1
|
Sposato AL, Hollins HL, Llewellyn DR, Weber JM, Schrock MN, Farrell JA, Gagnon JA. Germ cell progression through zebrafish spermatogenesis declines with age. Development 2024; 151:dev204319. [PMID: 39470160 DOI: 10.1242/dev.204319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
Vertebrate spermatogonial stem cells maintain sperm production over the lifetime of an animal, but fertility declines with age. Although morphological studies have informed our understanding of typical spermatogenesis, the molecular and cellular mechanisms underlying the maintenance and decline of spermatogenesis are not yet understood. We used single-cell RNA sequencing to generate a developmental atlas of the aging zebrafish testis. All testes contained spermatogonia, but we observed a progressive decline in spermatogenesis that correlated with age. Testes from some older males only contained spermatogonia and a reduced population of spermatocytes. Spermatogonia in older males were transcriptionally distinct from spermatogonia in testes capable of robust spermatogenesis. Immune cells including macrophages and lymphocytes drastically increased in abundance in testes that could not complete spermatogenesis. Our developmental atlas reveals the cellular changes as the testis ages and defines a molecular roadmap for the regulation of spermatogenesis.
Collapse
Affiliation(s)
- Andrea L Sposato
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Hailey L Hollins
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Darren R Llewellyn
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jenna M Weber
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Madison N Schrock
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jeffrey A Farrell
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - James A Gagnon
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
2
|
Yan Y, Zhang H, Xu R, Luo L, Yin L, Wu H, Zhang Y, Li C, Lu S, Tang Y, Zhao X, Pan M, Wei Q, Peng S, Ma B. Single-cell sequencing reveals the transcriptional alternations of 17β-estradiol suppressing primordial follicle formation in neonatal mouse ovaries. Cell Prolif 2024; 57:e13713. [PMID: 38988058 PMCID: PMC11503257 DOI: 10.1111/cpr.13713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024] Open
Abstract
Estrogen has been implicated in multiple biological processes, but the variation underlying estrogen-mediated primordial follicle (PF) formation remains unclear. Here, we show that 17β-estradiol (E2) treatment of neonatal mice led to the inhibition of PF formation and cell proliferation. Single-cell RNA sequencing (scRNA-seq) revealed that E2 treatment caused significant changes in the transcriptome of oocytes and somatic cells. E2 treatment disrupted the synchronised development of oocytes, pre-granulosa (PG) cells and stromal cells. Mechanistically, E2 treatment disrupted several signalling pathways critical to PF formation, especially down-regulating the Kitl and Smad1/3/4/5/7 expression, reducing the frequency and number of cell communication. In addition, E2 treatment influenced key gene expression, mitochondrial function of oocytes, the recruitment and maintenance of PG cells, the cell proliferation of somatic cells, as well as disordered the ovarian microenvironment. This study not only revealed insights into the regulatory role of estrogen during PF formation, but also filled in knowledge of dramatic changes in perinatal hormones, which are critical for the physiological significance of understanding hormone changes and reproductive protection.
Collapse
Affiliation(s)
- Yutong Yan
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Hui Zhang
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Rui Xu
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Linglin Luo
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Lu Yin
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Hao Wu
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Yiqian Zhang
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Chan Li
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Sihai Lu
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Yaju Tang
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Xiaoe Zhao
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Menghao Pan
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Qiang Wei
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Sha Peng
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Baohua Ma
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
3
|
Grmai L, Jimenez E, Baxter E, Doren MV. Steroid signaling controls sex-specific development in an invertebrate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.573099. [PMID: 38187640 PMCID: PMC10769319 DOI: 10.1101/2023.12.22.573099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
In vertebrate sexual development, two important steroid hormones, testosterone and estrogen, regulate the sex-specific development of many tissues. In contrast, invertebrates utilize a single steroid hormone, ecdysone, to regulate developmental timing in both sexes. However, here we show that in Drosophila melanogaster, sex-specific ecdysone (E) signaling controls important aspects of gonad sexual dimorphism. Rather than being regulated at the level of hormone production, hormone activity is regulated cell-autonomously through sex-specific hormone reception. Ecdysone receptor (EcR) expression is restricted to the developing ovary and is repressed in the testis at a time when ecdysone initiates ovary morphogenesis. Interestingly, EcR expression is regulated downstream of the sex determination factor Doublesex (Dsx), the founding member of the Dsx/Mab3 Related Transcription Factor (DMRT) family that regulates gonad development in all animals. E signaling is required for normal ovary development1,2, and ectopic activation of E signaling in the testis antagonized stem cell niche identity and feminized somatic support cells, which were transformed into follicle-like cells. This work demonstrates that invertebrates can also use steroid hormone signaling to control sex-specific development. Further, it may help explain recent work showing that vertebrate sexual development is surprisingly cell-autonomous. For example, chickens utilize testosterone and estrogen to control sex-specific development, but when they have a mixture of cells with male and female genotypes, the male cells develop as male and the female cells develop as female despite exposure to the same circulating hormones3. Sex-specific regulation of steroid hormone signaling may well underly such cell-autonomous sexual fate choices in vertebrates as it does in Drosophila.
Collapse
Affiliation(s)
- Lydia Grmai
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Erin Jimenez
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ellen Baxter
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mark Van Doren
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Qi S, Dai S, Zhou X, Wei X, Chen P, He Y, Kocher TD, Wang D, Li M. Dmrt1 is the only male pathway gene tested indispensable for sex determination and functional testis development in tilapia. PLoS Genet 2024; 20:e1011210. [PMID: 38536778 PMCID: PMC10971778 DOI: 10.1371/journal.pgen.1011210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Sex is determined by multiple factors derived from somatic and germ cells in vertebrates. We have identified amhy, dmrt1, gsdf as male and foxl2, foxl3, cyp19a1a as female sex determination pathway genes in Nile tilapia. However, the relationship among these genes is largely unclear. Here, we found that the gonads of dmrt1;cyp19a1a double mutants developed as ovaries or underdeveloped testes with no germ cells irrespective of their genetic sex. In addition, the gonads of dmrt1;cyp19a1a;cyp19a1b triple mutants still developed as ovaries. The gonads of foxl3;cyp19a1a double mutants developed as testes, while the gonads of dmrt1;cyp19a1a;foxl3 triple mutants eventually developed as ovaries. In contrast, the gonads of amhy;cyp19a1a, gsdf;cyp19a1a, amhy;foxl2, gsdf;foxl2 double and amhy;cyp19a1a;cyp19a1b, gsdf;cyp19a1a;cyp19a1b triple mutants developed as testes with spermatogenesis via up-regulation of dmrt1 in both somatic and germ cells. The gonads of amhy;foxl3 and gsdf;foxl3 double mutants developed as ovaries but with germ cells in spermatogenesis due to up-regulation of dmrt1. Taking the respective ovary and underdeveloped testis of dmrt1;foxl3 and dmrt1;foxl2 double mutants reported previously into consideration, we demonstrated that once dmrt1 mutated, the gonad could not be rescued to functional testis by mutating any female pathway gene. The sex reversal caused by mutation of male pathway genes other than dmrt1, including its upstream amhy and downstream gsdf, could be rescued by mutating female pathway gene. Overall, our data suggested that dmrt1 is the only male pathway gene tested indispensable for sex determination and functional testis development in tilapia.
Collapse
Affiliation(s)
- Shuangshuang Qi
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Shengfei Dai
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Xin Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Xueyan Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Ping Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Yuanyuan He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Thomas D. Kocher
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Deshou Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Minghui Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Maezawa S, Yukawa M, Hasegawa K, Sugiyama R, Iizuka M, Hu M, Sakashita A, Vidal M, Koseki H, Barski A, DeFalco T, Namekawa SH. PRC1 suppresses a female gene regulatory network to ensure testicular differentiation. Cell Death Dis 2023; 14:501. [PMID: 37542070 PMCID: PMC10403552 DOI: 10.1038/s41419-023-05996-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 08/06/2023]
Abstract
Gonadal sex determination and differentiation are controlled by somatic support cells of testes (Sertoli cells) and ovaries (granulosa cells). In testes, the epigenetic mechanism that maintains chromatin states responsible for suppressing female sexual differentiation remains unclear. Here, we show that Polycomb repressive complex 1 (PRC1) suppresses a female gene regulatory network in postnatal Sertoli cells. We genetically disrupted PRC1 function in embryonic Sertoli cells after sex determination, and we found that PRC1-depleted postnatal Sertoli cells exhibited defective proliferation and cell death, leading to the degeneration of adult testes. In adult Sertoli cells, PRC1 suppressed specific genes required for granulosa cells, thereby inactivating the female gene regulatory network. Chromatin regions associated with female-specific genes were marked by Polycomb-mediated repressive modifications: PRC1-mediated H2AK119ub and PRC2-mediated H3K27me3. Taken together, this study identifies a critical Polycomb-based mechanism that suppresses ovarian differentiation and maintains Sertoli cell fate in adult testes.
Collapse
Affiliation(s)
- So Maezawa
- Reproductive Sciences Center, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan.
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, 278-8510, Japan.
| | - Masashi Yukawa
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, New Territories, Hong Kong
| | - Kazuteru Hasegawa
- Reproductive Sciences Center, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Ryo Sugiyama
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, 278-8510, Japan
| | - Mizuho Iizuka
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, 278-8510, Japan
| | - Mengwen Hu
- Reproductive Sciences Center, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA
| | - Akihiko Sakashita
- Reproductive Sciences Center, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Miguel Vidal
- Centro de Investigaciones Biológicas Margarita Salas, Department of Cellular and Molecular Biology, Madrid, 28040, Spain
| | - Haruhiko Koseki
- Developmental Genetics Laboratory, RIKEN Center for Allergy and Immunology, Yokohama, Kanagawa, Japan
| | - Artem Barski
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Tony DeFalco
- Reproductive Sciences Center, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Satoshi H Namekawa
- Reproductive Sciences Center, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
6
|
Yao HHC, Rodriguez KF. From Enrico Sertoli to freemartinism: the many phases of the master testis-determining cell†. Biol Reprod 2023; 108:866-870. [PMID: 36951956 PMCID: PMC10266947 DOI: 10.1093/biolre/ioad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/28/2023] [Indexed: 03/24/2023] Open
Abstract
Sertoli cells, first identified in the adult testis by Enrico Sertoli in the mid-nineteenth century, are known for their role in fostering male germ cell differentiation and production of mature sperm. It was not until the late twentieth century with the discovery of the testis-determining gene SRY that Sertoli cells' new function as the master regulator of testis formation and maleness was unveiled. Fetal Sertoli cells facilitate the establishment of seminiferous cords, induce appearance of androgen-producing Leydig cells, and cause regression of the female reproductive tracts. Originally thought be a terminally differentiated cell type, adult Sertoli cells, at least in the mouse, retain their plasticity and ability to transdifferentiate into the ovarian counterpart, granulosa cells. In this review, we capture the many phases of Sertoli cell differentiation from their fate specification in fetal life to fate maintenance in adulthood. We also introduce the discovery of a new phase of fetal Sertoli cell differentiation via autocrine/paracrine factors with the freemartin characteristics. There remains much to learn about this intriguing cell type that lay the foundation for the maleness.
