839180 DOI: 10.1242/dev.190983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/07/2020] [Indexed: 01/12/2023]
Abstract
The lymphatic vasculature develops primarily from pre-existing veins. A pool of lymphatic endothelial cells (LECs) first sprouts from cardinal veins followed by migration and proliferation to colonise embryonic tissues. Although much is known about the molecular regulation of LEC fate and sprouting during early lymphangiogenesis, we know far less about the instructive and permissive signals that support LEC migration through the embryo. Using a forward genetic screen, we identified mbtps1 and sec23a, components of the COP-II protein secretory pathway, as essential for developmental lymphangiogenesis. In both mutants, LECs initially depart the cardinal vein but then fail in their ongoing migration. A key cargo that failed to be secreted in both mutants was a type II collagen (Col2a1). Col2a1 is normally secreted by notochord sheath cells, alongside which LECs migrate. col2a1a mutants displayed defects in the migratory behaviour of LECs and failed lymphangiogenesis. These studies thus identify Col2a1 as a key cargo secreted by notochord sheath cells and required for the migration of LECs. These findings combine with our current understanding to suggest that successive cell-to-cell and cell-matrix interactions regulate the migration of LECs through the embryonic environment during development.
Collapse
Affiliation(s)
- Smrita Chaudhury
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kazuhide S Okuda
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia.,Peter MacCallum Cancer Centre, Organogenesis and Cancer Program, Melbourne, Victoria 3000, Australia
| | - Katarzyna Koltowska
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Anne K Lagendijk
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Scott Paterson
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia.,Peter MacCallum Cancer Centre, Organogenesis and Cancer Program, Melbourne, Victoria 3000, Australia
| | - Gregory J Baillie
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Cas Simons
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kelly A Smith
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia.,Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Benjamin M Hogan
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia .,Peter MacCallum Cancer Centre, Organogenesis and Cancer Program, Melbourne, Victoria 3000, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil I Bower
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
38
|
Vogrin AJ, Bower NI, Gunzburg MJ, Roufail S, Okuda KS, Paterson S, Headey SJ, Stacker SA, Hogan BM, Achen MG. Evolutionary Differences in the Vegf/Vegfr Code Reveal Organotypic Roles for the Endothelial Cell Receptor Kdr in Developmental Lymphangiogenesis. Cell Rep 2020; 28:2023-2036.e4. [PMID: 31433980 DOI: 10.1016/j.celrep.2019.07.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/11/2019] [Accepted: 07/16/2019] [Indexed: 11/19/2022] Open
Abstract
Lymphatic vascular development establishes embryonic and adult tissue fluid balance and is integral in disease. In diverse vertebrate organs, lymphatic vessels display organotypic function and develop in an organ-specific manner. In all settings, developmental lymphangiogenesis is considered driven by vascular endothelial growth factor (VEGF) receptor-3 (VEGFR3), whereas a role for VEGFR2 remains to be fully explored. Here, we define the zebrafish Vegf/Vegfr code in receptor binding studies. We find that while Vegfd directs craniofacial lymphangiogenesis, it binds Kdr (a VEGFR2 homolog) but surprisingly, unlike in mammals, does not bind Flt4 (VEGFR3). Epistatic analyses and characterization of a kdr mutant confirm receptor-binding analyses, demonstrating that Kdr is indispensible for rostral craniofacial lymphangiogenesis, but not caudal trunk lymphangiogenesis, in which Flt4 is central. We further demonstrate an unexpected yet essential role for Kdr in inducing lymphatic endothelial cell fate. This work reveals evolutionary divergence in the Vegf/Vegfr code that uncovers spatially restricted mechanisms of developmental lymphangiogenesis.
