1
|
Aoyagi T, Goya T, Imoto K, Azuma Y, Hioki T, Kohjima M, Tanaka M, Oda Y, Ogawa Y. Two types of regenerative cell populations appear in acute liver injury. Stem Cell Reports 2025:102503. [PMID: 40345206 DOI: 10.1016/j.stemcr.2025.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 04/10/2025] [Accepted: 04/10/2025] [Indexed: 05/11/2025] Open
Abstract
The liver has a robust regenerative capacity. However, the mechanisms underlying this process remain unclear. Numerous studies on liver regeneration have been previously conducted using partial hepatectomy models, which may not fully represent acute liver injury with inflammation and necrosis. This is commonly observed in the majority of clinical cases. In this study, we conducted a single-cell RNA sequencing (RNA-seq) analysis of liver regeneration in acetaminophen-treated mice using publicly available data. We found that two distinct populations of regenerative cells simultaneously appeared within the same regenerative process. The two populations significantly differed in terms of cell morphology, differentiation, localization, proliferation rate, and signal response. Moreover, one of the populations was induced by contact with necrotic tissue and demonstrated a higher proliferative capacity with a dedifferentiated feature. These findings provide new insights into liver regeneration and therapeutic strategies for liver failure.
Collapse
Affiliation(s)
- Tomomi Aoyagi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Goya
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Imoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Azuma
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomonobu Hioki
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Motoyuki Kohjima
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Gastroenterology, NHO Kyushu Medical Center, Fukuoka, Japan
| | - Masatake Tanaka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Hickey MJ, Sudhakar V. Looking below the surface: using intravital imaging to decipher inflammatory renal disease and renal cell injury. Am J Physiol Renal Physiol 2025; 328:F418-F430. [PMID: 39918796 DOI: 10.1152/ajprenal.00321.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/22/2024] [Accepted: 02/02/2025] [Indexed: 03/04/2025] Open
Abstract
Renal function can be perturbed by a range of stimuli that cause cellular injury and inflammation in the kidney. These injurious and inflammatory processes are typically dynamic and progressive, involving the actions of highly migratory cells such as leukocytes and cellular responses that occur over time spans ranging from seconds to weeks. Understanding these dynamic responses has entailed the use of imaging technologies that allow visualization and capture of events over different time spans, ideally in intact organs in live, experimental animals. The technique that allows this is intravital imaging. Intravital imaging, particularly multiphoton intravital microscopy, has been crucial to the investigation of dynamic physiological and pathophysiological processes in the kidney for many years, driving key developments in our understanding of renal (patho)physiology. This includes the mechanisms of ultrafiltrate generation, the response to acute kidney injury, and how inflammatory leukocytes are recruited to and cause injury in the kidney. This review describes the key studies that have applied intravital imaging to the investigation of models of inflammatory renal disease. The responses examined include those restricted to the glomerulus and the effects of acute kidney injury on the tubulointerstitium. Future innovations and directions in this field of research are also discussed.
Collapse
Affiliation(s)
- Michael J Hickey
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, Victoria, Australia
| | - Vaishnavi Sudhakar
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
3
|
Costa A, Hunkler HJ, Chatterjee S, Cushman S, Hilbold E, Xiao K, Lu D, Leonardy J, Juchem M, Sansonetti M, Hoepfner J, Thum T, Bär C. A reporter system for live cell tracking of human cardiomyocyte proliferation. Cardiovasc Res 2024; 120:1660-1663. [PMID: 39177246 PMCID: PMC11587551 DOI: 10.1093/cvr/cvae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/03/2024] [Accepted: 06/19/2024] [Indexed: 08/24/2024] Open
Affiliation(s)
- Alessia Costa
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
- Centre for Translational Regenerative Medicine, Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
| | - Hannah Jill Hunkler
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
| | - Shambhabi Chatterjee
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
- Centre for Translational Regenerative Medicine, Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs Str.1, Hannover 30625, Germany
| | - Sarah Cushman
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
| | - Erika Hilbold
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
| | - Ke Xiao
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs Str.1, Hannover 30625, Germany
| | - Dongchao Lu
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
- Centre for Translational Regenerative Medicine, Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
| | - Julia Leonardy
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
| | - Malte Juchem
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs Str.1, Hannover 30625, Germany
| | - Marida Sansonetti
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
| | - Jeannine Hoepfner
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
- Centre for Translational Regenerative Medicine, Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
- Centre for Translational Regenerative Medicine, Hannover Medical School, Carl Neuberg Str.1, Hannover 30625, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs Str.1, Hannover 30625, Germany
| |
Collapse
|
4
|
Rice G, Farrelly O, Huang S, Kuri P, Curtis E, Ohman L, Li N, Lengner C, Lee V, Rompolas P. Sox9 marks limbal stem cells and is required for asymmetric cell fate switch in the corneal epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588195. [PMID: 38645161 PMCID: PMC11030424 DOI: 10.1101/2024.04.08.588195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Adult tissues with high cellular turnover require a balance between stem cell renewal and differentiation, yet the mechanisms underlying this equilibrium are unclear. The cornea exhibits a polarized lateral flow of progenitors from the peripheral stem cell niche to the center; attributed to differences in cellular fate. To identify genes that are critical for regulating the asymmetric fates of limbal stem cells and their transient amplified progeny in the central cornea, we utilized an in vivo cell cycle reporter to isolate proliferating basal cells across the anterior ocular surface epithelium and performed single-cell transcriptional analysis. This strategy greatly increased the resolution and revealed distinct basal cell identities with unique expression profiles of structural genes and transcription factors. We focused on Sox9; a transcription factor implicated in stem cell regulation across various organs. Sox9 was found to be differentially expressed between limbal stem cells and their progeny in the central corneal. Lineage tracing analysis confirmed that Sox9 marks long-lived limbal stem cells and conditional deletion led to abnormal differentiation and squamous metaplasia in the central cornea. These data suggest a requirement for Sox9 for the switch to asymmetric fate and commitment toward differentiation, as transient cells exit the limbal niche. By inhibiting terminal differentiation of corneal progenitors and forcing them into perpetual symmetric divisions, we replicated the Sox9 loss-of-function phenotype. Our findings reveal an essential role for Sox9 for the spatial regulation of asymmetric fate in the corneal epithelium that is required to sustain tissue homeostasis.
Collapse
|
5
|
Martins LR, Sieverling L, Michelhans M, Schiller C, Erkut C, Grünewald TGP, Triana S, Fröhling S, Velten L, Glimm H, Scholl C. Single-cell division tracing and transcriptomics reveal cell types and differentiation paths in the regenerating lung. Nat Commun 2024; 15:2246. [PMID: 38472236 DOI: 10.1038/s41467-024-46469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Understanding the molecular and cellular processes involved in lung epithelial regeneration may fuel the development of therapeutic approaches for lung diseases. We combine mouse models allowing diphtheria toxin-mediated damage of specific epithelial cell types and parallel GFP-labeling of functionally dividing cells with single-cell transcriptomics to characterize the regeneration of the distal lung. We uncover cell types, including Krt13+ basal and Krt15+ club cells, detect an intermediate cell state between basal and goblet cells, reveal goblet cells as actively dividing progenitor cells, and provide evidence that adventitial fibroblasts act as supporting cells in epithelial regeneration. We also show that diphtheria toxin-expressing cells can persist in the lung, express specific inflammatory factors, and transcriptionally resemble a previously undescribed population in the lungs of COVID-19 patients. Our study provides a comprehensive single-cell atlas of the distal lung that characterizes early transcriptional and cellular responses to concise epithelial injury, encompassing proliferation, differentiation, and cell-to-cell interactions.
Collapse
Affiliation(s)
- Leila R Martins
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany.
| | - Lina Sieverling
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Translational Medical Oncology, DKFZ, Heidelberg, Germany
| | - Michelle Michelhans
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Translational Medical Oncology, DKFZ, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Chiara Schiller
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University Hospital and Heidelberg University, Heidelberg, Germany
| | - Cihan Erkut
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas G P Grünewald
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research, DKFZ, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Sergio Triana
- Structural and Computational Biology, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Broad Institute of Harvard and MIT, Cambridge, USA
- Department of Chemistry, Institute for Medical Engineering and Sciences (IMES), and Koch Institute for Integrative Cancer Research, MIT, Cambridge, USA
| | - Stefan Fröhling
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Translational Medical Oncology, DKFZ, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Lars Velten
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Hanno Glimm
- Department for Translational Medical Oncology, National Center for Tumor Diseases Dresden (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Translational Functional Cancer Genomics, DKFZ, Heidelberg, Germany
- DKTK, partner site Dresden, Dresden, Germany
| | - Claudia Scholl
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
6
|
Geller E, Noble MA, Morales M, Gockley J, Emera D, Uebbing S, Cotney JL, Noonan JP. Massively parallel disruption of enhancers active in human neural stem cells. Cell Rep 2024; 43:113693. [PMID: 38271204 PMCID: PMC11078116 DOI: 10.1016/j.celrep.2024.113693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 11/02/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
Changes in gene regulation have been linked to the expansion of the human cerebral cortex and to neurodevelopmental disorders, potentially by altering neural progenitor proliferation. However, the effects of genetic variation within regulatory elements on neural progenitors remain obscure. We use sgRNA-Cas9 screens in human neural stem cells (hNSCs) to disrupt 10,674 genes and 26,385 conserved regions in 2,227 enhancers active in the developing human cortex and determine effects on proliferation. Genes with proliferation phenotypes are associated with neurodevelopmental disorders and show biased expression in specific fetal human brain neural progenitor populations. Although enhancer disruptions overall have weaker effects than gene disruptions, we identify enhancer disruptions that severely alter hNSC self-renewal. Disruptions in human accelerated regions, implicated in human brain evolution, also alter proliferation. Integrating proliferation phenotypes with chromatin interactions reveals regulatory relationships between enhancers and their target genes contributing to neurogenesis and potentially to human cortical evolution.
Collapse
Affiliation(s)
- Evan Geller
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mark A Noble
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Matheo Morales
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jake Gockley
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Deena Emera
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Severin Uebbing
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Justin L Cotney
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - James P Noonan
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
7
|
Kobiita A, Silva PN, Schmid MW, Stoffel M. FoxM1 coordinates cell division, protein synthesis, and mitochondrial activity in a subset of β cells during acute metabolic stress. Cell Rep 2023; 42:112986. [PMID: 37590136 DOI: 10.1016/j.celrep.2023.112986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/06/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
Pancreatic β cells display functional and transcriptional heterogeneity in health and disease. The sequence of events leading to β cell heterogeneity during metabolic stress is poorly understood. Here, we characterize β cell responses to early metabolic stress in vivo by employing RNA sequencing (RNA-seq), assay for transposase-accessible chromatin with sequencing (ATAC-seq), single-cell RNA-seq (scRNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq), and real-time imaging to decipher temporal events of chromatin remodeling and gene expression regulating the unfolded protein response (UPR), protein synthesis, mitochondrial function, and cell-cycle progression. We demonstrate that a subpopulation of β cells with active UPR, decreased protein synthesis, and insulin secretary capacities is more susceptible to proliferation after insulin depletion. Alleviation of endoplasmic reticulum (ER) stress precedes the progression of the cell cycle and mitosis and ensures appropriate insulin synthesis. Furthermore, metabolic stress rapidly activates key transcription factors including FoxM1, which impacts on proliferative and quiescent β cells by regulating protein synthesis, ER stress, and mitochondrial activity via direct repression of mitochondrial-encoded genes.