Collapse
Affiliation(s)
- Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Karina F Rodriguez
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
7
|
Zhang MF, Wan SC, Chen WB, Yang DH, Liu WQ, Li BL, Aierken A, Du XM, Li YX, Wu WP, Yang XC, Wei YD, Li N, Peng S, Li XL, Li GP, Hua JL. Transcription factor Dmrt1 triggers the SPRY1-NF-κB pathway to maintain testicular immune homeostasis and male fertility. Zool Res 2023; 44:505-521. [PMID: 37070575 PMCID: PMC10236308 DOI: 10.24272/j.issn.2095-8137.2022.440] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/07/2023] [Indexed: 04/19/2023] Open
Abstract
Bacterial or viral infections, such as Brucella, mumps virus, herpes simplex virus, and Zika virus, destroy immune homeostasis of the testes, leading to spermatogenesis disorder and infertility. Of note, recent research shows that SARS-CoV-2 can infect male gonads and destroy Sertoli and Leydig cells, leading to male reproductive dysfunction. Due to the many side effects associated with antibiotic therapy, finding alternative treatments for inflammatory injury remains critical. Here, we found that Dmrt1 plays an important role in regulating testicular immune homeostasis. Knockdown of Dmrt1 in male mice inhibited spermatogenesis with a broad inflammatory response in seminiferous tubules and led to the loss of spermatogenic epithelial cells. Chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) revealed that Dmrt1 positively regulated the expression of Spry1, an inhibitory protein of the receptor tyrosine kinase (RTK) signaling pathway. Furthermore, immunoprecipitation-mass spectrometry (IP-MS) and co-immunoprecipitation (Co-IP) analysis indicated that SPRY1 binds to nuclear factor kappa B1 (NF-κB1) to prevent nuclear translocation of p65, inhibit activation of NF-κB signaling, prevent excessive inflammatory reaction in the testis, and protect the integrity of the blood-testis barrier. In view of this newly identified Dmrt1- Spry1-NF-κB axis mechanism in the regulation of testicular immune homeostasis, our study opens new avenues for the prevention and treatment of male reproductive diseases in humans and livestock.
Collapse
Affiliation(s)
- Meng-Fei Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shi-Cheng Wan
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wen-Bo Chen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dong-Hui Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wen-Qing Liu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Center of Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam 1105AZ, Amsterdam, Netherlands
| | - Ba-Lun Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Aili Aierken
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao-Min Du
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yun-Xiang Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wen-Ping Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin-Chun Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu-Dong Wei
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xue-Ling Li
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, Inner Mongolia 010021, China
| | - Guang-Peng Li
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, Inner Mongolia 010021, China
| | - Jin-Lian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China. E-mail:
| |
Collapse
|
8
|
Murphy MW, Gearhart MD, Wheeler A, Bardwell VJ, Zarkower D. Genomics of sexual cell fate transdifferentiation in the mouse gonad. G3 (BETHESDA, MD.) 2022; 12:jkac267. [PMID: 36200842 PMCID: PMC9713387 DOI: 10.1093/g3journal/jkac267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/28/2022] [Indexed: 12/05/2022]
Abstract
Sex determination in mammals hinges on a cell fate decision in the fetal bipotential gonad between formation of male Sertoli cells or female granulosa cells. While this decision normally is permanent, loss of key cell fate regulators such as the transcription factors Dmrt1 and Foxl2 can cause postnatal transdifferentiation from Sertoli to granulosa-like (Dmrt1) or vice versa (Foxl2). Here, we examine the mechanism of male-to-female transdifferentiation in mice carrying either a null mutation of Dmrt1 or a point mutation, R111G, that alters the DNA-binding motif and causes human XY gonadal dysgenesis and sex reversal. We first define genes misexpressed during transdifferentiation and then show that female transcriptional regulators driving transdifferentiation in the mutant XY gonad (ESR2, LRH1, FOXL2) bind chromatin sites related to those normally bound in the XX ovary. We next define gene expression changes and abnormal chromatin compartments at the onset of transdifferentiation that may help destabilize cell fate and initiate the transdifferentiation process. We model the R111G mutation in mice and show that it causes dominant gonadal dysgenesis, analogous to its human phenotype but less severe. We show that R111G partially feminizes the testicular transcriptome and causes dominant disruption of DMRT1 binding specificity in vivo. These data help illuminate how transdifferentiation occurs when sexual cell fate maintenance is disrupted and identify chromatin sites and transcripts that may play key roles in the transdifferentiation process.
Collapse
Affiliation(s)
- Mark W Murphy
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Micah D Gearhart
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Andrew Wheeler
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vivian J Bardwell
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
- University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - David Zarkower
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
- University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Rossitto M, Déjardin S, Rands CM, Le Gras S, Migale R, Rafiee MR, Neirijnck Y, Pruvost A, Nguyen AL, Bossis G, Cammas F, Le Gallic L, Wilhelm D, Lovell-Badge R, Boizet-Bonhoure B, Nef S, Poulat F. TRIM28-dependent SUMOylation protects the adult ovary from activation of the testicular pathway. Nat Commun 2022; 13:4412. [PMID: 35906245 PMCID: PMC9338040 DOI: 10.1038/s41467-022-32061-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/17/2022] [Indexed: 11/08/2022] Open
Abstract
Gonadal sexual fate in mammals is determined during embryonic development and must be actively maintained in adulthood. In the mouse ovary, oestrogen receptors and FOXL2 protect ovarian granulosa cells from transdifferentiation into Sertoli cells, their testicular counterpart. However, the mechanism underlying their protective effect is unknown. Here, we show that TRIM28 is required to prevent female-to-male sex reversal of the mouse ovary after birth. We found that upon loss of Trim28, ovarian granulosa cells transdifferentiate to Sertoli cells through an intermediate cell type, different from gonadal embryonic progenitors. TRIM28 is recruited on chromatin in the proximity of FOXL2 to maintain the ovarian pathway and to repress testicular-specific genes. The role of TRIM28 in ovarian maintenance depends on its E3-SUMO ligase activity that regulates the sex-specific SUMOylation profile of ovarian-specific genes. Our study identifies TRIM28 as a key factor in protecting the adult ovary from the testicular pathway.
Collapse
Affiliation(s)
- Moïra Rossitto
- Institute of Human Genetics, CNRS UMR9002 University of Montpellier, 34396, Montpellier, France
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Stephanie Déjardin
- Institute of Human Genetics, CNRS UMR9002 University of Montpellier, 34396, Montpellier, France
| | - Chris M Rands
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva CMU, lab E09.2750.B 1, rue Michel-Servet CH 1211 Geneva 4, Geneva, Switzerland
| | - Stephanie Le Gras
- GenomEast platform, IGBMC, 1, rue Laurent Fries, 67404 ILLKIRCH Cedex, Illkirch-Graffenstaden, France
| | - Roberta Migale
- The Francis Crick Institute, 1 Midland Road, London, NW1 2 1AT, UK
| | | | - Yasmine Neirijnck
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva CMU, lab E09.2750.B 1, rue Michel-Servet CH 1211 Geneva 4, Geneva, Switzerland
| | - Alain Pruvost
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191, Gif-sur-Yvette, France
| | - Anvi Laetitia Nguyen
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191, Gif-sur-Yvette, France
| | - Guillaume Bossis
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Florence Cammas
- Institut de Recherche en Cancérologie de Montpellier, IRCM, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Lionel Le Gallic
- Institute of Human Genetics, CNRS UMR9002 University of Montpellier, 34396, Montpellier, France
| | - Dagmar Wilhelm
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
| | | | | | - Serge Nef
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva CMU, lab E09.2750.B 1, rue Michel-Servet CH 1211 Geneva 4, Geneva, Switzerland
| | - Francis Poulat
- Institute of Human Genetics, CNRS UMR9002 University of Montpellier, 34396, Montpellier, France.
| |
Collapse
|
10
|
Rodriguez KF, Brown PR, Amato CM, Nicol B, Liu CF, Xu X, Yao HHC. Somatic cell fate maintenance in mouse fetal testes via autocrine/paracrine action of AMH and activin B. Nat Commun 2022; 13:4130. [PMID: 35840551 PMCID: PMC9287316 DOI: 10.1038/s41467-022-31486-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
Fate determination and maintenance of fetal testes in most mammals occur cell autonomously as a result of the action of key transcription factors in Sertoli cells. However, the cases of freemartin, where an XX twin develops testis structures under the influence of an XY twin, imply that hormonal factor(s) from the XY embryo contribute to sex reversal of the XX twin. Here we show that in mouse XY embryos, Sertoli cell-derived anti-Mullerian hormone (AMH) and activin B together maintain Sertoli cell identity. Sertoli cells in the gonadal poles of XY embryos lacking both AMH and activin B transdifferentiate into their female counterpart granulosa cells, leading to ovotestis formation. The ovotestes remain to adulthood and produce both sperm and oocytes, although there are few of the former and the latter fail to mature. Finally, the ability of XY mice to masculinize ovaries is lost in the absence of these two factors. These results provide insight into fate maintenance of fetal testes through the action of putative freemartin factors.
Collapse
Affiliation(s)
- Karina F Rodriguez
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Paula R Brown
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Ciro M Amato
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Barbara Nicol
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Chia-Feng Liu
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xin Xu
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Durham, NC, USA.
| |
Collapse
|
11
|
Xie Y, Wu C, Li Z, Wu Z, Hong L. Early Gonadal Development and Sex Determination in Mammal. Int J Mol Sci 2022; 23:ijms23147500. [PMID: 35886859 PMCID: PMC9323860 DOI: 10.3390/ijms23147500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Sex determination is crucial for the transmission of genetic information through generations. In mammal, this process is primarily regulated by an antagonistic network of sex-related genes beginning in embryonic development and continuing throughout life. Nonetheless, abnormal expression of these sex-related genes will lead to reproductive organ and germline abnormalities, resulting in disorders of sex development (DSD) and infertility. On the other hand, it is possible to predetermine the sex of animal offspring by artificially regulating sex-related gene expression, a recent research hotspot. In this paper, we reviewed recent research that has improved our understanding of the mechanisms underlying the development of the gonad and primordial germ cells (PGCs), progenitors of the germline, to provide new directions for the treatment of DSD and infertility, both of which involve manipulating the sex ratio of livestock offspring.
Collapse
Affiliation(s)
- Yanshe Xie
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
| | - Changhua Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
- Correspondence: (Z.W.); (L.H.)
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
- Correspondence: (Z.W.); (L.H.)
| |
Collapse
|
12
|
Garcia-Alonso L, Lorenzi V, Mazzeo CI, Alves-Lopes JP, Roberts K, Sancho-Serra C, Engelbert J, Marečková M, Gruhn WH, Botting RA, Li T, Crespo B, van Dongen S, Kiselev VY, Prigmore E, Herbert M, Moffett A, Chédotal A, Bayraktar OA, Surani A, Haniffa M, Vento-Tormo R. Single-cell roadmap of human gonadal development. Nature 2022; 607:540-547. [PMID: 35794482 PMCID: PMC9300467 DOI: 10.1038/s41586-022-04918-4] [Citation(s) in RCA: 193] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/30/2022] [Indexed: 01/09/2023]
Abstract
Gonadal development is a complex process that involves sex determination followed by divergent maturation into either testes or ovaries1. Historically, limited tissue accessibility, a lack of reliable in vitro models and critical differences between humans and mice have hampered our knowledge of human gonadogenesis, despite its importance in gonadal conditions and infertility. Here, we generated a comprehensive map of first- and second-trimester human gonads using a combination of single-cell and spatial transcriptomics, chromatin accessibility assays and fluorescent microscopy. We extracted human-specific regulatory programmes that control the development of germline and somatic cell lineages by profiling equivalent developmental stages in mice. In both species, we define the somatic cell states present at the time of sex specification, including the bipotent early supporting population that, in males, upregulates the testis-determining factor SRY and sPAX8s, a gonadal lineage located at the gonadal-mesonephric interface. In females, we resolve the cellular and molecular events that give rise to the first and second waves of granulosa cells that compartmentalize the developing ovary to modulate germ cell differentiation. In males, we identify human SIGLEC15+ and TREM2+ fetal testicular macrophages, which signal to somatic cells outside and inside the developing testis cords, respectively. This study provides a comprehensive spatiotemporal map of human and mouse gonadal differentiation, which can guide in vitro gonadogenesis.
