1
|
Hou J, Mei K, Wang D, Ke S, Chen X, Shang J, Li G, Gao Y, Xiong H, Zhang H, Chen L, Zhang W, Deng Y, Hong X, Liu DA, Hu T, Guo W, Zhan YY. TGM1/3-mediated transamidation of Exo70 promotes tumor metastasis upon LKB1 inactivation. Cell Rep 2024; 43:114604. [PMID: 39146185 DOI: 10.1016/j.celrep.2024.114604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/10/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024] Open
Abstract
Exo70, a key exocyst complex component, is crucial for cell motility and extracellular matrix (ECM) remodeling in cancer metastasis. Despite its potential as a drug target, Exo70's post-translational modifications (PTMs) are poorly characterized. Here, we report that Exo70 is transamidated on Gln5 with Lys56 of cystatin A by transglutaminases TGM1 and TGM3, promoting tumor metastasis. This modification enhances Exo70's association with other exocyst subunits, essential for secreting matrix metalloproteinases, forming invadopodia, and delivering integrins to the leading edge. Tumor suppressor liver kinase B1 (LKB1), whose inactivation accelerates metastasis, phosphorylates TGM1 and TGM3 at Thr386 and Thr282, respectively, to inhibit their interaction with Exo70 and the following transamidation. Cantharidin, a US Food and Drug Administration (FDA)-approved drug, inhibits Exo70 transamidation to restrain tumor cell migration and invasion. Together, our findings highlight Exo70 transamidation as a key molecular mechanism and target and propose cantharidin as a therapeutic strategy with direct clinical translational value for metastatic cancers, especially those with LKB1 loss.
Collapse
Affiliation(s)
- Jihuan Hou
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Kunrong Mei
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Daxuan Wang
- Department of Respiratory Medicine, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Sunkui Ke
- Department of Thoracic Surgery, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361004, China
| | - Xiong Chen
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jin Shang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Guixia Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Huifang Xiong
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Haoran Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Lu Chen
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Wenqing Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yabin Deng
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xiaoting Hong
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Di-Ao Liu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tianhui Hu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China.
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Yan-Yan Zhan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
2
|
Singh D, Liu Y, Zhu YH, Zhang S, Naegele S, Wu JQ. Septins function in exocytosis via physical interactions with the exocyst complex in fission yeast cytokinesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602728. [PMID: 39026698 PMCID: PMC11257574 DOI: 10.1101/2024.07.09.602728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Septins can function as scaffolds for protein recruitment, membrane-bound diffusion barriers, or membrane curvature sensors. Septins are important for cytokinesis, but their exact roles are still obscure. In fission yeast, four septins (Spn1 to Spn4) accumulate at the rim of the division plane as rings. The octameric exocyst complex, which tethers exocytic vesicles to the plasma membrane, exhibits a similar localization and is essential for plasma membrane deposition during cytokinesis. Without septins, the exocyst spreads across the division plane but absent from the rim during septum formation. These results suggest that septins and the exocyst physically interact for proper localization. Indeed, we predicted six pairs of direct interactions between septin and exocyst subunits by AlphaFold2 ColabFold, most of them are confirmed by co-immunoprecipitation and yeast two-hybrid assays. Exocyst mislocalization results in mistargeting of secretory vesicles and their cargos, which leads to cell-separation delay in septin mutants. Our results indicate that septins guide the targeting of exocyst complex on the plasma membrane for vesicle tethering during cytokinesis through direct physical interactions.
Collapse
Affiliation(s)
- Davinder Singh
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States
| | - Yajun Liu
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States
| | - Yi-Hua Zhu
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States
| | - Sha Zhang
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States
| | - Shelby Naegele
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
3
|
Gao J, Song Q, Gu X, Jiang G, Huang J, Tang Y, Yu R, Wang A, Huang Y, Zheng G, Chen H, Gao X. Intracerebral fate of organic and inorganic nanoparticles is dependent on microglial extracellular vesicle function. NATURE NANOTECHNOLOGY 2024; 19:376-386. [PMID: 38158436 DOI: 10.1038/s41565-023-01551-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 10/18/2023] [Indexed: 01/03/2024]
Abstract
Nanoparticles (NPs) represent an important advance for delivering diagnostic and therapeutic agents across the blood-brain barrier. However, NP clearance is critical for safety and therapeutic applicability. Here we report on a study of the clearance of model organic and inorganic NPs from the brain. We find that microglial extracellular vesicles (EVs) play a crucial role in the clearance of inorganic and organic NPs from the brain. Inorganic NPs, unlike organic NPs, perturb the biogenesis of microglial EVs through the inhibition of ERK1/2 signalling. This increases the accumulation of inorganic NPs in microglia, hindering their elimination via the paravascular route. We also demonstrate that stimulating the release of microglial EVs by an ERK1/2 activator increased the paravascular glymphatic pathway-mediated brain clearance of inorganic NPs. These findings highlight the modulatory role of microglial EVs on the distinct patterns of the clearance of organic and inorganic NPs from the brain and provide a strategy for modulating the intracerebral fate of NPs.
Collapse
Affiliation(s)
- Jinchao Gao
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Gu
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialin Huang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuyun Tang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renhe Yu
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Antian Wang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yukun Huang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
| | - Hongzhuan Chen
- Shuguang Lab for Future Health, Academy of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Kang CJ, Guzmán-Clavel LE, Lei K, Koo M, To S, Roche JP. The exocyst subunit Sec15 is critical for proper synaptic development and function at the Drosophila NMJ. Mol Cell Neurosci 2024; 128:103914. [PMID: 38086519 DOI: 10.1016/j.mcn.2023.103914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
The exocyst protein complex is important for targeted vesicle fusion in a variety of cell types, however, its function in neurons is still not entirely known. We found that presynaptic knockdown (KD) of the exocyst component sec15 by transgenic RNAi expression caused a number of unexpected morphological and physiological defects in the synapse. These include the development of active zones (AZ) devoid of essential presynaptic proteins, an increase in the branching of the presynaptic arbor, the appearance of satellite boutons, and a decrease in the amplitude of stimulated postsynaptic currents as well as a decrease in the frequency of spontaneous synaptic vesicle release. We also found the release of extracellular vesicles from the presynaptic neuron was greatly diminished in the Sec15 KDs. These effects were mimicked by presynaptic knockdown of Rab11, a protein known to interact with the exocyst. sec15 RNAi expression caused an increase in phosphorylated Mothers against decapentaplegic (pMad) in the presynaptic terminal, an indication of enhanced bone morphogenic protein (BMP) signaling. Some morphological phenotypes caused by Sec15 knockdown were reduced by attenuation of BMP signaling through knockdown of wishful thinking (Wit), while other phenotypes were unaffected. Individual knockdown of multiple proteins of the exocyst complex also displayed a morphological phenotype similar to Sec15 KD. We conclude that Sec15, functioning as part of the exocyst complex, is critically important for proper formation and function of neuronal synapses. We propose a model in which Sec15 is involved in the trafficking of vesicles from the recycling endosome to the cell membrane as well as possibly trafficking extracellular vesicles for presynaptic release and these processes are necessary for the correct structure and function of the synapse.
Collapse
Affiliation(s)
- Chris J Kang
- Neuroscience Program, Amherst College, Amherst, MA 01002, United States of America
| | - Luis E Guzmán-Clavel
- Neuroscience Program, Amherst College, Amherst, MA 01002, United States of America
| | - Katherine Lei
- Neuroscience Program, Amherst College, Amherst, MA 01002, United States of America
| | - Martin Koo
- Neuroscience Program, Amherst College, Amherst, MA 01002, United States of America
| | - Steven To
- Neuroscience Program, Amherst College, Amherst, MA 01002, United States of America
| | - John P Roche
- Neuroscience Program, Amherst College, Amherst, MA 01002, United States of America; Department of Biology, Amherst College, Amherst, MA 01002, United States of America.
| |
Collapse
|
5
|
Ireton K, Gyanwali GC, Herath TUB, Lee N. Exploitation of the host exocyst complex by bacterial pathogens. Mol Microbiol 2023. [PMID: 36717381 DOI: 10.1111/mmi.15034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023]
Abstract
Intracellular bacterial pathogens remodel the plasma membrane of eukaryotic cells in order to establish infection. A common and well-studied mechanism of plasma membrane remodelling involves bacterial stimulation of polymerization of the host actin cytoskeleton. Here, we discuss recent results showing that several bacterial pathogens also exploit the host vesicular trafficking pathway of 'polarized exocytosis' to expand and reshape specific regions in the plasma membrane during infection. Polarized exocytosis is mediated by an evolutionarily conserved octameric protein complex termed the exocyst. We describe examples in which the bacteria Listeria monocytogenes, Salmonella enterica serovar Typhimurium, and Shigella flexneri co-opt the exocyst to promote internalization into human cells or intercellular spread within host tissues. We also discuss results showing that Legionella pneumophila or S. flexneri manipulate exocyst components to modify membrane vacuoles to favour intracellular replication or motility of bacteria. Finally, we propose potential ways that pathogens manipulate exocyst function, discuss how polarized exocytosis might promote infection and highlight the importance of future studies to determine how actin polymerization and polarized exocytosis are coordinated to achieve optimal bacterial infection.
Collapse
Affiliation(s)
- Keith Ireton
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | - Thilina U B Herath
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Nicole Lee
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Park E, Yang CR, Raghuram V, Deshpande V, Datta A, Poll BG, Leo KT, Kikuchi H, Chen L, Chou CL, Knepper MA. Data resource: vasopressin-regulated protein phosphorylation sites in the collecting duct. Am J Physiol Renal Physiol 2023; 324:F43-F55. [PMID: 36264882 PMCID: PMC9762968 DOI: 10.1152/ajprenal.00229.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 02/04/2023] Open
Abstract
Vasopressin controls renal water excretion through actions to regulate aquaporin-2 (AQP2) trafficking, transcription, and degradation. These actions are in part dependent on vasopressin-induced phosphorylation changes in collecting duct cells. Although most efforts have focused on the phosphorylation of AQP2 itself, phosphoproteomic studies have identified many vasopressin-regulated phosphorylation sites in proteins other than AQP2. The goal of this bioinformatics-based review is to create a compendium of vasopressin-regulated phosphorylation sites with a focus on those that are seen in both native rat inner medullary collecting ducts and cultured collecting duct cells from the mouse (mpkCCD), arguing that these sites are the best candidates for roles in AQP2 regulation. This analysis identified 51 vasopressin-regulated phosphorylation sites in 45 proteins. We provide resource web pages at https://esbl.nhlbi.nih.gov/Databases/AVP-Phos/ and https://esbl.nhlbi.nih.gov/AVP-Network/, listing the phosphorylation sites and describing annotated functions of each of the vasopressin-targeted phosphoproteins. Among these sites are 23 consensus protein kinase A (PKA) sites that are increased in response to vasopressin, consistent with a central role for PKA in vasopressin signaling. The remaining sites are predicted to be phosphorylated by other kinases, most notably ERK1/2, which accounts for decreased phosphorylation at sites with a X-p(S/T)-P-X motif. Additional protein kinases that undergo vasopressin-induced changes in phosphorylation are Camkk2, Cdk18, Erbb3, Mink1, and Src, which also may be activated directly or indirectly by PKA. The regulated phosphoproteins are mapped to processes that hypothetically can account for vasopressin-mediated control of AQP2 trafficking, cytoskeletal alterations, and Aqp2 gene expression, providing grist for future studies.NEW & NOTEWORTHY Vasopressin regulates renal water excretion through control of the aquaporin-2 water channel in collecting duct cells. Studies of vasopressin-induced protein phosphorylation have focused mainly on the phosphorylation of aquaporin-2. This study describes 44 phosphoproteins other than aquaporin-2 that undergo vasopressin-mediated phosphorylation changes and summarizes potential physiological roles of each.
