1
|
Kolbin D, Stanton J, Kokkanti A, Yeh E, Bloom K. The centromere bottlebrush requires a multi-microtubule attachment. Mol Biol Cell 2025; 36:ar70. [PMID: 40266738 DOI: 10.1091/mbc.e25-02-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
Pericentromeric bottlebrush converts DNA into a stiff spring through density and organization of loops relative to the mitotic spindle axis. This spring is integral to tension-sensing mechanisms required for faithful chromosome segregation. Cohesin enrichment is a hallmark of yeast pericentric loops. We used haploid yeasts engineered to contain two instead of the normal 16 chromosomes to determine the number of centromeres required for cohesin loading to form a pericentric bottlebrush. In wild-type yeasts, the mitotic spindle is 1.5 µm long and 16 centromeres appear in tight clusters. Cohesin surrounds the metaphase spindle forming a cylindrical barrel and cross-linking the radial array of chromatin loops. In the two-chromosome strain, our findings show a disrupted cohesin barrel and a longer spindle (∼2.4 µm). The reduction in spring stiffness would lead to the increase in spindle length necessary to achieve a force balance with spindle microtubules. In the two-chromosome strain kinetochores are declustered. Additionally, coordination between the clusters moving toward the poles (anaphase A) and spindle elongation (anaphase B) is abrogated resulting in a mid-anaphase pause. The lack of anaphase A suggests that release and expansion of hitherto confined DNA loops contributes to synchronous chromosome segregation in anaphase.
Collapse
Affiliation(s)
- Daniel Kolbin
- Department of Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - John Stanton
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Aryan Kokkanti
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Elaine Yeh
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| |
Collapse
|
2
|
Schweighofer J, Mulay B, Hoffmann I, Vogt D, Pesenti ME, Musacchio A. Interactions with multiple inner kinetochore proteins determine mitotic localization of FACT. J Cell Biol 2025; 224:e202412042. [PMID: 40094435 PMCID: PMC11912937 DOI: 10.1083/jcb.202412042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
The FAcilitates Chromatin Transcription (FACT) complex is a dimeric histone chaperone that operates on chromatin during transcription and replication. FACT also interacts with a specialized centromeric nucleosome containing the histone H3 variant centromere protein A (CENP-A) and with CENP-TW, two subunits of the constitutive centromere-associated network (CCAN), a 16-protein complex associated with CENP-A. The significance of these interactions remains elusive. Here, we show that FACT has multiple additional binding sites on CCAN. The interaction with CCAN is strongly stimulated by casein kinase II phosphorylation of FACT. Mitotic localization of FACT to kinetochores is strictly dependent on specific CCAN subcomplexes. Conversely, CENP-TW requires FACT for stable localization. Unexpectedly, we also find that DNA readily displaces FACT from CCAN, supporting the speculation that FACT becomes recruited through a pool of CCAN that is not stably integrated into chromatin. Collectively, our results point to a potential role of FACT in chaperoning CCAN during transcription or in the stabilization of CCAN at the centromere during the cell cycle.
Collapse
Affiliation(s)
- Julia Schweighofer
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Bhagyashree Mulay
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Ingrid Hoffmann
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Doro Vogt
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Marion E. Pesenti
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
- Max Planck School Matter to Life, Heidelberg, Germany
| |
Collapse
|
3
|
Wang Y, Zhao L, Wang D, Chen K, Luo T, Luo J, Jiang C, He Z, Huang H, Xie J, Jiang Y, Liu J, Ma T. Four near-complete genome assemblies reveal the landscape and evolution of centromeres in Salicaceae. Genome Biol 2025; 26:111. [PMID: 40317068 PMCID: PMC12046899 DOI: 10.1186/s13059-025-03578-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 04/15/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Centromeres play a crucial role in maintaining genomic stability during cell division. They are typically composed of large arrays of tandem satellite repeats, which hinder high-quality assembly and complicate our efforts to understand their evolution across species. Here, we use long-read sequencing to generate near-complete genome assemblies for two Populus and two Salix species belonging to the Salicaceae family and characterize the genetic and epigenetic landscapes of their centromeres. RESULTS The results show that only limited satellite repeats are present as centromeric components in these species, while most of them are located outside the centromere but exhibit a homogenized structure similar to that of the Arabidopsis centromeres. Instead, the Salicaceae centromeres are mainly composed of abundant transposable elements, including CRM and ATHILA, while LINE elements are exclusively discovered in the poplar centromeres. Comparative analysis reveals that these centromeric repeats are extensively expanded and interspersed with satellite arrays in a species-specific and chromosome-specific manner, driving rapid turnover of centromeres both in sequence compositions and genomic locations in the Salicaceae. CONCLUSIONS Our results highlight the dynamic evolution of diverse centromeric landscapes among closely related species mediated by satellite homogenization and widespread invasions of transposable elements and shed further light on the role of centromere in genome evolution and species diversification.
Collapse
Affiliation(s)
- Yubo Wang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Lulu Zhao
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Deyan Wang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Kai Chen
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Tiannan Luo
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Jianglin Luo
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Chengzhi Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhoujian He
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Heng Huang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Jiaxiao Xie
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Yuanzhong Jiang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Jianquan Liu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
- State Key Laboratory of Herbage Innovation and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Tao Ma
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Han J, Hu G, Dai Y, Zhang X, Tian J, Zhou J, Xu X, Chen Q, Kou X, Xu L, Wu X, Sun Z, Geng J, Li L, Qiu C, Mehari TG, Wang B, Zhang H, Shen X, Xu Z, Wendel JF, Wang K. Centromere-size reduction and chromatin state dynamics following intergenomic hybridization in cotton. PLoS Genet 2025; 21:e1011689. [PMID: 40315272 PMCID: PMC12068715 DOI: 10.1371/journal.pgen.1011689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 05/12/2025] [Accepted: 04/14/2025] [Indexed: 05/04/2025] Open
Abstract
Centromeres are pivotal for accurate chromosome segregation, yet their regulation and evolutionary dynamics remain poorly understood. Here, we investigate centromeres of the diploid species Gossypium anomalum (Ga, B-genome) that were transferred into tetraploid cotton G. hirsutum (Gh, AD-genome) as either an additional or integrated chromosome, as well as in synthetic allohexaploid (AABBDD) lines. We demonstrate consistent size reduction for all Ga centromeres in the Gh background. Histone modification profiling across 10 marks revealed heightened levels of both active and repressive chromatin marks within the Ga centromeres when transferred into the Gh background, particularly for H3K36me2. The centromeric histone modification perturbation extended into pericentromeric regions, with variable CENH3-binding domains consistently exhibiting a more pronounced increase in histone modification levels compared to stable centromere regions, highlighting the role of histone modification elevation in centromere dynamics. In addition, we observed enhanced chromatin accessibility and the presence of non-B-form DNA motifs, such as A-phased DNA repeats within stable centromere domains that are correlated with centromere stability. Hi-C analysis reveals a reorganized 3D chromatin architecture within the introgression line centromeres, including the formation of new topologically associating domains linked to H3K36me2 dynamics, emphasizing the importance of H3K36me2 in centromere organization. Together, these findings elucidate epigenetic mechanisms underlying centromere composition following intergenomic hybridization and allopolyploid formation, offering insights into centromere evolution in plants and its myriad epigenetic and potentially functional dimensions.