Collapse
Affiliation(s)
- Ahmad Kobiita
- Institute of Molecular Health Sciences, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Pamuditha N Silva
- Institute of Molecular Health Sciences, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Marc W Schmid
- MWSchmid GmbH, Hauptstrasse 34, 8750 Glarus, Switzerland
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland; Medical Faculty, Universitäts-Spital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland.
| |
Collapse
|
8
|
Bordoni L, Kristensen AM, Sardella D, Kidmose H, Pohl L, Krag SRP, Schiessl IM. Longitudinal tracking of acute kidney injury reveals injury propagation along the nephron. Nat Commun 2023; 14:4407. [PMID: 37479698 PMCID: PMC10362041 DOI: 10.1038/s41467-023-40037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023] Open
Abstract
Acute kidney injury (AKI) is an important risk factor for chronic kidney disease (CKD), but the underlying mechanisms of failed tubule repair and AKI-CKD transition are incompletely understood. In this study, we aimed for dynamic tracking of tubule injury and remodeling to understand if focal injury upon AKI may spread over time. Here, we present a model of AKI, in which we rendered only half of the kidney ischemic. Using serial intravital 2-photon microscopy and genetic identification of cycling cells, we tracked dynamic tissue remodeling in post- and non-ischemic kidney regions simultaneously and over 3 weeks. Spatial and temporal analysis of cycling cells relative to initial necrotic cell death demonstrated pronounced injury propagation and expansion into non-necrotic tissue regions, which predicted tubule atrophy with epithelial VCAM1 expression. In summary, our longitudinal analyses of tubule injury, remodeling, and fate provide important insights into AKI pathology.
Collapse
Affiliation(s)
- Luca Bordoni
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Donato Sardella
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Hanne Kidmose
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Layla Pohl
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
9
|
Hammond T, Sage J. Monitoring the Cell Cycle of Tumor Cells in Mouse Models of Human Cancer. Cold Spring Harb Perspect Med 2023; 13:a041383. [PMID: 37460156 PMCID: PMC10691483 DOI: 10.1101/cshperspect.a041383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Cell division is obligatory to tumor growth. However, both cancer cells and noncancer cells in tumors can be found in distinct stages of the cell cycle, which may inform the growth potential of these tumors, their propensity to metastasize, and their response to therapy. Hence, it is of utmost importance to monitor the cell cycle of tumor cells. Here we discuss well-established methods and new genetic advances to track the cell cycle of tumor cells in mouse models of human cancer. We also review recent genetic studies investigating the role of the cell-cycle machinery in the growth of tumors in vivo, with a focus on the machinery regulating the G1/S transition of the cell cycle.
Collapse
Affiliation(s)
- Taylar Hammond
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
- Department of Biology, and Stanford University, Stanford, California 94305, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
10
|
Du Y, Zhang W, Qiu H, Xiao C, Shi J, Reid LM, He Z. Mouse Models of Liver Parenchyma Injuries and Regeneration. Front Cell Dev Biol 2022; 10:903740. [PMID: 35721478 PMCID: PMC9198899 DOI: 10.3389/fcell.2022.903740] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Mice have genetic and physiological similarities with humans and a well-characterized genetic background that is easy to manipulate. Murine models have become the most favored, robust mammalian systems for experimental analyses of biological processes and disease conditions due to their low cost, rapid reproduction, a wealth of mouse strains with defined genetic conditions (both native ones as well as ones established experimentally), and high reproducibility with respect to that which can be done in experimental studies. In this review, we focus on murine models for liver, an organ with renown regenerative capacity and the organ most central to systemic, complex metabolic and physiological functions for mammalian hosts. Establishment of murine models has been achieved for all aspects of studies of normal liver, liver diseases, liver injuries, and regenerative repair mechanisms. We summarize key information on current mouse systems that partially model facets of clinical scenarios, particularly those associated with drug-induced acute or chronic liver injuries, dietary related, non-alcoholic liver disease (NAFLD), hepatitis virus infectious chronic liver diseases, and autoimmune hepatitis (AIH). In addition, we also include mouse models that are suitable for studying liver cancers (e.g., hepatocellular carcinomas), the aging process (senescence, apoptosis), and various types of liver injuries and regenerative processes associated with them.
Collapse
Affiliation(s)
- Yuan Du
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wencheng Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
| | - Hua Qiu
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Canjun Xiao
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
| | - Jun Shi
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
- The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Zhiying He, ; Lola M. Reid, , ; Jun Shi,
| | - Lola M. Reid
- Departments of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, United States
- *Correspondence: Zhiying He, ; Lola M. Reid, , ; Jun Shi,
| | - Zhiying He
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- *Correspondence: Zhiying He, ; Lola M. Reid, , ; Jun Shi,
| |
Collapse
|
11
|
Porukala M, Vinod PK. Systems-level analysis of transcriptome reorganization during liver regeneration. Mol Omics 2022; 18:315-327. [DOI: 10.1039/d1mo00382h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tissue homeostasis and regeneration depend on the reversible transitions between quiescence (G0) and proliferation. The liver has a remarkable capacity to regenerate after injury or resection by cell growth and...
Collapse
|
12
|
Zhu B, Wu Y, Huang S, Zhang R, Son YM, Li C, Cheon IS, Gao X, Wang M, Chen Y, Zhou X, Nguyen Q, Phan AT, Behl S, Taketo MM, Mack M, Shapiro VS, Zeng H, Ebihara H, Mullon JJ, Edell ES, Reisenauer JS, Demirel N, Kern RM, Chakraborty R, Cui W, Kaplan MH, Zhou X, Goldrath AW, Sun J. Uncoupling of macrophage inflammation from self-renewal modulates host recovery from respiratory viral infection. Immunity 2021; 54:1200-1218.e9. [PMID: 33951416 PMCID: PMC8192557 DOI: 10.1016/j.immuni.2021.04.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/08/2021] [Accepted: 03/31/2021] [Indexed: 12/18/2022]
Abstract
Tissue macrophages self-renew during homeostasis and produce inflammatory mediators upon microbial infection. We examined the relationship between proliferative and inflammatory properties of tissue macrophages by defining the impact of the Wnt/β-catenin pathway, a central regulator of self-renewal, in alveolar macrophages (AMs). Activation of β-catenin by Wnt ligand inhibited AM proliferation and stemness, but promoted inflammatory activity. In a murine influenza viral pneumonia model, β-catenin-mediated AM inflammatory activity promoted acute host morbidity; in contrast, AM proliferation enabled repopulation of reparative AMs and tissue recovery following viral clearance. Mechanistically, Wnt treatment promoted β-catenin-HIF-1α interaction and glycolysis-dependent inflammation while suppressing mitochondrial metabolism and thereby, AM proliferation. Differential HIF-1α activities distinguished proliferative and inflammatory AMs in vivo. This β-catenin-HIF-1α axis was conserved in human AMs and enhanced HIF-1α expression associated with macrophage inflammation in COVID-19 patients. Thus, inflammatory and reparative activities of lung macrophages are regulated by β-catenin-HIF-1α signaling, with implications for the treatment of severe respiratory diseases.
Collapse
Affiliation(s)
- Bibo Zhu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Yue Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Su Huang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Ruixuan Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Young Min Son
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Chaofan Li
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - In Su Cheon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Xiaochen Gao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Min Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Yao Chen
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Wauwatosa, WI 53226, USA
| | - Xian Zhou
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Division of Rheumatology, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Quynh Nguyen
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anthony T Phan
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Supriya Behl
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - M Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Virginia S Shapiro
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Hu Zeng
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Division of Rheumatology, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Hideki Ebihara
- Department of Molecular Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - John J Mullon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Eric S Edell
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Janani S Reisenauer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Nadir Demirel
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Ryan M Kern
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Rana Chakraborty
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Weiguo Cui
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Wauwatosa, WI 53226, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ananda W Goldrath
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jie Sun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
| |
Collapse
|
13
|
Pettinato AM, Yoo D, VanOudenhove J, Chen YS, Cohn R, Ladha FA, Yang X, Thakar K, Romano R, Legere N, Meredith E, Robson P, Regnier M, Cotney JL, Murry CE, Hinson JT. Sarcomere function activates a p53-dependent DNA damage response that promotes polyploidization and limits in vivo cell engraftment. Cell Rep 2021; 35:109088. [PMID: 33951429 PMCID: PMC8161465 DOI: 10.1016/j.celrep.2021.109088] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/11/2021] [Accepted: 04/14/2021] [Indexed: 12/21/2022] Open
Abstract
Human cardiac regeneration is limited by low cardiomyocyte replicative rates and progressive polyploidization by unclear mechanisms. To study this process, we engineer a human cardiomyocyte model to track replication and polyploidization using fluorescently tagged cyclin B1 and cardiac troponin T. Using time-lapse imaging, in vitro cardiomyocyte replication patterns recapitulate the progressive mononuclear polyploidization and replicative arrest observed in vivo. Single-cell transcriptomics and chromatin state analyses reveal that polyploidization is preceded by sarcomere assembly, enhanced oxidative metabolism, a DNA damage response, and p53 activation. CRISPR knockout screening reveals p53 as a driver of cell-cycle arrest and polyploidization. Inhibiting sarcomere function, or scavenging ROS, inhibits cell-cycle arrest and polyploidization. Finally, we show that cardiomyocyte engraftment in infarcted rat hearts is enhanced 4-fold by the increased proliferation of troponin-knockout cardiomyocytes. Thus, the sarcomere inhibits cell division through a DNA damage response that can be targeted to improve cardiomyocyte replacement strategies.