Collapse
Affiliation(s)
| | | | | | - João Pedro Alves-Lopes
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
| | | | | | - Justin Engelbert
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Magda Marečková
- Wellcome Sanger Institute, Cambridge, UK
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Wolfram H Gruhn
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
| | - Rachel A Botting
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tong Li
- Wellcome Sanger Institute, Cambridge, UK
| | - Berta Crespo
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | | | | | | | - Mary Herbert
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Ashley Moffett
- University of Cambridge Centre for Trophoblast Research, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Cambridge, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | |
Collapse
|
13
|
Lundgaard Riis M, Jørgensen A. Deciphering Sex-Specific Differentiation of Human Fetal Gonads: Insight From Experimental Models. Front Cell Dev Biol 2022; 10:902082. [PMID: 35721511 PMCID: PMC9201387 DOI: 10.3389/fcell.2022.902082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Sex-specific gonadal differentiation is initiated by the expression of SRY in male foetuses. This promotes a signalling pathway directing testicular development, while in female foetuses the absence of SRY and expression of pro-ovarian factors promote ovarian development. Importantly, in addition to the initiation of a sex-specific signalling cascade the opposite pathway is simultaneously inhibited. The somatic cell populations within the gonads dictates this differentiation as well as the development of secondary sex characteristics via secretion of endocrine factors and steroid hormones. Opposing pathways SOX9/FGF9 (testis) and WNT4/RSPO1 (ovary) controls the development and differentiation of the bipotential mouse gonad and even though sex-specific gonadal differentiation is largely considered to be conserved between mice and humans, recent studies have identified several differences. Hence, the signalling pathways promoting early mouse gonad differentiation cannot be directly transferred to human development thus highlighting the importance of also examining this signalling in human fetal gonads. This review focus on the current understanding of regulatory mechanisms governing human gonadal sex differentiation by combining knowledge of these processes from studies in mice, information from patients with differences of sex development and insight from manipulation of selected signalling pathways in ex vivo culture models of human fetal gonads.
Collapse
Affiliation(s)
- Malene Lundgaard Riis
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Anne Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
14
|
Lrh1 can help reprogram sexual cell fate and is required for Sertoli cell development and spermatogenesis in the mouse testis. PLoS Genet 2022; 18:e1010088. [PMID: 35192609 PMCID: PMC8896720 DOI: 10.1371/journal.pgen.1010088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/04/2022] [Accepted: 02/09/2022] [Indexed: 01/16/2023] Open
Abstract
The mammalian nuclear hormone receptors LRH1 (NR5A2) and SF1 (NR5A1) are close paralogs that can bind the same DNA motif and play crucial roles in gonadal development and function. Lrh1 is essential for follicle development in the ovary and has been proposed to regulate steroidogenesis in the testis. Lrh1 expression in the testis is highly elevated by loss of the sex regulator Dmrt1, which triggers male-to-female transdifferentiation of Sertoli cells. While Sf1 has a well-defined and crucial role in testis development, no function for Lrh1 in the male gonad has been reported. Here we use conditional genetics to examine Lrh1 requirements both in gonadal cell fate reprogramming and in normal development of the three major cell lineages of the mouse testis. We find that loss of Lrh1 suppresses sexual transdifferentiation, confirming that Lrh1 can act as a key driver in reprogramming sexual cell fate. In otherwise wild-type testes, we find that Lrh1 is dispensable in Leydig cells but is required in Sertoli cells for their proliferation, for seminiferous tubule morphogenesis, for maintenance of the blood-testis barrier, for feedback regulation of androgen production, and for support of spermatogenesis. Expression profiling identified misexpressed genes likely underlying most aspects of the Sertoli cell phenotype. In the germ line we found that Lrh1 is required for maintenance of functional spermatogonia, and hence mutants progressively lose spermatogenesis. Reduced expression of the RNA binding factor Nxf2 likely contributes to the SSC defect. Unexpectedly, however, over time the Lrh1 mutant germ line recovered abundant spermatogenesis and fertility. This finding indicates that severe germ line depletion triggers a response allowing mutant spermatogonia to recover the ability to undergo complete spermatogenesis. Our results demonstrate that Lrh1, like Sf1, is an essential regulator of testis development and function but has a very distinct repertoire of functions.
Collapse
|
15
|
Zarkower D, Murphy MW. DMRT1: An Ancient Sexual Regulator Required for Human Gonadogenesis. Sex Dev 2022; 16:112-125. [PMID: 34515237 PMCID: PMC8885888 DOI: 10.1159/000518272] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/25/2021] [Indexed: 01/03/2023] Open
Abstract
Transcriptional regulators related to the invertebrate sexual regulators doublesex and mab-3 occur throughout metazoans and control sex in most animal groups. Seven of these DMRT genes are found in mammals, and mouse genetics has shown that one, Dmrt1, plays a crucial role in testis differentiation, both in germ cells and somatic cells. Deletions and, more recently, point mutations affecting human DMRT1 have demonstrated that its heterozygosity is associated with 46,XY complete gonadal dysgenesis. Most of our detailed knowledge of DMRT1 function in the testis, the focus of this review, derives from mouse studies, which have revealed that DMRT1 is essential for male somatic and germ cell differentiation and maintenance of male somatic cell fate after differentiation. Moreover, ectopic DMRT1 can reprogram differentiated female granulosa cells into male Sertoli-like cells. The ability of DMRT1 to control sexual cell fate likely derives from at least 3 properties. First, DMRT1 functionally collaborates with another key male sex regulator, SOX9, and possibly other proteins to maintain and reprogram sexual cell fate. Second, and related, DMRT1 appears to function as a pioneer transcription factor, binding "closed" inaccessible chromatin and promoting its opening to allow binding by other regulators including SOX9. Third, DMRT1 binds DNA by a highly unusual form of interaction and can bind with different stoichiometries.
Collapse
Affiliation(s)
- David Zarkower
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Mark W. Murphy
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
16
|
Abstract
In 46,XY men, testis is determined by a genetic network(s) that both promotes testis formation and represses ovarian development. Disruption of this process results in a lack of testis-determination and affected individuals present with 46,XY gonadal dysgenesis (GD), a part of the spectrum of Disorders/Differences of Sex Development/Determination (DSD). A minority of all cases of GD are associated with pathogenic variants in key players of testis-determination, SRY, SOX9, MAP3K1 and NR5A1. However, most of the cases remain unexplained. Recently, unbiased exome sequencing approaches have revealed new genes and loci that may cause 46,XY GD. We critically evaluate the evidence to support causality of these factors and describe how functional studies are continuing to improve our understanding of genotype-phenotype relationships in genes that are established causes of GD. As genomic data continues to be generated from DSD cohorts, we propose several recommendations to help interpret the data and establish causality.
Collapse
Affiliation(s)
- Maëva Elzaiat
- Human Developmental Genetics, Institut Pasteur, Paris, France
| | - Ken McElreavey
- Human Developmental Genetics, Institut Pasteur, Paris, France
| | - Anu Bashamboo
- Human Developmental Genetics, Institut Pasteur, Paris, France.
| |
Collapse
|
17
|
Kulibin AY, Malolina EA. The Rete Testis: Development and Role in Testis Function. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421060072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
The rete testis connects seminiferous tubules in which germ cells develop to the efferent ducts and the epididymis, where gametes mature and gain mobility. Several recent studies have thoroughly explored the morphogenesis of this structure in mice during embryonic and postnatal periods. A part of the rete testis has been shown to derive from the precursors of gonad somatic cells before sex determination. The other part forms from embryonal Sertoli cells of testis cords adjacent to the mesonephros. The transformation of Sertoli cells into rete testis cells is apparently not limited to the embryonic stage of development and continues during postnatal testis development. Recently, it was found that the rete testis participates in the formation and maintenance of specialized Sertoli cells in terminal segments of seminiferous tubules, transitional zones. Current views suggest that the transitional zones of the seminiferous tubules may represent a niche for spermatogonial stem cells, the site of the prolonged proliferation of Sertoli cells in the pubertal and postpubertal periods of testis development, and also could be a generator of spermatogenic waves. To sum up, the rete testis transports gametes from the testis to the epididymis, maintains pressure within seminiferous tubules, regulates the composition of the testicular fluid, and impacts the spermatogenic process itself.
Collapse
|
18
|
Ray King K, Fuselier L, Sirvisetty H. LGBTQIA+ invisibility in nursing anatomy/physiology textbooks. J Prof Nurs 2021; 37:816-827. [PMID: 34742510 DOI: 10.1016/j.profnurs.2021.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 12/12/2022]
Abstract
Members of the LGBTQIA+ experience health disparities that are compounded by providers that lack cultural competence, i.e., the skills, attitudes, and knowledge to offer culturally sensitive care. Educational efforts focus on increasing LGBTQIA+ representation across undergraduate nursing curricula and the recruitment and retention of members of this community into nursing programs. However, the ways that classroom materials represent LGBTQIA+ people can perpetuate social norms rather than accurate scientific understandings, thus limiting students' development of cultural competence while also driving LGBTQIA+ students from nursing. This study performs a content analysis for LGBTQIA+ inclusion in four widely adopted undergraduate nursing anatomy/physiology textbooks. We identify specific social beliefs that exclude LGBTQIA+ people and compare the different ways these manifested in each of the four textbooks. We argue that the way these books represent LGBTQIA+ people violate the fundamental ethical principles of nursing. Based on our findings, we challenge educators to consider the impact that language, images, and other classroom materials have on LGBTQIA+ students and all students' ability to develop cultural competence.