Collapse
Affiliation(s)
- Jinlei Han
- School of Life Sciences, Nantong University, Nantong, China
| | - Guanjing Hu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, United States of America
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yan Dai
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin Zhang
- School of Life Sciences, Nantong University, Nantong, China
| | - Jingjing Tian
- School of Life Sciences, Nantong University, Nantong, China
| | - Jialiang Zhou
- School of Life Sciences, Nantong University, Nantong, China
| | - Xinqi Xu
- School of Life Sciences, Nantong University, Nantong, China
| | - Qi Chen
- School of Life Sciences, Nantong University, Nantong, China
| | - Xiaobing Kou
- School of Life Sciences, Nantong University, Nantong, China
| | - Lei Xu
- School of Life Sciences, Nantong University, Nantong, China
| | - Xinyu Wu
- School of Life Sciences, Nantong University, Nantong, China
| | - Ziying Sun
- School of Life Sciences, Nantong University, Nantong, China
| | - Jiahui Geng
- School of Life Sciences, Nantong University, Nantong, China
| | - Lin Li
- School of Life Sciences, Nantong University, Nantong, China
| | - Chenyu Qiu
- School of Life Sciences, Nantong University, Nantong, China
| | | | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Hui Zhang
- School of Life Sciences, Nantong University, Nantong, China
| | - Xinlian Shen
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhenzhen Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, United States of America
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
5
|
Marques A, Drinnenberg IA. Same but different: Centromere regulations in holocentric insects and plants. Curr Opin Cell Biol 2025; 93:102484. [PMID: 39983583 DOI: 10.1016/j.ceb.2025.102484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 02/23/2025]
Abstract
Centromeres are essential chromosomal regions responsible for ensuring proper chromosome segregation during cell division. Unlike monocentric chromosomes, which have a single centromeric region, holocentric chromosomes distribute centromeric activity along their entire length. This unique organization poses intriguing questions about its structure, function, and evolutionary origins. In this review, we outline recent advances in characterizing the molecular architectures of holocentric chromosomes in mitosis and meiosis, emphasizing both the shared features and lineage-specific adaptations that have evolved in plants and insects. A more detailed characterization of holocentric architectures across different lineages will also offer valuable insights into the potential mechanisms driving the evolutionary transition from monocentric to holocentric chromosomes.
Collapse
Affiliation(s)
- André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany.
| | - Ines A Drinnenberg
- Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, 75005 Paris, France.
| |
Collapse
|
6
|
Yan H, Han J, Jin S, Han Z, Si Z, Yan S, Xuan L, Yu G, Guan X, Fang L, Wang K, Zhang T. Post-polyploidization centromere evolution in cotton. Nat Genet 2025; 57:1021-1030. [PMID: 40033059 DOI: 10.1038/s41588-025-02115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/03/2025] [Indexed: 03/05/2025]
Abstract
Upland cotton (Gossypium hirsutum) accounts for more than 90% of the world's cotton production and, as an allotetraploid, is a model plant for polyploid crop domestication. In the present study, we reported a complete telomere-to-telomere (T2T) genome assembly of Upland cotton accession Texas Marker-1 (T2T-TM-1), which has a total size of 2,299.6 Mb, and annotated 79,642 genes. Based on T2T-TM-1, interspecific centromere divergence was detected between the A- and D-subgenomes and their corresponding diploid progenitors. Centromere-associated repetitive sequences (CRCs) were found to be enriched for Gypsy-like retroelements. Centromere size expansion, repositioning and structure variations occurred post-polyploidization. It is interesting that CRC homologs were transferred from the diploid D-genome progenitor to the D-subgenome, invaded the A-subgenome and then underwent post-tetraploidization proliferation. This suggests an evolutionary advantage for the CRCs of the D-genome progenitor, presents a D-genome-adopted inheritance of centromere repeats after polyploidization and shapes the dynamic centromeric landscape during polyploidization in polyploid species.
Collapse
Affiliation(s)
- Hu Yan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong, China
| | - Shangkun Jin
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Zegang Han
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Zhanfeng Si
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Sunyi Yan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Lisha Xuan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Guangrun Yu
- School of Life Sciences, Nantong University, Nantong, China
| | - Xueying Guan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Lei Fang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
- Hainan Institute of Zhejiang University, Sanya, China.
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, China.
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
- Hainan Institute of Zhejiang University, Sanya, China.
| |
Collapse
|
7
|
Keikhosravi A, Guin K, Pegoraro G, Misteli T. Simulation and Quantitative Analysis of Spatial Centromere Distribution Patterns. Cells 2025; 14:491. [PMID: 40214445 PMCID: PMC11987964 DOI: 10.3390/cells14070491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/18/2025] [Accepted: 03/22/2025] [Indexed: 04/14/2025] Open
Abstract
A prominent feature of eukaryotic chromosomes are centromeres, which are specialized regions of repetitive DNA required for faithful chromosome segregation during cell division. In interphase cells, centromeres are non-randomly positioned in the three-dimensional space of the nucleus in a cell type-specific manner. The functional relevance and the cellular mechanisms underlying this localization are unknown, and quantitative methods to measure distribution patterns of centromeres in 3D space are needed. Here, we developed an analytical framework that combines sensitive clustering metrics and advanced modeling techniques for the quantitative analysis of centromere distributions at the single-cell level. To identify a robust quantitative measure for centromere clustering, we benchmarked six metrics for their ability to sensitively detect changes in centromere distribution patterns from high-throughput imaging data of human cells, both under normal conditions and upon experimental perturbation of centromere distribution. We found that Ripley's K function has the highest accuracy with minimal sensitivity to variations in the number of centromeres, making it the most suitable metric for measuring centromere distributions. As a complementary approach, we also developed and validated spatial models to replicate centromere distribution patterns, and we show that a radially shifted Gaussian distribution best represents the centromere patterns seen in human cells. Our approach creates tools for the quantitative characterization of spatial centromere distributions with applications in both targeted studies of centromere organization and unbiased screening approaches.