Collapse
Affiliation(s)
- Euijung Park
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Venkatesh Deshpande
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Arnab Datta
- Laboratory of Translational Neuroscience, Division of Neuroscience, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, India
| | - Brian G Poll
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Kirby T Leo
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Hiroaki Kikuchi
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
7
|
An SJ, Anneken A, Xi Z, Choi C, Schlessinger J, Toomre D. Regulation of EGF-stimulated activation of the PI-3K/AKT pathway by exocyst-mediated exocytosis. Proc Natl Acad Sci U S A 2022; 119:e2208947119. [PMID: 36417441 PMCID: PMC9860279 DOI: 10.1073/pnas.2208947119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The phosphoinositide-3 kinase (PI-3K)/AKT cell survival pathway is an important pathway activated by EGFR signaling. Here we show, that in addition to previously described critical components of this pathway, i.e., the docking protein Gab1, the PI-3K/AKT pathway in epithelial cells is regulated by the exocyst complex, which is a vesicle tether that is essential for exocytosis. Using live-cell imaging, we demonstrate that PI(3,4,5)P3 levels fluctuate at the membrane on a minutes time scale and that these fluctuations are associated with local PI(3,4,5)P3 increases at sites where recycling vesicles undergo exocytic fusion. Supporting a role for exocytosis in PI(3,4,5)P3 generation, acute promotion of exocytosis by optogenetically driving exocyst-mediated vesicle tethering up-regulates PI(3,4,5)P3 production and AKT activation. Conversely, acute inhibition of exocytosis using Endosidin2, a small-molecule inhibitor of the exocyst subunit Exo70 (also designated EXOC7), or inhibition of exocyst function by siRNA-mediated knockdown of the exocyst subunit Sec15 (EXOC6), impairs PI(3,4,5)P3 production and AKT activation induced by EGF stimulation of epithelial cells. Moreover, prolonged inhibition of EGF signaling by EGFR tyrosine kinase inhibitors results in spontaneous reactivation of AKT without a concomitant relief of EGFR inhibition. However, this reactivation can be negated by acutely inhibiting the exocyst. These experiments demonstrate that exocyst-mediated exocytosis-by regulating PI(3,4,5)P3 levels at the plasma membrane-subserves activation of the PI-3K/AKT pathway by EGFR in epithelial cells.
Collapse
Affiliation(s)
- Seong J. An
- aDepartment of Cell Biology, Yale University School of Medicine, New Haven, CT06510
- bDepartment of Pharmacology, Yale University School of Medicine, New Haven, CT06510
- 2To whom correspondence may be addressed. or
| | - Alexander Anneken
- aDepartment of Cell Biology, Yale University School of Medicine, New Haven, CT06510
| | - Zhiqun Xi
- aDepartment of Cell Biology, Yale University School of Medicine, New Haven, CT06510
| | - Changseon Choi
- aDepartment of Cell Biology, Yale University School of Medicine, New Haven, CT06510
| | - Joseph Schlessinger
- bDepartment of Pharmacology, Yale University School of Medicine, New Haven, CT06510
| | - Derek Toomre
- aDepartment of Cell Biology, Yale University School of Medicine, New Haven, CT06510
- 2To whom correspondence may be addressed. or
| |
Collapse
|
8
|
Pavlyuchenkova AN, Zinovkin RA, Makievskaya CI, Galkin II, Chelombitko MA. Mitochondria-targeted triphenylphosphonium-based compounds inhibit FcεRI-dependent degranulation of mast cells by preventing mitochondrial dysfunction through Erk1/2. Life Sci 2022; 288:120174. [PMID: 34826439 DOI: 10.1016/j.lfs.2021.120174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 11/27/2022]
Abstract
AIMS FcεRI-dependent activation and degranulation of mast cells (MC) play an important role in allergic diseases. We have previously demonstrated that triphenylphosphonium (TPP)-based antioxidant SkQ1 inhibits mast cell degranulation, but the exact mechanism of this inhibition is still unknown. This study focused on investigating the influence of TPP-based compounds SkQ1 and C12TPP on FcεRI-dependent mitochondrial dysfunction and signaling during MC degranulation. MAIN METHODS MC were sensitized by anti-dinitrophenyl IgE and stimulated by BSA-conjugated dinitrophenyl. The degranulation of MC was estimated by β-hexosaminidase release. The effect of TPP-based compounds on FcεRI-dependent signaling was determined by Western blot analysis for adapter molecule LAT, kinases Syk, PI3K, Erk1/2, and p38. Fluorescent microscopy was used to evaluate mitochondrial parameters such as morphology, membrane potential, reactive oxygen species and ATP level. KEY FINDINGS Pretreatment with TPP-based compounds significantly decreased FcεRI-dependent degranulation of MC. TPP-based compounds also prevented mitochondrial dysfunction (drop in mitochondrial ATP level and mitochondrial fission), and decreased Erk1/2 kinase phosphorylation. Selective Erk1/2 inhibition by U0126 also reduced β-hexosaminidase release and prevented mitochondrial fragmentation during FcεRI-dependent degranulation of MC. SIGNIFICANCE These findings expand the fundamental understanding of the role of mitochondria in the activation of MC. It also contributes to the rationale for the development of mitochondrial-targeted drugs for the treatment of allergic diseases.
Collapse
Affiliation(s)
| | - Roman A Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ciara I Makievskaya
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Ivan I Galkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maria A Chelombitko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
9
|
Ratanakomol T, Roytrakul S, Wikan N, Smith DR. Berberine Inhibits Dengue Virus through Dual Mechanisms. Molecules 2021; 26:5501. [PMID: 34576974 PMCID: PMC8470584 DOI: 10.3390/molecules26185501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Mosquito transmitted viruses, particularly those of the genus Flavivirus, are a significant healthcare burden worldwide, especially in tropical and sub-tropical areas. However, effective medicines for these viral infections remains lacking. Berberine (BBR) is an alkaloid found in some plants used in traditional medicines in Southeast Asia and elsewhere, and BBR has been shown to possess anti-viral activities. During a screen for potential application to mosquito transmitted viruses, BBR was shown to have virucidal activity against dengue virus (DENV; IC50 42.87 µM) as well as against Zika virus (IC50 11.42 µM) and chikungunya virus (IC50 14.21 µM). BBR was shown to have cellular effects that lead to an increase in cellular DENV E protein without a concomitant effect on DENV nonstructural proteins, suggesting an effect on viral particle formation or egress. While BBR was shown to have an effect of ERK1/2 activation this did not result in defects in viral egress mechanisms. The primary effect of BBR on viral production was likely to be through BBR acting through AMPK activation and disruption of lipid metabolism. Combined these results suggest that BBR has a dual effect on DENV infection, and BBR may have the potential for development as an anti-DENV antiviral.
Collapse
Affiliation(s)
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Rangsit 12120, Thailand;
| | - Nitwara Wikan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Duncan R. Smith
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand;
| |
Collapse
|
10
|
Loss of the exocyst complex component EXOC3 promotes hemostasis and accelerates arterial thrombosis. Blood Adv 2021; 5:674-686. [PMID: 33560379 DOI: 10.1182/bloodadvances.2020002515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 12/28/2020] [Indexed: 11/20/2022] Open
Abstract
The exocyst is an octameric complex comprising 8 distinct protein subunits, exocyst complex components (EXOC) 1 to 8. It has an established role in tethering secretory vesicles to the plasma membrane, but its relevance to platelet granule secretion and function remains to be determined. Here, EXOC3 conditional knockout (KO) mice in the megakaryocyte/platelet lineage were generated to assess exocyst function in platelets. Significant defects in platelet aggregation, integrin activation, α-granule (P-selectin and platelet factor 4), dense granule, and lysosomal granule secretion were detected in EXOC3 KO platelets after treatment with a glycoprotein VI (GPVI)-selective agonist, collagen-related peptide (CRP). Except for P-selectin exposure, these defects were completely recovered by maximal CRP concentrations. GPVI surface levels were also significantly decreased by 14.5% in KO platelets, whereas defects in proximal GPVI signaling responses, Syk and LAT phosphorylation, and calcium mobilization were also detected, implying an indirect mechanism for these recoverable defects due to decreased surface GPVI. Paradoxically, dense granule secretion, integrin activation, and changes in surface expression of integrin αIIb (CD41) were significantly increased in KO platelets after protease-activated receptor 4 activation, but calcium responses were unaltered. Elevated integrin activation responses were completely suppressed with a P2Y12 receptor antagonist, suggesting enhanced dense granule secretion of adenosine 5'-diphosphate as a critical mediator of these responses. Finally, arterial thrombosis was significantly accelerated in KO mice, which also displayed improved hemostasis determined by reduced tail bleeding times. These findings reveal a regulatory role for the exocyst in controlling critical aspects of platelet function pertinent to thrombosis and hemostasis.
Collapse
|
11
|
Wang H, Ma ZH, Mao J, Chen BH. Genome-wide identification and expression analysis of the EXO70 gene family in grape ( Vitis vinifera L). PeerJ 2021; 9:e11176. [PMID: 33976971 PMCID: PMC8067907 DOI: 10.7717/peerj.11176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
EXO70 is the pivotal protein subunit of exocyst, which has a very crucial role in enhancing the shielding effect of the cell wall, resisting abiotic and hormonal stresses. This experiment aims to identify family members of the EXO70 gene family in grape and predict the characteristics of this gene family, so as to lay the foundation of further exploring the mechanism of resisting abiotic and hormone stresses of VvEXO70s. Therefore, the Vitis vinifera ‘Red Globe’ tube plantlet were used as materials. Bioinformatics was used to inquire VvEXO70 genes family members, gene structure, system evolution, cis-acting elements, subcellular and chromosomal localization, collinearity, selective pressure, codon bias and tissue expression. All of VvEXO70s had the conserved pfam03081 domain which maybe necessary for interacting with other proteins. Microarray analysis suggested that most genes expressed to varying degrees in tendrils, leaves, seeds, buds, roots and stems. Quantitative Real-Time PCR (qRT-PCR) showed that the expression levels of all genes with 5 mM salicylic acid (SA), 0.1 mM methy jasmonate (MeJA), 20% PEG6000 and 4 °C for 24 h were higher than for 12 h. With 20% PEG6000 treatment about 24 h, the relative expression of VvEXO70-02 was significantly up-regulated and 361 times higher than CK. All genes’ relative expression was higher at 12 h than that at 24 h after treatment with 7 mM hydrogen peroxide (H2O2) and 0.1 mM ethylene (ETH). In conclusion, the expression levels of 14 VvEXO70 genes are distinguishing under these treatments, which play an important role in the regulation of anti-stress signals in grape. All of these test results provide a reference for the future research on the potential function analysis and plant breeding of VvEXO70 genes.