Collapse
Affiliation(s)
- Adam J Vogrin
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Neil I Bower
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Menachem J Gunzburg
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Sally Roufail
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Kazuhide S Okuda
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Scott Paterson
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Stephen J Headey
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Steven A Stacker
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Department of Surgery, Royal Melbourne Hospital, and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Benjamin M Hogan
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Marc G Achen
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Department of Surgery, Royal Melbourne Hospital, and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia.
| |
Collapse
|
39
|
Muramatsu M, Nakagawa S, Osawa T, Toyono T, Uemura A, Kidoya H, Takakura N, Usui T, Ryeom S, Minami T. Loss of Down Syndrome Critical Region-1 Mediated-Hypercholesterolemia Accelerates Corneal Opacity Via Pathological Neovessel Formation. Arterioscler Thromb Vasc Biol 2020; 40:2425-2439. [PMID: 32787520 DOI: 10.1161/atvbaha.120.315003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The calcineurin-NFAT (nuclear factor for activated T cells)-DSCR (Down syndrome critical region)-1 pathway plays a crucial role as the downstream effector of VEGF (vascular endothelial growth factor)-mediated tumor angiogenesis in endothelial cells. A role for DSCR-1 in different organ microenvironment such as the cornea and its role in ocular diseases is not well understood. Corneal changes can be indicators of various disease states and are easily detected through ocular examinations. Approach and Results: The presentation of a corneal arcus or a corneal opacity due to lipid deposition in the cornea often indicates hyperlipidemia and in most cases, hypercholesterolemia. Although the loss of Apo (apolipoprotein) E has been well characterized and is known to lead to elevated serum cholesterol levels, there are few corneal changes observed in ApoE-/- mice. In this study, we show that the combined loss of ApoE and DSCR-1 leads to a dramatic increase in serum cholesterol levels and severe corneal opacity with complete penetrance. The cornea is normally maintained in an avascular state; however, loss of Dscr-1 is sufficient to induce hyper-inflammatory and -oxidative condition, increased corneal neovascularization, and lymphangiogenesis. Furthermore, immunohistological analysis and genome-wide screening revealed that loss of Dscr-1 in mice triggers increased immune cell infiltration and upregulation of SDF (stromal derived factor)-1 and its receptor, CXCR4 (C-X-C motif chemokine ligand receptor-4), potentiating this signaling axis in the cornea, thereby contributing to pathological corneal angiogenesis and opacity. CONCLUSIONS This study is the first demonstration of the critical role for the endogenous inhibitor of calcineurin, DSCR-1, and pathological corneal angiogenesis in hypercholesterolemia induced corneal opacity.
Collapse
Affiliation(s)
- Masashi Muramatsu
- Division of Molecular and Vascular Biology, IRDA, Kumamoto University, Japan (M.M., T.M.)
| | - Suguru Nakagawa
- Division of Genome Science (S.N.), RCAST, the University of Tokyo, Japan.,Department Ophthalmology, Graduate School of Medicine, the University of Tokyo, Japan (S.N., T.T., T.U.)
| | - Tsuyoshi Osawa
- Integrative Nutriomics (T.O.), RCAST, the University of Tokyo, Japan
| | - Tetsuya Toyono
- Department Ophthalmology, Graduate School of Medicine, the University of Tokyo, Japan (S.N., T.T., T.U.)
| | - Akiyoshi Uemura
- Department Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, Japan (A.U.)
| | - Hiroyasu Kidoya
- Department Signal Transduction, RIMD, Osaka University, Japan (H.K., N.T.)
| | - Nobuyuki Takakura
- Department Signal Transduction, RIMD, Osaka University, Japan (H.K., N.T.)
| | - Tomohiko Usui
- Department Ophthalmology, Graduate School of Medicine, the University of Tokyo, Japan (S.N., T.T., T.U.)
| | - Sandra Ryeom
- Department Cancer Biology, University of Pennsylvania (S.R.)
| | - Takashi Minami
- Division of Molecular and Vascular Biology, IRDA, Kumamoto University, Japan (M.M., T.M.)