Collapse
Affiliation(s)
- Adib Keikhosravi
- High Throughput Imaging Facility (HiTIF), National Cancer Institute, NIH, Bethesda, MD 20892, USA;
| | - Krishnendu Guin
- Cell Biology of Genomes Group, National Cancer Institute, NIH, Bethesda, MD 20892, USA;
| | - Gianluca Pegoraro
- High Throughput Imaging Facility (HiTIF), National Cancer Institute, NIH, Bethesda, MD 20892, USA;
| | - Tom Misteli
- Cell Biology of Genomes Group, National Cancer Institute, NIH, Bethesda, MD 20892, USA;
| |
Collapse
|
8
|
Xia C, Cannatella JJ, Smith SC, Althof PA, Koerselman H, Hempel T, Jaworski EE, Winkler LM, Spaulding JR, Pickering D, Khoury JD, Tang Z. An Incidental Finding of Gain of a Diminished Chromosome 12 Centromere in an Individual with Lymphocytosis: A Case Report and Clinical Implications in Cytogenetic Testing. Diagnostics (Basel) 2025; 15:618. [PMID: 40075865 PMCID: PMC11898780 DOI: 10.3390/diagnostics15050618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Background: Fluorescence in situ hybridization (FISH) testing against chromosome 12 centromere (CEN12) is routinely included in the work-up of patients with suspected chronic lymphocytic leukemia (CLL) or monoclonal B-cell lymphocytosis (MBL). However, incidental findings can occur and be challenging. Methods: Interphase and metaphase FISH analyses with various probes, including CEN12 probes from different vendors, and conventional cytogenetics were applied. Results: A CLL FISH panel was performed at the clinician's request on a peripheral blood specimen from a 55-year-old female with fluctuating leukocytosis and lymphocytosis for over six years. An additional diminished CEN12 FISH signal was observed in approximately 70% of the nucleated cells analyzed. Concurrent flow cytometry excluded a diagnosis of CLL or MBL, and karyotyping exhibited a normal female karyotype. Further studies excluded potential cross-hybridization due to limited specificity of the CEN12 probes and revealed the location of the additional diminished CEN12 signal on the centromere of one chromosome 16 homolog (CEN16), without other material from the short arm (12p) or long arm (12q) of chromosome 12 being involved. Conclusions: This is the first case with an "uncertain" trisomy 12 status, presenting a challenge to clinical cytogenetic diagnosis. Although the mechanism for this mosaic "partial trisomy 12" and its clinical impact remain unknown, this case highlights the importance of further investigation using orthogonal methods to clarify incidental findings during diagnostic practice.
Collapse
Affiliation(s)
- Changqing Xia
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jeffrey J. Cannatella
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Scott C. Smith
- Department of Pathology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Pamela A. Althof
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Haley Koerselman
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Thomas Hempel
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Erin E. Jaworski
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lisa M. Winkler
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Joanna R. Spaulding
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Diane Pickering
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Joseph D. Khoury
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zhenya Tang
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
9
|
Sikder S, Baek S, McNeil T, Dalal Y. Centromere inactivation during aging can be rescued in human cells. Mol Cell 2025; 85:692-707.e7. [PMID: 39809271 PMCID: PMC11852275 DOI: 10.1016/j.molcel.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/01/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
Aging involves a range of genetic, epigenetic, and physiological alterations. A key characteristic of aged cells is the loss of global heterochromatin, accompanied by a reduction in canonical histone levels. In this study, we track the fate of centromeres in aged human fibroblasts and tissues and in various cellular senescent models. Our findings reveal that the centromeric histone H3 variant CENP-A is downregulated in aged cells in a p53-dependent manner. We observe repression of centromeric noncoding transcription through an epigenetic mechanism via recruitment of a lysine-specific demethylase 1 (LSD1/KDM1A) to centromeres. This suppression results in defective de novo CENP-A loading at aging centromeres. By dual inhibition of p53 and LSD1/KDM1A in aged cells, we mitigate the reduction in centromeric proteins and centromeric transcripts, leading to the mitotic rejuvenation of these cells. These results offer insights into a unique mechanism for centromeric inactivation during aging and provide potential strategies to reactivate centromeres.
Collapse
Affiliation(s)
- Sweta Sikder
- Center for Cancer Research, National Cancer Institute/NIH, Bethesda, MD 20892, USA
| | - Songjoon Baek
- Center for Cancer Research, National Cancer Institute/NIH, Bethesda, MD 20892, USA
| | - Truman McNeil
- Center for Cancer Research, National Cancer Institute/NIH, Bethesda, MD 20892, USA; Saint Olaf College, 1520 St. Olaf Avenue, Northfield, MN 55057, USA
| | - Yamini Dalal
- Center for Cancer Research, National Cancer Institute/NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Mao Y, Zhao Y, Zhou Q, Li W. Chromosome Engineering: Technologies, Applications, and Challenges. Annu Rev Anim Biosci 2025; 13:25-47. [PMID: 39541223 DOI: 10.1146/annurev-animal-111523-102225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Chromosome engineering is a transformative field at the cutting edge of biological science, offering unprecedented precision in manipulating large-scale genomic DNA within cells. This discipline is central to deciphering how the multifaceted roles of chromosomes-guarding genetic information, encoding sequence positional information, and influencing organismal traits-shape the genetic blueprint of life. This review comprehensively examines the technological advancements in chromosome engineering, which center on engineering chromosomal rearrangements, generating artificial chromosomes, de novo synthesizing chromosomes, and transferring chromosomes. Additionally, we introduce the application progress of chromosome engineering in basic and applied research fields, showcasing its capacity to deepen our knowledge of genetics and catalyze breakthroughs in therapeutic strategies. Finally, we conclude with a discussion of the challenges the field faces and highlight the profound implications that chromosome engineering holds for the future of modern biology and medical applications.
Collapse
Affiliation(s)
- Yihuan Mao
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology and Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China;
| | - Yulong Zhao
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology and Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China;
| | - Qi Zhou
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology and Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China;
| | - Wei Li
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology and Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China;
| |
Collapse
|
11
|
Keikhosravi A, Guin K, Pegoraro G, Misteli T. Simulation and quantitative analysis of spatial centromere distribution patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634320. [PMID: 39896519 PMCID: PMC11785228 DOI: 10.1101/2025.01.22.634320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
A prominent feature of eukaryotic chromosomes are centromeres, which are specialized regions of repetitive DNA required for faithful chromosome segregation during cell division. In interphase cells centromeres are non-randomly positioned in the three-dimensional space of the nucleus in a cell-type specific manner. The functional relevance and the cellular mechanisms underlying this observation are unknown, and quantitative methods to measure distribution patterns of centromeres in 3D space are needed. Here we have developed an analytical framework that combines robust clustering metrics and advanced modeling techniques for the quantitative analysis of centromere distributions at the single cell level. To identify a robust quantitative measure for centromere clustering, we benchmarked six metrics for their ability to sensitively detect changes in centromere distribution patterns from high-throughput imaging data of human cells, both under normal conditions and upon experimental perturbation of centromere distribution. We find that Ripley's K Score has the highest accuracy with minimal sensitivity to variations in centromeres number, making it the most suitable metric for measuring centromere distributions. As a complementary approach, we also developed and validated spatial models to replicate centromere distribution patterns, and we show that a radially shifted Gaussian distribution best represents the centromere patterns seen in human cells. Our approach creates tools for the quantitative characterization of spatial centromere distributions with applications in both targeted studies of centromere organization as well as in unbiased screening approaches.