Collapse
Affiliation(s)
- Anthony M Pettinato
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA
| | - Dasom Yoo
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| | | | - Yu-Sheng Chen
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Rachel Cohn
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Feria A Ladha
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA
| | - Xiulan Yang
- Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Ketan Thakar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Robert Romano
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Nicolas Legere
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Emily Meredith
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| | - Justin L Cotney
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA
| | - Charles E Murry
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Pathology, University of Washington, Seattle, WA 98109, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA
| | - J Travis Hinson
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
| |
Collapse
|
14
|
Michalopoulos GK, Bhushan B. Liver regeneration: biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol 2021; 18:40-55. [PMID: 32764740 DOI: 10.1038/s41575-020-0342-4] [Citation(s) in RCA: 549] [Impact Index Per Article: 137.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2020] [Indexed: 02/08/2023]
Abstract
The liver is the only solid organ that uses regenerative mechanisms to ensure that the liver-to-bodyweight ratio is always at 100% of what is required for body homeostasis. Other solid organs (such as the lungs, kidneys and pancreas) adjust to tissue loss but do not return to 100% of normal. The current state of knowledge of the regenerative pathways that underlie this 'hepatostat' will be presented in this Review. Liver regeneration from acute injury is always beneficial and has been extensively studied. Experimental models that involve partial hepatectomy or chemical injury have revealed extracellular and intracellular signalling pathways that are used to return the liver to equivalent size and weight to those prior to injury. On the other hand, chronic loss of hepatocytes, which can occur in chronic liver disease of any aetiology, often has adverse consequences, including fibrosis, cirrhosis and liver neoplasia. The regenerative activities of hepatocytes and cholangiocytes are typically characterized by phenotypic fidelity. However, when regeneration of one of the two cell types fails, hepatocytes and cholangiocytes function as facultative stem cells and transdifferentiate into each other to restore normal liver structure. Liver recolonization models have demonstrated that hepatocytes have an unlimited regenerative capacity. However, in normal liver, cell turnover is very slow. All zones of the resting liver lobules have been equally implicated in the maintenance of hepatocyte and cholangiocyte populations in normal liver.
Collapse
Affiliation(s)
- George K Michalopoulos
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Bharat Bhushan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Nolte MJ, Jing P, Dewey CN, Payseur BA. Giant Island Mice Exhibit Widespread Gene Expression Changes in Key Metabolic Organs. Genome Biol Evol 2020; 12:1277-1301. [PMID: 32531054 PMCID: PMC7487164 DOI: 10.1093/gbe/evaa118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2020] [Indexed: 12/02/2022] Open
Abstract
Island populations repeatedly evolve extreme body sizes, but the genomic basis of this pattern remains largely unknown. To understand how organisms on islands evolve gigantism, we compared genome-wide patterns of gene expression in Gough Island mice, the largest wild house mice in the world, and mainland mice from the WSB/EiJ wild-derived inbred strain. We used RNA-seq to quantify differential gene expression in three key metabolic organs: gonadal adipose depot, hypothalamus, and liver. Between 4,000 and 8,800 genes were significantly differentially expressed across the evaluated organs, representing between 20% and 50% of detected transcripts, with 20% or more of differentially expressed transcripts in each organ exhibiting expression fold changes of at least 2×. A minimum of 73 candidate genes for extreme size evolution, including Irs1 and Lrp1, were identified by considering differential expression jointly with other data sets: 1) genomic positions of published quantitative trait loci for body weight and growth rate, 2) whole-genome sequencing of 16 wild-caught Gough Island mice that revealed fixed single-nucleotide differences between the strains, and 3) publicly available tissue-specific regulatory elements. Additionally, patterns of differential expression across three time points in the liver revealed that Arid5b potentially regulates hundreds of genes. Functional enrichment analyses pointed to cell cycling, mitochondrial function, signaling pathways, inflammatory response, and nutrient metabolism as potential causes of weight accumulation in Gough Island mice. Collectively, our results indicate that extensive gene regulatory evolution in metabolic organs accompanied the rapid evolution of gigantism during the short time house mice have inhabited Gough Island.
Collapse
Affiliation(s)
- Mark J Nolte
- Laboratory of Genetics, University of Wisconsin - Madison
| | - Peicheng Jing
- Laboratory of Genetics, University of Wisconsin - Madison
| | - Colin N Dewey
- Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin - Madison
| |
Collapse
|
16
|
Geiger AE, Daughtry MR, Yen C, Kirkpatrick LT, Shi H, Gerrard DE. Dual effects of obesity on satellite cells and muscle regeneration. Physiol Rep 2020; 8:e14511. [PMID: 32776502 PMCID: PMC7415910 DOI: 10.14814/phy2.14511] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity is a complex metabolic disorder that often leads to a decrease in insulin sensitivity, chronic inflammation, and overall decline in human health and well-being. In mouse skeletal muscle, obesity has been shown to impair muscle regeneration after injury; however, the mechanism underlying these changes has yet to be determined. To test whether there is a negative impact of obesity on satellite cell (SC) decisions and behaviors, we fed C57BL/6 mice normal chow (NC, control) or a high-fat diet (HFD) for 10 weeks and performed SC proliferation and differentiation assays in vitro. SCs from HFD mice formed colonies with smaller size (p < .001) compared to those from NC mice, and this decreased proliferation was confirmed (p < .05) by BrdU incorporation. Moreover, in vitro assays showed that HFD SCs exhibited diminished (p < .001) fusion capacity compared to NC SCs. In single fiber explants, a higher ratio of SCs experienced apoptotic events (p < .001) in HFD mice compared to that of NC-fed mice. In vivo lineage tracing using H2B-GFP mice showed that SCs from HFD treatment also cycled faster (p < .001) than their NC counterparts. In spite of all these autonomous cellular effects, obesity as triggered by high-fat feeding did not significantly impair muscle regeneration in vivo, as reflected by the comparable cross-sectional area (p > .05) of the regenerating fibers in HFD and NC muscles, suggesting that other factors may mitigate the negative impact of obesity on SCs properties.
Collapse
Affiliation(s)
- Ashley E. Geiger
- Department of Animal and Poultry SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
| | - Morgan R. Daughtry
- Department of Animal and Poultry SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
| | - Con‐Ning Yen
- Department of Animal and Poultry SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
| | - Laila T. Kirkpatrick
- Department of Animal and Poultry SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
| | - Hao Shi
- Department of Animal and Poultry SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
| | - David E. Gerrard
- Department of Animal and Poultry SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
| |
Collapse
|
17
|
Makarevich PI, Efimenko AY, Tkachuk VA. Biochemical Regulation of Regenerative Processes by Growth Factors and Cytokines: Basic Mechanisms and Relevance for Regenerative Medicine. BIOCHEMISTRY (MOSCOW) 2020; 85:11-26. [PMID: 32079514 DOI: 10.1134/s0006297920010022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Regenerative medicine that had emerged as a scientific and medical discipline at end of 20th century uses cultured cells and tissue-engineered structures for transplantation into human body to restore lost or damaged organs. However, practical achievements in this field are far from the promising results obtained in laboratory experiments. Searching for new directions has made apparent that successful solution of practical problems is impossible without understanding the fundamental principles of the regulation of development, renewal, and regeneration of human tissues. These aspects have been extensively investigated by cell biologists, physiologists, and biochemists working in a specific research area often referred to as regenerative biology. It is known that during regeneration, growth factors, cytokines, and hormones act beyond the regulation of individual cell functions, but rather activate specific receptor systems and control pivotal tissue repair processes, including cell proliferation and differentiation. These events require numerous coordinated stimuli and, therefore, are practically irreproducible using single proteins or low-molecular-weight compounds, i.e., cannot be directed by applying classical pharmacological approaches. Our review summarizes current concepts on the regulatory mechanisms of renewal and regeneration of human tissues with special attention to certain general biological and evolutionary aspects. We focus on the biochemical regulatory mechanisms of regeneration, in particular, the role of growth factors and cytokines and their receptor systems. In a separate section, we discussed practical approaches for activating regeneration using small molecules and stem cell secretome containing a broad repertoire of growth factors, cytokines, peptides, and extracellular vesicles.
Collapse
Affiliation(s)
- P I Makarevich
- Lomonosov Moscow State University, Institute for Regenerative Medicine, Medical Research and Education Center, Moscow, 119991, Russia. .,Lomonosov Moscow State University, Faculty of Fundamental Medicine, Moscow, 119991, Russia
| | - A Yu Efimenko
- Lomonosov Moscow State University, Institute for Regenerative Medicine, Medical Research and Education Center, Moscow, 119991, Russia.,Lomonosov Moscow State University, Faculty of Fundamental Medicine, Moscow, 119991, Russia
| | - V A Tkachuk
- Lomonosov Moscow State University, Institute for Regenerative Medicine, Medical Research and Education Center, Moscow, 119991, Russia.,Lomonosov Moscow State University, Faculty of Fundamental Medicine, Moscow, 119991, Russia.,Institute of Experimental Cardiology, National Medical Research Center of Cardiology, Moscow, 121552, Russia
| |
Collapse
|
18
|
Wang L, Sun J, Lin L, Fu Y, Alenius H, Lindsey K, Chen C. Silver nanoparticles regulate Arabidopsis root growth by concentration-dependent modification of reactive oxygen species accumulation and cell division. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110072. [PMID: 31864120 DOI: 10.1016/j.ecoenv.2019.110072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/02/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used in industry, increasing their potential level in the environment. Plant root, the key organ absorbing water and nutrients, are directly exposed to the soil. Little is known about AgNP-mediated effects on plant root growth. Here, we show that AgNPs are absorbed by root and mostly localized in cell wall and intercellular spaces, which affect root growth in a dose-dependent manner. Increased root elongation was observed when Arabidopsis was exposed to an AgNP concentration of 50 mg L-1, while decreased elongation was observed at concentrations of equal to or more than 100 mg L-1. Similarly, there was an increase in the number of cells in the root apical meristem and also in cell-cycle related gene expression (CYCB1;1) at 50 mg L-1 AgNP, while both cell number and gene expression declined at concentrations equal to or more than 100 mg L-1. This indicates that AgNPs regulate root growth by affecting cell division. Reactive oxygen species (ROS) related genes were deferentially expressed after 50 mg L-1 AgNP treatment. Further studies showed that AgNPs induce ROS accumulation in root tips in a dose-dependent manner. KI treatment, which scavenges H2O2, partially rescued AgNP-inhibited root growth. The application 50 mg L-1 AgNPs also rescued the root length phenotype of upb1-1, a mutant with slightly higher ROS levels and longer root length. Our results revealed that ROS mediate the dose-dependent effects of AgNPs on root growth. These findings provide new insights into mechanisms underlying how AgNPs regulate root growth in Arabidopsis.