Collapse
Affiliation(s)
- Han Wang
- Department of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zong-Huan Ma
- Department of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Juan Mao
- Department of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Bai-Hong Chen
- Department of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
12
|
Brillada C, Teh OK, Ditengou FA, Lee CW, Klecker T, Saeed B, Furlan G, Zietz M, Hause G, Eschen-Lippold L, Hoehenwarter W, Lee J, Ott T, Trujillo M. Exocyst subunit Exo70B2 is linked to immune signaling and autophagy. THE PLANT CELL 2021; 33:404-419. [PMID: 33630076 PMCID: PMC8136888 DOI: 10.1093/plcell/koaa022] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/18/2020] [Indexed: 05/08/2023]
Abstract
During the immune response, activation of the secretory pathway is key to mounting an effective response, while gauging its output is important to maintain cellular homeostasis. The Exo70 subunit of the exocyst functions as a spatiotemporal regulator by mediating numerous interactions with proteins and lipids. However, a molecular understanding of the exocyst regulation remains challenging. We show that, in Arabidopsis thaliana, Exo70B2 behaves as a bona fide exocyst subunit. Conversely, treatment with the salicylic acid (SA) defence hormone analog benzothiadiazole (BTH), or the immunogenic peptide flg22, induced Exo70B2 transport into the vacuole. We reveal that Exo70B2 interacts with AUTOPHAGY-RELATED PROTEIN 8 (ATG8) via two ATG8-interacting motives (AIMs) and its transport into the vacuole is dependent on autophagy. In line with its role in immunity, we discovered that Exo70B2 interacted with and was phosphorylated by the kinase MPK3. Mimicking phosphorylation had a dual impact on Exo70B2: first, by inhibiting localization at sites of active secretion, and second, it increased the interaction with ATG8. Phosphonull variants displayed higher effector-triggered immunity (ETI) and were hypersensitive to BTH, which induce secretion and autophagy. Our results suggest a molecular mechanism by which phosphorylation diverts Exo70B2 from the secretory into the autophagy pathway for its degradation, to dampen secretory activity.
Collapse
Affiliation(s)
- Carla Brillada
- Faculty of Biology, Cell Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Ooi-Kock Teh
- Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
- Department of Biological Science, School of Science, Hokkaido University, 060-0810 Sapporo, Japan
- Institute for the Advancement of Higher Education, Hokkaido University, 060-0815 Sapporo, Japan
| | | | - Chil-Woo Lee
- Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Till Klecker
- Institute of Cell Biology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Bushra Saeed
- Faculty of Biology, Cell Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Giulia Furlan
- Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Marco Zietz
- Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Gerd Hause
- Biozentrum, Martin-Luther-University Halle-Wittenberg, Halle 06120 (Saale), Germany
| | | | | | - Justin Lee
- Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Thomas Ott
- Faculty of Biology, Cell Biology, University of Freiburg, 79104 Freiburg, Germany
- CIBSS—Centre for Integrative Biological Signalling Studies, University of Freiburg, 79085 Freiburg, Germany
| | - Marco Trujillo
- Faculty of Biology, Cell Biology, University of Freiburg, 79104 Freiburg, Germany
- Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
- Author for communication:
| |
Collapse
|
13
|
Van Bergen NJ, Ahmed SM, Collins F, Cowley M, Vetro A, Dale RC, Hock DH, de Caestecker C, Menezes M, Massey S, Ho G, Pisano T, Glover S, Gusman J, Stroud DA, Dinger M, Guerrini R, Macara IG, Christodoulou J. Mutations in the exocyst component EXOC2 cause severe defects in human brain development. J Exp Med 2021; 217:151928. [PMID: 32639540 PMCID: PMC7537385 DOI: 10.1084/jem.20192040] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/03/2020] [Accepted: 04/03/2020] [Indexed: 12/30/2022] Open
Abstract
The exocyst, an octameric protein complex, is an essential component of the membrane transport machinery required for tethering and fusion of vesicles at the plasma membrane. We report pathogenic variants in an exocyst subunit, EXOC2 (Sec5). Affected individuals have severe developmental delay, dysmorphism, and brain abnormalities; variability associated with epilepsy; and poor motor skills. Family 1 had two offspring with a homozygous truncating variant in EXOC2 that leads to nonsense-mediated decay of EXOC2 transcript, a severe reduction in exocytosis and vesicle fusion, and undetectable levels of EXOC2 protein. The patient from Family 2 had a milder clinical phenotype and reduced exocytosis. Cells from both patients showed defective Arl13b localization to the primary cilium. The discovery of mutations that partially disable exocyst function provides valuable insight into this essential protein complex in neural development. Since EXOC2 and other exocyst complex subunits are critical to neuronal function, our findings suggest that EXOC2 variants are the cause of the patients’ neurological disorders.
Collapse
Affiliation(s)
- Nicole J Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Syed Mukhtar Ahmed
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Felicity Collins
- Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Medical Genomics Department, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Mark Cowley
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Clinical School, University of New South Wales Sydney, Sydney, New South Wales, Australia.,Children's Cancer Institute, Kensington, New South Wales, Australia
| | - Annalisa Vetro
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Russell C Dale
- Department of Paediatric Neurology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Kids Neuroscience Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Daniella H Hock
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Christian de Caestecker
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Minal Menezes
- Kids Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Gladys Ho
- Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Tiziana Pisano
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Seana Glover
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Jovanka Gusman
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - David A Stroud
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Marcel Dinger
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington Campus, Sydney, New South Wales, Australia
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Ian G Macara
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
14
|
Lira M, Zamorano P, Cerpa W. Exo70 intracellular redistribution after repeated mild traumatic brain injury. Biol Res 2021; 54:5. [PMID: 33593425 PMCID: PMC7885507 DOI: 10.1186/s40659-021-00329-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/03/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Exo70 is a subunit of the greater exocyst complex, a collection of proteins that oversees cellular membrane addition and polarized exocytosis by acting as a tethering intermediate between the plasma membrane and newly synthesized secretory vesicles. Although Exo70 function has been implicated in several developmental events including cytokinesis and the establishment of cell polarity, its role in neuropathologies is poorly understood. On the other hand, traumatic brain injury is the result of mechanical external force including contusion, fast acceleration, and expansive waves that produce temporal or permanent cognitive damage and triggers physical and psychosocial alterations including headache, memory problems, attention deficits, difficulty thinking, mood swings, and frustration. Traumatic brain injury is a critical health problem on a global scale, constituting a major cause of deaths and disability among young adults. Trauma-related cellular damage includes redistribution of N-methyl-D-aspartate receptors outside of the synaptic compartment triggering detrimental effects to neurons. The exocyst has been related to glutamate receptor constitutive trafficking/delivery towards synapse as well. This work examines whether the exocyst complex subunit Exo70 participates in traumatic brain injury and if it is redistributed among subcellular compartments RESULTS: Our analysis shows that Exo70 expression is not altered upon injury induction. By using subcellular fractionation, we determined that Exo70 is redistributed from microsomes fraction into the synaptic compartment after brain trauma. In the synaptic compartment, we also show that the exocyst complex assembly and its interaction with GluN2B are increased. Finally, we show that the Exo70 pool that is redistributed comes from the plasma membrane. CONCLUSIONS The present findings position Exo70 in the group of proteins that could modulate GluN2B synaptic availability in acute neuropathology like a traumatic brain injury. By acting as a nucleator factor, Exo70 is capable of redirecting the ensembled complex into the synapse. We suggest that this redistribution is part of a compensatory mechanism by which Exo70 is able to maintain GluN2B partially on synapses. Hence, reducing the detrimental effects associated with TBI pathophysiology.
Collapse
Affiliation(s)
- Matías Lira
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O´Higgins 340, Santiago, Chile
| | - Pedro Zamorano
- Departamento Biomédico, Universidad de Antofagasta, Antofagasta, Chile.,Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Waldo Cerpa
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O´Higgins 340, Santiago, Chile. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
15
|
Saccomanno A, Potocký M, Pejchar P, Hála M, Shikata H, Schwechheimer C, Žárský V. Regulation of Exocyst Function in Pollen Tube Growth by Phosphorylation of Exocyst Subunit EXO70C2. FRONTIERS IN PLANT SCIENCE 2021; 11:609600. [PMID: 33519861 PMCID: PMC7840542 DOI: 10.3389/fpls.2020.609600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Exocyst is a heterooctameric protein complex crucial for the tethering of secretory vesicles to the plasma membrane during exocytosis. Compared to other eukaryotes, exocyst subunit EXO70 is represented by many isoforms in land plants whose cell biological and biological roles, as well as modes of regulation remain largely unknown. Here, we present data on the phospho-regulation of exocyst isoform EXO70C2, which we previously identified as a putative negative regulator of exocyst function in pollen tube growth. A comprehensive phosphoproteomic analysis revealed phosphorylation of EXO70C2 at multiple sites. We have now performed localization and functional studies of phospho-dead and phospho-mimetic variants of Arabidopsis EXO70C2 in transiently transformed tobacco pollen tubes and stably transformed Arabidopsis wild type and exo70C2 mutant plants. Our data reveal a dose-dependent effect of AtEXO70C2 overexpression on pollen tube growth rate and cellular architecture. We show that changes of the AtEXO70C2 phosphorylation status lead to distinct outcomes in wild type and exo70c2 mutant cells, suggesting a complex regulatory pattern. On the other side, phosphorylation does not affect the cytoplasmic localization of AtEXO70C2 or its interaction with putative secretion inhibitor ROH1 in the yeast two-hybrid system.
Collapse
Affiliation(s)
- Antonietta Saccomanno
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Martin Potocký
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Přemysl Pejchar
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Michal Hála
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Hiromasa Shikata
- Plant Systems Biology, Technische Universität München, Freising, Germany
| | | | - Viktor Žárský
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
16
|
Glutamatergic Receptor Trafficking and Delivery: Role of the Exocyst Complex. Cells 2020; 9:cells9112402. [PMID: 33153008 PMCID: PMC7693776 DOI: 10.3390/cells9112402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/29/2022] Open
Abstract
Cells comprise several intracellular membrane compartments that allow them to function properly. One of these functions is cargo movement, typically proteins and membranes within cells. These cargoes ride microtubules through vesicles from Golgi and recycling endosomes to the plasma membrane in order to be delivered and exocytosed. In neurons, synaptic functions employ this cargo trafficking to maintain inter-neuronal communication optimally. One of the complexes that oversee vesicle trafficking and tethering is the exocyst. The exocyst is a protein complex containing eight subunits first identified in yeast and then characterized in multicellular organisms. This complex is related to several cellular processes, including cellular growth, division, migration, and morphogenesis, among others. It has been associated with glutamatergic receptor trafficking and tethering into the synapse, providing the molecular machinery to deliver receptor-containing vesicles into the plasma membrane in a constitutive manner. In this review, we discuss the evidence so far published regarding receptor trafficking and the exocyst complex in both basal and stimulated levels, comparing constitutive trafficking and long-term potentiation-related trafficking.
Collapse
|
17
|
Kato Y, Fujii S. An MAPK Pathway in Papilla Cells for Successful Pollination in Arabidopsis. MOLECULAR PLANT 2020; 13:1539-1541. [PMID: 33065271 DOI: 10.1016/j.molp.2020.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Yoshinobu Kato
- Laboratory of Bioorganic Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Sota Fujii
- Laboratory of Bioorganic Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
18
|
Jamshed M, Sankaranarayanan S, Abhinandan K, Samuel MA. Stigma Receptivity Is Controlled by Functionally Redundant MAPK Pathway Components in Arabidopsis. MOLECULAR PLANT 2020; 13:1582-1593. [PMID: 32890733 DOI: 10.1101/2020.03.09.983767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/25/2020] [Accepted: 08/28/2020] [Indexed: 05/22/2023]
Abstract
In angiosperms, the process of pollination relies on species-specific interaction and signaling between the male (pollen) and female (pistil) counterparts where the interplay between several pollen and stigma proteins decides the fate of the pollen. In Brassicaceae, the dry stigmatic papillary cells control pollen germination by releasing resources only to compatible pollen thereby allowing pollen to hydrate and germinate. Despite the identification of a number of stigmatic proteins that facilitate pollination responses, the signaling mechanisms that regulate functions of these proteins have remained unknown. Here, we show that, in Arabidopsis, an extremely functionally redundant mitogen-activated protein kinase (MAPK) cascade is required for maintaining stigma receptivity to accept compatible pollen. Our genetic analyses demonstrate that in stigmas, five MAPK kinases (MKKs), MKK1/2/3/7/9 are required to transmit upstream signals to two MPKs, MPK3/4, to mediate compatible pollination. Compromised functions of these five MKKs in the quintuple mutant (mkk1/2/3RNAi/mkk7/9) phenocopied pollination defects observed in the mpk4RNAi/mpk3 double mutant. We further show that this MAPK nexus converges on Exo70A1, a previously identified stigma receptivity factor essential for pollination. Given that pollination is the crucial initial step during plant reproduction, understanding the mechanisms that govern successful pollination could lead to development of strategies to improve crop yield.