| |
Collapse
|
40
|
Wang G, Muhl L, Padberg Y, Dupont L, Peterson-Maduro J, Stehling M, le Noble F, Colige A, Betsholtz C, Schulte-Merker S, van Impel A. Specific fibroblast subpopulations and neuronal structures provide local sources of Vegfc-processing components during zebrafish lymphangiogenesis. Nat Commun 2020; 11:2724. [PMID: 32483144 PMCID: PMC7264274 DOI: 10.1038/s41467-020-16552-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/07/2020] [Indexed: 12/17/2022] Open
Abstract
Proteolytical processing of the growth factor VEGFC through the concerted activity of CCBE1 and ADAMTS3 is required for lymphatic development to occur. How these factors act together in time and space, and which cell types produce these factors is not understood. Here we assess the function of Adamts3 and the related protease Adamts14 during zebrafish lymphangiogenesis and show both proteins to be able to process Vegfc. Only the simultaneous loss of both protein functions results in lymphatic defects identical to vegfc loss-of-function situations. Cell transplantation experiments demonstrate neuronal structures and/or fibroblasts to constitute cellular sources not only for both proteases but also for Ccbe1 and Vegfc. We further show that this locally restricted Vegfc maturation is needed to trigger normal lymphatic sprouting and directional migration. Our data provide a single-cell resolution model for establishing secretion and processing hubs for Vegfc during developmental lymphangiogenesis.
Collapse
Affiliation(s)
- Guangxia Wang
- Institute for Cardiovascular Organogenesis and Regeneration, WWU Münster, Münster, Germany.,Faculty of Medicine, WWU Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence, WWU Münster, Münster, Germany
| | - Lars Muhl
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Yvonne Padberg
- Institute for Cardiovascular Organogenesis and Regeneration, WWU Münster, Münster, Germany.,Faculty of Medicine, WWU Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence, WWU Münster, Münster, Germany
| | - Laura Dupont
- Laboratory of Connective Tissue Biology, GIGA, University of Liège, Liege, Belgium
| | | | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Ferdinand le Noble
- Department of Cell and Developmental Biology, Zoological Institute and Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Experimental Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research) partner site, Heidelberg/Mannheim, Germany
| | - Alain Colige
- Laboratory of Connective Tissue Biology, GIGA, University of Liège, Liege, Belgium
| | - Christer Betsholtz
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Huddinge, Sweden.,Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, WWU Münster, Münster, Germany. .,Faculty of Medicine, WWU Münster, Münster, Germany. .,Cells-in-Motion Cluster of Excellence, WWU Münster, Münster, Germany.
| | - Andreas van Impel
- Institute for Cardiovascular Organogenesis and Regeneration, WWU Münster, Münster, Germany. .,Faculty of Medicine, WWU Münster, Münster, Germany. .,Cells-in-Motion Cluster of Excellence, WWU Münster, Münster, Germany.
| |
Collapse
|
41
|
Cohen B, Tempelhof H, Raz T, Oren R, Nicenboim J, Bochner F, Even R, Jelinski A, Eilam R, Ben-Dor S, Adaddi Y, Golani O, Lazar S, Yaniv K, Neeman M. BACH family members regulate angiogenesis and lymphangiogenesis by modulating VEGFC expression. Life Sci Alliance 2020; 3:e202000666. [PMID: 32132179 PMCID: PMC7063472 DOI: 10.26508/lsa.202000666] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 12/23/2022] Open
Abstract
Angiogenesis and lymphangiogenesis are key processes during embryogenesis as well as under physiological and pathological conditions. Vascular endothelial growth factor C (VEGFC), the ligand for both VEGFR2 and VEGFR3, is a central lymphangiogenic regulator that also drives angiogenesis. Here, we report that members of the highly conserved BACH (BTB and CNC homology) family of transcription factors regulate VEGFC expression, through direct binding to its promoter. Accordingly, down-regulation of bach2a hinders blood vessel formation and impairs lymphatic sprouting in a Vegfc-dependent manner during zebrafish embryonic development. In contrast, BACH1 overexpression enhances intratumoral blood vessel density and peritumoral lymphatic vessel diameter in ovarian and lung mouse tumor models. The effects on the vascular compartment correlate spatially and temporally with BACH1 transcriptional regulation of VEGFC expression. Altogether, our results uncover a novel role for the BACH/VEGFC signaling axis in lymphatic formation during embryogenesis and cancer, providing a novel potential target for therapeutic interventions.