Collapse
Affiliation(s)
- Katherine Ray King
- Department of Biology, University of Louisville, Life Sciences Building #139, Louisville, KY 40208, USA.
| | - Linda Fuselier
- Department of Biology, University of Louisville, Life Sciences Building #139, Louisville, KY 40208, USA.
| | - Harshini Sirvisetty
- Department of Biology, University of Louisville, Life Sciences Building #139, Louisville, KY 40208, USA.
| |
Collapse
|
19
|
Tucker EJ. The Genetics and Biology of FOXL2. Sex Dev 2021; 16:184-193. [PMID: 34727551 DOI: 10.1159/000519836] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/22/2021] [Indexed: 11/19/2022] Open
Abstract
FOXL2 encodes a transcription factor that regulates a wide array of target genes including those involved in sex development, eyelid development, ovarian function and maintenance, genomic integrity as well as cellular pathways such as cell-cycle progression, proliferation, and apoptosis. The role of FOXL2 has been widely studied in humans and animals. Consistent with its role in ovarian and eyelid development, over 100 germline variants in FOXL2 are associated with blepharophimosis, ptosis, and epicanthus inversus syndrome in humans, an autosomal dominant condition characterised by ovarian dysgenesis/premature ovarian insufficiency, as well as defective eyelid development. Reflecting its role in apoptosis and proliferation, a somatic variant in FOXL2 causes adult granulosa cell tumours in humans. Despite being widely studied and having clear relevance to human disease, much remains unknown about the genes FOXL2 regulates and how it exerts its wide-reaching effect on multiple organs. This review focuses on FOXL2 and its varied roles as a transcription factor in sex determination, ovarian maintenance and function, eyelid development, genome integrity, and cell regulation, followed by discussion of the in vivo disruption of FOXL2 in humans and other species.
Collapse
Affiliation(s)
- Elena J Tucker
- Reproductive Development, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
20
|
Adolfi MC, Herpin A, Schartl M. The replaceable master of sex determination: bottom-up hypothesis revisited. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200090. [PMID: 34247496 DOI: 10.1098/rstb.2020.0090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Different group of vertebrates and invertebrates demonstrate an amazing diversity of gene regulations not only at the top but also at the bottom of the sex determination genetic network. As early as 1995, based on emerging findings in Drosophila melanogaster and Caenorhabditis elegans, Wilkins suggested that the evolution of the sex determination pathway evolved from the bottom to the top of the hierarchy. Based on our current knowledge, this review revisits the 'bottom-up' hypothesis and applies its logic to vertebrates. The basic operation of the determination network is through the dynamics of the opposing male and female pathways together with a persistent need to maintain the sexual identity of the cells of the gonad up to the reproductive stage in adults. The sex-determining trigger circumstantially acts from outside the genetic network, but the regulatory network is not built around it as a main node, thus maintaining the genetic structure of the network. New sex-promoting genes arise either through allelic diversification or gene duplication and act specially at the sex-determination period, without integration into the complete network. Due to this peripheral position the new regulator is not an indispensable component of the sex-determining network and can be easily replaced. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Mateus Contar Adolfi
- Developmental Biochemistry, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Amaury Herpin
- INRA, UR 1037 Fish Physiology and Genomics, 35000 Rennes, France.,State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany.,Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX 78666, USA
| |
Collapse
|
21
|
Figueiredo AFA, Hess RA, Batlouni SR, Wnuk NT, Tavares AO, Abarikwu SO, Costa GMJ, França LR. Insights into differentiation and function of the transition region between the seminiferous tubule and rete testis. Differentiation 2021; 120:36-47. [PMID: 34229995 DOI: 10.1016/j.diff.2021.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/18/2021] [Accepted: 06/27/2021] [Indexed: 01/15/2023]
Abstract
Seminiferous tubules physically connect to the rete testis through short segments called the transition region (TR). During fetal development, this specialized junction is considered the initial site where testis cords begin to form and to grow in length well beyond birth and into adulthood and form convoluted tubular cores. Mitotic activity of the Sertoli cell, the somatic cell of the epithelium, ceases before puberty, but modified Sertoli cells in the TR remain immature and capable of proliferation. This review presents what is known about this specialized region of the testis, with an emphasis on the morphological, molecular and physiological features, which support the hypothesis that this short region of epithelial transition serves as a specialized niche for undifferentiated Sertoli cells and spermatogonial stem cells. Also, the region is populated by an elevated number of immune cells, suggesting an important activity in monitoring and responding to any leakage of autoantigens, as sperm enter the rete testis. Several structure/function characteristics of the transition region are discussed and compared across species.
Collapse
Affiliation(s)
- A F A Figueiredo
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rex A Hess
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, IL, USA
| | - S R Batlouni
- Aquaculture Center (CAUNESP), São Paulo State University, São Paulo, SP, Brazil
| | - N T Wnuk
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - A O Tavares
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - S O Abarikwu
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - G M J Costa
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - L R França
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
22
|
Jiménez R, Burgos M, Barrionuevo FJ. Sex Maintenance in Mammals. Genes (Basel) 2021; 12:genes12070999. [PMID: 34209938 PMCID: PMC8303465 DOI: 10.3390/genes12070999] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/26/2021] [Accepted: 06/26/2021] [Indexed: 12/30/2022] Open
Abstract
The crucial event in mammalian sexual differentiation occurs at the embryonic stage of sex determination, when the bipotential gonads differentiate as either testes or ovaries, according to the sex chromosome constitution of the embryo, XY or XX, respectively. Once differentiated, testes produce sexual hormones that induce the subsequent differentiation of the male reproductive tract. On the other hand, the lack of masculinizing hormones in XX embryos permits the formation of the female reproductive tract. It was long assumed that once the gonad is differentiated, this developmental decision is irreversible. However, several findings in the last decade have shown that this is not the case and that a continuous sex maintenance is needed. Deletion of Foxl2 in the adult ovary lead to ovary-to-testis transdifferentiation and deletion of either Dmrt1 or Sox9/Sox8 in the adult testis induces the opposite process. In both cases, mutant gonads were genetically reprogrammed, showing that both the male program in ovaries and the female program in testes must be actively repressed throughout the individual's life. In addition to these transcription factors, other genes and molecular pathways have also been shown to be involved in this antagonism. The aim of this review is to provide an overview of the genetic basis of sex maintenance once the gonad is already differentiated.
Collapse
|
23
|
Lindeman RE, Murphy MW, Agrimson KS, Gewiss R, Bardwell V, Gearhart M, Zarkower D. The conserved sex regulator DMRT1 recruits SOX9 in sexual cell fate reprogramming. Nucleic Acids Res 2021; 49:6144-6164. [PMID: 34096593 PMCID: PMC8216462 DOI: 10.1093/nar/gkab448] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 01/16/2023] Open
Abstract
Mammalian sexual development commences when fetal bipotential progenitor cells adopt male Sertoli (in XY) or female granulosa (in XX) gonadal cell fates. Differentiation of these cells involves extensive divergence in chromatin state and gene expression, reflecting distinct roles in sexual differentiation and gametogenesis. Surprisingly, differentiated gonadal cell fates require active maintenance through postnatal life to prevent sexual transdifferentiation and female cell fate can be reprogrammed by ectopic expression of the sex regulator DMRT1. Here we examine how DMRT1 reprograms granulosa cells to Sertoli-like cells in vivo and in culture. We define postnatal sex-biased gene expression programs and identify three-dimensional chromatin contacts and differentially accessible chromatin regions (DARs) associated with differentially expressed genes. Using a conditional transgene we find DMRT1 only partially reprograms the ovarian transcriptome in the absence of SOX9 and its paralog SOX8, indicating that these factors functionally cooperate with DMRT1. ATAC-seq and ChIP-seq show that DMRT1 induces formation of many DARs that it binds with SOX9, and DMRT1 is required for binding of SOX9 at most of these. We suggest that DMRT1 can act as a pioneer factor to open chromatin and allow binding of SOX9, which then cooperates with DMRT1 to reprogram sexual cell fate.
Collapse
Affiliation(s)
- Robin E Lindeman
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
| | - Mark W Murphy
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
| | - Kellie S Agrimson
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
| | - Rachel L Gewiss
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
| | - Vivian J Bardwell
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
- University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - Micah D Gearhart
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
| | - David Zarkower
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
- University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA
| |
Collapse
|
24
|
Dai S, Qi S, Wei X, Liu X, Li Y, Zhou X, Xiao H, Lu B, Wang D, Li M. Germline sexual fate is determined by the antagonistic action of dmrt1 and foxl3/foxl2 in tilapia. Development 2021; 148:dev.199380. [PMID: 33741713 DOI: 10.1242/dev.199380] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/04/2021] [Indexed: 12/21/2022]
Abstract
Germline sexual fate has long been believed to be determined by the somatic environment, but this idea is challenged by recent studies of foxl3 mutants in medaka. Here, we demonstrate that the sexual fate of tilapia germline is determined by the antagonistic interaction of dmrt1 and foxl3, which are transcriptionally repressed in male and female germ cells, respectively. Loss of dmrt1 rescued the germ cell sex reversal in foxl3Δ7/Δ7 XX fish, and loss of foxl3 partially rescued germ cell sex reversal but not somatic cell fate in dmrt1Δ5/Δ5 XY fish. Interestingly, germ cells lost sexual plasticity in dmrt1Δ5/Δ5 XY and foxl3Δ7/Δ7 XX single mutants, as aromatase inhibitor (AI) and estrogen treatment failed to rescue the respective phenotypes. However, recovery of germ cell sexual plasticity was observed in dmrt1/foxl3 double mutants. Importantly, mutation of somatic cell-specific foxl2 resulted in testicular development in foxl3Δ7/Δ7 or dmrt1Δ5/Δ5 mutants. Our findings demonstrate that sexual plasticity of germ cells relies on the presence of both dmrt1 and foxl3. The existence of dmrt1 and foxl3 allows environmental factors to influence the sex fate decision in vertebrates.
Collapse
Affiliation(s)
- Shengfei Dai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Shuangshuang Qi
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xueyan Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xingyong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yibing Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xin Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Hesheng Xiao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Baoyue Lu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
25
|
Wei YD, Du XM, Yang DH, Ma FL, Yu XW, Zhang MF, Li N, Peng S, Liao MZ, Li GP, Bai CL, Liu WS, Hua JL. Dmrt1 regulates the immune response by repressing the TLR4 signaling pathway in goat male germline stem cells. Zool Res 2021; 42:14-27. [PMID: 33420764 PMCID: PMC7840460 DOI: 10.24272/j.issn.2095-8137.2020.186] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Double sex and mab-3-related transcription factor 1 (Dmrt1), which is expressed in goat male germline stem cells (mGSCs) and Sertoli cells, is one of the most conserved transcription factors involved in sex determination. In this study, we highlighted the role of Dmrt1 in balancing the innate immune response in goat mGSCs. Dmrt1 recruited promyelocytic leukemia zinc finger (Plzf), also known as zinc finger and BTB domain-containing protein 16 (Zbtb16), to repress the Toll-like receptor 4 (TLR4)-dependent inflammatory signaling pathway and nuclear factor (NF)-κB. Knockdown of Dmrt1 in seminiferous tubules resulted in widespread degeneration of germ and somatic cells, while the expression of proinflammatory factors were significantly enhanced. We also demonstrated that Dmrt1 stimulated proliferation of mGSCs, but repressed apoptosis caused by the immune response. Thus, Dmrt1 is sufficient to reduce inflammation in the testes, thereby establishing the stability of spermatogenesis and the testicular microenvironment.