Collapse
Affiliation(s)
- Adib Keikhosravi
- High Throughput Imaging Facility (HiTIF), National Cancer Institute, NIH, Bethesda, MD 20892
| | - Krishnendu Guin
- Cell Biology of Genomes Group, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Gianluca Pegoraro
- High Throughput Imaging Facility (HiTIF), National Cancer Institute, NIH, Bethesda, MD 20892
| | - Tom Misteli
- Cell Biology of Genomes Group, National Cancer Institute, NIH, Bethesda, MD 20892
| |
Collapse
|
12
|
Kong W, Hara M, Tokunaga Y, Okumura K, Hirano Y, Miao J, Takenoshita Y, Hashimoto M, Sasaki H, Fujimori T, Wakabayashi Y, Fukagawa T. CENP-C-Mis12 complex establishes a regulatory loop through Aurora B for chromosome segregation. Life Sci Alliance 2025; 8:e202402927. [PMID: 39433344 PMCID: PMC11494776 DOI: 10.26508/lsa.202402927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
Establishing the correct kinetochore-microtubule attachment is crucial for faithful chromosome segregation. The kinetochore has various regulatory mechanisms for establishing correct bipolar attachment. However, how the regulations are coupled is not fully understood. Here, we demonstrate a regulatory loop between the kinetochore protein CENP-C and Aurora B kinase, which is critical for the error correction of kinetochore-microtubule attachment. This regulatory loop is mediated through the binding of CENP-C to the outer kinetochore Mis12 complex (Mis12C). Although the Mis12C-binding region of CENP-C is dispensable for mouse development and proliferation in human RPE-1 cells, those cells lacking this region display increased mitotic defects. The CENP-C-Mis12C interaction facilitates the centromeric recruitment of Aurora B and the mitotic error correction in human cells. Given that Aurora B reinforces the CENP-C-Mis12C interaction, our findings reveal a positive regulatory loop between Aurora B recruitment and the CENP-C-Mis12C interaction, which ensures chromosome biorientation for accurate chromosome segregation.
Collapse
Affiliation(s)
- Weixia Kong
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Masatoshi Hara
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yurika Tokunaga
- Division of Experimental Animal Research, Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Kazuhiro Okumura
- Division of Experimental Animal Research, Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yasuhiro Hirano
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Jiahang Miao
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | | - Masakazu Hashimoto
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Cell Science, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Sasaki
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, Okazaki, Japan
- Basic Biology Program, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Yuichi Wakabayashi
- Division of Experimental Animal Research, Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
13
|
Hegazy YA, Dhahri H, El Osmani N, George S, Chandler DP, Fondufe-Mittendorf YN. Histone variants: The bricks that fit differently. J Biol Chem 2025; 301:108048. [PMID: 39638247 PMCID: PMC11742582 DOI: 10.1016/j.jbc.2024.108048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Histone proteins organize nuclear DNA in eukaryotic cells and play crucial roles in regulating chromatin structure and function. Histone variants are produced by distinct histone genes and are produced independently of their canonical counterparts throughout the cell cycle. Even though histone variants may differ by only one or a few amino acids relative to their canonical counterparts, these minor variations can profoundly alter chromatin structure, accessibility, dynamics, and gene expression. Histone variants often interact with dedicated chaperones and remodelers and can have unique post-translational modifications that shape unique gene expression landscapes. Histone variants also play essential roles in DNA replication, damage repair, and histone-protamine transition during spermatogenesis. Importantly, aberrant histone variant expression and DNA mutations in histone variants are linked to various human diseases, including cancer, developmental disorders, and neurodegenerative diseases. In this review, we explore how core histone variants impact nucleosome structure and DNA accessibility, the significance of variant-specific post-translational modifications, how variant-specific chaperones and remodelers contribute to a regulatory network governing chromatin behavior, and discuss current knowledge about the association of histone variants with human diseases.
Collapse
Affiliation(s)
- Youssef A Hegazy
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Hejer Dhahri
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, USA; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Nour El Osmani
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Smitha George
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Darrell P Chandler
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | | |
Collapse
|
14
|
Rafa AY, Filliaux S, Lyubchenko YL. Nanoscale Characterization of Interaction of Nucleosomes with H1 Linker Histone. Int J Mol Sci 2024; 26:303. [PMID: 39796159 PMCID: PMC11719560 DOI: 10.3390/ijms26010303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
In eukaryotic nuclei, DNA is wrapped around an octamer of core histones to form nucleosomes. H1 binds to the linker DNA of nucleosome to form the chromatosome, the next structural unit of chromatin. Structural features on individual chromatosomes contribute to chromatin structure, but not fully characterized. In addition to canonical nucleosomes composed of two copies each of histones H2A, H2B, H3, and H4 (H3 nucleosomes), centromeres chromatin contain nucleosomes in which H3 is replaced with its analog CENP-A, changing structural properties of CENP-A nucleosomes. Nothing is known about the interaction of H1 with CENP-A nucleosomes. Here we filled this gap and characterized the interaction of H1 histone with both types of nucleosomes. H1 does bind both types of the nucleosomes forming more compact chromosome particles with elevated affinity to H3 nucleosomes. H1 binding significantly increases the stability of chromatosomes preventing their spontaneous dissociation. In addition to binding to the entry-exit position of the DNA arms identified earlier, H1 is capable of bridging of distant DNA segments. H1 binding leads to the assembly of mononucleosomes in aggregates, stabilized by internucleosome interactions as well as bridging of the DNA arms of chromatosomes. Contribution of these finding to the chromatin structure and functions are discussed.
Collapse
Affiliation(s)
| | | | - Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA; (A.Y.R.); (S.F.)
| |
Collapse
|
15
|
Takenoshita Y, Hara M, Nakagawa R, Ariyoshi M, Fukagawa T. Molecular details and phosphoregulation of the CENP-T-Mis12 complex interaction during mitosis in DT40 cells. iScience 2024; 27:111295. [PMID: 39628583 PMCID: PMC11612794 DOI: 10.1016/j.isci.2024.111295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/10/2024] [Accepted: 10/29/2024] [Indexed: 12/06/2024] Open
Abstract
To establish bipolar attachments of microtubules to sister chromatids, an inner kinetochore subcomplex, the constitutive centromere-associated network (CCAN), is assembled on centromeric chromatin and recruits the microtubule-binding subcomplex called the KMN network. Since CCAN proteins CENP-C and CENP-T independently bind to the Mis12 complex (Mis12C) of KMN, it is difficult to evaluate the significance of each interaction in cells. Here, we demonstrate the molecular details of the CENP-T-Mis12C interaction using chicken DT40 cells lacking the CENP-C-Mis12C interaction. Using AlphaFold predictions combined with cell biological and biochemical analyses, we identified three binding surfaces of the CENP-T-Mis12C interaction, demonstrating that each interface is important for recruiting Mis12C to CENP-T in cells. This interaction, via three interaction surfaces, is cooperatively regulated by dual phosphorylation of Dsn1 (a Mis12C component) and CENP-T, ensuring a robust CENP-T-Mis12C interaction and proper mitotic progression. These findings deepen our understanding of kinetochore assembly in cells.