Collapse
Affiliation(s)
- Likai Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juzhi Sun
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Enshi Autonomous Prefecture Academy of Agricultural Sciences, Shizhou Road No.517, Enshi, 445000, Hubei, China
| | - Luming Lin
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yajuan Fu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Harri Alenius
- Unit of Systems Toxicology, Nanosafety Research Centre, Finnish Institute of Occupational Health, Topeliuksenkatu 41aA, FIN-00250, Helsinki, Finland
| | - Keith Lindsey
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
19
|
|
20
|
Mandelbaum AD, Kredo-Russo S, Aronowitz D, Myers N, Yanowski E, Klochendler A, Swisa A, Dor Y, Hornstein E. miR-17-92 and miR-106b-25 clusters regulate beta cell mitotic checkpoint and insulin secretion in mice. Diabetologia 2019; 62:1653-1666. [PMID: 31187215 DOI: 10.1007/s00125-019-4916-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/13/2019] [Indexed: 01/07/2023]
Abstract
AIMS/HYPOTHESIS Adult beta cells in the pancreas are the sole source of insulin in the body. Beta cell loss or increased demand for insulin impose metabolic challenges because adult beta cells are generally quiescent and infrequently re-enter the cell division cycle. The aim of this study is to test the hypothesis that a family of proto-oncogene microRNAs that includes miR-17-92 and miR-106b-25 clusters regulates beta cell proliferation or function in the adult endocrine pancreas. METHODS To elucidate the role of miR-17-92 and miR-106b-25 clusters in beta cells, we used a conditional miR-17-92/miR-106b-25 knockout mouse model. We employed metabolic assays in vivo and ex vivo, together with advanced microscopy of pancreatic sections, bioinformatics, mass spectrometry and next generation sequencing, to examine potential targets of miR-17-92/miR-106b-25, by which they might regulate beta cell proliferation and function. RESULTS We demonstrate that miR-17-92/miR-106b-25 regulate the adult beta cell mitotic checkpoint and that miR-17-92/miR-106b-25 deficiency results in reduction in beta cell mass in vivo. Furthermore, we reveal a critical role for miR-17-92/miR-106b-25 in glucose homeostasis and in controlling insulin secretion. We identify protein kinase A as a new relevant molecular pathway downstream of miR-17-92/miR-106b-25 in control of adult beta cell division and glucose homeostasis. CONCLUSIONS/INTERPRETATION The study contributes to the understanding of proto-oncogene miRNAs in the normal, untransformed endocrine pancreas and illustrates new genetic means for regulation of beta cell mitosis and function by non-coding RNAs. DATA AVAILABILITY Sequencing data that support the findings of this study have been deposited in GEO with the accession code GSE126516.
Collapse
Affiliation(s)
- Amitai D Mandelbaum
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon Kredo-Russo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Danielle Aronowitz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nadav Myers
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Yanowski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Agnes Klochendler
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Avital Swisa
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
21
|
Zhang Y, Gago-Lopez N, Li N, Zhang Z, Alver N, Liu Y, Martinson AM, Mehri A, MacLellan WR. Single-cell imaging and transcriptomic analyses of endogenous cardiomyocyte dedifferentiation and cycling. Cell Discov 2019; 5:30. [PMID: 31231540 PMCID: PMC6547664 DOI: 10.1038/s41421-019-0095-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 11/16/2022] Open
Abstract
While it is recognized that there are low levels of new cardiomyocyte (CM) formation throughout life, the source of these new CM generates much debate. One hypothesis is that these new CMs arise from the proliferation of existing CMs potentially after dedifferentiation although direct evidence for this is lacking. Here we explore the mechanisms responsible for CM renewal in vivo using multi-reporter transgenic mouse models featuring efficient adult CM (ACM) genetic cell fate mapping and real-time cardiomyocyte lineage and dedifferentiation reporting. Our results demonstrate that non-myocytes (e.g., cardiac progenitor cells) contribute negligibly to new ACM formation at baseline or after cardiac injury. In contrast, we found a significant increase in dedifferentiated, cycling CMs in post-infarct hearts. ACM cell cycling was enhanced within the dedifferentiated CM population. Single-nucleus transcriptomic analysis demonstrated that CMs identified with dedifferentiation reporters had significant down-regulation in gene networks for cardiac hypertrophy, contractile, and electrical function, with shifts in metabolic pathways, but up-regulation in signaling pathways and gene sets for active cell cycle, proliferation, and cell survival. The results demonstrate that dedifferentiation may be an important prerequisite for CM proliferation and explain the limited but measurable cardiac myogenesis seen after myocardial infarction (MI).
Collapse
Affiliation(s)
- Yiqiang Zhang
- 1Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA USA.,2Center for Cardiovascular Biology, University of Washington, Seattle, WA USA.,3Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
| | - Nuria Gago-Lopez
- 1Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA USA.,2Center for Cardiovascular Biology, University of Washington, Seattle, WA USA.,3Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
| | - Ning Li
- 1Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA USA.,2Center for Cardiovascular Biology, University of Washington, Seattle, WA USA.,3Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA.,4State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenhe Zhang
- 1Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA USA.,2Center for Cardiovascular Biology, University of Washington, Seattle, WA USA.,3Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
| | - Naima Alver
- 1Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA USA.,2Center for Cardiovascular Biology, University of Washington, Seattle, WA USA.,3Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
| | - Yonggang Liu
- 1Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA USA.,2Center for Cardiovascular Biology, University of Washington, Seattle, WA USA.,3Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
| | - Amy M Martinson
- 2Center for Cardiovascular Biology, University of Washington, Seattle, WA USA.,3Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA.,5Department of Pathology, University of Washington, Seattle, WA USA
| | - Avin Mehri
- 1Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA USA.,2Center for Cardiovascular Biology, University of Washington, Seattle, WA USA.,3Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
| | - William Robb MacLellan
- 1Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA USA.,2Center for Cardiovascular Biology, University of Washington, Seattle, WA USA.,3Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA.,6Department of Bioengineering, University of Washington, Seattle, WA USA
| |
Collapse
|
22
|
Liu S, Li J, Wang T, Xu J, Liu Z, Wang H, Wei GH, Ianni A, Braun T, Yue S. Illumination of cell cycle progression by multi-fluorescent sensing system. Cell Cycle 2019; 18:1364-1378. [PMID: 31131683 DOI: 10.1080/15384101.2019.1618117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Multi-fluorescent imaging of cell cycle progression is essential for the study of cell proliferation in vitro and in vivo. However, there remain challenges, particularly to image cell cycle progression in living cell with available imaging techniques due to lacking the suitable probe. Here, we design a triple fluorescent sensors system making the cell cycle progression visible. Multi-fluorescent sensor shows the proliferating or proliferated cells with different colors. We thus generate the construct and adenovirus to probe cell cycle progression in living cell lines and primary cardiomyocytes. Furthermore, we create the knock-in transgenic mouse to monitor cell cycle progression in vivo. Together, the system can be applied to investigate cell proliferation or cell cycle progression in living cells and animals.
Collapse
Affiliation(s)
- Shuo Liu
- a State Key Laboratory of Medicinal Chemical Biology , Nankai University , Tianjin , China.,b School of Medicine , Nankai University , Tianjin , China
| | - Jun Li
- a State Key Laboratory of Medicinal Chemical Biology , Nankai University , Tianjin , China.,b School of Medicine , Nankai University , Tianjin , China
| | - Teng Wang
- a State Key Laboratory of Medicinal Chemical Biology , Nankai University , Tianjin , China.,b School of Medicine , Nankai University , Tianjin , China
| | - Jiawen Xu
- a State Key Laboratory of Medicinal Chemical Biology , Nankai University , Tianjin , China.,b School of Medicine , Nankai University , Tianjin , China
| | - Zhipei Liu
- c Department of Cardiac Development and Remodeling , Max-Planck-Institute for Heart and Lung Research , Bad Nauheim , Germany.,d Union Gene Test & Health Management Center , Tianjin , China
| | - Haobin Wang
- e Department of Breast & Thyroid Surgery , The third people's hospital of Chengdu; The Affiliated Hospital of Southwest Jiaotong University , Chengdu , China
| | - Gong-Hong Wei
- f Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine , University of Oulu , Oulu , Finland
| | - Alessandro Ianni
- c Department of Cardiac Development and Remodeling , Max-Planck-Institute for Heart and Lung Research , Bad Nauheim , Germany
| | - Thomas Braun
- c Department of Cardiac Development and Remodeling , Max-Planck-Institute for Heart and Lung Research , Bad Nauheim , Germany
| | - Shijing Yue
- a State Key Laboratory of Medicinal Chemical Biology , Nankai University , Tianjin , China.,b School of Medicine , Nankai University , Tianjin , China.,c Department of Cardiac Development and Remodeling , Max-Planck-Institute for Heart and Lung Research , Bad Nauheim , Germany
| |
Collapse
|
23
|
Lipps C, Klein F, Wahlicht T, Seiffert V, Butueva M, Zauers J, Truschel T, Luckner M, Köster M, MacLeod R, Pezoldt J, Hühn J, Yuan Q, Müller PP, Kempf H, Zweigerdt R, Dittrich-Breiholz O, Pufe T, Beckmann R, Drescher W, Riancho J, Sañudo C, Korff T, Opalka B, Rebmann V, Göthert JR, Alves PM, Ott M, Schucht R, Hauser H, Wirth D, May T. Expansion of functional personalized cells with specific transgene combinations. Nat Commun 2018. [PMID: 29520052 PMCID: PMC5843645 DOI: 10.1038/s41467-018-03408-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fundamental research and drug development for personalized medicine necessitates cell cultures from defined genetic backgrounds. However, providing sufficient numbers of authentic cells from individuals poses a challenge. Here, we present a new strategy for rapid cell expansion that overcomes current limitations. Using a small gene library, we expanded primary cells from different tissues, donors, and species. Cell-type-specific regimens that allow the reproducible creation of cell lines were identified. In depth characterization of a series of endothelial and hepatocytic cell lines confirmed phenotypic stability and functionality. Applying this technology enables rapid, efficient, and reliable production of unlimited numbers of personalized cells. As such, these cell systems support mechanistic studies, epidemiological research, and tailored drug development. Personalised medicine requires cell cultures from defined genetic backgrounds, but providing sufficient numbers of cells is a challenge. Here the authors develop gene cocktails to expand primary cells from a variety of different tissues and species, and show that expanded endothelial and hepatic cells retain properties of the differentiated phenotype.