Collapse
Affiliation(s)
- Batya Cohen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Hanoch Tempelhof
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Raz
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Roni Oren
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Julian Nicenboim
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Filip Bochner
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Even
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Adam Jelinski
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Raya Eilam
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Yoseph Adaddi
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Shlomi Lazar
- Department of Pharmacology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Karina Yaniv
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Neeman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
42
|
Niimi K, Kohara M, Sedoh E, Fukumoto M, Shibata S, Sawano T, Tashiro F, Miyazaki S, Kubota Y, Miyazaki JI, Inagaki S, Furuyama T. FOXO1 regulates developmental lymphangiogenesis by upregulating CXCR4 in the mouse-tail dermis. Development 2020; 147:dev.181545. [PMID: 31852686 DOI: 10.1242/dev.181545] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/10/2019] [Indexed: 12/27/2022]
Abstract
Lymphangiogenesis plays important roles in normal fetal development and postnatal growth. However, its molecular regulation remains unclear. Here, we have examined the function of forkhead box protein O1 (FOXO1) transcription factor, a known angiogenic factor, in developmental dermal lymphangiogenesis using endothelial cell-specific FOXO1-deficient mice. FOXO1-deficient mice showed disconnected and dilated lymphatic vessels accompanied with increased proliferation and decreased apoptosis in the lymphatic capillaries. Comprehensive DNA microarray analysis of the causes of in vivo phenotypes in FOXO1-deficient mice revealed that the gene encoding C-X-C chemokine receptor 4 (CXCR4) was the most drastically downregulated in FOXO1-deficient primary lymphatic endothelial cells (LECs). CXCR4 was expressed in developing dermal lymphatic capillaries in wild-type mice but not in FOXO1-deficient dermal lymphatic capillaries. Furthermore, FOXO1 suppression impaired migration toward the exogenous CXCR4 ligand, C-X-C chemokine ligand 12 (CXCL12), and coordinated proliferation in LECs. These results suggest that FOXO1 serves an essential role in normal developmental lymphangiogenesis by promoting LEC migration toward CXCL12 and by regulating their proliferative activity. This study provides valuable insights into the molecular mechanisms underlying developmental lymphangiogenesis.
Collapse
Affiliation(s)
- Kenta Niimi
- Group of Neurobiology, Division of Health Science, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan.,Kagawa Prefectural University of Health Sciences, Hara 281-1, Mure, Takamatsu, Kagawa 761-0123, Japan
| | - Misaki Kohara
- Group of Neurobiology, Division of Health Science, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan
| | - Eriko Sedoh
- Kagawa Prefectural University of Health Sciences, Hara 281-1, Mure, Takamatsu, Kagawa 761-0123, Japan
| | - Moe Fukumoto
- Group of Neurobiology, Division of Health Science, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan
| | - Satoshi Shibata
- Group of Neurobiology, Division of Health Science, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan
| | - Toshinori Sawano
- Group of Neurobiology, Division of Health Science, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan
| | - Fumi Tashiro
- Department of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Satsuki Miyazaki
- Department of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, 35-Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jun-Ichi Miyazaki
- Department of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Shinobu Inagaki
- Group of Neurobiology, Division of Health Science, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan
| | - Tatsuo Furuyama
- Kagawa Prefectural University of Health Sciences, Hara 281-1, Mure, Takamatsu, Kagawa 761-0123, Japan
| |
Collapse
|
43
|
Saito E, Isogai S, Deguchi T, Ishida K, Nozaki T, Ishiyama E, Wayama M, Shimoda H. Intraperitoneal dye injection method for visualizing the functioning lymphatic vascular system in zebrafish and medaka. Dev Dyn 2020; 249:679-692. [PMID: 31837055 DOI: 10.1002/dvdy.143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 12/30/2022] Open