Collapse
Affiliation(s)
- Yu-Dong Wei
- College of Veterinary Medicine, Northwest A & F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi 712100, China
| | - Xiao-Min Du
- College of Veterinary Medicine, Northwest A & F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi 712100, China
| | - Dong-Hui Yang
- College of Veterinary Medicine, Northwest A & F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi 712100, China
| | - Fang-Lin Ma
- College of Veterinary Medicine, Northwest A & F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi 712100, China
| | - Xiu-Wei Yu
- College of Veterinary Medicine, Northwest A & F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi 712100, China
| | - Meng-Fei Zhang
- College of Veterinary Medicine, Northwest A & F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi 712100, China
| | - Na Li
- College of Veterinary Medicine, Northwest A & F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi 712100, China
| | - Sha Peng
- College of Veterinary Medicine, Northwest A & F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi 712100, China
| | - Ming-Zhi Liao
- College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Guang-Peng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010021, China
| | - Chun-Ling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010021, China. E-mail:
| | - Wei-Shuai Liu
- Department of Pathology, Yangling Demonstration Zone Hospital, Yangling Shaanxi 712100, China. E-mail:
| | - Jin-Lian Hua
- College of Veterinary Medicine, Northwest A & F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi 712100, China. E-mail:
| |
Collapse
|
26
|
Nagahama Y, Chakraborty T, Paul-Prasanth B, Ohta K, Nakamura M. Sex determination, gonadal sex differentiation, and plasticity in vertebrate species. Physiol Rev 2020; 101:1237-1308. [PMID: 33180655 DOI: 10.1152/physrev.00044.2019] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A diverse array of sex determination (SD) mechanisms, encompassing environmental to genetic, have been found to exist among vertebrates, covering a spectrum from fixed SD mechanisms (mammals) to functional sex change in fishes (sequential hermaphroditic fishes). A major landmark in vertebrate SD was the discovery of the SRY gene in 1990. Since that time, many attempts to clone an SRY ortholog from nonmammalian vertebrates remained unsuccessful, until 2002, when DMY/dmrt1by was discovered as the SD gene of a small fish, medaka. Surprisingly, however, DMY/dmrt1by was found in only 2 species among more than 20 species of medaka, suggesting a large diversity of SD genes among vertebrates. Considerable progress has been made over the last 3 decades, such that it is now possible to formulate reasonable paradigms of how SD and gonadal sex differentiation may work in some model vertebrate species. This review outlines our current understanding of vertebrate SD and gonadal sex differentiation, with a focus on the molecular and cellular mechanisms involved. An impressive number of genes and factors have been discovered that play important roles in testicular and ovarian differentiation. An antagonism between the male and female pathway genes exists in gonads during both sex differentiation and, surprisingly, even as adults, suggesting that, in addition to sex-changing fishes, gonochoristic vertebrates including mice maintain some degree of gonadal sexual plasticity into adulthood. Importantly, a review of various SD mechanisms among vertebrates suggests that this is the ideal biological event that can make us understand the evolutionary conundrums underlying speciation and species diversity.
Collapse
Affiliation(s)
- Yoshitaka Nagahama
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Faculty of Biological Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Tapas Chakraborty
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan.,Karatsu Satellite of Aqua-Bioresource Innovation Center, Kyushu University, Karatsu, Japan
| | - Bindhu Paul-Prasanth
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidapeetham, Kochi, Kerala, India
| | - Kohei Ohta
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan
| | - Masaru Nakamura
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.,Research Center, Okinawa Churashima Foundation, Okinawa, Japan
| |
Collapse
|
27
|
Nagel S, Pommerenke C, MacLeod RAF, Meyer C, Kaufmann M, Drexler HG. The NKL-code for innate lymphoid cells reveals deregulated expression of NKL homeobox genes HHEX and HLX in anaplastic large cell lymphoma (ALCL). Oncotarget 2020; 11:3208-3226. [PMID: 32922661 PMCID: PMC7456612 DOI: 10.18632/oncotarget.27683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/07/2020] [Indexed: 12/26/2022] Open
Abstract
NKL homeobox genes encode developmental transcription factors and display an NKL-code according to their physiological expression pattern in hematopoiesis. Here, we analyzed public transcriptome data from primary innate lymphoid cells (ILCs) for NKL homeobox gene activities and found that ILC3 expressed exclusively HHEX while in ILC1 and ILC2 these genes were silenced. Deregulation of the NKL-code promotes hematopoietic malignancies, including anaplastic large cell lymphoma (ALCL) which reportedly may derive from ILC3. Accordingly, we analyzed NKL homeobox gene activities in ALCL cell lines and investigated their role in this malignancy. Transcriptome analyses demonstrated low expression levels of HHEX but powerfully activated HLX. Forced expression of HHEX in ALCL cell lines induced genes involved in apoptosis and ILC3 differentiation, indicating tumor suppressor activity. ALCL associated NPM1-ALK and JAK-STAT3-signalling drove enhanced expression of HLX while discounting HHEX. Genomic profiling revealed copy number gains at the loci of HLX and STAT3 in addition to genes encoding both STAT3 regulators (AURKA, BCL3, JAK3, KPNB1, NAMPT, NFAT5, PIM3, ROCK1, SIX1, TPX2, WWOX) and targets (BATF3, IRF4, miR135b, miR21, RORC). Transcriptome data of ALCL cell lines showed absence of STAT3 mutations while MGA was mutated and downregulated, encoding a novel potential STAT3 repressor. Furthermore, enhanced IL17F-signalling activated HLX while TGFbeta-signalling inhibited HHEX expression. Taken together, our data extend the scope of the NKL-code for ILCs and spotlight aberrant expression of NKL homeobox gene HLX in ALCL. HLX represents a direct target of ALCL hallmark factor STAT3 and deregulates cell survival and differentiation in this malignancy.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz Institute, DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Claudia Pommerenke
- Department of Human and Animal Cell Lines, Leibniz Institute, DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Roderick A F MacLeod
- Department of Human and Animal Cell Lines, Leibniz Institute, DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Corinna Meyer
- Department of Human and Animal Cell Lines, Leibniz Institute, DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Maren Kaufmann
- Department of Human and Animal Cell Lines, Leibniz Institute, DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans G Drexler
- Department of Human and Animal Cell Lines, Leibniz Institute, DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
28
|
Two distinct pathways of pregranulosa cell differentiation support follicle formation in the mouse ovary. Proc Natl Acad Sci U S A 2020; 117:20015-20026. [PMID: 32759216 PMCID: PMC7443898 DOI: 10.1073/pnas.2005570117] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This paper improves knowledge of the somatic and germ cells of the developing mouse ovary that assemble into ovarian follicles, by determining cellular gene expression, and tracing lineage relationships. The study covers the last week of fetal development through the first five days of postnatal development. During this time, many critically important processes take place, including sex determination, follicle assembly, and the initial events of meiosis. We report expression differences between pregranulosa cells of wave 1 follicles that function at puberty and wave 2 follicles that sustain fertility. These studies illuminate ovarian somatic cells and provide a resource to study the development, physiology, and evolutionary conservation of mammalian ovarian follicle formation. We sequenced more than 52,500 single cells from embryonic day 11.5 (E11.5) postembryonic day 5 (P5) gonads and performed lineage tracing to analyze primordial follicles and wave 1 medullar follicles during mouse fetal and perinatal oogenesis. Germ cells clustered into six meiotic substages, as well as dying/nurse cells. Wnt-expressing bipotential precursors already present at E11.5 are followed at each developmental stage by two groups of ovarian pregranulosa (PG) cells. One PG group, bipotential pregranulosa (BPG) cells, derives directly from bipotential precursors, expresses Foxl2 early, and associates with cysts throughout the ovary by E12.5. A second PG group, epithelial pregranulosa (EPG) cells, arises in the ovarian surface epithelium, ingresses cortically by E12.5 or earlier, expresses Lgr5, but delays robust Foxl2 expression until after birth. By E19.5, EPG cells predominate in the cortex and differentiate into granulosa cells of quiescent primordial follicles. In contrast, medullar BPG cells differentiate along a distinct pathway to become wave 1 granulosa cells. Reflecting their separate somatic cellular lineages, second wave follicles were ablated by diptheria toxin treatment of Lgr5-DTR-EGFP mice at E16.5 while first wave follicles developed normally and supported fertility. These studies provide insights into ovarian somatic cells and a resource to study the development, physiology, and evolutionary conservation of mammalian ovarian follicles.
Collapse
|
29
|
Winge SB, Soraggi S, Schierup MH, Rajpert-De Meyts E, Almstrup K. Integration and reanalysis of transcriptomics and methylomics data derived from blood and testis tissue of men with 47,XXY Klinefelter syndrome indicates the primary involvement of Sertoli cells in the testicular pathogenesis. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:239-255. [PMID: 32449318 DOI: 10.1002/ajmg.c.31793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/03/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022]
Abstract
Klinefelter syndrome (KS; 47,XXY) is the most common sex chromosomal anomaly and causes a multitude of symptoms. Often the most noticeable symptom is infertility caused by azoospermia with testicular histology showing hyalinization of tubules, germ cells loss, and Leydig cell hyperplasia. The germ cell loss begins early in life leading to partial hyalinization of the testis at puberty, but the mechanistic drivers behind this remain poorly understood. In this systematic review, we summarize the current knowledge on developmental changes in the cellularity of KS gonads supplemented by a comparative analysis of the fetal and adult gonadal transcriptome, and blood transcriptome and methylome of men with KS. We identified a high fraction of upregulated genes that escape X-chromosome inactivation, thus supporting previous hypotheses that these are the main drivers of the testicular phenotype in KS. Enrichment analysis showed overrepresentation of genes from the X- and Y-chromosome and testicular transcription factors. Furthermore, by re-evaluation of recent single cell RNA-sequencing data originating from adult KS testis, we found novel evidence that the Sertoli cell is the most affected cell type. Our results are consistent with disturbed cross-talk between somatic and germ cells in the KS testis, and with X-escapee genes acting as mediators.
Collapse
Affiliation(s)
- Sofia B Winge
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Samuele Soraggi
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | | | - Ewa Rajpert-De Meyts
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Almstrup
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Spade DJ, Hall SJ, Wortzel JD, Reyes G, Boekelheide K. All-trans Retinoic Acid Disrupts Development in Ex Vivo Cultured Fetal Rat Testes. II: Modulation of Mono-(2-ethylhexyl) Phthalate Toxicity. Toxicol Sci 2020; 168:149-159. [PMID: 30476341 DOI: 10.1093/toxsci/kfy283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Humans are universally exposed to low levels of phthalate esters (phthalates), which are used to plasticize polyvinyl chloride. Phthalates exert adverse effects on the development of seminiferous cords in the fetal testis through unknown toxicity pathways. To investigate the hypothesis that phthalates alter seminiferous cord development by disrupting retinoic acid (RA) signaling in the fetal testis, gestational day 15 fetal rat testes were exposed for 1-3 days to 10-6 M all-trans retinoic acid (ATRA) alone or in combination with 10-6-10-4 M mono-(2-ethylhexyl) phthalate (MEHP) in ex vivo culture. As previously reported, exogenous ATRA reduced seminiferous cord number. This effect was attenuated in a concentration-dependent fashion by MEHP co-exposure. ATRA and MEHP-exposed testes were depleted of DDX4-positive germ cells but not Sertoli cells. MEHP alone enhanced the expression of the RA receptor target Rbp1 and the ovary development-associated genes Wnt4 and Nr0b1, and suppressed expression of the Leydig cell marker, Star, and the germ cell markers, Ddx4 and Pou5f1. In co-exposures, MEHP predominantly enhanced the gene expression effects of ATRA, but the Wnt4 and Nr0b1 concentration-responses were nonlinear. Similarly, ATRA increased the number of cells expressing the granulosa cell marker FOXL2 in testis cultures, but this induction was attenuated by addition of MEHP. These results indicate that MEHP can both enhance and inhibit actions of ATRA during fetal testis development and provide evidence that RA signaling is a target for phthalate toxicity in the fetal testis.