Collapse
Affiliation(s)
- Christoph Lipps
- Model Systems for Infection and Immunity, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany.,Experimental Cardiology, Justus-Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Franziska Klein
- Department of Gene Regulation and Differentiation, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Tom Wahlicht
- Model Systems for Infection and Immunity, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Virginia Seiffert
- Department of Gene Regulation and Differentiation, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Milada Butueva
- Model Systems for Infection and Immunity, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | | | | | - Martin Luckner
- InSCREENeX GmbH, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Mario Köster
- Department of Gene Regulation and Differentiation, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Roderick MacLeod
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Jörn Pezoldt
- Experimental Immunology, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Jochen Hühn
- Experimental Immunology, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Qinggong Yuan
- Department of Gastroenterology, Hepatology, Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Translational Research Group Cell and Gene Therapy, Twincore - Centre for Experimental and Clinical Infection Research GmbH, Feodor-Lynen-Str. 7, 30625, Hannover, Germany
| | - Peter Paul Müller
- Department of Gene Regulation and Differentiation, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Henning Kempf
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, MHH, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, MHH, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | | | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University, 52074, Aachen, Germany
| | - Rainer Beckmann
- Department of Anatomy and Cell Biology, RWTH Aachen University, 52074, Aachen, Germany
| | - Wolf Drescher
- Department of Orthopaedics, Aachen University Hospital, RWTH Aachen University, Aachen, 52074, Germany.,Department of Orthopedic Surgery of the Lower Limb and Arthroplasty, Rummelsberg Hospital, Schwarzenbruck, 90592, Germany
| | - Jose Riancho
- Department of Internal Medicine, Hospital U.M. Valdecilla, University of Cantabria, IDIVAL, 39008, Santander, Spain
| | - Carolina Sañudo
- Department of Internal Medicine, Hospital U.M. Valdecilla, University of Cantabria, IDIVAL, 39008, Santander, Spain
| | - Thomas Korff
- Institute of Physiology and Pathophysiology, RG Blood Vessel Remodeling, University Heidelberg, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Bertram Opalka
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstr. 179, 45147, Essen, Germany
| | - Joachim R Göthert
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Paula M Alves
- Instituto de Biologia Experimental e Tecnologica, Universidade Nova de Lisboa, Oeiras, 2781-901, Portugal
| | - Michael Ott
- Department of Gastroenterology, Hepatology, Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Translational Research Group Cell and Gene Therapy, Twincore - Centre for Experimental and Clinical Infection Research GmbH, Feodor-Lynen-Str. 7, 30625, Hannover, Germany
| | - Roland Schucht
- InSCREENeX GmbH, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Hansjörg Hauser
- Department of Gene Regulation and Differentiation, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Dagmar Wirth
- Model Systems for Infection and Immunity, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany. .,Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Tobias May
- InSCREENeX GmbH, Inhoffenstr. 7, 38124, Braunschweig, Germany.
| |
Collapse
|
24
|
Huang L, Nazarova EV, Tan S, Liu Y, Russell DG. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J Exp Med 2018; 215:1135-1152. [PMID: 29500179 PMCID: PMC5881470 DOI: 10.1084/jem.20172020] [Citation(s) in RCA: 384] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/18/2018] [Accepted: 02/16/2018] [Indexed: 12/24/2022] Open
Abstract
This study by Huang et al. demonstrates that lung macrophages of differing ontogeny respond divergently to Mycobacterium tuberculosis infection in vivo. Alveolar macrophages and interstitial macrophages adopt different metabolic states that promote or control M. tuberculosis growth, respectively. To understand how infection by Mycobacterium tuberculosis (Mtb) is modulated by host cell phenotype, we characterized those host phagocytes that controlled or supported bacterial growth during early infection, focusing on the ontologically distinct alveolar macrophage (AM) and interstitial macrophage (IM) lineages. Using fluorescent Mtb reporter strains, we found that bacilli in AM exhibited lower stress and higher bacterial replication than those in IM. Interestingly, depletion of AM reduced bacterial burden, whereas depletion of IM increased bacterial burden. Transcriptomic analysis revealed that IMs were glycolytically active, whereas AMs were committed to fatty acid oxidation. Intoxication of infected mice with the glycolytic inhibitor, 2-deoxyglucose, decreased the number of IMs yet increased the bacterial burden in the lung. Furthermore, in in vitro macrophage infections, 2-deoxyglucose treatment increased bacterial growth, whereas the fatty acid oxidation inhibitor etomoxir constrained bacterial growth. We hypothesize that different macrophage lineages respond divergently to Mtb infection, with IMs exhibiting nutritional restriction and controlling bacterial growth and AMs representing a more nutritionally permissive environment.
Collapse
Affiliation(s)
- Lu Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Evgeniya V Nazarova
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
| | - Yancheng Liu
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
25
|
Single-cell transcriptomics of the developing lateral geniculate nucleus reveals insights into circuit assembly and refinement. Proc Natl Acad Sci U S A 2018; 115:E1051-E1060. [PMID: 29343640 PMCID: PMC5798372 DOI: 10.1073/pnas.1717871115] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neurons and nonneuronal cells in the developing brain dynamically regulate gene expression as neural connectivity is established. However, the specific gene programs activated in distinct cell populations during the assembly and refinement of many intact neuronal circuits have not been thoroughly characterized. In this study, we take advantage of recent advances in transcriptomic profiling techniques to characterize gene expression in the postnatal developing lateral geniculate nucleus (LGN) at single-cell resolution. Our data reveal that genes involved in brain development are dynamically regulated in all major cell types of the LGN, suggesting that the establishment of neural connectivity depends upon functional collaboration between multiple neuronal and nonneuronal cell types in this brain region. Coordinated changes in gene expression underlie the early patterning and cell-type specification of the central nervous system. However, much less is known about how such changes contribute to later stages of circuit assembly and refinement. In this study, we employ single-cell RNA sequencing to develop a detailed, whole-transcriptome resource of gene expression across four time points in the developing dorsal lateral geniculate nucleus (LGN), a visual structure in the brain that undergoes a well-characterized program of postnatal circuit development. This approach identifies markers defining the major LGN cell types, including excitatory relay neurons, oligodendrocytes, astrocytes, microglia, and endothelial cells. Most cell types exhibit significant transcriptional changes across development, dynamically expressing genes involved in distinct processes including retinotopic mapping, synaptogenesis, myelination, and synaptic refinement. Our data suggest that genes associated with synapse and circuit development are expressed in a larger proportion of nonneuronal cell types than previously appreciated. Furthermore, we used this single-cell expression atlas to identify the Prkcd-Cre mouse line as a tool for selective manipulation of relay neurons during a late stage of sensory-driven synaptic refinement. This transcriptomic resource provides a cellular map of gene expression across several cell types of the LGN, and offers insight into the molecular mechanisms of circuit development in the postnatal brain.
Collapse
|
26
|
Purification of replicating pancreatic β-cells for gene expression studies. Sci Rep 2017; 7:17515. [PMID: 29235543 PMCID: PMC5727529 DOI: 10.1038/s41598-017-17776-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 11/30/2017] [Indexed: 11/23/2022] Open
Abstract
β-cell proliferation is a rare event in adult pancreatic islets. To study the replication-related β-cell biology we designed a replicating β-cells sorting system for gene expression experiments. Replicating β-cells were identified by EdU incorporation and purified by flow cytometry. For β-cell separation islet cells were sorted by size, granularity and Newport Green fluorescence emission that was combined with emitted fluorescence for EdU-labelled replicating cells sorting. The purity of the resulting sorted populations was evaluated by insulin staining and EdU for β-cell identification and for replicating cells, respectively. Total RNA was isolated from purified cell-sorted populations for gene expression analysis. Cell sorting of dispersed islet cells resulted in 96.2% purity for insulin positivity in the collected β-cell fraction and 100% efficiency of the EdU-based cell separation. RNA integrity was similar between FACS-sorted replicating and quiescent β-cells. Global transcriptome analysis of replicating vs quiescent β-cells showed the expected enrichment of categories related to cell division and DNA replication. Indeed, key genes in the spindle check-point were the most upregulated genes in replicating β-cells. This work provides a method that allows for the isolation of replicating β-cells, a very scarce population in adult pancreatic islets.
Collapse
|
27
|
A large shRNA library approach identifies lncRNA Ntep as an essential regulator of cell proliferation. Cell Death Differ 2017; 25:307-318. [PMID: 29099486 PMCID: PMC5762845 DOI: 10.1038/cdd.2017.158] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/07/2017] [Accepted: 08/25/2017] [Indexed: 12/14/2022] Open
Abstract
The mammalian cell cycle is a complex and tightly controlled event. Myriads of different control mechanisms are involved in its regulation. Long non-coding RNAs (lncRNA) have emerged as important regulators of many cellular processes including cellular proliferation. However, a more global and unbiased approach to identify lncRNAs with importance for cell proliferation is missing. Here, we present a lentiviral shRNA library-based approach for functional lncRNA profiling. We validated our library approach in NIH3T3 (3T3) fibroblasts by identifying lncRNAs critically involved in cell proliferation. Using stringent selection criteria we identified lncRNA NR_015491.1 out of 3842 different RNA targets represented in our library. We termed this transcript Ntep (non-coding transcript essential for proliferation), as a bona fide lncRNA essential for cell cycle progression. Inhibition of Ntep in 3T3 and primary fibroblasts prevented normal cell growth and expression of key fibroblast markers. Mechanistically, we discovered that Ntep is important to activate P53 concomitant with increased apoptosis and cell cycle blockade in late G2/M. Our findings suggest Ntep to serve as an important regulator of fibroblast proliferation and function. In summary, our study demonstrates the applicability of an innovative shRNA library approach to identify long non-coding RNA functions in a massive parallel approach.
Collapse
|
28
|
Grelet S, McShane A, Geslain R, Howe PH. Pleiotropic Roles of Non-Coding RNAs in TGF-β-Mediated Epithelial-Mesenchymal Transition and Their Functions in Tumor Progression. Cancers (Basel) 2017; 9:cancers9070075. [PMID: 28671581 PMCID: PMC5532611 DOI: 10.3390/cancers9070075] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/21/2017] [Accepted: 06/30/2017] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a spatially- and temporally-regulated process involved in physiological and pathological transformations, such as embryonic development and tumor progression. While the role of TGF-β as an EMT-inducer has been extensively documented, the molecular mechanisms regulating this transition and their implications in tumor metastasis are still subjects of intensive debates and investigations. TGF-β regulates EMT through both transcriptional and post-transcriptional mechanisms, and recent advances underline the critical roles of non-coding RNAs in these processes. Although microRNAs and lncRNAs have been clearly identified as effectors of TGF-β-mediated EMT, the contributions of other atypical non-coding RNA species, such as piRNAs, snRNAs, snoRNAs, circRNAs, and even housekeeping tRNAs, have only been suggested and remain largely elusive. This review discusses the current literature including the most recent reports emphasizing the regulatory functions of non-coding RNA in TGF-β-mediated EMT, provides original experimental evidence, and advocates in general for a broader approach in the quest of new regulatory RNAs.