Collapse
Affiliation(s)
- Yusuke Takenoshita
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masatoshi Hara
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Reiko Nakagawa
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Mariko Ariyoshi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Shioya M, Takahashi K, Nakano S, Kobayashi T, Koga K, Shozu M. Anti-Centromere Protein A Antibody Disrupts the Competence of Mouse Oocytes Matured In Vitro. Am J Reprod Immunol 2024; 92:e70024. [PMID: 39665768 DOI: 10.1111/aji.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/10/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024] Open
Abstract
INTRODUCTION Anticentromere autoantibodies are associated with refractory IVF/ET failure, but causality is unclear. Experimental models are needed. METHODS Immature oocytes collected from 23-day-old mice were matured in vitro for 18 h in a culture medium containing an anti-human centromere protein A (CENP-A) polyclonal antibody, and those oocytes' maturity and chromosome/spindle structure were assessed. RESULTS Antibody exposure did not affect the germinal vesicle breakdown ratio but reduced the first polar body formation ratio by 13% at the highest concentration (70.0 µg/mL). Metaphase II (MII) oocytes were stained for chromosomes/spindles and grouped into aligned/barrel-like (AB), scattered/weakly-stained (SW), and condensed/absent (CA). Antibody exposure decreased AB and increased SW and CA in a dose-dependent manner. The AB/SW/CA percentages were 86/14/0, 86/14/0, 35/65/0, and 0/0/100 in the 0, 17.5, 35.0, and 70.0 µg/mL antibody groups, respectively (underlined values represent p < 0.05 compared with 0 µg/mL). Next, metaphase II oocytes were subjected to intracytoplasmic sperm injection, and the number of pronucleus/pronuclei (PN) was counted 6 h later. Antibody exposure decreased two pronuclei oocytes and increased non-two pronuclei oocytes dose-dependently. The percentages of 0/1/2/3 pronuclei oocytes were 43/0/57/0, 37/0/21/42, 16/28/48/8, and 91/4/4/0 in the 0, 17.5, 35.0, and 70.0 µg/mL groups, respectively. CONCLUSIONS Anti-CENP-A antibody impaired a linear alignment of chromosomes at metaphase II and enhanced one or three PN formation after ICSI, which are similar to findings reported for infertile women with anticentromere autoantibodies.
Collapse
Affiliation(s)
- Masashi Shioya
- Takahashi Women's Clinic, Chuo-ku, Chiba, Japan
- Department of Obstetrics and Gynecology, Reproductive Medicine, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | | | - Shun Nakano
- Takahashi Women's Clinic, Chuo-ku, Chiba, Japan
| | - Tatsuya Kobayashi
- Department of Obstetrics and Gynecology, Reproductive Medicine, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
- Department of Regulatory Science, Fujita Health University, Ohta-ku, Tokyo, Japan
| | - Kaori Koga
- Department of Obstetrics and Gynecology, Reproductive Medicine, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Makio Shozu
- Department of Obstetrics and Gynecology, Reproductive Medicine, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
- Evolution and Reproduction Biology, Medical Mycology Research Center, Chiba University, Chuo-ku, Chiba, Japan
| |
Collapse
|
17
|
Wong CYY, Tsui HN, Wang Y, Yuen KWY. Argonaute protein CSR-1 restricts localization of holocentromere protein HCP-3, the C. elegans CENP-A homolog. J Cell Sci 2024; 137:jcs261895. [PMID: 39037215 PMCID: PMC11423810 DOI: 10.1242/jcs.261895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 07/11/2024] [Indexed: 07/23/2024] Open
Abstract
Chromosome segregation errors caused by centromere malfunction can lead to chromosome instability and aneuploidy. In Caenorhabditis elegans, the Argonaute protein CSR-1 is essential for proper chromosome segregation, although the specific mechanisms are not fully understood. Here, we investigated how CSR-1 regulates centromere and kinetochore function in C. elegans embryos. We found that depletion of CSR-1 results in defects in mitotic progression and chromosome positioning relative to the spindle pole. Knockdown of CSR-1 does not affect mRNA and protein levels of the centromeric histone H3 variant and CENP-A homolog HCP-3 but does increase the localization of HCP-3 and some kinetochore proteins to the mitotic chromosomes. Such elevation of HCP-3 chromatin localization depends on EGO-1, which is an upstream factor in the CSR-1 RNA interference (RNAi) pathway, and PIWI domain activity of CSR-1. Our results suggest that CSR-1 restricts the level of HCP-3 at the holocentromeres, prevents erroneous kinetochore assembly and thereby promotes accurate chromosome segregation. Our work sheds light on the role of CSR-1 in regulating deposition of HCP-3 on chromatin and centromere function in embryos.
Collapse
Affiliation(s)
| | - Hok Ning Tsui
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Yue Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Hong Kong
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
18
|
Sikder S, Baek S, McNeil T, Dalal Y. Centromere inactivation during aging can be rescued in human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.30.573721. [PMID: 38313258 PMCID: PMC10836067 DOI: 10.1101/2023.12.30.573721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Aging involves a range of genetic, epigenetic, and physiological alterations. A key characteristic of aged cells is the loss of global heterochromatin, accompanied by a reduction in canonical histone levels. In this study, we track the fate of centromeres during aging in human cells. Our findings reveal that the centromeric histone H3 variant CENP-A is downregulated in aged cells, in a p53-dependent manner. We observe repression of centromeric noncoding transcription through an epigenetic mechanism via recruitment of a lysine-specific demethylase 1 (LSD1/KDM1A) to centromeres. This suppression results in defective de novo CENP-A loading at aging centromeres. By dual inhibition of p53 and LSD1/KDM1A in aged cells, we mitigate the reduction in centromeric proteins and centromeric transcripts, leading to mitotic rejuvenation of these cells. These results offer insights into a novel mechanism for centromeric inactivation during aging and provide potential strategies to reactivate centromeres.