Collapse
Affiliation(s)
- Muhammad Jamshed
- University of Calgary, BI 392, Department of Biological Sciences, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada; Senior Scientist, Frontier Agri-Science Inc, 98 Ontario Street, Port Hope, ON L1A 2V2, Canada
| | - Subramanian Sankaranarayanan
- University of Calgary, BI 392, Department of Biological Sciences, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada; Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Kumar Abhinandan
- University of Calgary, BI 392, Department of Biological Sciences, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Marcus A Samuel
- University of Calgary, BI 392, Department of Biological Sciences, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
19
|
Jamshed M, Sankaranarayanan S, Abhinandan K, Samuel MA. Stigma Receptivity Is Controlled by Functionally Redundant MAPK Pathway Components in Arabidopsis. MOLECULAR PLANT 2020; 13:1582-1593. [PMID: 32890733 DOI: 10.1016/j.molp.2020.08.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/25/2020] [Accepted: 08/28/2020] [Indexed: 05/27/2023]
Abstract
In angiosperms, the process of pollination relies on species-specific interaction and signaling between the male (pollen) and female (pistil) counterparts where the interplay between several pollen and stigma proteins decides the fate of the pollen. In Brassicaceae, the dry stigmatic papillary cells control pollen germination by releasing resources only to compatible pollen thereby allowing pollen to hydrate and germinate. Despite the identification of a number of stigmatic proteins that facilitate pollination responses, the signaling mechanisms that regulate functions of these proteins have remained unknown. Here, we show that, in Arabidopsis, an extremely functionally redundant mitogen-activated protein kinase (MAPK) cascade is required for maintaining stigma receptivity to accept compatible pollen. Our genetic analyses demonstrate that in stigmas, five MAPK kinases (MKKs), MKK1/2/3/7/9 are required to transmit upstream signals to two MPKs, MPK3/4, to mediate compatible pollination. Compromised functions of these five MKKs in the quintuple mutant (mkk1/2/3RNAi/mkk7/9) phenocopied pollination defects observed in the mpk4RNAi/mpk3 double mutant. We further show that this MAPK nexus converges on Exo70A1, a previously identified stigma receptivity factor essential for pollination. Given that pollination is the crucial initial step during plant reproduction, understanding the mechanisms that govern successful pollination could lead to development of strategies to improve crop yield.
Collapse
Affiliation(s)
- Muhammad Jamshed
- University of Calgary, BI 392, Department of Biological Sciences, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada; Senior Scientist, Frontier Agri-Science Inc, 98 Ontario Street, Port Hope, ON L1A 2V2, Canada
| | - Subramanian Sankaranarayanan
- University of Calgary, BI 392, Department of Biological Sciences, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada; Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Kumar Abhinandan
- University of Calgary, BI 392, Department of Biological Sciences, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Marcus A Samuel
- University of Calgary, BI 392, Department of Biological Sciences, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
20
|
Hsu JW, Bai M, Li K, Yang JS, Chu N, Cole PA, Eck MJ, Li J, Hsu VW. The protein kinase Akt acts as a coat adaptor in endocytic recycling. Nat Cell Biol 2020; 22:927-933. [PMID: 32541877 PMCID: PMC7415567 DOI: 10.1038/s41556-020-0530-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 05/04/2020] [Indexed: 12/30/2022]
Abstract
Coat proteins play a central role in vesicular transport by binding to cargoes for their sorting into intracellular pathways. Cargo recognition is mediated by components of the coat complex known as adaptor proteins1–3. We previously showed that ACAP1 (ArfGAP with Coil-coil Ankyrin repeat Protein 1) functions as an adaptor for a clathrin coat complex acting in endocytic recycling4–6. Here, we find that the protein kinase Akt acts as a co-adaptor in this complex, needed in conjunction with ACAP1 to bind cargo proteins for their recycling. Besides advancing the understanding of endocytic recycling, our findings uncover a fundamentally different way that a kinase acts, being an effector rather than a regulator in a cellular event.
Collapse
Affiliation(s)
- Jia-Wei Hsu
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ming Bai
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kunhua Li
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jia-Shu Yang
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nam Chu
- Division of Genetics, Brigham and Women's Hospital, and Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Philip A Cole
- Division of Genetics, Brigham and Women's Hospital, and Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jian Li
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Victor W Hsu
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
ULK1 phosphorylates Exo70 to suppress breast cancer metastasis. Nat Commun 2020; 11:117. [PMID: 31913283 PMCID: PMC6949295 DOI: 10.1038/s41467-019-13923-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/02/2019] [Indexed: 01/17/2023] Open
Abstract
Increased expression of protein kinase ULK1 was reported to negatively correlate with breast cancer metastasis. Here we report that ULK1 suppresses the migration and invasion of human breast cancer cells. The suppressive effect is mediated through direct phosphorylation of Exo70, a key component of the exocyst complex. ULK1 phosphorylation inhibits Exo70 homo-oligomerization as well as its assembly to the exocyst complex, which are needed for cell protrusion formation and matrix metalloproteinases secretion during cell invasion. Reversely, upon growth factor stimulation, Exo70 is phosphorylated by ERK1/2, which in turn suppresses its phosphorylation by ULK1. Together, our study identifies Exo70 as a substrate of ULK1 that inhibits cancer metastasis, and demonstrates that two counteractive regulatory mechanisms are well orchestrated during tumor cell invasion. Elevated expression of ULK1 is known to be inversely correlated with breast cancer metastasis. Here, the authors report Exo70 as a substrate of ULK1 that suppresses cancer metastasis, and show that ERK1/2 mediated phosphorylation of Exo70 leads to opposing effects on tumour cell invasion.
Collapse
|
22
|
Zuo X, Kwon SH, Janech MG, Dang Y, Lauzon SD, Fogelgren B, Polgar N, Lipschutz JH. Primary cilia and the exocyst are linked to urinary extracellular vesicle production and content. J Biol Chem 2019; 294:19099-19110. [PMID: 31694916 PMCID: PMC6916495 DOI: 10.1074/jbc.ra119.009297] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/29/2019] [Indexed: 12/13/2022] Open
Abstract
The recently proposed idea of "urocrine signaling" hypothesizes that small secreted extracellular vesicles (EVs) contain proteins that transmit signals to distant cells. However, the role of renal primary cilia in EV production and content is unclear. We previously showed that the exocyst, a highly conserved trafficking complex, is necessary for ciliogenesis; that it is present in human urinary EVs; that knockdown (KD) of exocyst complex component 5 (EXOC5), a central exocyst component, results in very short or absent cilia; and that human EXOC5 overexpression results in longer cilia. Here, we show that compared with control Madin-Darby canine kidney (MDCK) cells, EXOC5 overexpression increases and KD decreases EV numbers. Proteomic analyses of isolated EVs from EXOC5 control, KD, and EXOC5-overexpressing MDCK cells revealed significant alterations in protein composition. Using immunoblotting to specifically examine the expression levels of ADP-ribosylation factor 6 (ARF6) and EPS8-like 2 (EPS8L2) in EVs, we found that EXOC5 KD increases ARF6 levels and decreases EPS8L2 levels, and that EXOC5 overexpression increases EPS8L2. Knockout of intraflagellar transport 88 (IFT88) confirmed that the changes in EV number/content were due to cilia loss: similar to EXOC5, the IFT88 loss resulted in very short or absent cilia, decreased EV numbers, increased EV ARF6 levels, and decreased Eps8L2 levels compared with IFT88-rescued EVs. Compared with control animals, urine from proximal tubule-specific EXOC5-KO mice contained fewer EVs and had increased ARF6 levels. These results indicate that perturbations in exocyst and primary cilia affect EV number and protein content.
Collapse
Affiliation(s)
- Xiaofeng Zuo
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Sang-Ho Kwon
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia 30912
| | - Michael G Janech
- Department of Biology, College of Charleston, Charleston, South Carolina 29424
| | - Yujing Dang
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Steven D Lauzon
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Ben Fogelgren
- Department of Anatomy, Biochemistry, and Physiology, University of Hawaii at Manoa, Honolulu, Hawaii 96813
| | - Noemi Polgar
- Department of Anatomy, Biochemistry, and Physiology, University of Hawaii at Manoa, Honolulu, Hawaii 96813
| | - Joshua H Lipschutz
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
- Department of Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29425
| |
Collapse
|
23
|
Ca 2+-dependent recruitment of voltage-gated sodium channels underlies bilirubin-induced overexcitation and neurotoxicity. Cell Death Dis 2019; 10:774. [PMID: 31601780 PMCID: PMC6787254 DOI: 10.1038/s41419-019-1979-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 02/08/2023]
Abstract
Neonatal jaundice is prevalent among newborns and can lead to severe neurological deficits, particularly sensorimotor dysfunction. Previous studies have shown that bilirubin (BIL) enhances the intrinsic excitability of central neurons and this can potentially contribute to their overexcitation, Ca2+ overload, and neurotoxicity. However, the cellular mechanisms underlying elevated neuronal excitability remain unknown. By performing patch-clamp recordings from neonatal neurons in the rat medial vestibular nucleus (MVN), a crucial relay station for locomotor and balance control, we found that BIL (3 μM) drastically increases the spontaneous firing rates by upregulating the current-mediated voltage-gated sodium channels (VGSCs), while shifting their voltage-dependent activation toward more hyperpolarized potentials. Immunofluorescence labeling and western immunoblotting with an anti-NaV1.1 antibody, revealed that BIL elevates the expression of VGSCs by promoting their recruitment to the membrane. Furthermore, we found that this VGSC-trafficking process is Ca2+ dependent because preloading MVN neurons with the Ca2+ buffer BAPTA-AM, or exocytosis inhibitor TAT-NSF700, prevents the effects of BIL, indicating the upregulated activity and density of functional VGSCs as the core mechanism accountable for the BIL-induced overexcitation of neonatal neurons. Most importantly, rectification of such overexcitation with a low dose of VGSC blocker lidocaine significantly attenuates BIL-induced cell death. We suggest that this enhancement of VGSC currents directly contributes to the vulnerability of neonatal brain to hyperbilirubinemia, implicating the activity and trafficking of NaV1.1 channels as a potential target for neuroprotection in cases of severe jaundice.
Collapse
|
24
|
Plumbly W, Brandon N, Deeb TZ, Hall J, Harwood AJ. L-type voltage-gated calcium channel regulation of in vitro human cortical neuronal networks. Sci Rep 2019; 9:13810. [PMID: 31554851 PMCID: PMC6761148 DOI: 10.1038/s41598-019-50226-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 09/02/2019] [Indexed: 11/09/2022] Open
Abstract
The combination of in vitro multi-electrode arrays (MEAs) and the neuronal differentiation of stem cells offers the capability to study human neuronal networks from patient or engineered human cell lines. Here, we use MEA-based assays to probe synaptic function and network interactions of hiPSC-derived neurons. Neuronal network behaviour first emerges at approximately 30 days of culture and is driven by glutamate neurotransmission. Over a further 30 days, inhibitory GABAergic signalling shapes network behaviour into a synchronous regular pattern of burst firing activity and low activity periods. Gene mutations in L-type voltage gated calcium channel subunit genes are strongly implicated as genetic risk factors for the development of schizophrenia and bipolar disorder. We find that, although basal neuronal firing rate is unaffected, there is a dose-dependent effect of L-type voltage gated calcium channel inhibitors on synchronous firing patterns of our hiPSC-derived neural networks. This demonstrates that MEA assays have sufficient sensitivity to detect changes in patterns of neuronal interaction that may arise from hypo-function of psychiatric risk genes. Our study highlights the utility of in vitro MEA based platforms for the study of hiPSC neural network activity and their potential use in novel compound screening.