Abstract
A hierarchically organized lymphatic vascular system extends throughout the vertebrate body for tissue fluid homeostasis, immune trafficking, and the absorption of dietary fats. Intralymphatic dye injection and serial sectioning have been the main tools for visualizing lymphatic vessels. Specific markers for identifying the lymphatic vasculature in zebrafish and medaka have appeared as new tools that enable the study of lymphangiogenesis using genetic and experimental manipulation. Transgenic fishes have become excellent organisms for visualizing the lymphatic vasculature in living embryos, but this method has limited usefulness, especially in later developmental stages. The functional lymphatic endothelium predominantly takes up foreign particles in zebrafish and medaka. We utilized this physiological activity and lymph flow to label lymphatic vessels. Intraperitoneal injection of trypan blue is useful for temporal observations of the lymphatic ducts, which are essential for large-scale genetic screening, while cinnabar (HgS) injection allows identification of the lymphatic endothelium under electron microscopy, avoiding artefactual damage. This injection method, which is not high in cost and does not require high skill or special devices, is applicable to any live fish with functioning lymphatic vessels, even mutants, with high reproducibility for visualizing the entire lymphatic vascular system.
Collapse
Affiliation(s)
- Erina Saito
- Department of Neuroanatomy, Cell Biology and Histology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Sumio Isogai
- Department of Anatomical Science, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Tomonori Deguchi
- Advanced Genome Design Research Group, Biomedical Research Institute, Advanced Industrial Science and Technology (AIST), Osaka, Japan
| | - Kinji Ishida
- Technical Support Center for Life Science Research (LSR), Iwate Medical University, Iwate, Japan
| | - Takayuki Nozaki
- Technical Support Center for Life Science Research (LSR), Iwate Medical University, Iwate, Japan
| | - Eri Ishiyama
- Technical Support Center for Life Science Research (LSR), Iwate Medical University, Iwate, Japan
| | - Marina Wayama
- Metrology and Analysis System Product Division, Nano-Technology Solution Business Group, Hitachi High-Technologies Corporation, Tokyo, Japan
| | - Hiroshi Shimoda
- Department of Neuroanatomy, Cell Biology and Histology, Hirosaki University Graduate School of Medicine, Aomori, Japan.,Department of Anatomical Science, Hirosaki University Graduate School of Medicine, Aomori, Japan
| |
Collapse
|
44
|
Gancz D, Raftrey BC, Perlmoter G, Marín-Juez R, Semo J, Matsuoka RL, Karra R, Raviv H, Moshe N, Addadi Y, Golani O, Poss KD, Red-Horse K, Stainier DY, Yaniv K. Distinct origins and molecular mechanisms contribute to lymphatic formation during cardiac growth and regeneration. eLife 2019; 8:44153. [PMID: 31702554 PMCID: PMC6881115 DOI: 10.7554/elife.44153] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 11/05/2019] [Indexed: 01/06/2023] Open
Abstract
In recent years, there has been increasing interest in the role of lymphatics in organ repair and regeneration, due to their importance in immune surveillance and fluid homeostasis. Experimental approaches aimed at boosting lymphangiogenesis following myocardial infarction in mice, were shown to promote healing of the heart. Yet, the mechanisms governing cardiac lymphatic growth remain unclear. Here, we identify two distinct lymphatic populations in the hearts of zebrafish and mouse, one that forms through sprouting lymphangiogenesis, and the other by coalescence of isolated lymphatic cells. By tracing the development of each subset, we reveal diverse cellular origins and differential response to signaling cues. Finally, we show that lymphatic vessels are required for cardiac regeneration in zebrafish as mutants lacking lymphatics display severely impaired regeneration capabilities. Overall, our results provide novel insight into the mechanisms underlying lymphatic formation during development and regeneration, opening new avenues for interventions targeting specific lymphatic populations.