Collapse
Affiliation(s)
- Daniel J Spade
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| | - Susan J Hall
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| | - Jeremy D Wortzel
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| | - Gerardo Reyes
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912.,Division of Natural Sciences, College of Mount Saint Vincent, Riverdale, New York 10471
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
31
|
Xu C, Dai Y, Mohsin A, Hang H, Zhuang Y, Guo M. Mapping molecular pathways for embryonic Sertoli cells derivation based on differentiation model of mouse embryonic stem cells. Stem Cell Res Ther 2020; 11:85. [PMID: 32102677 PMCID: PMC7045406 DOI: 10.1186/s13287-020-01600-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 12/27/2022] Open
Abstract
Background Embryonic Sertoli cells (eSCs) have been known for playing important roles in male reproductive development system. In current studies, eSCs were mainly generated from induced intermediate mesoderm. The deriving mechanism of eSCs has been unclear so far. Therefore, this work was aimed to reveal the molecular pathways during derivation of eSCs. Methods In this scenario, a differentiation model from mouse embryonic stem cells (mESCs) to eSCs was established through spatiotemporal control of 5 key factors, Wilms tumor 1 homolog (Wt1), GATA binding protein 4 (Gata4), nuclear receptor subfamily 5, group A, member 1 (Nr5a1, i.e., Sf1), SRY (sex determining region Y)-box 9 (Sox9), doublesex, and mab-3 related transcription factor 1 (Dmrt1). To investigate the molecular mechanism, these key factors were respectively manipulated through a light-switchable (light-on) system, tetracycline-switchable (Tet-on) system, and CRISPR/Cas9 knock out (KO) system. Results Via the established approach, some embryonic Sertoli-like cells (eSLCs) were induced from mESCs and formed ring-like or tubular-like structures. The key factors were respectively manipulated and revealed their roles in the derivation of these eSLCs. Based on these results, some molecular pathways were mapped during the development of coelomic epithelial somatic cells to eSCs. Conclusions This differentiation model provided a high controllability of some key factors and brought a novel insight into the deriving mechanism of Sertoli cells. Supplementary information accompanies this paper at 10.1186/s13287-020-01600-2.
Collapse
Affiliation(s)
- Chenze Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Yichen Dai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Haifeng Hang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China. .,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
32
|
Gruzin M, Mekheal M, Ruhlman K, Winkowski M, Petko J. Developmental expression of doublesex-related transcripts in the common house spider, Parasteatoda tepidariorum. Gene Expr Patterns 2020; 35:119101. [DOI: 10.1016/j.gep.2020.119101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 01/28/2023]
|
33
|
Bowles J, Feng CW, Ineson J, Miles K, Spiller CM, Harley VR, Sinclair AH, Koopman P. Retinoic Acid Antagonizes Testis Development in Mice. Cell Rep 2019; 24:1330-1341. [PMID: 30067986 DOI: 10.1016/j.celrep.2018.06.111] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/26/2018] [Accepted: 06/27/2018] [Indexed: 12/29/2022] Open
Abstract
Mammalian sex determination depends on a complex interplay of signals that promote the bipotential fetal gonad to develop as either a testis or an ovary, but the details are incompletely understood. Here, we investigated whether removal of the signaling molecule retinoic acid (RA) by the degradative enzyme CYP26B1 is necessary for proper development of somatic cells of the testes. Gonadal organ culture experiments suggested that RA promotes expression of some ovarian markers and suppresses expression of some testicular markers, acting downstream of Sox9. XY Cyp26b1-null embryos, in which endogenous RA is not degraded, develop mild ovotestes, but more important, steroidogenesis is impaired and the reproductive tract feminized. Experiments involving purified gonadal cells showed that these effects are independent of germ cells and suggest the direct involvement of the orphan nuclear receptor DAX1. Our results reveal that active removal of endogenous RA is required for normal testis development in the mouse.
Collapse
Affiliation(s)
- Josephine Bowles
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Chun-Wei Feng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jessica Ineson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kim Miles
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Cassy M Spiller
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Vincent R Harley
- Hudson Institute of Medical Research, Clayton, Melbourne, VIC 3168, Australia
| | - Andrew H Sinclair
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
34
|
Martínez-Juárez A, Moreno-Mendoza N. Mechanisms related to sexual determination by temperature in reptiles. J Therm Biol 2019; 85:102400. [PMID: 31657741 DOI: 10.1016/j.jtherbio.2019.102400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 08/12/2019] [Accepted: 08/21/2019] [Indexed: 01/08/2023]
Abstract
A number of strategies have emerged that appear to relate to the evolution of mechanisms for sexual determination in vertebrates, among which are genetic sex determination caused by sex chromosomes and environmental sex determination, where environmental factors influence the phenotype of the sex of an individual. Within the reptile group, some orders such as: Chelonia, Crocodylia, Squamata and Rhynchocephalia, manifest one of the most intriguing and exciting environmental sexual determination mechanisms that exists, comprising temperature-dependent sex determination (TSD), where the temperature of incubation that the embryo experiences during its development is fundamental to establishing the sex of the individual. This makes them an excellent model for the study of sexual determination at the molecular, cellular and physiological level, as well as in terms of their implications at an evolutionary and ecological level. There are different hypotheses concerning how this process is triggered and this review aims to describe any new contributions to particular TSD hypotheses, analyzing them from the "eco-evo-devo" perspective.
Collapse
Affiliation(s)
- Adriana Martínez-Juárez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228 México, D.F. 04510, Mexico
| | - Norma Moreno-Mendoza
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228 México, D.F. 04510, Mexico.
| |
Collapse
|
35
|
Mäkelä JA, Koskenniemi JJ, Virtanen HE, Toppari J. Testis Development. Endocr Rev 2019; 40:857-905. [PMID: 30590466 DOI: 10.1210/er.2018-00140] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/17/2018] [Indexed: 12/28/2022]
Abstract
Production of sperm and androgens is the main function of the testis. This depends on normal development of both testicular somatic cells and germ cells. A genetic program initiated from the Y chromosome gene sex-determining region Y (SRY) directs somatic cell specification to Sertoli cells that orchestrate further development. They first guide fetal germ cell differentiation toward spermatogenic destiny and then take care of the full service to spermatogenic cells during spermatogenesis. The number of Sertoli cells sets the limits of sperm production. Leydig cells secrete androgens that determine masculine development. Testis development does not depend on germ cells; that is, testicular somatic cells also develop in the absence of germ cells, and the testis can produce testosterone normally to induce full masculinization in these men. In contrast, spermatogenic cell development is totally dependent on somatic cells. We herein review germ cell differentiation from primordial germ cells to spermatogonia and development of the supporting somatic cells. Testicular descent to scrota is necessary for normal spermatogenesis, and cryptorchidism is the most common male birth defect. This is a mild form of a disorder of sex differentiation. Multiple genetic reasons for more severe forms of disorders of sex differentiation have been revealed during the last decades, and these are described along with the description of molecular regulation of testis development.
Collapse
Affiliation(s)
- Juho-Antti Mäkelä
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jaakko J Koskenniemi
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Helena E Virtanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pediatrics, Turku University Hospital, Turku, Finland
| |
Collapse
|
36
|
Macdonald J, Kilcoyne KR, Sharpe RM, Kavanagh Á, Anderson RA, Brown P, Smith LB, Jørgensen A, Mitchell RT. DMRT1 repression using a novel approach to genetic manipulation induces testicular dysgenesis in human fetal gonads. Hum Reprod 2019; 33:2107-2121. [PMID: 30272154 PMCID: PMC6195803 DOI: 10.1093/humrep/dey289] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/04/2018] [Indexed: 01/16/2023] Open
Abstract
STUDY QUESTION Does loss of DMRT1 in human fetal testis alter testicular development and result in testicular dysgenesis? SUMMARY ANSWER DMRT1 repression in human fetal testis alters the expression of key testicular and ovarian determining genes, and leads to focal testicular dysgenesis. WHAT IS KNOWN ALREADY Testicular dysgenesis syndrome (TDS) is associated with common testicular disorders in young men, but its etiology is unknown. DMRT1 has been shown to play a role in the regulation of sex differentiation in the vertebrate gonad. Downregulation of DMRT1 in male mice results in trans-differentiation of Sertoli cells into granulosa (FOXL2+) cells resulting in an ovarian gonadal phenotype. STUDY DESIGN, SIZE, DURATION To determine the effect of DMRT1 repression on human fetal testes, we developed a novel system for genetic manipulation, which utilizes a Lentivral delivered miRNA during short-term in vitro culture (2 weeks). A long-term (4–6 weeks) ex vivo xenograft model was used to determine the subsequent effects of DMRT1 repression on testicular development and maintenance. We included first and second-trimester testis tissue (8–20 weeks gestation; n = 12) in the study. PARTICIPANTS/MATERIALS, SETTING, METHODS Human fetal testes were cultured in vitro and exposed to either of two DMRT1 miRNAs (miR536, miR641), or to scrambled control miRNA, for 24 h. This was followed by a further 14 days of culture (n = 3–4), or xenografting (n = 5) into immunocompromised mice for 4–6 weeks. Tissues were analyzed by histology, immunohistochemistry, immunofluorescence and quantitative RT-PCR. Endpoints included histological evaluation of seminiferous cord integrity, mRNA expression of testicular, ovarian and germ cell genes, and assessment of cell number and protein expression for proliferation, apoptosis and pluripotency factors. Statistical analysis was performed using a linear mixed effect model. MAIN RESULTS AND THE ROLE OF CHANCE DMRT1 repression (miR536/miR641) resulted in a loss of DMRT1 protein expression in a sub-population of Sertoli cells of first trimester (8–11 weeks gestation) human fetal testis; however, this did not affect the completion of seminiferous cord formation or morphological appearance. In second-trimester testis (12–20 weeks gestation), DMRT1 repression (miR536/miR641) resulted in disruption of seminiferous cords with absence of DMRT1 protein expression in Sertoli (SOX9+) cells. No differences in proliferation (Ki67+) were observed and apoptotic cells (CC3+) were rare. Expression of the Sertoli cell associated gene, SOX8, was significantly reduced (miR536, 34% reduction, P = 0.031; miR641 36% reduction, P = 0.026), whilst SOX9 expression was unaffected. Changes in expression of AMH (miR536, 100% increase, P = 0.033), CYP26B1 (miR641, 38% reduction, P = 0.05) and PTGDS (miR642, 30% reduction, P = 0.0076) were also observed. Amongst granulosa cell associated genes, there was a significant downregulation in R-spondin 1 expression (miR536, 76% reduction, P < 0.0001; miR641, 49% reduction, P = 0.046); however, there were no changes in expression of the granulosa cell marker, FOXL2. Analysis of germ cell associated genes demonstrated a significant increase in the expression of the pluripotency gene OCT4 (miR536, 233%, P < 0.001). We used the xenograft system to investigate the longer-term effects of seminiferous cord disruption via DMRT1 repression. As was evident in vitro for second-trimester samples, DMRT1 repression resulted in focal testicular dysgenesis similar to that described in adults with TDS. These dysgenetic areas were devoid of germ cells, whilst expression of FOXL2 within the dysgenetic areas, indicated trans-differentiation from a male (Sertoli cell) to female (granulosa cell) phenotype. LIMITATIONS, REASONS FOR CAUTION Human fetal testis tissue is a limited resource; however, we were able to demonstrate significant effects of DMRT1 repression on the expression of germ and somatic cell genes, in addition to the induction of focal testicular dysgenesis, using these limited samples. In vitro culture may not reflect all aspects of human fetal testis development and function; however, the concurrent use of the xenograft model which represents a more physiological system supports the validity of the in vitro findings. WIDER IMPLICATIONS OF THE FINDINGS Our findings have important implications for understanding the role of DMRT1 in human testis development and in the origin of testicular dysgenesis. In addition, we provide validation of a novel system that can be used to determine the effects of repression of genes that have been implicated in gonadal development and associated human reproductive disorders. STUDY FUNDING/COMPETING INTEREST(S) This project was funded by a Wellcome Trust Intermediate Clinical Fellowship (Grant No. 098522) awarded to RTM. LBS was supported by MRC Programme Grant MR/N002970/1. RAA was supported by MRC Programme Grant G1100357/1. RMS was supported by MRC Programme Grant G33253. This work was undertaken in the MRC Centre for Reproductive Health which is funded by the MRC Centre grant MR/N022556/1. The funding bodies had no input into the conduct of the research or the production of this manuscript. The authors have declared no conflicts of interest.