Collapse
|
19
|
Conti D, Verza AE, Pesenti ME, Cmentowski V, Vetter IR, Pan D, Musacchio A. Role of protein kinase PLK1 in the epigenetic maintenance of centromeres. Science 2024; 385:1091-1097. [PMID: 39236163 DOI: 10.1126/science.ado5178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024]
Abstract
The centromere, a chromosome locus defined by the histone H3-like protein centromeric protein A (CENP-A), promotes assembly of the kinetochore to bind microtubules during cell division. Centromere maintenance requires CENP-A to be actively replenished by dedicated protein machinery in the early G1 phase of the cell cycle to compensate for its dilution after DNA replication. Cyclin-dependent kinases (CDKs) limit CENP-A deposition to once per cell cycle and function as negative regulators outside of early G1. Antithetically, Polo-like kinase 1 (PLK1) promotes CENP-A deposition in early G1, but the molecular details of this process are still unknown. We reveal here a phosphorylation network that recruits PLK1 to the deposition machinery to control a conformational switch required for licensing the CENP-A deposition reaction. Our findings clarify how PLK1 contributes to the epigenetic maintenance of centromeres.
Collapse
Affiliation(s)
- Duccio Conti
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Arianna Esposito Verza
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Marion E Pesenti
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Verena Cmentowski
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Ingrid R Vetter
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Dongqing Pan
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
20
|
Thamkachy R, Medina-Pritchard B, Park SH, Chiodi CG, Zou J, de la Torre-Barranco M, Shimanaka K, Abad MA, Gallego Páramo C, Feederle R, Ruksenaite E, Heun P, Davies OR, Rappsilber J, Schneidman-Duhovny D, Cho US, Jeyaprakash AA. Structural basis for Mis18 complex assembly and its implications for centromere maintenance. EMBO Rep 2024; 25:3348-3372. [PMID: 38951710 PMCID: PMC11315898 DOI: 10.1038/s44319-024-00183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/06/2024] [Accepted: 06/06/2024] [Indexed: 07/03/2024] Open
Abstract
The centromere, defined by the enrichment of CENP-A (a Histone H3 variant) containing nucleosomes, is a specialised chromosomal locus that acts as a microtubule attachment site. To preserve centromere identity, CENP-A levels must be maintained through active CENP-A loading during the cell cycle. A central player mediating this process is the Mis18 complex (Mis18α, Mis18β and Mis18BP1), which recruits the CENP-A-specific chaperone HJURP to centromeres for CENP-A deposition. Here, using a multi-pronged approach, we characterise the structure of the Mis18 complex and show that multiple hetero- and homo-oligomeric interfaces facilitate the hetero-octameric Mis18 complex assembly composed of 4 Mis18α, 2 Mis18β and 2 Mis18BP1. Evaluation of structure-guided/separation-of-function mutants reveals structural determinants essential for cell cycle controlled Mis18 complex assembly and centromere maintenance. Our results provide new mechanistic insights on centromere maintenance, highlighting that while Mis18α can associate with centromeres and deposit CENP-A independently of Mis18β, the latter is indispensable for the optimal level of CENP-A loading required for preserving the centromere identity.
Collapse
Affiliation(s)
- Reshma Thamkachy
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | | | - Sang Ho Park
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carla G Chiodi
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Juan Zou
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | | | - Kazuma Shimanaka
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maria Alba Abad
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | | | - Regina Feederle
- Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764, Neuherberg, Germany
| | - Emilija Ruksenaite
- Institute Novo Nordisk Foundation Centre for Protein Research, Copenhagen, Denmark
| | - Patrick Heun
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Owen R Davies
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
- Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Uhn-Soo Cho
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - A Arockia Jeyaprakash
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK.
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany.
| |
Collapse
|
21
|
Salinas-Luypaert C, Fachinetti D. Canonical and noncanonical regulators of centromere assembly and maintenance. Curr Opin Cell Biol 2024; 89:102396. [PMID: 38981198 DOI: 10.1016/j.ceb.2024.102396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 07/11/2024]
Abstract
Centromeres are specialized chromosomal domains where the kinetochores assemble during cell division to ensure accurate transmission of the genetic information to the two daughter cells. The centromeric function is evolutionary conserved and, in most organisms, centromeres are epigenetically defined by a unique chromatin containing the histone H3 variant CENP-A. The canonical regulators of CENP-A assembly and maintenance are well-known, yet some of the molecular mechanisms regulating this complex process have only recently been unveiled. We review the most recent advances on the topic, including the emergence of new and unexpected factors that favor and regulate CENP-A assembly and/or maintenance.
Collapse
Affiliation(s)
- Catalina Salinas-Luypaert
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144 & UMR3664, 26 rue d'Ulm, 75005, Paris, France.
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144 & UMR3664, 26 rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
22
|
Andrade Ruiz L, Kops GJPL, Sacristan C. Vertebrate centromere architecture: from chromatin threads to functional structures. Chromosoma 2024; 133:169-181. [PMID: 38856923 PMCID: PMC11266386 DOI: 10.1007/s00412-024-00823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Centromeres are chromatin structures specialized in sister chromatid cohesion, kinetochore assembly, and microtubule attachment during chromosome segregation. The regional centromere of vertebrates consists of long regions of highly repetitive sequences occupied by the Histone H3 variant CENP-A, and which are flanked by pericentromeres. The three-dimensional organization of centromeric chromatin is paramount for its functionality and its ability to withstand spindle forces. Alongside CENP-A, key contributors to the folding of this structure include components of the Constitutive Centromere-Associated Network (CCAN), the protein CENP-B, and condensin and cohesin complexes. Despite its importance, the intricate architecture of the regional centromere of vertebrates remains largely unknown. Recent advancements in long-read sequencing, super-resolution and cryo-electron microscopy, and chromosome conformation capture techniques have significantly improved our understanding of this structure at various levels, from the linear arrangement of centromeric sequences and their epigenetic landscape to their higher-order compaction. In this review, we discuss the latest insights on centromere organization and place them in the context of recent findings describing a bipartite higher-order organization of the centromere.
Collapse
Affiliation(s)
- Lorena Andrade Ruiz
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
- University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Geert J P L Kops
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
- University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Carlos Sacristan
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands.
- University Medical Center Utrecht, Utrecht, Netherlands.
- Oncode Institute, Utrecht, Netherlands.
| |
Collapse
|
23
|
Sacristan C, Samejima K, Ruiz LA, Deb M, Lambers MLA, Buckle A, Brackley CA, Robertson D, Hori T, Webb S, Kiewisz R, Bepler T, van Kwawegen E, Risteski P, Vukušić K, Tolić IM, Müller-Reichert T, Fukagawa T, Gilbert N, Marenduzzo D, Earnshaw WC, Kops GJPL. Vertebrate centromeres in mitosis are functionally bipartite structures stabilized by cohesin. Cell 2024; 187:3006-3023.e26. [PMID: 38744280 PMCID: PMC11164432 DOI: 10.1016/j.cell.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 01/30/2024] [Accepted: 04/14/2024] [Indexed: 05/16/2024]
Abstract
Centromeres are scaffolds for the assembly of kinetochores that ensure chromosome segregation during cell division. How vertebrate centromeres obtain a three-dimensional structure to accomplish their primary function is unclear. Using super-resolution imaging, capture-C, and polymer modeling, we show that vertebrate centromeres are partitioned by condensins into two subdomains during mitosis. The bipartite structure is found in human, mouse, and chicken cells and is therefore a fundamental feature of vertebrate centromeres. Super-resolution imaging and electron tomography reveal that bipartite centromeres assemble bipartite kinetochores, with each subdomain binding a distinct microtubule bundle. Cohesin links the centromere subdomains, limiting their separation in response to spindle forces and avoiding merotelic kinetochore-spindle attachments. Lagging chromosomes during cancer cell divisions frequently have merotelic attachments in which the centromere subdomains are separated and bioriented. Our work reveals a fundamental aspect of vertebrate centromere biology with implications for understanding the mechanisms that guarantee faithful chromosome segregation.