Collapse
Affiliation(s)
- Dana Gancz
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Brian C Raftrey
- Department of Biology, Stanford University, Stanford, United States.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Gal Perlmoter
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Rubén Marín-Juez
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jonathan Semo
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ryota L Matsuoka
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ravi Karra
- Regeneration Next, Duke University, Durham, United States.,Department of Medicine, Duke University School of Medicine, Durham, United States
| | - Hila Raviv
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Noga Moshe
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yoseph Addadi
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Kenneth D Poss
- Regeneration Next, Duke University, Durham, United States
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, United States.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Didier Yr Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Karina Yaniv
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
45
|
Harrison MR, Feng X, Mo G, Aguayo A, Villafuerte J, Yoshida T, Pearson CA, Schulte-Merker S, Lien CL. Late developing cardiac lymphatic vasculature supports adult zebrafish heart function and regeneration. eLife 2019; 8:42762. [PMID: 31702553 PMCID: PMC6881116 DOI: 10.7554/elife.42762] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 09/24/2019] [Indexed: 01/08/2023] Open
Abstract
The cardiac lymphatic vascular system and its potentially critical functions in heart patients have been largely underappreciated, in part due to a lack of experimentally accessible systems. We here demonstrate that cardiac lymphatic vessels develop in young adult zebrafish, using coronary arteries to guide their expansion down the ventricle. Mechanistically, we show that in cxcr4a mutants with defective coronary artery development, cardiac lymphatic vessels fail to expand onto the ventricle. In regenerating adult zebrafish hearts the lymphatic vasculature undergoes extensive lymphangiogenesis in response to a cryoinjury. A significant defect in reducing the scar size after cryoinjury is observed in zebrafish with impaired Vegfc/Vegfr3 signaling that fail to develop intact cardiac lymphatic vessels. These results suggest that the cardiac lymphatic system can influence the regenerative potential of the myocardium.
Collapse
Affiliation(s)
- Michael Rm Harrison
- The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, United States
| | - Xidi Feng
- The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, United States
| | - Guqin Mo
- The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, United States
| | - Antonio Aguayo
- The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, United States
| | - Jessi Villafuerte
- The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, United States.,Department of Biology, California State University of San Bernardino, San Bernardino, United States
| | - Tyler Yoshida
- The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, United States.,Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, United States
| | - Caroline A Pearson
- Department of Neurobiology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, University of Münster, Münster, Germany.,CiM Cluster of Excellence (EXC1003 CiM), University of Münster, Münster, Germany
| | - Ching-Ling Lien
- The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, United States.,Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, United States.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, United States
| |
Collapse
|
46
|
Cao MX, Tang YL, Zhang WL, Tang YJ, Liang XH. Non-coding RNAs as Regulators of Lymphangiogenesis in Lymphatic Development, Inflammation, and Cancer Metastasis. Front Oncol 2019; 9:916. [PMID: 31616631 PMCID: PMC6763613 DOI: 10.3389/fonc.2019.00916] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/03/2019] [Indexed: 02/05/2023] Open
Abstract
Non-coding RNAs (ncRNAs), which do not encode proteins, have pivotal roles in manipulating gene expression in development, physiology, and pathology. Emerging data have shown that ncRNAs can regulate lymphangiogenesis, which refers to lymphatics deriving from preexisting vessels, becomes established during embryogenesis, and has a close relationship with pathological conditions such as lymphatic developmental diseases, inflammation, and cancer. This review summarizes the molecular mechanisms of lymphangiogenesis in lymphatic development, inflammation and cancer metastasis, and discusses ncRNAs' regulatory effects on them. Therapeutic targets with regard to lymphangiogenesis are also discussed.