Collapse
Affiliation(s)
- Simon Grelet
- Department of Biochemistry and Molecular Biology, MUSC, Charleston, SC 29425, USA.
| | - Ariel McShane
- Laboratory of tRNA Biology, Department of Biology, College of Charleston, Charleston, SC 29424, USA.
| | - Renaud Geslain
- Laboratory of tRNA Biology, Department of Biology, College of Charleston, Charleston, SC 29424, USA.
| | - Philip H Howe
- Department of Biochemistry and Molecular Biology, MUSC, Charleston, SC 29425, USA.
| |
Collapse
|
29
|
Roichman A, Kanfi Y, Glazz R, Naiman S, Amit U, Landa N, Tinman S, Stein I, Pikarsky E, Leor J, Cohen HY. SIRT6 Overexpression Improves Various Aspects of Mouse Healthspan. J Gerontol A Biol Sci Med Sci 2017; 72:603-615. [PMID: 27519885 DOI: 10.1093/gerona/glw152] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/18/2016] [Indexed: 01/08/2023] Open
Abstract
The extension in human lifespan in the last century results in a significant increase in incidence of age related diseases. It is therefore crucial to identify key factors that control elderly healthspan. Similar to dietary restriction, mice overexpressing the NAD+ dependent protein deacylase SIRT6 (MOSES) live longer and have reduced IGF-1 levels. However, it is as yet unknown whether SIRT6 also affects various healthspan parameters. Here, a range of age related phenotypes was evaluated in MOSES mice. In comparison to their wild-type (WT) littermates, old MOSES mice showed amelioration of a variety of age-related disorders, including: improved glucose tolerance, younger hormonal profile, reduced age-related adipose inflammation and increased physical activity. The increased activity was accompanied with increased muscle AMP-activated protein kinase (AMPK) activity. Altogether, these results indicate that overexpression of SIRT6 in mice retards important aspects of the aging process and suggest SIRT6 to be a potential therapeutic target for the treatment of a set of age-related disorders.
Collapse
Affiliation(s)
- Asael Roichman
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Yariv Kanfi
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Renana Glazz
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Shoshana Naiman
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Uri Amit
- Tamman and Neufeld Cardiovascular Research Institute, Sheba Center of Regenerative Medicine, Sheba Medical Center, Tel Aviv University, Israel
| | - Natalie Landa
- Tamman and Neufeld Cardiovascular Research Institute, Sheba Center of Regenerative Medicine, Sheba Medical Center, Tel Aviv University, Israel
| | - Simon Tinman
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Ilan Stein
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Eli Pikarsky
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Jonathan Leor
- Tamman and Neufeld Cardiovascular Research Institute, Sheba Center of Regenerative Medicine, Sheba Medical Center, Tel Aviv University, Israel
| | - Haim Y Cohen
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
30
|
Lipps C, Badar M, Butueva M, Dubich T, Singh VV, Rau S, Weber A, Kracht M, Köster M, May T, Schulz TF, Hauser H, Wirth D. Proliferation status defines functional properties of endothelial cells. Cell Mol Life Sci 2017; 74:1319-1333. [PMID: 27853834 PMCID: PMC11107763 DOI: 10.1007/s00018-016-2417-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 10/31/2016] [Accepted: 11/09/2016] [Indexed: 12/21/2022]
Abstract
Homeostasis of solid tissue is characterized by a low proliferative activity of differentiated cells while special conditions like tissue damage induce regeneration and proliferation. For some cell types it has been shown that various tissue-specific functions are missing in the proliferating state, raising the possibility that their proliferation is not compatible with a fully differentiated state. While endothelial cells are important players in regenerating tissue as well as in the vascularization of tumors, the impact of proliferation on their features remains elusive. To examine cell features in dependence of proliferation, we established human endothelial cell lines in which proliferation is tightly controlled by a doxycycline-dependent, synthetic regulatory unit. We observed that uptake of macromolecules and establishment of cell-cell contacts was more pronounced in the growth-arrested state. Tube-like structures were formed in vitro in both proliferating and non-proliferating conditions. However, functional vessel formation upon transplantation into immune-compromised mice was restricted to the proliferative state. Kaposi's sarcoma-associated herpes virus (KSHV) infection resulted in reduced expression of endothelial markers. Upon transplantation of infected cells, drastic differences were observed: proliferation arrested cells acquired a high migratory activity while the proliferating counterparts established a tumor-like phenotype, similar to Kaposi Sarcoma lesions. The study gives evidence that proliferation governs endothelial functions. This suggests that several endothelial functions are differentially expressed during angiogenesis. Moreover, since proliferation defines the functional properties of cells upon infection with KSHV, this process crucially affects the fate of virus-infected cells.
Collapse
Affiliation(s)
- Christoph Lipps
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Experimental Cardiology, Justus-Liebig-University, Giessen, Germany
| | - Muhammad Badar
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D. I. Khan, Pakistan
| | - Milada Butueva
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Tatyana Dubich
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Vivek Vikram Singh
- Institute for Virology, Medical University in Hannover, Hannover, Germany
- Value Edge Research Services, Noida, India
| | - Sophie Rau
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Axel Weber
- Rudolf-Buchheim Institute for Pharmacology, Schubertstraße 81, 35392, Giessen, Germany
| | - Michael Kracht
- Rudolf-Buchheim Institute for Pharmacology, Schubertstraße 81, 35392, Giessen, Germany
| | - Mario Köster
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Tobias May
- Inscreenex GmbH, Inhoffenstr. 7, 38124, Brunswick, Germany
| | - Thomas F Schulz
- Institute for Virology, Medical University in Hannover, Hannover, Germany
| | - Hansjörg Hauser
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Dagmar Wirth
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany.
- Institute for Experimental Hematology, Medical University in Hannover, Hannover, Germany.
| |
Collapse
|
31
|
Liu Z, Keller PJ. Emerging Imaging and Genomic Tools for Developmental Systems Biology. Dev Cell 2016; 36:597-610. [PMID: 27003934 DOI: 10.1016/j.devcel.2016.02.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 11/16/2022]
Abstract
Animal development is a complex and dynamic process orchestrated by exquisitely timed cell lineage commitment, divisions, migration, and morphological changes at the single-cell level. In the past decade, extensive genetic, stem cell, and genomic studies provided crucial insights into molecular underpinnings and the functional importance of genetic pathways governing various cellular differentiation processes. However, it is still largely unknown how the precise coordination of these pathways is achieved at the whole-organism level and how the highly regulated spatiotemporal choreography of development is established in turn. Here, we discuss the latest technological advances in imaging and single-cell genomics that hold great promise for advancing our understanding of this intricate process. We propose an integrated approach that combines such methods to quantitatively decipher in vivo cellular dynamic behaviors and their underlying molecular mechanisms at the systems level with single-cell, single-molecule resolution.
Collapse
Affiliation(s)
- Zhe Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
32
|
Fang K, Song W, Wang L, Xu X, Tan N, Zhang S, Wei H, Song Y. Semaphorin 3A-modified adipose-derived stem cell sheet may improve osseointegration in a type 2 diabetes mellitus rat model. Mol Med Rep 2016; 14:2449-56. [PMID: 27484405 PMCID: PMC4991673 DOI: 10.3892/mmr.2016.5568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 07/04/2016] [Indexed: 12/23/2022] Open
Abstract
Although titanium (Ti) implants are considered to be an optimal choice for the replacement of missing teeth, it remains difficult to obtain sufficient osseointegration in patients with type 2 diabetes mellitus (T2DM). The present study aimed to investigate whether adipose-derived stem cells (ASCs) may be used to improve Ti implant osseointegration in T2DM conditions with the addition of semaphorin 3A (Sema3A), a recently identified osteoprotective protein. Cell morphology was observed using a scanning electron microscope. Cell proliferation was determined using Cell Counting Kit-8. Osteogenic differentiation was confirmed by the staining of alkaline phosphatase, collagen secretion and calcium deposition. An in vivo evaluation was performed in the T2DM rat model, which was induced by a high-fat diet and a low-dose streptozotocin intraperitoneal injection. A Sema3A-modified ASC sheet was wrapped around the Ti implant, which was subsequently inserted into the tibia. The rats were then exposed to Sema3A stimulation. The morphology and proliferation ability of ASCs remained unchanged; however, their osteogenic differentiation ability was increased. Micro-computed tomography scanning and histological observations confirmed that formation of new bone was improved with the use of the Sema3A-modified ASCs sheet. The present study indicated that the Sema3A-modified ASCs sheet may be used to improve osseointegration under T2DM conditions.
Collapse
Affiliation(s)
- Kaixiu Fang
- Department of Oral Implants, School of Stomatology, State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wen Song
- Department of Prosthodontics, School of Stomatology, State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lifeng Wang
- Department of Oral Implants, School of Stomatology, State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiaoru Xu
- Department of Oral Implants, School of Stomatology, State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Naiwen Tan
- Department of Oral Implants, School of Stomatology, State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Sijia Zhang
- Department of Oral Implants, School of Stomatology, State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hongbo Wei
- Department of Oral Implants, School of Stomatology, State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yingliang Song
- Department of Oral Implants, School of Stomatology, State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
33
|
Affiliation(s)
- Bridget K Wagner
- Center for the Science of Therapeutics, Broad Institute, Cambridge, MA
| |
Collapse
|
34
|
Klochendler A, Caspi I, Corem N, Moran M, Friedlich O, Elgavish S, Nevo Y, Helman A, Glaser B, Eden A, Itzkovitz S, Dor Y. The Genetic Program of Pancreatic β-Cell Replication In Vivo. Diabetes 2016; 65:2081-93. [PMID: 26993067 PMCID: PMC4915587 DOI: 10.2337/db16-0003] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/08/2016] [Indexed: 01/01/2023]
Abstract
The molecular program underlying infrequent replication of pancreatic β-cells remains largely inaccessible. Using transgenic mice expressing green fluorescent protein in cycling cells, we sorted live, replicating β-cells and determined their transcriptome. Replicating β-cells upregulate hundreds of proliferation-related genes, along with many novel putative cell cycle components. Strikingly, genes involved in β-cell functions, namely, glucose sensing and insulin secretion, were repressed. Further studies using single-molecule RNA in situ hybridization revealed that in fact, replicating β-cells double the amount of RNA for most genes, but this upregulation excludes genes involved in β-cell function. These data suggest that the quiescence-proliferation transition involves global amplification of gene expression, except for a subset of tissue-specific genes, which are "left behind" and whose relative mRNA amount decreases. Our work provides a unique resource for the study of replicating β-cells in vivo.
Collapse
Affiliation(s)
- Agnes Klochendler
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Inbal Caspi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Corem
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Maya Moran
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oriel Friedlich
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Sharona Elgavish
- Info-CORE, Bioinformatics Unit of the I-CORE Computation Center, and Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE Computation Center, and Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Aharon Helman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Amir Eden
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
35
|
CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol 2016; 17:77. [PMID: 27121950 PMCID: PMC4848782 DOI: 10.1186/s13059-016-0938-8] [Citation(s) in RCA: 769] [Impact Index Per Article: 85.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 04/08/2016] [Indexed: 12/03/2022] Open
Abstract
Single-cell transcriptomics requires a method that is sensitive, accurate, and reproducible. Here, we present CEL-Seq2, a modified version of our CEL-Seq method, with threefold higher sensitivity, lower costs, and less hands-on time. We implemented CEL-Seq2 on Fluidigm’s C1 system, providing its first single-cell, on-chip barcoding method, and we detected gene expression changes accompanying the progression through the cell cycle in mouse fibroblast cells. We also compare with Smart-Seq to demonstrate CEL-Seq2’s increased sensitivity relative to other available methods. Collectively, the improvements make CEL-Seq2 uniquely suited to single-cell RNA-Seq analysis in terms of economics, resolution, and ease of use.