Collapse
Affiliation(s)
- Carlos Sacristan
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Kumiko Samejima
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - Lorena Andrade Ruiz
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Moonmoon Deb
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Maaike L A Lambers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Adam Buckle
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Chris A Brackley
- SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Daniel Robertson
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Tetsuya Hori
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Shaun Webb
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Robert Kiewisz
- Simons Machine Learning Center, New York Structural Biology Center, New York, NY 10027, USA; Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, Cantoblanco, Madrid 28049, Spain
| | - Tristan Bepler
- Simons Machine Learning Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Eloïse van Kwawegen
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tatsuo Fukagawa
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Davide Marenduzzo
- SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
24
|
Simmons JR, Estrem B, Zagoskin MV, Oldridge R, Zadegan SB, Wang J. Chromosome fusion and programmed DNA elimination shape karyotypes of nematodes. Curr Biol 2024; 34:2147-2161.e5. [PMID: 38688284 PMCID: PMC11111355 DOI: 10.1016/j.cub.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/21/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
An increasing number of metazoans undergo programmed DNA elimination (PDE), where a significant amount of DNA is selectively lost from the somatic genome during development. In some nematodes, PDE leads to the removal and remodeling of the ends of all germline chromosomes. In several species, PDE also generates internal breaks that lead to sequence loss and increased numbers of somatic chromosomes. The biological significance of these karyotype changes associated with PDE and the origin and evolution of nematode PDE remain largely unknown. Here, we assembled the single germline chromosome of the nematode Parascaris univalens and compared the karyotypes, chromosomal gene organization, and PDE features among other nematodes. We show that PDE in Parascaris converts an XX/XY sex-determination system in the germline into an XX/XO system in the somatic cells. Comparisons of Ascaris, Parascaris, and Baylisascaris ascarid chromosomes suggest that PDE existed in the ancestor of these nematodes, and their current distinct germline karyotypes were derived from fusion events of smaller ancestral chromosomes. The DNA breaks involved in PDE resolve these fused germline chromosomes into their pre-fusion karyotypes. These karyotype changes may lead to alterations in genome architecture and gene expression in the somatic cells. Cytological and genomic analyses further suggest that satellite DNA and the heterochromatic chromosome arms are dynamic and may play a role during meiosis. Overall, our results show that chromosome fusion and PDE have been harnessed in these ascarids to sculpt their karyotypes, altering the genome organization and serving specific functions in the germline and somatic cells.
Collapse
Affiliation(s)
- James R Simmons
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Brandon Estrem
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Maxim V Zagoskin
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Ryan Oldridge
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Sobhan Bahrami Zadegan
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jianbin Wang
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
25
|
Gopinathan G, Xu Q, Luan X, Diekwisch TGH. CFDP1 regulates the stability of pericentric heterochromatin thereby affecting RAN GTPase activity and mitotic spindle formation. PLoS Biol 2024; 22:e3002574. [PMID: 38630655 PMCID: PMC11023358 DOI: 10.1371/journal.pbio.3002574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 03/02/2024] [Indexed: 04/19/2024] Open
Abstract
The densely packed centromeric heterochromatin at minor and major satellites is comprised of H3K9me2/3 histones, the heterochromatin protein HP1α, and histone variants. In the present study, we sought to determine the mechanisms by which condensed heterochromatin at major and minor satellites stabilized by the chromatin factor CFDP1 affects the activity of the small GTPase Ran as a requirement for spindle formation. CFDP1 colocalized with heterochromatin at major and minor satellites and was essential for the structural stability of centromeric heterochromatin. Loss of CENPA, HP1α, and H2A.Z heterochromatin components resulted in decreased binding of the spindle nucleation facilitator RCC1 to minor and major satellite repeats. Decreased RanGTP levels as a result of diminished RCC1 binding interfered with chromatin-mediated microtubule nucleation at the onset of mitotic spindle formation. Rescuing chromatin H2A.Z levels in cells and mice lacking CFDP1 through knock-down of the histone chaperone ANP32E not only partially restored RCC1-dependent RanGTP levels but also alleviated CFDP1-knockout-related craniofacial defects and increased microtubule nucleation in CFDP1/ANP32E co-silenced cells. Together, these studies provide evidence for a direct link between condensed heterochromatin at major and minor satellites and microtubule nucleation through the chromatin protein CFDP1.
Collapse
Affiliation(s)
- Gokul Gopinathan
- School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
| | - Qian Xu
- School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
| | - Xianghong Luan
- School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
| | - Thomas G. H. Diekwisch
- School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
26
|
Di Tommaso E, Giunta S. Dynamic interplay between human alpha-satellite DNA structure and centromere functions. Semin Cell Dev Biol 2024; 156:130-140. [PMID: 37926668 DOI: 10.1016/j.semcdb.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
Maintenance of genome stability relies on functional centromeres for correct chromosome segregation and faithful inheritance of the genetic information. The human centromere is the primary constriction within mitotic chromosomes made up of repetitive alpha-satellite DNA hierarchically organized in megabase-long arrays of near-identical higher order repeats (HORs). Centromeres are epigenetically specified by the presence of the centromere-specific histone H3 variant, CENP-A, which enables the assembly of the kinetochore for microtubule attachment. Notably, centromeric DNA is faithfully inherited as intact haplotypes from the parents to the offspring without intervening recombination, yet, outside of meiosis, centromeres are akin to common fragile sites (CFSs), manifesting crossing-overs and ongoing sequence instability. Consequences of DNA changes within the centromere are just starting to emerge, with unclear effects on intra- and inter-generational inheritance driven by centromere's essential role in kinetochore assembly. Here, we review evidence of meiotic selection operating to mitigate centromere drive, as well as recent reports on centromere damage, recombination and repair during the mitotic cell division. We propose an antagonistic pleiotropy interpretation to reconcile centromere DNA instability as both driver of aneuploidy that underlies degenerative diseases, while also potentially necessary for the maintenance of homogenized HORs for centromere function. We attempt to provide a framework for this conceptual leap taking into consideration the structural interface of centromere-kinetochore interaction and present case scenarios for its malfunctioning. Finally, we offer an integrated working model to connect DNA instability, chromatin, and structural changes with functional consequences on chromosome integrity.