Collapse
Affiliation(s)
- William Plumbly
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Nick Brandon
- Neuroscience, IMED Biotech Unit, AstraZeneca, 35 Gatehouse Dr, Waltham, MA, 02451, USA
| | - Tarek Z Deeb
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Adrian J Harwood
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
25
|
SNV discovery and functional candidate gene identification for milk composition based on whole genome resequencing of Holstein bulls with extremely high and low breeding values. PLoS One 2019; 14:e0220629. [PMID: 31369641 PMCID: PMC6675115 DOI: 10.1371/journal.pone.0220629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
We have sequenced the whole genomes of eight proven Holstein bulls from the four half-sib or full-sib families with extremely high and low estimated breeding values (EBV) for milk protein percentage (PP) and fat percentage (FP) using Illumina re-sequencing technology. Consequently, 2.3 billion raw reads were obtained with an average effective depth of 8.1×. After single nucleotide variant (SNV) calling, total 10,961,243 SNVs were identified, and 57,451 of them showed opposite fixed sites between the bulls with high and low EBVs within each family (called as common differential SNVs). Next, we annotated the common differential SNVs based on the bovine reference genome, and observed that 45,188 SNVs (78.70%) were located in the intergenic region of genes and merely 11,871 SNVs (20.67%) located within the protein-coding genes. Of them, 13,099 common differential SNVs that were within or close to protein-coding genes with less than 5 kb were chosen for identification of candidate genes for milk compositions in dairy cattle. By integrated analysis of the 2,657 genes with the GO terms and pathways related to protein and fat metabolism, and the known quantitative trait loci (QTLs) for milk protein and fat traits, we identified 17 promising candidate genes: ALG14, ATP2C1, PLD1, C3H1orf85, SNX7, MTHFD2L, CDKN2D, COL5A3, FDX1L, PIN1, FIG4, EXOC7, LASP1, PGS1, SAO, GPLD1 and MGEA5. Our findings provided an important foundation for further study and a prompt for molecular breeding of dairy cattle.
Collapse
|
26
|
Nishida‐Fukuda H. The Exocyst: Dynamic Machine or Static Tethering Complex? Bioessays 2019; 41:e1900056. [DOI: 10.1002/bies.201900056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/14/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Hisayo Nishida‐Fukuda
- Department of Genome Editing, Institute of Biomedical ScienceKansai Medical University2‐5‐1 Shin‐machi, Hirakata Osaka 5731010 Japan
| |
Collapse
|
27
|
Guan W, Feng J, Wang R, Ma Z, Wang W, Wang K, Zhu T. Functional analysis of the exocyst subunit BcExo70 in Botrytis cinerea. Curr Genet 2019; 66:85-95. [PMID: 31183512 DOI: 10.1007/s00294-019-01002-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 01/27/2023]
Abstract
Botrytis cinerea is one of the most important saprophytic plant pathogenic fungi. The exocyst complex and exocytosis was demonstrated to be involved in fungal development and plant infection. Here, we investigated the function of an exocyst subunit gene Bcexo70 in B. cinerea. The results show that knockout of the Bcexo70 gene significantly reduced the fungal growth and hindered the production of conidia and sclerotia. The Bcexo70 deletion strains showed a severe decrease in virulence toward tomato leaves and reduced secretion of cell wall-degrading enzyme. Confocal and electronic microscopic observation showed that the vesicles in the Bcexo70 mutants were enlarged and scattered in the cytoplasm compared to the regular distribution in the hyphal tip in wild-type strain. This study showed that the exocyst gene Bcexo70 is crucial for fungal growth, conidiation and pathogenicity in B. cinerea.
Collapse
Affiliation(s)
- Wenqing Guan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Juan Feng
- Taizhou Vocational College of Science and Technology, Taizhou, Zhejiang, China
| | - Rongxia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Zhiwei Ma
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Weixia Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, China.
| | - Kun Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China.
| | - Tingheng Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China.
| |
Collapse
|
28
|
Rock S, Li X, Song J, Townsend CM, Weiss HL, Rychahou P, Gao T, Li J, Evers BM. Kinase suppressor of Ras 1 and Exo70 promote fatty acid-stimulated neurotensin secretion through ERK1/2 signaling. PLoS One 2019; 14:e0211134. [PMID: 30917119 PMCID: PMC6436710 DOI: 10.1371/journal.pone.0211134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/08/2019] [Indexed: 01/22/2023] Open
Abstract
Neurotensin is a peptide hormone released from enteroendocrine cells in the small intestine in response to fat ingestion. Although the mechanisms regulating neurotensin secretion are still incompletely understood, our recent findings implicate a role for extracellular signal-regulated kinase 1 and 2 as positive regulators of free fatty acid-stimulated neurotensin secretion. Previous studies have shown that kinase suppressor of Ras 1 acts as a molecular scaffold of the Raf/MEK/extracellular signal-regulated kinase 1 and 2 kinase cascade and regulates intensity and duration of extracellular signal-regulated kinase 1 and 2 signaling. Here, we demonstrate that inhibition of kinase suppressor of Ras 1 attenuates neurotensin secretion and extracellular signal-regulated kinase 1 and 2 signaling in human endocrine cells. Conversely, we show that overexpression of kinase suppressor of Ras 1 enhances neurotensin secretion and extracellular signal-regulated kinase 1 and 2 signaling. We also show that inhibition of extracellular signal-regulated kinase 2 and exocyst complex component 70, a substrate of extracellular signal-regulated kinase 2 and mediator of secretory vesicle exocytosis, potently inhibits basal and docosahexaenoic acid-stimulated neurotensin secretion, whereas overexpression of exocyst complex component 70 enhances basal and docosahexaenoic acid-stimulated neurotensin secretion. Together, our findings demonstrate a role for kinase suppressor of Ras 1 as a positive regulator of neurotensin secretion from human endocrine cells and indicate that this effect is mediated by the extracellular signal-regulated kinase 1 and 2 signaling pathway. Moreover, we reveal a novel role for exocyst complex component 70 in regulation of neurotensin vesicle exocytosis through its interaction with the extracellular signal-regulated kinase 1 and 2 signaling pathway.
Collapse
Affiliation(s)
- Stephanie Rock
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Xian Li
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jun Song
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Surgery, University of Kentucky, Lexington, Kentucky, United States of America
| | - Courtney M. Townsend
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Heidi L. Weiss
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Piotr Rychahou
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tianyan Gao
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jing Li
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - B. Mark Evers
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
29
|
Identification and Characterization of the EXO70 Gene Family in Polyploid Wheat and Related Species. Int J Mol Sci 2018; 20:ijms20010060. [PMID: 30586859 PMCID: PMC6337732 DOI: 10.3390/ijms20010060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/13/2018] [Accepted: 12/21/2018] [Indexed: 12/24/2022] Open
Abstract
The EXO70 gene family is involved in different biological processes in plants, ranging from plant polar growth to plant immunity. To date, analysis of the EXO70 gene family has been limited in Triticeae species, e.g., hexaploidy Triticum aestivum and its ancestral/related species. By in silico analysis of multiple Triticeae sequence databases, a total of 200 EXO70 members were identified. By homologue cloning approaches, 15 full-length cDNA of EXO70s were cloned from diploid Haynaldia villosa. Phylogenetic relationship analysis of 215 EXO70 members classified them into three groups (EXO70.1, EXO70.2, and EXO70.3) and nine subgroups (EXO70A to EXO70I). The distribution of most EXO70 genes among different species/sub-genomes were collinear, implying their orthologous relationship. The EXO70A subgroup has the most introns (at least five introns), while the remaining seven subgroups have only one intron on average. The expression profiling of EXO70 genes from wheat revealed that 40 wheat EXO70 genes were expressed in at least one tissue (leaf, stem, or root), of which 25 wheat EXO70 genes were in response to at least one biotic stress (stripe rust or powdery mildew) or abiotic stress (drought or heat). Subcellular localization analysis showed that ten EXO70-V proteins had distinct plasma membrane localization, EXO70I1-V showed a distinctive spotted pattern on the membrane. The 15 EXO70-V genes were differentially expressed in three tissue. Apart from EXO70D2-V, the remaining EXO70-V genes were in response to at least one stress (flg22, chitin, powdery mildew, drought, NaCl, heat, or cold) or phytohormones (salicylic acid, methyl jasmonate, ethephon, or abscisic acid) and hydrogen peroxide treatments. This research provides a genome-wide glimpse of the Triticeae EXO70 gene family and those up- or downregulated genes require further validation of their biological roles in response to biotic/abiotic stresses.
Collapse
|
30
|
Georgilis A, Klotz S, Hanley CJ, Herranz N, Weirich B, Morancho B, Leote AC, D'Artista L, Gallage S, Seehawer M, Carroll T, Dharmalingam G, Wee KB, Mellone M, Pombo J, Heide D, Guccione E, Arribas J, Barbosa-Morais NL, Heikenwalder M, Thomas GJ, Zender L, Gil J. PTBP1-Mediated Alternative Splicing Regulates the Inflammatory Secretome and the Pro-tumorigenic Effects of Senescent Cells. Cancer Cell 2018; 34:85-102.e9. [PMID: 29990503 PMCID: PMC6048363 DOI: 10.1016/j.ccell.2018.06.007] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/26/2018] [Accepted: 06/11/2018] [Indexed: 12/11/2022]
Abstract
Oncogene-induced senescence is a potent tumor-suppressive response. Paradoxically, senescence also induces an inflammatory secretome that promotes carcinogenesis and age-related pathologies. Consequently, the senescence-associated secretory phenotype (SASP) is a potential therapeutic target. Here, we describe an RNAi screen for SASP regulators. We identified 50 druggable targets whose knockdown suppresses the inflammatory secretome and differentially affects other SASP components. Among the screen candidates was PTBP1. PTBP1 regulates the alternative splicing of genes involved in intracellular trafficking, such as EXOC7, to control the SASP. Inhibition of PTBP1 prevents the pro-tumorigenic effects of the SASP and impairs immune surveillance without increasing the risk of tumorigenesis. In conclusion, our study identifies SASP inhibition as a powerful and safe therapy against inflammation-driven cancer.