Collapse
|
36
|
The RSPO-LGR4/5-ZNRF3/RNF43 module controls liver zonation and size. Nat Cell Biol 2016; 18:467-79. [PMID: 27088858 DOI: 10.1038/ncb3337] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/10/2016] [Indexed: 02/07/2023]
Abstract
LGR4/5 receptors and their cognate RSPO ligands potentiate Wnt/β-catenin signalling and promote proliferation and tissue homeostasis in epithelial stem cell compartments. In the liver, metabolic zonation requires a Wnt/β-catenin signalling gradient, but the instructive mechanism controlling its spatiotemporal regulation is not known. We have now identified the RSPO-LGR4/5-ZNRF3/RNF43 module as a master regulator of Wnt/β-catenin-mediated metabolic liver zonation. Liver-specific LGR4/5 loss of function (LOF) or RSPO blockade disrupted hepatic Wnt/β-catenin signalling and zonation. Conversely, pathway activation in ZNRF3/RNF43 LOF mice or with recombinant RSPO1 protein expanded the hepatic Wnt/β-catenin signalling gradient in a reversible and LGR4/5-dependent manner. Recombinant RSPO1 protein increased liver size and improved liver regeneration, whereas LGR4/5 LOF caused the opposite effects, resulting in hypoplastic livers. Furthermore, we show that LGR4(+) hepatocytes throughout the lobule contribute to liver homeostasis without zonal dominance. Taken together, our results indicate that the RSPO-LGR4/5-ZNRF3/RNF43 module controls metabolic liver zonation and is a hepatic growth/size rheostat during development, homeostasis and regeneration.
Collapse
|
37
|
Gene targets of mouse miR-709: regulation of distinct pools. Sci Rep 2016; 6:18958. [PMID: 26743462 PMCID: PMC4705522 DOI: 10.1038/srep18958] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 12/01/2015] [Indexed: 12/03/2022] Open
Abstract
MicroRNA (miRNA) are short non-coding RNA molecules that regulate multiple cellular processes, including development, cell differentiation, proliferation and death. Nevertheless, little is known on whether miRNA control the same gene networks in different tissues. miR-709 is an abundant miRNA expressed ubiquitously. Through transcriptome analysis, we have identified targets of miR-709 in hepatocytes. miR-709 represses genes implicated in cytoskeleton organization, extracellular matrix attachment, and fatty acid metabolism. Remarkably, none of the previously identified targets in non-hepatic tissues are silenced by miR-709 in hepatocytes, even though several of these genes are abundantly expressed in liver. In addition, miR-709 is upregulated in hepatocellular carcinoma, suggesting it participates in the genetic reprogramming that takes place during cell division, when cytoskeleton remodeling requires substantial changes in gene expression. In summary, the present study shows that miR-709 does not repress the same pool of genes in separate cell types. These results underscore the need for validating gene targets in every tissue a miRNA is expressed.
Collapse
|
38
|
Recruitment of Pontin/Reptin by E2f1 amplifies E2f transcriptional response during cancer progression. Nat Commun 2015; 6:10028. [PMID: 26639898 PMCID: PMC4686657 DOI: 10.1038/ncomms10028] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 10/28/2015] [Indexed: 12/13/2022] Open
Abstract
Changes in gene expression during tumorigenesis are often considered the consequence of de novo mutations occurring in the tumour. An alternative possibility is that the transcriptional response of oncogenic transcription factors evolves during tumorigenesis. Here we show that aberrant E2f activity, following inactivation of the Rb gene family in a mouse model of liver cancer, initially activates a robust gene expression programme associated with the cell cycle. Slowly accumulating E2f1 progressively recruits a Pontin/Reptin complex to open the chromatin conformation at E2f target genes and amplifies the E2f transcriptional response. This mechanism enhances the E2f-mediated transactivation of cell cycle genes and initiates the activation of low binding affinity E2f target genes that regulate non-cell-cycle functions, such as the Warburg effect. These data indicate that both the physiological and the oncogenic activities of E2f result in distinct transcriptional responses, which could be exploited to target E2f oncogenic activity for therapy. E2F transcription factors are primarily known for the regulation of the cell cycle and are often dysregulated in cancer. Here, the authors show that during cancer progression E2F1 recruits a Pontin/Reptin complex to E2F target genes to open chromatin and increase E2F transcriptional response.
Collapse
|
39
|
Long-term culture and expansion of primary human hepatocytes. Nat Biotechnol 2015; 33:1264-1271. [PMID: 26501953 DOI: 10.1038/nbt.3377] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 09/16/2015] [Indexed: 12/22/2022]
Abstract
Hepatocytes have a critical role in metabolism, but their study is limited by the inability to expand primary hepatocytes in vitro while maintaining proliferative capacity and metabolic function. Here we describe the oncostatin M (OSM)-dependent expansion of primary human hepatocytes by low expression of the human papilloma virus (HPV) genes E6 and E7 coupled with inhibition of epithelial-to-mesenchymal transition. We show that E6 and E7 expression upregulates the OSM receptor gp130 and that OSM stimulation induces hepatocytes to expand for up to 40 population doublings, producing 1013 to 1016 cells from a single human hepatocyte isolate. OSM removal induces differentiation into metabolically functional, polarized hepatocytes with functional bile canaliculi. Differentiated hepatocytes show transcriptional and toxicity profiles and cytochrome P450 induction similar to those of primary human hepatocytes. Replication and infectivity of hepatitis C virus (HCV) in differentiated hepatocytes are similar to those of Huh7.5.1 human hepatoma cells. These results offer a means of expanding human hepatocytes of different genetic backgrounds for research, clinical applications and pharmaceutical development.
Collapse
|
40
|
Scialdone A, Natarajan KN, Saraiva LR, Proserpio V, Teichmann SA, Stegle O, Marioni JC, Buettner F. Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods 2015; 85:54-61. [DOI: 10.1016/j.ymeth.2015.06.021] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/12/2015] [Accepted: 06/30/2015] [Indexed: 10/24/2022] Open
|
41
|
Carlier G, Maugein A, Cordier C, Pechberty S, Garfa-Traoré M, Martin P, Scharfmann R, Albagli O. Human fucci pancreatic Beta cell lines: new tools to study Beta cell cycle and terminal differentiation. PLoS One 2014; 9:e108202. [PMID: 25259951 PMCID: PMC4178124 DOI: 10.1371/journal.pone.0108202] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 08/18/2014] [Indexed: 01/18/2023] Open
Abstract
Regulation of cell cycle in beta cells is poorly understood, especially in humans. We exploited here the recently described human pancreatic beta cell line EndoC-βH2 to set up experimental systems for cell cycle studies. We derived 2 populations from EndoC-βH2 cells that stably harbor the 2 genes encoding the Fucci fluorescent indicators of cell cycle, either from two vectors, or from a unique bicistronic vector. In proliferating non-synchronized cells, the 2 Fucci indicators revealed cells in the expected phases of cell cycle, with orange and green cells being in G1 and S/G2/M cells, respectively, and allowed the sorting of cells in different substeps of G1. The Fucci indicators also faithfully red out alterations in human beta cell proliferative activity since a mitogen-rich medium decreased the proportion of orange cells and inflated the green population, while reciprocal changes were observed when cells were induced to cease proliferation and increased expression of some beta cell genes. In the last situation, acquisition of a more differentiated beta cell phenotype correlates with an increased intensity in orange fluorescence. Hence Fucci beta cell lines provide new tools to address important questions regarding human beta cell cycle and differentiation.
Collapse
Affiliation(s)
- Géraldine Carlier
- INSERM U845, Research Center Growth and Signaling, Université Paris Descartes, Faculté de Médecine Cochin, Paris, France
| | - Alicia Maugein
- INSERM U845, Research Center Growth and Signaling, Université Paris Descartes, Faculté de Médecine Cochin, Paris, France
| | | | - Séverine Pechberty
- INSERM U845, Research Center Growth and Signaling, Université Paris Descartes, Faculté de Médecine Cochin, Paris, France
- Endocells, Pépinière d’entreprises, Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Meriem Garfa-Traoré
- INSERM U845, Research Center Growth and Signaling, Université Paris Descartes, Faculté de Médecine Cochin, Paris, France
| | - Patrick Martin
- IBDC - CNRS UMR 6543, Université Nice-Sophia Antipolis, Nice, France
| | - Raphaël Scharfmann
- INSERM U845, Research Center Growth and Signaling, Université Paris Descartes, Faculté de Médecine Cochin, Paris, France
| | - Olivier Albagli
- INSERM U845, Research Center Growth and Signaling, Université Paris Descartes, Faculté de Médecine Cochin, Paris, France
- * E-mail:
| |
Collapse
|
42
|
Zou Y, Lee J, Nambiar SM, Hu M, Rui W, Bao Q, Chan JY, Dai G. Nrf2 is involved in maintaining hepatocyte identity during liver regeneration. PLoS One 2014; 9:e107423. [PMID: 25222179 PMCID: PMC4164664 DOI: 10.1371/journal.pone.0107423] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 08/10/2014] [Indexed: 12/18/2022] Open
Abstract
Nrf2, a central regulator of the cellular defense against oxidative stress and inflammation, participates in modulating hepatocyte proliferation during liver regeneration. It is not clear, however, whether Nrf2 regulates hepatocyte growth, an important cellular mechanism to regain the lost liver mass after partial hepatectomy (PH). To determine this, various analyses were performed in wild-type and Nrf2-null mice following PH. We found that, at 60 h post-PH, the vast majority of hepatocytes lacking Nrf2 reduced their sizes, activated hepatic progenitor markers (CD133, TWEAK receptor, and trefoil factor family 3), depleted HNF4α protein, and downregulated the expression of a group of genes critical for their functions. Thus, the identity of hepatocytes deficient in Nrf2 was transiently but massively impaired in response to liver mass loss. This event was associated with the coupling of protein depletion of hepatic HNF4α, a master regulator of hepatocyte differentiation, and concomitant inactivation of hepatic Akt1 and p70S6K, critical hepatocyte growth signaling molecules. We conclude that Nrf2 participates in maintaining newly regenerated hepatocytes in a fully differentiated state by ensuring proper regulation of HNF4α, Akt1, and p70S6K during liver regeneration.