Collapse
Affiliation(s)
- Joni Macdonald
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, UK
| | - Karen R Kilcoyne
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, UK
| | - Richard M Sharpe
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, UK
| | - Áine Kavanagh
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, UK
| | - Pamela Brown
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, UK
| | - Lee B Smith
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, UK.,School of Environmental and Life Sciences, Faculty of Science, University of Newcastle, Callaghan, NSW, Australia
| | - Anne Jørgensen
- University Department of Growth and Reproduction, Rigshospitalet, Blegdamsvej 9, Copenhagen, Denmark
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, UK.,Edinburgh Royal Hospital for Sick Children, 9 Sciennes Road, Edinburgh, Scotland, UK
| |
Collapse
|
37
|
Deciphering Cell Lineage Specification during Male Sex Determination with Single-Cell RNA Sequencing. Cell Rep 2019; 22:1589-1599. [PMID: 29425512 DOI: 10.1016/j.celrep.2018.01.043] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/21/2017] [Accepted: 01/12/2018] [Indexed: 11/20/2022] Open
Abstract
The gonad is a unique biological system for studying cell-fate decisions. However, major questions remain regarding the identity of somatic progenitor cells and the transcriptional events driving cell differentiation. Using time-series single-cell RNA sequencing on XY mouse gonads during sex determination, we identified a single population of somatic progenitor cells prior to sex determination. A subset of these progenitors differentiates into Sertoli cells, a process characterized by a highly dynamic genetic program consisting of sequential waves of gene expression. Another subset of multipotent cells maintains their progenitor state but undergoes significant transcriptional changes restricting their competence toward a steroidogenic fate required for the differentiation of fetal Leydig cells. Our findings confirm the presence of a unique multipotent progenitor population in the gonadal primordium that gives rise to both supporting and interstitial lineages. These also provide the most granular analysis of the transcriptional events occurring during testicular cell-fate commitment.
Collapse
|
38
|
Nicol B, Grimm SA, Gruzdev A, Scott GJ, Ray MK, Yao HHC. Genome-wide identification of FOXL2 binding and characterization of FOXL2 feminizing action in the fetal gonads. Hum Mol Genet 2019; 27:4273-4287. [PMID: 30212841 DOI: 10.1093/hmg/ddy312] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/30/2018] [Indexed: 12/16/2022] Open
Abstract
The identity of the gonads is determined by which fate, ovarian granulosa cell or testicular Sertoli cell, the bipotential somatic cell precursors choose to follow. In most vertebrates, the conserved transcription factor FOXL2 contributes to the fate of granulosa cells. To understand FOXL2 functions during gonad differentiation, we performed genome-wide analysis of FOXL2 chromatin occupancy in fetal ovaries and established a genetic mouse model that forces Foxl2 expression in the fetal testis. When FOXL2 was ectopically expressed in the somatic cell precursors in the fetal testis, FOXL2 was sufficient to repress Sertoli cell differentiation, ultimately resulting in partial testis-to-ovary sex-reversal. Combining genome-wide analysis of FOXL2 binding in the fetal ovary with transcriptomic analyses of our Foxl2 gain-of-function and previously published Foxl2 loss-of-function models, we identified potential pathways responsible for the feminizing action of FOXL2. Finally, comparison of FOXL2 genome-wide occupancy in the fetal ovary with testis-determining factor SOX9 genome-wide occupancy in the fetal testis revealed extensive overlaps, implying that antagonistic signals between FOXL2 and SOX9 occur at the chromatin level.
Collapse
Affiliation(s)
- Barbara Nicol
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Sara A Grimm
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Artiom Gruzdev
- Knockout Mouse Core Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Greg J Scott
- Knockout Mouse Core Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Manas K Ray
- Knockout Mouse Core Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Humphrey H-C Yao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
39
|
Faisal I, Cisneros-Montalvo S, Hamer G, Tuominen MM, Laurila PP, Tumiati M, Jauhiainen M, Kotaja N, Toppari J, Mäkelä JA, Kauppi L. Transcription Factor USF1 Is Required for Maintenance of Germline Stem Cells in Male Mice. Endocrinology 2019; 160:1119-1136. [PMID: 30759202 DOI: 10.1210/en.2018-01088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/08/2019] [Indexed: 12/22/2022]
Abstract
A prerequisite for lifelong sperm production is that spermatogonial stem cells (SSCs) balance self-renewal and differentiation, yet factors required for this balance remain largely undefined. Using mouse genetics, we now demonstrate that the ubiquitously expressed transcription factor upstream stimulatory factor (USF)1 is critical for the maintenance of SSCs. We show that USF1 is not only detected in Sertoli cells as previously reported, but also in SSCs. Usf1-deficient mice display progressive spermatogenic decline as a result of age-dependent loss of SSCs. According to our data, the germ cell defect in Usf1-/- mice cannot be attributed to impairment of Sertoli cell development, maturation, or function, but instead is likely due to an inability of SSCs to maintain a quiescent state. SSCs of Usf1-/- mice undergo continuous proliferation, which provides an explanation for their age-dependent depletion. The proliferation-coupled exhaustion of SSCs in turn results in progressive degeneration of the seminiferous epithelium, gradual decrease in sperm production, and testicular atrophy. We conclude that the general transcription factor USF1 is indispensable for the proper maintenance of mammalian spermatogenesis.
Collapse
Affiliation(s)
- Imrul Faisal
- Genome-Scale Biology Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Doctoral Program in Biomedicine, Doctoral School in Health Sciences, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sheyla Cisneros-Montalvo
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
- Turku Doctoral Program of Molecular Medicine, University of Turku, Turku, Finland
| | - Geert Hamer
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Minna M Tuominen
- Genome-Scale Biology Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pirkka-Pekka Laurila
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Biomedicum, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Manuela Tumiati
- Genome-Scale Biology Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matti Jauhiainen
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Biomedicum, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Noora Kotaja
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Jorma Toppari
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Juho-Antti Mäkelä
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Liisa Kauppi
- Genome-Scale Biology Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
40
|
Hilbold E, Bergmann M, Fietz D, Kliesch S, Weidner W, Langeheine M, Rode K, Brehm R. Immunolocalization of DMRTB1 in human testis with normal and impaired spermatogenesis. Andrology 2019; 7:428-440. [PMID: 30920770 DOI: 10.1111/andr.12617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND The transcription factor DMRTB1 plays a pivotal role in coordinating the transition between mitosis and meiosis in murine germ cells. No reliable data are available for human testis. OBJECTIVES The present study aims to examine the testicular expression pattern of DMRTB1 in men showing normal and impaired spermatogenesis. MATERIALS AND METHODS Immunohistochemistry was performed using 54 human testicular biopsy specimens and a commercial rabbit polyclonal anti-DMRTB1 primary antibody. RT-PCR complemented immunohistochemistry. To further characterize immunopositive cells and possible co-localization, the proliferation marker Ki-67, the tumor marker PLAP, and an anti-DMRT1 antibody were used. RESULTS In men with normal spermatogenesis, a strong immunoreactivity was detectable in a subset of spermatogonia (38.34 ± 2.14%). Some spermatocytes showed a weak immunostaining. Adjacent Sertoli cells were immunonegative. Compared with a hematoxylin and eosin overview staining, these immunopositive cells were almost exclusively identified as Apale and B spermatogonia and primary spermatocytes in (pre-)leptotene, zygotene, and pachytene stages. In patients with spermatogenic arrest at spermatogonial level, an altered staining pattern was found. No immunoreactivity was detected in Sertoli cells in Sertoli cell-only syndrome. In germ cell neoplasia in situ (GCNIS) tubules, except for a few (0.4 ± 0.03%), pre-invasive tumor cells were immunonegative. Seminoma cells showed no immunostaining. DISCUSSION According to previous findings in mice, it seems reasonable that DMRTB1 is expressed in these normal germ cell populations. Moreover, altered staining pattern in spermatogenic arrest at spermatogonial stage suggests a correlation with mitosis and transformation into B spermatogonia. The absence of DMRTB1 in GCNIS cells and tumor cells might be associated with uncontrolled neoplastic cell proliferation and progression into invasive germ cell tumors. Further research is required to elucidate, for example, the role of DMRTB1 in the malignant transformation of human germ cells. CONCLUSION Our data indicate a relevant role for DMRTB1 regarding the entry of spermatogonia into meiosis in men.
Collapse
Affiliation(s)
- E Hilbold
- Institute for Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - M Bergmann
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
| | - D Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
| | - S Kliesch
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - W Weidner
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - M Langeheine
- Institute for Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - K Rode
- Institute for Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - R Brehm
- Institute for Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
41
|
Stévant I, Nef S. Genetic Control of Gonadal Sex Determination and Development. Trends Genet 2019; 35:346-358. [PMID: 30902461 DOI: 10.1016/j.tig.2019.02.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/15/2019] [Accepted: 02/23/2019] [Indexed: 10/27/2022]
Abstract
Sex determination is the process by which the bipotential gonads develop as either testes or ovaries. With two distinct potential outcomes, the gonadal primordium offers a unique model for the study of cell fate specification and how distinct cell populations diverge from multipotent progenitors. This review focuses on recent advances in our understanding of the genetic programs and epigenetic mechanisms that regulate gonadal sex determination and the regulation of cell fate commitment in the bipotential gonads. We rely primarily on mouse data to illuminate the complex and dynamic genetic programs controlling cell fate decision and sex-specific cell differentiation during gonadal formation and gonadal sex determination.