Collapse
Affiliation(s)
- Athena Georgilis
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Sabrina Klotz
- Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen 72076, Germany; Department of Physiology I, Institute of Physiology, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Christopher J Hanley
- Cancer Sciences Unit, Cancer Research UK Centre, University of Southampton, Somers Building, Southampton SO16 6YD, UK
| | - Nicolas Herranz
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Benedikt Weirich
- Division of Chronic Inflammation and Cancer, German Cancer Research Centre (DKFZ), Heidelberg 69121, Germany
| | - Beatriz Morancho
- Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO) and CIBERONC, Barcelona 08035, Spain
| | - Ana Carolina Leote
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Luana D'Artista
- Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen 72076, Germany; Department of Physiology I, Institute of Physiology, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Suchira Gallage
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK; Division of Chronic Inflammation and Cancer, German Cancer Research Centre (DKFZ), Heidelberg 69121, Germany
| | - Marco Seehawer
- Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen 72076, Germany; Department of Physiology I, Institute of Physiology, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Thomas Carroll
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Gopuraja Dharmalingam
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Keng Boon Wee
- Institute of High Performance Computing, A(∗)STAR, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore; Bioinformatics Institute, A(∗)STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | - Marco Mellone
- Cancer Sciences Unit, Cancer Research UK Centre, University of Southampton, Somers Building, Southampton SO16 6YD, UK
| | - Joaquim Pombo
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Centre (DKFZ), Heidelberg 69121, Germany
| | - Ernesto Guccione
- Methyltransferases in Development and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Joaquín Arribas
- Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO) and CIBERONC, Barcelona 08035, Spain; Department of Biochemistry and Molecular Biology, Universitat Autónoma de Barcelona, Campus de la UAB, Bellaterra 08193, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Nuno L Barbosa-Morais
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Centre (DKFZ), Heidelberg 69121, Germany
| | - Gareth J Thomas
- Cancer Sciences Unit, Cancer Research UK Centre, University of Southampton, Somers Building, Southampton SO16 6YD, UK
| | - Lars Zender
- Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen 72076, Germany; Department of Physiology I, Institute of Physiology, Eberhard Karls University Tübingen, Tübingen 72076, Germany; Translational Gastrointestinal Oncology Group, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Jesús Gil
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
31
|
Bruinsma S, James DJ, Quintana Serrano M, Esquibel J, Woo SS, Kielar-Grevstad E, Crummy E, Qurashi R, Kowalchyk JA, Martin TFJ. Small molecules that inhibit the late stage of Munc13-4-dependent secretory granule exocytosis in mast cells. J Biol Chem 2018; 293:8217-8229. [PMID: 29615494 PMCID: PMC5971468 DOI: 10.1074/jbc.ra117.001547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/30/2018] [Indexed: 01/05/2023] Open
Abstract
Ca2+-dependent secretory granule fusion with the plasma membrane is the final step for the exocytic release of inflammatory mediators, neuropeptides, and peptide hormones. Secretory cells use a similar protein machinery at late steps in the regulated secretory pathway, employing protein isoforms from the Rab, Sec1/Munc18, Munc13/CAPS, SNARE, and synaptotagmin protein families. However, no small-molecule inhibitors of secretory granule exocytosis that target these proteins are currently available but could have clinical utility. Here we utilized a high-throughput screen of a 25,000-compound library that identified 129 small-molecule inhibitors of Ca2+-triggered secretory granule exocytosis in RBL-2H3 mast cells. These inhibitors broadly fell into six different chemical classes, and follow-up permeable cell and liposome fusion assays identified the target for one class of these inhibitors. A family of 2-aminobenzothiazoles (termed benzothiazole exocytosis inhibitors or bexins) was found to inhibit mast cell secretory granule fusion by acting on a Ca2+-dependent, C2 domain–containing priming factor, Munc13-4. Our findings further indicated that bexins interfere with Munc13-4–membrane interactions and thereby inhibit Munc13-4–dependent membrane fusion. We conclude that bexins represent a class of specific secretory pathway inhibitors with potential as therapeutic agents.
Collapse
Affiliation(s)
- Stephen Bruinsma
- Department of Biochemistry, University of Wisconsin, Madison Wisconsin 53706
| | - Declan J James
- Department of Biochemistry, University of Wisconsin, Madison Wisconsin 53706
| | | | - Joseph Esquibel
- Department of Biochemistry, University of Wisconsin, Madison Wisconsin 53706
| | - Sang Su Woo
- Department of Biochemistry, University of Wisconsin, Madison Wisconsin 53706
| | | | - Ellen Crummy
- Department of Biochemistry, University of Wisconsin, Madison Wisconsin 53706
| | - Rehan Qurashi
- Department of Biochemistry, University of Wisconsin, Madison Wisconsin 53706
| | - Judy A Kowalchyk
- Department of Biochemistry, University of Wisconsin, Madison Wisconsin 53706
| | - Thomas F J Martin
- Department of Biochemistry, University of Wisconsin, Madison Wisconsin 53706.
| |
Collapse
|
32
|
Polgar N, Fogelgren B. Regulation of Cell Polarity by Exocyst-Mediated Trafficking. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a031401. [PMID: 28264817 DOI: 10.1101/cshperspect.a031401] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
One requirement for establishing polarity within a cell is the asymmetric trafficking of intracellular vesicles to the plasma membrane. This tightly regulated process creates spatial and temporal differences in both plasma membrane composition and the membrane-associated proteome. Asymmetric membrane trafficking is also a critical mechanism to regulate cell differentiation, signaling, and physiology. Many eukaryotic cell types use the eight-protein exocyst complex to orchestrate polarized vesicle trafficking to certain membrane locales. Members of the exocyst were originally discovered in yeast while screening for proteins required for the delivery of secretory vesicles to the budding daughter cell. The same eight exocyst genes are conserved in mammals, in which the specifics of exocyst-mediated trafficking are highly cell-type-dependent. Some exocyst members bind to certain Rab GTPases on intracellular vesicles, whereas others localize to the plasma membrane at the site of exocytosis. Assembly of the exocyst holocomplex is responsible for tethering these vesicles to the plasma membrane before their soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated exocytosis. In this review, we will focus on the role and regulation of the exocyst complex in targeted vesicular trafficking as related to the establishment and maintenance of cellular polarity. We will contrast exocyst function in apicobasal epithelial polarity versus front-back mesenchymal polarity, and the dynamic regulation of exocyst-mediated trafficking during cell phenotype transitions.
Collapse
Affiliation(s)
- Noemi Polgar
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813
| | - Ben Fogelgren
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813
| |
Collapse
|
33
|
Liang D. A Salutary Role of Reactive Oxygen Species in Intercellular Tunnel-Mediated Communication. Front Cell Dev Biol 2018; 6:2. [PMID: 29503816 PMCID: PMC5821100 DOI: 10.3389/fcell.2018.00002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/18/2018] [Indexed: 12/17/2022] Open
Abstract
The reactive oxygen species, generally labeled toxic due to high reactivity without target specificity, are gradually uncovered as signaling molecules involved in a myriad of biological processes. But one important feature of ROS roles in macromolecule movement has not caught attention until recent studies with technique advance and design elegance have shed lights on ROS signaling for intercellular and interorganelle communication. This review begins with the discussions of genetic and chemical studies on the regulation of symplastic dye movement through intercellular tunnels in plants (plasmodesmata), and focuses on the ROS regulatory mechanisms concerning macromolecule movement including small RNA-mediated gene silencing movement and protein shuttling between cells. Given the premise that intercellular tunnels (bridges) in mammalian cells are the key physical structures to sustain intercellular communication, movement of macromolecules and signals is efficiently facilitated by ROS-induced membrane protrusions formation, which is analogously applied to the interorganelle communication in plant cells. Although ROS regulatory differences between plant and mammalian cells exist, the basis for ROS-triggered conduit formation underlies a unifying conservative theme in multicellular organisms. These mechanisms may represent the evolutionary advances that have enabled multicellularity to gain the ability to generate and utilize ROS to govern material exchanges between individual cells in oxygenated environment.
Collapse
Affiliation(s)
- Dacheng Liang
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, China.,Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| |
Collapse
|
34
|
Mei K, Li Y, Wang S, Shao G, Wang J, Ding Y, Luo G, Yue P, Liu JJ, Wang X, Dong MQ, Wang HW, Guo W. Cryo-EM structure of the exocyst complex. Nat Struct Mol Biol 2018; 25:139-146. [PMID: 29335562 PMCID: PMC5971111 DOI: 10.1038/s41594-017-0016-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 12/07/2017] [Indexed: 12/22/2022]
Abstract
The exocyst is an evolutionarily conserved octameric protein complex that mediates the tethering of post-Golgi secretory vesicles to the plasma membrane during exocytosis and is implicated in many cellular processes such as cell polarization, cytokinesis, ciliogenesis and tumor invasion. Using cryo-EM and chemical cross-linking MS (CXMS), we solved the structure of the Saccharomyces cerevisiae exocyst complex at an average resolution of 4.4 Å. Our model revealed the architecture of the exocyst and led to the identification of the helical bundles that mediate the assembly of the complex at its core. Sequence analysis suggests that these regions are evolutionarily conserved across eukaryotic systems. Additional cell biological data suggest a mechanism for exocyst assembly that leads to vesicle tethering at the plasma membrane.
Collapse
Affiliation(s)
- Kunrong Mei
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Yan Li
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Shaoxiao Wang
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Guangcan Shao
- National Institute of Biological Sciences, Beijing, China
| | - Jia Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Yuehe Ding
- National Institute of Biological Sciences, Beijing, China
| | - Guangzuo Luo
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Peng Yue
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jun-Jie Liu
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Xinquan Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China. .,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China. .,School of Life Sciences, Tsinghua University, Beijing, China. .,Tsinghua-Peking Joint Center for Life Sciences, Beijing, China.
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
35
|
Abstract
Polarized exocytosis is generally considered as the multistep vesicular trafficking process in which membrane-bounded carriers are transported from the Golgi or endosomal compartments to specific sites of the plasma membrane. Polarized exocytosis in cells is achieved through the coordinated actions of membrane trafficking machinery and cytoskeleton orchestrated by signaling molecules such as the Rho family of small GTPases. Elucidating the molecular mechanisms of polarized exocytosis is essential to our understanding of a wide range of pathophysiological processes from neuronal development to tumor invasion.
Collapse
Affiliation(s)
- Jingwen Zeng
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018
| | - Shanshan Feng
- Key Laboratory for Regenerative Medicine of Ministry of Education and Department of Developmental & Regenerative Biology, Jinan University, Guangzhou 510632, P.R. China
| | - Bin Wu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018
| |
Collapse
|
36
|
Tanimura S, Takeda K. ERK signalling as a regulator of cell motility. J Biochem 2017; 162:145-154. [PMID: 28903547 DOI: 10.1093/jb/mvx048] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/17/2017] [Indexed: 01/21/2023] Open
Abstract
Cell motility is regulated by multiple processes, including cell protrusion, cell retraction, cell-matrix adhesion, polarized exocytosis and polarized vesicle trafficking, each of which is spatiotemporally controlled by various intracellular signalling pathways. Dysregulation of cell motility leads to pathological conditions, such as tumour invasion and metastasis. Accumulating evidence has revealed that extracellular signal-regulated kinase (ERK) signalling is one of the critical regulators of cell motility, although it is classically known as an important regulator of cell proliferation, differentiation and survival through regulation of gene expression. ERK and its downstream kinase, p90 ribosomal S6 kinase (RSK), dynamically regulate cell motility mainly through direct phosphorylation of various molecules that are not necessarily involved in the regulation of gene transcription and translation. In this review, we summarize how ERK signalling regulates cell motility by focusing on the components of the cell motility machinery that are directly regulated by ERK or RSK.
Collapse
Affiliation(s)
- Susumu Tanimura
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Kohsuke Takeda
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
37
|
Hume PJ, Singh V, Davidson AC, Koronakis V. Swiss Army Pathogen: The Salmonella Entry Toolkit. Front Cell Infect Microbiol 2017; 7:348. [PMID: 28848711 PMCID: PMC5552672 DOI: 10.3389/fcimb.2017.00348] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/21/2017] [Indexed: 02/04/2023] Open
Abstract
Salmonella causes disease in humans and animals ranging from mild self-limiting gastroenteritis to potentially life-threatening typhoid fever. Salmonellosis remains a considerable cause of morbidity and mortality globally, and hence imposes a huge socio-economic burden worldwide. A key property of all pathogenic Salmonella strains is the ability to invade non-phagocytic host cells. The major determinant of this invasiveness is a Type 3 Secretion System (T3SS), a molecular syringe that injects virulence effector proteins directly into target host cells. These effectors cooperatively manipulate multiple host cell signaling pathways to drive pathogen internalization. Salmonella does not only rely on these injected effectors, but also uses several other T3SS-independent mechanisms to gain entry into host cells. This review summarizes our current understanding of the methods used by Salmonella for cell invasion, with a focus on the host signaling networks that must be coordinately exploited for the pathogen to achieve its goal.