Collapse
Affiliation(s)
- Yuhong Zou
- Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University, Indianapolis, IN, United States of America
| | - Joonyong Lee
- Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University, Indianapolis, IN, United States of America
| | - Shashank Manohar Nambiar
- Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University, Indianapolis, IN, United States of America
| | - Min Hu
- Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University, Indianapolis, IN, United States of America
| | - Wenjuan Rui
- Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University, Indianapolis, IN, United States of America
| | - Qi Bao
- Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University, Indianapolis, IN, United States of America
| | - Jefferson Y. Chan
- Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, United States of America
| | - Guoli Dai
- Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University, Indianapolis, IN, United States of America
- * E-mail:
| |
Collapse
|
43
|
Gingold H, Tehler D, Christoffersen N, Nielsen M, Asmar F, Kooistra S, Christophersen N, Christensen LL, Borre M, Sørensen K, Andersen L, Andersen C, Hulleman E, Wurdinger T, Ralfkiær E, Helin K, Grønbæk K, Ørntoft T, Waszak S, Dahan O, Pedersen J, Lund A, Pilpel Y. A Dual Program for Translation Regulation in Cellular Proliferation and Differentiation. Cell 2014; 158:1281-1292. [DOI: 10.1016/j.cell.2014.08.011] [Citation(s) in RCA: 333] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 05/13/2014] [Accepted: 08/08/2014] [Indexed: 11/16/2022]
|
44
|
Fly-FUCCI: A versatile tool for studying cell proliferation in complex tissues. Cell Rep 2014; 7:588-598. [PMID: 24726363 DOI: 10.1016/j.celrep.2014.03.020] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/06/2014] [Accepted: 03/07/2014] [Indexed: 01/22/2023] Open
Abstract
One promising approach for in vivo studies of cell proliferation is the FUCCI system (fluorescent ubiquitination-based cell cycle indicator). Here, we report the development of a Drosophila-specific FUCCI system (Fly-FUCCI) that allows one to distinguish G1, S, and G2 phases of interphase. Fly-FUCCI relies on fluorochrome-tagged degrons from the Cyclin B and E2F1 proteins, which are degraded by the ubiquitin E3-ligases APC/C and CRL4(Cdt2), during mitosis or the onset of S phase, respectively. These probes can track cell-cycle patterns in cultured Drosophila cells, eye and wing imaginal discs, salivary glands, the adult midgut, and probably other tissues. To support a broad range of experimental applications, we have generated a toolkit of transgenic Drosophila lines that express the Fly-FUCCI probes under control of the UASt, UASp, QUAS, and ubiquitin promoters. The Fly-FUCCI system should be a valuable tool for visualizing cell-cycle activity during development, tissue homeostasis, and neoplastic growth.
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Therapies that increase functional β-cell mass may be the best long-term treatment for diabetes. Significant resources are devoted toward this goal, and progress is occurring at a rapid pace. Here, we summarize recent advances relevant to human β-cell regeneration. RECENT FINDINGS New β-cells arise from proliferation of pre-existing β-cells or transdifferentiation from other cell types. In addition, dedifferentiated β-cells may populate islets in diabetes, possibly representing a pool of cells that could redifferentiate into functional β-cells. Advances in finding strategies to drive β-cell proliferation include new insight into proproliferative factors, both circulating and local, and elements intrinsic to the β-cell, such as cell cycle machinery and regulation of gene expression through epigenetic modification and noncoding RNAs. Controversy continues in the arena of generation of β-cells by transdifferentiation from exocrine, ductal, and alpha cells, with studies producing both supporting and opposing data. Progress has been made in redifferentiation of β-cells that have lost expression of β-cell markers. SUMMARY Although significant progress has been made, and promising avenues exist, more work is needed to achieve the goal of β-cell regeneration as a treatment for diabetes.
Collapse
Affiliation(s)
- Agata Jurczyk
- University of Massachusetts Medical School, Diabetes Center of Excellence, Worcester, Massachusetts, USA
| | | | | |
Collapse
|
46
|
Miettinen TP, Pessa HKJ, Caldez MJ, Fuhrer T, Diril MK, Sauer U, Kaldis P, Björklund M. Identification of transcriptional and metabolic programs related to mammalian cell size. Curr Biol 2014; 24:598-608. [PMID: 24613310 PMCID: PMC3991852 DOI: 10.1016/j.cub.2014.01.071] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/20/2013] [Accepted: 01/30/2014] [Indexed: 12/16/2022]
Abstract
Background Regulation of cell size requires coordination of growth and proliferation. Conditional loss of cyclin-dependent kinase 1 in mice permits hepatocyte growth without cell division, allowing us to study cell size in vivo using transcriptomics and metabolomics. Results Larger cells displayed increased expression of cytoskeletal genes but unexpectedly repressed expression of many genes involved in mitochondrial functions. This effect appears to be cell autonomous because cultured Drosophila cells induced to increase cell size displayed a similar gene-expression pattern. Larger hepatocytes also displayed a reduction in the expression of lipogenic transcription factors, especially sterol-regulatory element binding proteins. Inhibition of mitochondrial functions and lipid biosynthesis, which is dependent on mitochondrial metabolism, increased the cell size with reciprocal effects on cell proliferation in several cell lines. Conclusions We uncover that large cell-size increase is accompanied by downregulation of mitochondrial gene expression, similar to that observed in diabetic individuals. Mitochondrial metabolism and lipid synthesis are used to couple cell size and cell proliferation. This regulatory mechanism may provide a possible mechanism for sensing metazoan cell size. Gene expression and metabolites levels relative to cell size are analyzed in liver Mitochondrial gene expression is repressed cell-autonomously in larger cells Cell size can be modulated by targeting mitochondria functions and lipid synthesis Lipids are negative regulators of cell size because they promote cell proliferation
Collapse
Affiliation(s)
- Teemu P Miettinen
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Heli K J Pessa
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Matias J Caldez
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos #03-09, Singapore 138673, Singapore; Department of Biochemistry, National University of Singapore, Singapore 117597, Singapore
| | - Tobias Fuhrer
- Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule Zürich, Wolfgang-Pauli Strasse 16, 8093 Zürich, Switzerland
| | - M Kasim Diril
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos #03-09, Singapore 138673, Singapore
| | - Uwe Sauer
- Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule Zürich, Wolfgang-Pauli Strasse 16, 8093 Zürich, Switzerland
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos #03-09, Singapore 138673, Singapore; Department of Biochemistry, National University of Singapore, Singapore 117597, Singapore
| | - Mikael Björklund
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
47
|
Hija A, Salpeter S, Klochendler A, Grimsby J, Brandeis M, Glaser B, Dor Y. G0-G1 transition and the restriction point in pancreatic β-cells in vivo. Diabetes 2014; 63:578-84. [PMID: 24130333 PMCID: PMC3900543 DOI: 10.2337/db12-1035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Most of our knowledge on cell kinetics stems from in vitro studies of continuously dividing cells. In this study, we determine in vivo cell-cycle parameters of pancreatic β-cells, a largely quiescent population, using drugs that mimic or prevent glucose-induced replication of β-cells in mice. Quiescent β-cells exposed to a mitogenic glucose stimulation require 8 h to enter the G1 phase of the cell cycle, and this time is prolonged in older age. The duration of G1, S, and G2/M is ~5, 8, and 6 h, respectively. We further provide the first in vivo demonstration of the restriction point at the G0-G1 transition, discovered by Arthur Pardee 40 years ago. The findings may have pharmacodynamic implications in the design of regenerative therapies aimed at increasing β-cell replication and mass in patients with diabetes.
Collapse
Affiliation(s)
- Ayat Hija
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Seth Salpeter
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Agnes Klochendler
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Joseph Grimsby
- Department of Metabolic Diseases, Hoffmann-La Roche, Nutley, NJ
| | - Michael Brandeis
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
- Corresponding author: Yuval Dor,
| |
Collapse
|
48
|
Lemaigre FP. Hepatocytes as a source of cholangiocytes in injured liver. Hepatology 2014; 59:726-8. [PMID: 23929740 DOI: 10.1002/hep.26673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 12/28/2022]
|
49
|
Avrahami D, Li C, Yu M, Jiao Y, Zhang J, Naji A, Ziaie S, Glaser B, Kaestner KH. Targeting the cell cycle inhibitor p57Kip2 promotes adult human β cell replication. J Clin Invest 2014; 124:670-4. [PMID: 24430183 DOI: 10.1172/jci69519] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 10/31/2013] [Indexed: 12/18/2022] Open
Abstract
Children with focal hyperinsulinism of infancy display a dramatic, non-neoplastic clonal expansion of β cells that have undergone mitotic recombination, resulting in paternal disomy of part of chromosome 11. This disomic region contains imprinted genes, including the gene encoding the cell cycle inhibitor p57Kip2 (CDKN1C), which is silenced as a consequence of the recombination event. We hypothesized that targeting p57Kip2 could stimulate adult human β cell replication. Indeed, when we suppressed CDKN1C expression in human islets obtained from deceased adult organ donors and transplanted them into hyperglycemic, immunodeficient mice, β cell replication increased more than 3-fold. The newly replicated cells retained properties of mature β cells, including the expression of β cell markers such as insulin, PDX1, and NKX6.1. Importantly, these newly replicated cells demonstrated normal glucose-induced calcium influx, further indicating β cell functionality. These findings provide a molecular explanation for the massive β cell replication that occurs in children with focal hyperinsulinism. These data also provided evidence that β cells from older humans, in which baseline replication is negligible, can be coaxed to re-enter and complete the cell cycle while maintaining mature β cell properties. Thus, controlled manipulation of this pathway holds promise for the expansion of β cells in patients with type 2 diabetes.
Collapse
|
50
|
Cohen M, Vecsler M, Liberzon A, Noach M, Zlotorynski E, Tzur A. Unbiased transcriptome signature of in vivo cell proliferation reveals pro- and antiproliferative gene networks. Cell Cycle 2013; 12:2992-3000. [PMID: 23974109 PMCID: PMC3875674 DOI: 10.4161/cc.26030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Different types of mature B-cell lymphocytes are overall highly similar. Nevertheless, some B cells proliferate intensively, while others rarely do. Here, we demonstrate that a simple binary classification of gene expression in proliferating vs. resting B cells can identify, with remarkable selectivity, global in vivo regulators of the mammalian cell cycle, many of which are also post-translationally regulated by the APC/C E3 ligase. Consequently, we discover a novel regulatory network between the APC/C and the E2F transcription factors and discuss its potential impact on the G1-S transition of the cell cycle. In addition, by focusing on genes whose expression inversely correlates with proliferation, we demonstrate the inherent ability of our approach to also identify in vivo regulators of cell differentiation, cell survival, and other antiproliferative processes. Relying on data sets of wt, non-transgenic animals, our approach can be applied to other cell lineages and human data sets.
Collapse
Affiliation(s)
- Meital Cohen
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan, Israel; Advanced Materials and Nanotechnology Institute; Bar-Ilan University; Ramat-Gan, Israel
| | | | | | | | | | | |
Collapse
|