Collapse
Affiliation(s)
- Isabelle Stévant
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland; SIB, Swiss Institute of Bioinformatics, University of Geneva, 1211 Geneva, Switzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
42
|
Xu C, Mohsin A, Luo Y, Xie L, Peng Y, Wang Q, Hang H, Zhuang Y, Guo M. Differentiation roadmap of embryonic Sertoli cells derived from mouse embryonic stem cells. Stem Cell Res Ther 2019; 10:81. [PMID: 30850007 PMCID: PMC6408820 DOI: 10.1186/s13287-019-1180-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 12/13/2022] Open
Abstract
Background Embryonic Sertoli cells (eSCs) play an important role in sex determination and in male gonad development which makes them a very useful cell type for therapeutic applications. However, the deriving mechanism of Sertoli cells has been unclear and challenging to create a large number of quality eSCs. Therefore, this study aimed to create the eSCs induced from mouse embryonic stem (mES) cells by regulating defined factors and to explore the relevant regulatory mechanism. Methods Six inducing factors, Sry, Sox9, SF1, WT1, GATA4, and Dmrt1, were respectively transduced into mES cells by lentiviral infection according to the experimental design. The test groups were identified by development stage-specific markers, AMH, Emx2, SF1, and FasL, using flow cytometry. Induced eSCs were determined by FasL and AMH biomarkers under immunofluorescence, immunocytochemistry, and flow cytometry. Moreover, the pluripotency markers, gonad development-related markers, epithelial markers and mesenchymal markers in test groups were transcriptionally determined by qPCR. Results In this study, the co-overexpression of all the six factors effectively produced a large population of eSCs from mES cells in 35 days of culturing. These eSCs were capable of forming tubular-like and ring-like structures with functional performance. The results of flow cytometry indicated that the upregulation of GATA4 and WT1 contributed to the growth of somatic cells in the coelomic epithelium regarded as the main progenitor cells of eSCs. Whereas, SF1 facilitated the development of eSC precursor cells, and Sry and Sox9 promoted the determination of male development. Moreover, the overexpression of Dmrt1 was essential for the maintenance of eSCs and some of their specific surface biomarkers such as FasL. The cellular morphology, biomarker identification, and transcriptomic analysis aided in exploring the regulatory mechanism of deriving eSCs from mES cells. Conclusion Conclusively, we have elucidated a differentiation roadmap of eSCs derived from mES cells with a relevant regulatory mechanism. Through co-overexpression of all these six factors, a large population of eSCs was successfully induced occupying 24% of the whole cell population (1 × 105 cells/cm2). By adopting this approach, a mass of embryonic Sertoli cells can be generated for the purpose of co-culture technique, organ transplantation, gonadal developmental and sex determination researches. Electronic supplementary material The online version of this article (10.1186/s13287-019-1180-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chenze Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Yanxia Luo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Lili Xie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Yan Peng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Qizheng Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Haifeng Hang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China.,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China.,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China. .,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China.
| |
Collapse
|
43
|
Spade DJ, Dere E, Hall SJ, Schorl C, Freiman RN, Boekelheide K. All-Trans Retinoic Acid Disrupts Development in Ex Vivo Cultured Fetal Rat Testes. I: Altered Seminiferous Cord Maturation and Testicular Cell Fate. Toxicol Sci 2019; 167:546-558. [PMID: 30329139 PMCID: PMC6358251 DOI: 10.1093/toxsci/kfy260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Exposure to excess retinoic acid (RA) disrupts the development of the mammalian testicular seminiferous cord. However, the molecular events surrounding RA-driven loss of cord structure have not previously been examined. To investigate the mechanisms associated with this adverse developmental effect, fetal rat testes were isolated on gestational day 15, after testis determination and the initiation of cord development, and cultured in media containing all-trans RA (ATRA; 10-8 to 10-6 M) or vehicle for 3 days. ATRA exposure resulted in a concentration-dependent decrease in the number of seminiferous cords per testis section and number of germ cells, assessed by histopathology and immunohistochemistry. Following 1 day of culture, genome-wide expression profiling by microarray demonstrated that ATRA exposure altered biological processes related to retinoid metabolism and gonadal sex determination. Real-time RT-PCR analysis confirmed that ATRA enhanced the expression of the key ovarian development gene Wnt4 and the antitestis gene Nr0b1 in a concentration-dependent manner. After 3 days of culture, ATRA-treated testes contained both immunohistochemically DMRT1-positive and FOXL2-positive somatic cells, providing evidence of disrupted testicular cell fate maintenance following ATRA exposure. We conclude that exogenous RA disrupts seminiferous cord development in ex vivo cultured fetal rat testes, resulting in a reduction in seminiferous cord number, and interferes with maintenance of somatic cell fate by enhancing expression of factors that promote ovarian development.
Collapse
Affiliation(s)
- Daniel J Spade
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| | - Edward Dere
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
- Division of Urology, Rhode Island Hospital, Providence, Rhode Island 02903
| | - Susan J Hall
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| | - Christoph Schorl
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Richard N Freiman
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
44
|
Abstract
In many species, including mammals, sex determination is genetically based. The sex chromosomes that individuals carry determine sex identity. Although the genetic base of phenotypic sex is determined at the moment of fertilization, the development of testes or ovaries in the bipotential early gonads takes place during embryogenesis. During development, sex determination depends upon very few critical genes. When one of these key genes functions inappropriately, sex reversal may happen. Consequently, an individual's sex phenotype may not necessarily be consistent with the sex chromosomes that are present. For some time, it has been assumed that once the fetal choice is made between male and female in mammals, the gonadal sex identity of an individual remains stable. However, recent studies in mice have provided evidence that it is possible for the gonadal sex phenotype to be switched even in adulthood. These studies have shown that two key genes, doublesex and mad-3 related transcription factor 1 (Dmrt1) and forkhead box L2 (Foxl2), function in a Yin and Yang relationship to maintain the fates of testes or ovaries in adult mammals, and that mutations in either gene might have a dramatic effect on gonadal phenotype. Thus, adult gonad maintenance in addition to fetal sex determination may both be important for the fertility.
Collapse
Affiliation(s)
- Shengsong Huang
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Leping Ye
- Department of Pediatric, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Haolin Chen
- Department of Pediatric, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
45
|
Stévant I, Papaioannou MD, Nef S. A brief history of sex determination. Mol Cell Endocrinol 2018; 468:3-10. [PMID: 29635012 DOI: 10.1016/j.mce.2018.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 01/19/2023]
Abstract
A fundamental biological question that has puzzled, but also fascinated mankind since antiquity is the one pertaining to the differences between sexes. Ancient cultures and mythologies poetically intended to explain the origin of the two sexes; philosophy offered insightful albeit occasionally paradoxical perceptions about men and women; and society as a whole put forward numerous intuitive observations about the traits that distinguish the two sexes. However, it was only through meticulous scientific research that began in the 16th century, and gradual technical improvements that followed over the next centuries, that the study of sex determination bore fruit. Here, we present a brief history of sex determination studies from ancient times until today, by selectively interviewing some of the milestones in the field. We complete our review by outlining some yet unanswered questions and proposing future experimental directions.
Collapse
Affiliation(s)
- Isabelle Stévant
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland; SIB, Swiss Institute of Bioinformatics, University of Geneva, 1211 Geneva, Switzerland
| | - Marilena D Papaioannou
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; SIB, Swiss Institute of Bioinformatics, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
46
|
Malolina EA, Kulibin AY. Rete testis and the adjacent seminiferous tubules during postembryonic development in mice. Russ J Dev Biol 2017. [DOI: 10.1134/s1062360417060029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Du J, Xiong D, Zhang Q, Li X, Liu X, You H, Ding S, Yang X, Yuan J. Mono-butyl phthalate-induced mouse testis injury is associated with oxidative stress and down-regulated expression of Sox9 and Dazl. J Toxicol Sci 2017; 42:319-328. [PMID: 28496037 DOI: 10.2131/jts.42.319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mono-butyl phthalate (MBP) has reproductive toxicity but the related mechanisms have not been fully elucidated in vivo. We exposed male Balb/c mice to MBP by gavage at doses of 0, 25, 50, 100, 200 mg/kg for 14 days, and then evaluated the testicular alterations at the histological and molecular levels. MBP reduced mouse sperm count along with sperm malformation and seminiferous tubule degeneration in a dose-dependent manner. MBP dosed at 200 mg/kg significantly increased reactive oxygen species and malondialdehyde content in mouse testes. High doses of MBP (200 mg/kg) also significantly reduced mRNA expressions of testis growth and function related genes (Sox9 and Dazl). Our findings suggest that oxidative stress and down-regulated expression of Sox9 and Dazl may play important roles in MBP-induced testis injury.
Collapse
Affiliation(s)
- Junting Du
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, China
| | - Di Xiong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, China
| | - Qian Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, China
| | - Xiaoxiao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, China
| | - Xudong Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, China
| | - Huihui You
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, China
| | - Shumao Ding
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, China
| | - Xu Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, China
| | - Junlin Yuan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, China
| |
Collapse
|
48
|
Double sex and mab-3 related transcription factor 1 regulates differentiation and proliferation in dairy goat male germline stem cells. J Cell Physiol 2017; 233:2537-2548. [DOI: 10.1002/jcp.26129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/01/2017] [Indexed: 12/24/2022]
|
49
|
Koopman P, Sinclair A, Lovell-Badge R. Of sex and determination: marking 25 years of Randy, the sex-reversed mouse. Development 2017; 143:1633-7. [PMID: 27190031 DOI: 10.1242/dev.137372] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 03/21/2016] [Indexed: 12/31/2022]
Abstract
On Thursday 9 May 1991, the world awoke to front-page news of a breakthrough in biological research. From Washington to Wollongong, newspapers, radio and TV were abuzz with the story of a transgenic mouse in London called Randy. Why was this mouse so special? The mouse in question was a chromosomal female (XX) made male by the presence of a transgene containing the Y chromosome gene Sry This sex-reversal provided clear experimental proof that Sry was the elusive mammalian sex-determining gene. Twenty-five years on, we reflect on what this discovery meant for our understanding of how males and females arise and what remains to be understood.
Collapse
Affiliation(s)
- Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew Sinclair
- Murdoch Children's Research Institute and Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | | |
Collapse
|
50
|
Zhang T, Zarkower D. DMRT proteins and coordination of mammalian spermatogenesis. Stem Cell Res 2017; 24:195-202. [PMID: 28774758 DOI: 10.1016/j.scr.2017.07.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 10/19/2022] Open
Abstract
DMRT genes encode a deeply conserved family of transcription factors that share a unique DNA binding motif, the DM domain. DMRTs regulate development in a broad variety of metazoans and they appear to have controlled sexual differentiation for hundreds of millions of years. In mice, starting during embryonic development, three Dmrt genes act sequentially to help establish and maintain spermatogenesis. Dmrt1 has notably diverse functions that include repressing pluripotency genes and promoting mitotic arrest in embryonic germ cells, reactivating prospermatogonia perinatally, establishing and maintaining spermatogonial stem cells (SSCs), promoting spermatogonial differentiation, and controlling the mitosis/meiosis switch. Dmrt6 acts in differentiating spermatogonia to coordinate an orderly exit from the mitotic/spermatogonial program and allow proper timing of entry to the meiotic/spermatocyte program. Finally, Dmrt7 takes over during the first meiotic prophase to help choreograph a transition in histone modifications that maintains transcriptional silencing of the sex chromosomes. The combined action of these three Dmrt genes helps ensure robust and sustainable spermatogenesis.
Collapse
Affiliation(s)
- Teng Zhang
- Department of Genetics, Cell Biology, and Development, and Developmental Biology Center, University of Minnesota Medical School, 6-160 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA.
| | - David Zarkower
- Department of Genetics, Cell Biology, and Development, and Developmental Biology Center, University of Minnesota Medical School, 6-160 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA; University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA.
| |
Collapse
|