Collapse
Affiliation(s)
- Peter J Hume
- Department of Pathology, University of CambridgeCambridge, United Kingdom
| | - Vikash Singh
- Department of Pathology, University of CambridgeCambridge, United Kingdom
| | - Anthony C Davidson
- Department of Pathology, University of CambridgeCambridge, United Kingdom
| | - Vassilis Koronakis
- Department of Pathology, University of CambridgeCambridge, United Kingdom
| |
Collapse
|
38
|
Xiao L, Zheng K, Lv X, Hou J, Xu L, Zhao Y, Song F, Fan Y, Cao H, Zhang W, Hong X, Zhan YY, Hu T. Exo70 is an independent prognostic factor in colon cancer. Sci Rep 2017; 7:5039. [PMID: 28698570 PMCID: PMC5505949 DOI: 10.1038/s41598-017-05308-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/26/2017] [Indexed: 12/31/2022] Open
Abstract
Exo70, a key component of the Exocyst complex, plays important roles in human cancer progression beyond exocytosis. However, the expression of Exo70 and its prognostic value for patients with colon cancer has not been well investigated to date. In this study, we observed that the mRNA and protein levels of Exo70 were upregulated in 11 of 13 colon cancer tissues, compared with their normal counterparts, which was validated by immunohistochemical analysis in a tissue microarray containing 89 pairs of colon cancer tissues and the matched adjacent normal tissues. Statistical analysis revealed that Exo70 expression is positively correlated with tumor size, invasion depth, TNM stage and distant metastasis. Kaplan-Meier survival analysis showed that colon cancer patients with higher Exo70 expression have a poorer clinical outcome than those with lower Exo70 expression. Multivariate Cox regression analysis revealed that Exo70, age and distant metastasis were there independent prognostic factors for overall survival rate of colon cancer patients. Through gain- and loss of Exo70 in colon cancer cells, we found that Exo70 could enhance the migration ability of colon cancer cells. Taken together, our studies revealed that Exo70 might be a promising negative prognostic factor and a potential therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Li Xiao
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China
- Department of Oncology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, 361004, Fujian Province, P.R. China
| | - Kaifeng Zheng
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China
| | - Xia Lv
- Department of Oncology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, 361004, Fujian Province, P.R. China
| | - Jihuan Hou
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China
| | - Liang Xu
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China
| | - Yujie Zhao
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China
| | - Fei Song
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China
| | - Yaqiong Fan
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China
| | - Hanwei Cao
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China
| | - Wenqing Zhang
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China
| | - Xiaoting Hong
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China
| | - Yan-Yan Zhan
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China.
| | - Tianhui Hu
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China.
| |
Collapse
|
39
|
Abstract
The exocyst complex mediates the tethering of secretory vesicles to the plasma membrane before SNARE-mediated membrane fusion. Recent studies have implicated the exocyst in a wide range of cellular processes. Particularly, research on the Exo70 subunit of the complex has linked the function of the exocyst in exocytosis to cell adhesion, migration and invasion. In this review, we will discuss the recent work on how Exo70 regulates these cellular processes, and how small GTPases and kinases interact with Exo70 to orchestrate its function in exocytosis and cytoskeleton organization. The study of Exo70 contributes to the understanding of many pathophysiological processes from organogenesis to cancer metastasis.
Collapse
Affiliation(s)
- Yueyao Zhu
- a Department of Biology, University of Pennsylvania , Philadelphia , PA , USA
| | - Bin Wu
- a Department of Biology, University of Pennsylvania , Philadelphia , PA , USA
| | - Wei Guo
- a Department of Biology, University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
40
|
Zago G, Biondini M, Camonis J, Parrini MC. A family affair: A Ral-exocyst-centered network links Ras, Rac, Rho signaling to control cell migration. Small GTPases 2017; 10:323-330. [PMID: 28498728 DOI: 10.1080/21541248.2017.1310649] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cell migration is central to many developmental, physiologic and pathological processes, including cancer progression. The Ral GTPases (RalA and RalB) which act down-stream the Ras oncogenes, are key players in the coordination between membrane trafficking and actin polymerization. A major direct effector of Ral, the exocyst complex, works in polarized exocytosis and is at the center of multiple protein-protein interactions that support cell migration by promoting protrusion formation, front-rear polarization, and extra-cellular matrix degradation. In this review we describe the recent advancements in deciphering the molecular mechanisms underlying this role of Ral via exocyst on cell migration. Among others, we will discuss the recently identified cross-talk between Ral and Rac1 pathways: exocyst binds to a negative regulator (the RacGAP SH3BP1) and to the major effector (the Wave Regulatory Complex, WRC) of Rac1, the master regulator of protrusions. Next challenge will be to better characterize the dynamics in space and in time of these molecular interplays, to better understand the pleiotropic functions of Ral in both normal and cancer cells.
Collapse
Affiliation(s)
- Giulia Zago
- a Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University , Paris , France.,b ART group, Inserm U830 , Paris , France
| | - Marco Biondini
- a Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University , Paris , France.,b ART group, Inserm U830 , Paris , France
| | - Jacques Camonis
- a Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University , Paris , France.,b ART group, Inserm U830 , Paris , France
| | - Maria Carla Parrini
- a Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University , Paris , France.,b ART group, Inserm U830 , Paris , France
| |
Collapse
|
41
|
Zhao M, Zhang L, Lv S, Zhang C, Wang L, Chen H, Zhou Y, Lou J. IQGAP1 Mediates Hcp1-Promoted Escherichia coli Meningitis by Stimulating the MAPK Pathway. Front Cell Infect Microbiol 2017; 7:132. [PMID: 28469997 PMCID: PMC5395654 DOI: 10.3389/fcimb.2017.00132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/31/2017] [Indexed: 01/14/2023] Open
Abstract
Escherichia coli-induced meningitis remains a life-threatening disease despite recent advances in the field of antibiotics-based therapeutics, necessitating continued research on its pathogenesis. The current study aims to elucidate the mechanism through which hemolysin-coregulated protein 1 (Hcp1) induces the apoptosis of human brain microvascular endothelial cells (HBMEC). Co-immunoprecipitation coupled with mass spectrometric (MS) characterization led to the identification of IQ motif containing GTPase activating protein 1 (IQGAP1) as a downstream target of Hcp1. IQGAP1 was found to be up-regulated by Hcp1 treatment and mediate the stimulation of HBMEC apoptosis. It was shown that Hcp1 could compete against Smurf1 for binding to IQGAP1, thereby rescuing the latter from ubiquitin-dependent degradation. Subsequent study suggested that IQGAP1 could stimulate the MAPK signaling pathway by promoting the phosphorylation of ERK1/2, an effect that was blocked by U0126, an MAPK inhibitor. Furthermore, U0126 also demonstrated therapeutic potential against E. coli meningitis in a mouse model. Taken together, our results suggested the feasibility of targeting the MAPK pathway as a putative therapeutic strategy against bacterial meningitis.
Collapse
Affiliation(s)
- Mingna Zhao
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghai, China
| | - Lingfei Zhang
- Center for RNA Research, State Key Laboratory of Molecular Biology-University of Chinese Academy of Sciences, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of SciencesShanghai, China.,Department of Anatomy, Histology and Embryology, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Shaogang Lv
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghai, China
| | - Chenzi Zhang
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghai, China
| | - Lin Wang
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghai, China
| | - Hong Chen
- Department of Anatomy, Histology and Embryology, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Yan Zhou
- Department of Microbiology and Immunobiology, Harvard Medical SchoolBoston, MA, USA
| | - Jiatao Lou
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
42
|
Wei Y, Wang D, Jin F, Bian Z, Li L, Liang H, Li M, Shi L, Pan C, Zhu D, Chen X, Hu G, Liu Y, Zhang CY, Zen K. Pyruvate kinase type M2 promotes tumour cell exosome release via phosphorylating synaptosome-associated protein 23. Nat Commun 2017; 8:14041. [PMID: 28067230 PMCID: PMC5228053 DOI: 10.1038/ncomms14041] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 11/23/2016] [Indexed: 12/29/2022] Open
Abstract
Tumour cells secrete exosomes that are involved in the remodelling of the tumour-stromal environment and promoting malignancy. The mechanisms governing tumour exosome release, however, remain incompletely understood. Here we show that tumour cell exosomes secretion is controlled by pyruvate kinase type M2 (PKM2), which is upregulated and phosphorylated in tumours. During exosome secretion, phosphorylated PKM2 serves as a protein kinase to phosphorylate synaptosome-associated protein 23 (SNAP-23), which in turn enables the formation of the SNARE complex to allow exosomes release. Direct phosphorylation assay and mass spectrometry confirm that PKM2 phosphorylates SNAP-23 at Ser95. Ectopic expression of non-phosphorylated SNAP-23 mutant (Ser95→Ala95) significantly reduces PKM2-mediated exosomes release whereas expression of selective phosphomimetic SNAP-23 mutants (Ser95→Glu95 but not Ser20→Glu20) rescues the impaired exosomes release induced by PKM2 knockdown. Our findings reveal a non-metabolic function of PKM2, an enzyme associated with tumour cell reliance on aerobic glycolysis, in promoting tumour cell exosome release.