Collapse
Affiliation(s)
- Ming-Xin Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei-Long Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Jung HM, Hu CT, Fister AM, Davis AE, Castranova D, Pham VN, Price LM, Weinstein BM. MicroRNA-mediated control of developmental lymphangiogenesis. eLife 2019; 8:46007. [PMID: 31478836 PMCID: PMC6721793 DOI: 10.7554/elife.46007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/20/2019] [Indexed: 01/01/2023] Open
Abstract
The post-transcriptional mechanisms contributing to molecular regulation of developmental lymphangiogenesis and lymphatic network assembly are not well understood. MicroRNAs are important post-transcriptional regulators during development. Here, we use high throughput small RNA sequencing to identify miR-204, a highly conserved microRNA dramatically enriched in lymphatic vs. blood endothelial cells in human and zebrafish. Suppressing miR-204 leads to loss of lymphatic vessels while endothelial overproduction of miR-204 accelerates lymphatic vessel formation, suggesting a critical positive role for this microRNA during developmental lymphangiogenesis. We also identify the NFATC1 transcription factor as a key miR-204 target in human and zebrafish, and show that NFATC1 suppression leads to lymphatic hyperplasia. The loss of lymphatics caused by miR-204 deficiency can be largely rescued by either endothelial autonomous expression of miR-204 or by suppression of NFATC1. Together, our results highlight a miR-204/NFATC1 molecular regulatory axis required for proper lymphatic development.
Collapse
Affiliation(s)
- Hyun Min Jung
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Ciara T Hu
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Alexandra M Fister
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Andrew E Davis
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Daniel Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Van N Pham
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Lisa M Price
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| |
Collapse
|
48
|
Santoro MM, Beltrame M, Panáková D, Siekmann AF, Tiso N, Venero Galanternik M, Jung HM, Weinstein BM. Advantages and Challenges of Cardiovascular and Lymphatic Studies in Zebrafish Research. Front Cell Dev Biol 2019; 7:89. [PMID: 31192207 PMCID: PMC6546721 DOI: 10.3389/fcell.2019.00089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
Since its introduction, the zebrafish has provided an important reference system to model and study cardiovascular development as well as lymphangiogenesis in vertebrates. A scientific workshop, held at the 2018 European Zebrafish Principal Investigators Meeting in Trento (Italy) and chaired by Massimo Santoro, focused on the most recent methods and studies on cardiac, vascular and lymphatic development. Daniela Panáková and Natascia Tiso described new molecular mechanisms and signaling pathways involved in cardiac differentiation and disease. Arndt Siekmann and Wiebke Herzog discussed novel roles for Wnt and VEGF signaling in brain angiogenesis. In addition, Brant Weinstein's lab presented data concerning the discovery of endothelium-derived macrophage-like perivascular cells in the zebrafish brain, while Monica Beltrame's studies refined the role of Sox transcription factors in vascular and lymphatic development. In this article, we will summarize the details of these recent discoveries in support of the overall value of the zebrafish model system not only to study normal development, but also associated disease states.
Collapse
Affiliation(s)
- Massimo M Santoro
- Laboratory of Angiogenesis and Redox Metabolism, Department of Biology, University of Padua, Padua, Italy
| | - Monica Beltrame
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Daniela Panáková
- Electrochemical Signaling in Development and Disease, Max Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers (HZ), Berlin, Germany.,German Centre for Cardiovascular Research: DZHK, Berlin, Germany
| | - Arndt F Siekmann
- Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Cells in Motion Cluster of Excellence (CiM), University of Münster, Münster, Germany.,Department of Cell and Developmental Biology and Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Natascia Tiso
- Laboratory of Developmental Genetics, Department of Biology, University of Padua, Padua, Italy
| | - Marina Venero Galanternik
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States
| | - Hyun Min Jung
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States
| |
Collapse
|
49
|
Tobia C, Chiodelli P, Barbieri A, Buraschi S, Ferrari E, Mitola S, Borsani G, Guerra J, Presta M. Atypical Chemokine Receptor 3 Generates Guidance Cues for CXCL12-Mediated Endothelial Cell Migration. Front Immunol 2019; 10:1092. [PMID: 31156639 PMCID: PMC6529557 DOI: 10.3389/fimmu.2019.01092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/29/2019] [Indexed: 11/23/2022] Open