Collapse
Affiliation(s)
- Yao Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Dong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Fangfang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Zhen Bian
- Center for Immunology, Inflammation and Infectious Diseases & Department of Biology, Georgia State University, Atlanta, Georgia 30302, USA
| | - Limin Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Hongwei Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Mingzhen Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lei Shi
- Center for Immunology, Inflammation and Infectious Diseases & Department of Biology, Georgia State University, Atlanta, Georgia 30302, USA
| | - Chaoyun Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Dihan Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Gang Hu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yuan Liu
- Center for Immunology, Inflammation and Infectious Diseases & Department of Biology, Georgia State University, Atlanta, Georgia 30302, USA
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
- Center for Immunology, Inflammation and Infectious Diseases & Department of Biology, Georgia State University, Atlanta, Georgia 30302, USA
| |
Collapse
|
43
|
Zhao Y, Hou J, Mi P, Mao L, Xu L, Zhang Y, Xiao L, Cao H, Zhang W, Zhang B, Song G, Hu T, Zhan YY. Exo70 is transcriptionally up-regulated by hepatic nuclear factor 4α and contributes to cell cycle control in hepatoma cells. Oncotarget 2016; 7:9150-62. [PMID: 26848864 PMCID: PMC4891032 DOI: 10.18632/oncotarget.7133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/19/2016] [Indexed: 11/25/2022] Open
Abstract
Exo70, a member of the exocyst complex, is involved in cell exocytosis, migration, invasion and autophagy. However, the expression regulation and function of Exo70 in hepatocellular carcinoma are still poorly understood. In this study, we found Exo70 expression in human hepatoma cells was greatly reduced after knocking down hepatic nuclear factor 4α (HNF4α), the most important and abundant transcription factor in liver. This regulation occurred at the transcriptional level but not post-translational level. HNF4α transactivated Exo70 promoter through directly binding to the HNF4α-response element in this promoter. Cell cycle analysis further revealed that down-regulation of HNF4α and Exo70 was essential to berberine-stimulated G2/M cell cycle arrest in hepatoma cells. Moreover, knocking down either Exo70 or HNF4α induced G2/M phase arrest of hepatoma cells. Exo70 acted downstream of HNF4α to stimulate G2/M transition via increasing Cdc2 expression. Together, our results identify Exo70 as a novel transcriptional target of HNF4α to promote cell cycle progression in hepatoma, thus provide a basis for the development of therapeutic strategies for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yujie Zhao
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Jihuan Hou
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Panying Mi
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Liyuan Mao
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Liang Xu
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Youyu Zhang
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Li Xiao
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China.,Department of Oncology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361004, Fujian Province, PR China
| | - Hanwei Cao
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Wenqing Zhang
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Bing Zhang
- Department of Basic Medicine, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Gang Song
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Tianhui Hu
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Yan-yan Zhan
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| |
Collapse
|
44
|
Tanaka T, Goto K, Iino M. Diverse Functions and Signal Transduction of the Exocyst Complex in Tumor Cells. J Cell Physiol 2016; 232:939-957. [DOI: 10.1002/jcp.25619] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/23/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Toshiaki Tanaka
- Department of Anatomy and Cell Biology; School of Medicine; Yamagata University; Yamagata Japan
- Department of Dentistry, Oral and Maxillofacial Surgery; Plastic and Reconstructive Surgery; School of Medicine; Yamagata University; Yamagata Japan
| | - Kaoru Goto
- Department of Anatomy and Cell Biology; School of Medicine; Yamagata University; Yamagata Japan
| | - Mitsuyoshi Iino
- Department of Dentistry, Oral and Maxillofacial Surgery; Plastic and Reconstructive Surgery; School of Medicine; Yamagata University; Yamagata Japan
| |
Collapse
|
45
|
Ma W, Wang Y, Yao X, Xu Z, An L, Yin M. The role of Exo70 in vascular smooth muscle cell migration. Cell Mol Biol Lett 2016; 21:20. [PMID: 28536622 PMCID: PMC5415710 DOI: 10.1186/s11658-016-0019-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/10/2016] [Indexed: 01/05/2023] Open
Abstract
Background As a key subunit of the exocyst complex, Exo70 has highly conserved sequence and is widely found in yeast, mammals, and plants. In yeast, Exo70 mediates the process of exocytosis and promotes anchoring and integration of vesicles with the plasma membrane. In mammalian cells, Exo70 is involved in maintaining cell morphology, cell migration, cell connection, mRNA splicing, and other physiological processes, as well as participating in exocytosis. However, Exo70’s function in mammalian cells has yet to be fully recognized. In this paper, the expression of Exo70 and its role in cell migration were studied in a rat vascular smooth muscle cell line A7r5. Methods Immunofluorescent analysis the expression of Exo70, α-actin, and tubulin in A7r5 cells showed a co-localization of Exo70 and α-actin, we treated the cells with cytochalasin B to depolymerize α-actin, in order to further confirm the co-localization of Exo70 and α-actin. We analyzed Exo70 co-localization with actin at the edge of migrating cells by wound-healing assay to establish whether Exo70 might play a role in cell migration. Next, we analyzed the migration and invasion ability of A7r5 cells before and after RNAi silencing through the wound healing assay and transwell assay. Results The mechanism of interaction between Exo70 and cytoskeleton can be clarified by the immunoprecipitation techniques and wound-healing assay. The results showed that Exo70 and α-actin were co-localized at the leading edge of migrating cells. The ability of A7r5 to undergo cell migration was decreased when Exo70 expression was silenced by RNAi. Reducing Exo70 expression in RNAi treated A7r5 cells significantly lowered the invasion and migration ability of these cells compared to the normal cells. These results indicate that Exo70 participates in the process of A7r5 cell migration. Conclusions This research is importance for the study on the pathological process of vascular intimal hyperplasia, since it provides a new research direction for the treatment of cardiovascular diseases such as atherosclerosis and restenosis after balloon angioplasty.
Collapse
Affiliation(s)
- Wenqing Ma
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Science, Shandong Normal University, Jinan, 250014 People's Republic of China
| | - Yu Wang
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250014 People's Republic of China
| | - Xiaomeng Yao
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Science, Shandong Normal University, Jinan, 250014 People's Republic of China.,No.10 High School of Zibo, Zibo, 255000 People's Republic of China
| | - Zijian Xu
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Science, Shandong Normal University, Jinan, 250014 People's Republic of China
| | - Liguo An
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Science, Shandong Normal University, Jinan, 250014 People's Republic of China
| | - Miao Yin
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Science, Shandong Normal University, Jinan, 250014 People's Republic of China
| |
Collapse
|
46
|
Castro-Castro A, Marchesin V, Monteiro P, Lodillinsky C, Rossé C, Chavrier P. Cellular and Molecular Mechanisms of MT1-MMP-Dependent Cancer Cell Invasion. Annu Rev Cell Dev Biol 2016; 32:555-576. [PMID: 27501444 DOI: 10.1146/annurev-cellbio-111315-125227] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metastasis is responsible for most cancer-associated deaths. Accumulating evidence based on 3D migration models has revealed a diversity of invasive migratory schemes reflecting the plasticity of tumor cells to switch between proteolytic and nonproteolytic modes of invasion. Yet, initial stages of localized regional tumor dissemination require proteolytic remodeling of the extracellular matrix to overcome tissue barriers. Recent data indicate that surface-exposed membrane type 1-matrix metalloproteinase (MT1-MMP), belonging to a group of membrane-anchored MMPs, plays a central role in pericellular matrix degradation during basement membrane and interstitial tissue transmigration programs. In addition, a large body of work indicates that MT1-MMP is targeted to specialized actin-rich cell protrusions termed invadopodia, which are responsible for matrix degradation. This review describes the multistep assembly of actin-based invadopodia in molecular details. Mechanisms underlying MT1-MMP traffic to invadopodia through endocytosis/recycling cycles, which are key to the invasive program of carcinoma cells, are discussed.
Collapse
Affiliation(s)
| | | | - Pedro Monteiro
- Barts Cancer Institute, University of London John Vane Science Centre, London EC1M 6BQ, United Kingdom
| | - Catalina Lodillinsky
- Instituto de Oncologia Ángel H. Roffo, Research Area, Buenos Aires, C1417DTB, Argentina
| | - Carine Rossé
- Institut Curie, Paris, F-75248 France; .,PSL Research University, Paris, F-75005 France.,CNRS, UMR 144, Paris, F-75248 France
| | - Philippe Chavrier
- Institut Curie, Paris, F-75248 France; .,PSL Research University, Paris, F-75005 France.,CNRS, UMR 144, Paris, F-75248 France
| |
Collapse
|
47
|
Lu H, Liu S, Zhang G, Kwong LN, Zhu Y, Miller JP, Hu Y, Zhong W, Zeng J, Wu L, Krepler C, Sproesser K, Xiao M, Xu W, Karakousis GC, Schuchter LM, Field J, Zhang PJ, Herlyn M, Xu X, Guo W. Oncogenic BRAF-Mediated Melanoma Cell Invasion. Cell Rep 2016; 15:2012-24. [PMID: 27210749 DOI: 10.1016/j.celrep.2016.04.073] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/21/2016] [Accepted: 04/19/2016] [Indexed: 12/25/2022] Open
Abstract
Melanoma patients with oncogenic BRAF(V600E) mutation have poor prognoses. While the role of BRAF(V600E) in tumorigenesis is well established, its involvement in metastasis that is clinically observed in melanoma patients remains a topic of debate. Here, we show that BRAF(V600E) melanoma cells have extensive invasion activity as assayed by the generation of F-actin and cortactin foci that mediate membrane protrusion, and degradation of the extracellular matrix (ECM). Inhibition of BRAF(V600E) blocks melanoma cell invasion. In a BRAF(V600E)-driven murine melanoma model or in patients' tumor biopsies, cortactin foci decrease upon inhibitor treatment. In addition, genome-wide expression analysis shows that a number of invadopodia-related genes are downregulated after BRAF(V600E) inhibition. Mechanistically, BRAF(V600E) induces phosphorylation of cortactin and the exocyst subunit Exo70 through ERK, which regulates actin dynamics and matrix metalloprotease secretion, respectively. Our results provide support for the role of BRAF(V600E) in metastasis and suggest that inhibiting invasion is a potential therapeutic strategy against melanoma.
Collapse
Affiliation(s)
- Hezhe Lu
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shujing Liu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gao Zhang
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Lawrence N Kwong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 770303, USA
| | - Yueyao Zhu
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John P Miller
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 770303, USA
| | - Yi Hu
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Wenqun Zhong
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jingwen Zeng
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lawrence Wu
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Clemens Krepler
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Katrin Sproesser
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Min Xiao
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Wei Xu
- Abramson Cancer Center and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Giorgos C Karakousis
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lynn M Schuchter
- Abramson Cancer Center and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeffery Field
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul J Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Wei Guo
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
48
|
Ren J, Cook AA, Bergmeier W, Sondek J. A negative-feedback loop regulating ERK1/2 activation and mediated by RasGPR2 phosphorylation. Biochem Biophys Res Commun 2016; 474:193-198. [PMID: 27107697 DOI: 10.1016/j.bbrc.2016.04.100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 04/19/2016] [Indexed: 10/21/2022]
Abstract
The dynamic regulation of ERK1 and -2 (ERK1/2) is required for precise signal transduction controlling cell proliferation, differentiation, and survival. However, the underlying mechanisms regulating the activation of ERK1/2 are not completely understood. In this study, we show that phosphorylation of RasGRP2, a guanine nucleotide exchange factor (GEF), inhibits its ability to activate the small GTPase Rap1 that ultimately leads to decreased activation of ERK1/2 in cells. ERK2 phosphorylates RasGRP2 at Ser394 located in the linker region implicated in its autoinhibition. These studies identify RasGRP2 as a novel substrate of ERK1/2 and define a negative-feedback loop that regulates the BRaf-MEK-ERK signaling cascade. This negative-feedback loop determines the amplitude and duration of active ERK1/2.
Collapse
Affiliation(s)
- Jinqi Ren
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Aaron A Cook
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - John Sondek
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599.,Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| |
Collapse
|
49
|
Abstract
The exocyst is an octameric protein complex that is implicated in the tethering of secretory vesicles to the plasma membrane prior to SNARE-mediated fusion. Spatial and temporal control of exocytosis through the exocyst has a crucial role in a number of physiological processes, such as morphogenesis, cell cycle progression, primary ciliogenesis, cell migration and tumor invasion. In this Cell Science at a Glance poster article, we summarize recent works on the molecular organization, function and regulation of the exocyst complex, as they provide rationales to the involvement of this complex in such a diverse array of cellular processes.
Collapse
Affiliation(s)
- Bin Wu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
50
|
Wu B, Wang J, Zhao Y, Guo W. Biochemical analysis of Rabin8, the guanine nucleotide exchange factor for Rab8. Methods Cell Biol 2015; 130:59-68. [PMID: 26360028 DOI: 10.1016/bs.mcb.2015.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Rab GTPases are master regulators of endosomal trafficking in eukaryotic cells. Among them, Rab8 plays an important role in tubulovesicular trafficking from the trans-Golgi network and recycling endosomes to the plasma membrane. Rab8 is activated by its guanine nucleotide exchange factor, Rabin8. In order to understand the molecular mechanisms that control endosomal recycling to the plasma membrane, it is pivotal to understand how Rabin8 is regulated in cells. Recently, biochemical and cell biological studies have identified several mechanisms for Rabin8 activation, which involves the relief of the intramolecular autoinhibition of Rabin8. Here we describe biochemical methods that we have used recently to study the activation of Rabin8.
Collapse
Affiliation(s)
- Bin Wu
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Juanfei Wang
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuting Zhao
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|