Abstract
Chemokine receptor CXCR4, its ligand stromal cell-derived factor-1 (CXCL12) and the decoy receptor atypical chemokine receptor 3 (ACKR3, also named CXCR7), are involved in the guidance of migrating cells in different anatomical districts. Here, we investigated the role of the ACKR3 zebrafish ortholog ackr3b in the vascularization process during embryonic development. Bioinformatics and functional analyses confirmed that ackr3b is a CXCL12-binding ortholog of human ACKR3. ackr3b is transcribed in the endoderm of zebrafish embryos during epiboly and is expressed in a wide range of tissues during somitogenesis, including central nervous system and somites. Between 18 somite and 26 h-post fertilization stages, the broad somitic expression of ackr3b becomes restricted to the basal part of the somites. After ackr3b knockdown, intersomitic vessels (ISVs) lose the correct direction of migration and are characterized by the presence of aberrant sprouts and ectopic filopodia protrusions, showing downregulation of the tip/stalk cell marker hlx1. In addition, ackr3b morphants show significant alterations of lateral dorsal aortae formation. In keeping with a role for ackr3b in endothelial cell guidance, CXCL12 gradient generated by ACKR3 expression in CHO cell transfectants guides human endothelial cell migration in an in vitro cell co-culture chemotaxis assay. Our results demonstrate that ackr3b plays a non-redundant role in the guidance of sprouting endothelial cells during vascular development in zebrafish. Moreover, ACKR3 scavenging activity generates guidance cues for the directional migration of CXCR4-expressing human endothelial cells in response to CXCL12.
Collapse
Affiliation(s)
- Chiara Tobia
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Paola Chiodelli
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Andrea Barbieri
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Simone Buraschi
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Elena Ferrari
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Stefania Mitola
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Giuseppe Borsani
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Jessica Guerra
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Marco Presta
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
50
|
Grimm L, Nakajima H, Chaudhury S, Bower NI, Okuda KS, Cox AG, Harvey NL, Koltowska K, Mochizuki N, Hogan BM. Yap1 promotes sprouting and proliferation of lymphatic progenitors downstream of Vegfc in the zebrafish trunk. eLife 2019; 8:42881. [PMID: 31038457 PMCID: PMC6516831 DOI: 10.7554/elife.42881] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/28/2019] [Indexed: 12/22/2022] Open
Abstract
Lymphatic vascular development involves specification of lymphatic endothelial progenitors that subsequently undergo sprouting, proliferation and tissue growth to form a complex second vasculature. The Hippo pathway and effectors Yap and Taz control organ growth and regulate morphogenesis and cellular proliferation. Yap and Taz control angiogenesis but a role in lymphangiogenesis remains to be fully elucidated. Here we show that YAP displays dynamic changes in lymphatic progenitors and Yap1 is essential for lymphatic vascular development in zebrafish. Maternal and Zygotic (MZ) yap1 mutants show normal specification of lymphatic progenitors, abnormal cellular sprouting and reduced numbers of lymphatic progenitors emerging from the cardinal vein during lymphangiogenesis. Furthermore, Yap1 is indispensable for Vegfc-induced proliferation in a transgenic model of Vegfc overexpression. Paracrine Vegfc-signalling ultimately increases nuclear YAP in lymphatic progenitors to control lymphatic development. We thus identify a role for Yap in lymphangiogenesis, acting downstream of Vegfc to promote expansion of this vascular lineage.
Collapse
Affiliation(s)
- Lin Grimm
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Hiroyuki Nakajima
- Department of Cell Biology, National Cerebral and Cardiovascular Centre Research Institute, Osaka, Japan
| | - Smrita Chaudhury
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Neil I Bower
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Kazuhide S Okuda
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Andrew G Cox
- Cancer Metabolism Program, Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Australia
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia, SA Pathology, Adelaide, Australia
| | - Katarzyna Koltowska
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Centre Research Institute, Osaka, Japan
| | - Benjamin M Hogan
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| |
Collapse
|