Collapse
Affiliation(s)
- Elena Di Tommaso
- Laboratory of Genome Evolution, Department of Biology & Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy
| | - Simona Giunta
- Laboratory of Genome Evolution, Department of Biology & Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy.
| |
Collapse
|
27
|
Chen C, Wu S, Sun Y, Zhou J, Chen Y, Zhang J, Birchler JA, Han F, Yang N, Su H. Three near-complete genome assemblies reveal substantial centromere dynamics from diploid to tetraploid in Brachypodium genus. Genome Biol 2024; 25:63. [PMID: 38439049 PMCID: PMC10910784 DOI: 10.1186/s13059-024-03206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Centromeres are critical for maintaining genomic stability in eukaryotes, and their turnover shapes genome architectures and drives karyotype evolution. However, the co-evolution of centromeres from different species in allopolyploids over millions of years remains largely unknown. RESULTS Here, we generate three near-complete genome assemblies, a tetraploid Brachypodium hybridum and its two diploid ancestors, Brachypodium distachyon and Brachypodium stacei. We detect high degrees of sequence, structural, and epigenetic variations of centromeres at base-pair resolution between closely related Brachypodium genomes, indicating the appearance and accumulation of species-specific centromere repeats from a common origin during evolution. We also find that centromere homogenization is accompanied by local satellite repeats bursting and retrotransposon purging, and the frequency of retrotransposon invasions drives the degree of interspecies centromere diversification. We further investigate the dynamics of centromeres during alloploidization process, and find that dramatic genetics and epigenetics architecture variations are associated with the turnover of centromeres between homologous chromosomal pairs from diploid to tetraploid. Additionally, our pangenomes analysis reveals the ongoing variations of satellite repeats and stable evolutionary homeostasis within centromeres among individuals of each Brachypodium genome with different polyploidy levels. CONCLUSIONS Our results provide unprecedented information on the genomic, epigenomic, and functional diversity of highly repetitive DNA between closely related species and their allopolyploid genomes at both coarse and fine scale.
Collapse
Affiliation(s)
- Chuanye Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Siying Wu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yishuang Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingwei Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiqian Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Handong Su
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
28
|
Folco H, Xiao H, Wheeler D, Feng H, Bai Y, Grewal SS. The cysteine-rich domain in CENP-A chaperone Scm3HJURP ensures centromere targeting and kinetochore integrity. Nucleic Acids Res 2024; 52:1688-1701. [PMID: 38084929 PMCID: PMC10899784 DOI: 10.1093/nar/gkad1182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 02/29/2024] Open
Abstract
Centromeric chromatin plays a crucial role in kinetochore assembly and chromosome segregation. Centromeres are specified through the loading of the histone H3 variant CENP-A by the conserved chaperone Scm3/HJURP. The N-terminus of Scm3/HJURP interacts with CENP-A, while the C-terminus facilitates centromere localization by interacting with the Mis18 holocomplex via a small domain, called the Mis16-binding domain (Mis16-BD) in fission yeast. Fungal Scm3 proteins contain an additional conserved cysteine-rich domain (CYS) of unknown function. Here, we find that CYS binds zinc in vitro and is essential for the localization and function of fission yeast Scm3. Disrupting CYS by deletion or introduction of point mutations within its zinc-binding motif prevents Scm3 centromere localization and compromises kinetochore integrity. Interestingly, CYS alone can localize to the centromere, albeit weakly, but its targeting is greatly enhanced when combined with Mis16-BD. Expressing a truncated protein containing both Mis16-BD and CYS, but lacking the CENP-A binding domain, causes toxicity and is accompanied by considerable chromosome missegregation and kinetochore loss. These effects can be mitigated by mutating the CYS zinc-binding motif. Collectively, our findings establish the essential role of the cysteine-rich domain in fungal Scm3 proteins and provide valuable insights into the mechanism of Scm3 centromere targeting.
Collapse
Affiliation(s)
- H Diego Folco
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hua Xiao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hanqiao Feng
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
29
|
Wolstenholme AJ, Andersen EC, Choudhary S, Ebner F, Hartmann S, Holden-Dye L, Kashyap SS, Krücken J, Martin RJ, Midha A, Nejsum P, Neveu C, Robertson AP, von Samson-Himmelstjerna G, Walker R, Wang J, Whitehead BJ, Williams PDE. Getting around the roundworms: Identifying knowledge gaps and research priorities for the ascarids. ADVANCES IN PARASITOLOGY 2024; 123:51-123. [PMID: 38448148 PMCID: PMC11143470 DOI: 10.1016/bs.apar.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The ascarids are a large group of parasitic nematodes that infect a wide range of animal species. In humans, they cause neglected diseases of poverty; many animal parasites also cause zoonotic infections in people. Control measures include hygiene and anthelmintic treatments, but they are not always appropriate or effective and this creates a continuing need to search for better ways to reduce the human, welfare and economic costs of these infections. To this end, Le Studium Institute of Advanced Studies organized a two-day conference to identify major gaps in our understanding of ascarid parasites with a view to setting research priorities that would allow for improved control. The participants identified several key areas for future focus, comprising of advances in genomic analysis and the use of model organisms, especially Caenorhabditis elegans, a more thorough appreciation of the complexity of host-parasite (and parasite-parasite) communications, a search for novel anthelmintic drugs and the development of effective vaccines. The participants agreed to try and maintain informal links in the future that could form the basis for collaborative projects, and to co-operate to organize future meetings and workshops to promote ascarid research.
Collapse
Affiliation(s)
- Adrian J Wolstenholme
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Tours, ISP, Nouzilly, France.
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Shivani Choudhary
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Friederike Ebner
- Department of Molecular Life Sciences, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Susanne Hartmann
- Institute for Immunology, Freie Universität Berlin, Berlin, Germany
| | - Lindy Holden-Dye
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Sudhanva S Kashyap
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Richard J Martin
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Ankur Midha
- Institute for Immunology, Freie Universität Berlin, Berlin, Germany
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Cedric Neveu
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Tours, ISP, Nouzilly, France
| | - Alan P Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | | | - Robert Walker
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jianbin Wang
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | | | - Paul D E Williams
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| |
Collapse
|
30
|
Cao J, Hori T, Ariyoshi M, Fukagawa T. Artificial tethering of constitutive centromere-associated network proteins induces CENP-A deposition without Knl2 in DT40 cells. J Cell Sci 2024; 137:jcs261639. [PMID: 38319136 DOI: 10.1242/jcs.261639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024] Open
Abstract
The kinetochore is an essential structure for chromosome segregation. Although the kinetochore is usually formed on a centromere locus, it can be artificially formed at a non-centromere locus by protein tethering. An artificial kinetochore can be formed by tethering of CENP-C or CENP-I, members of the constitutive centromere-associated network (CCAN). However, how CENP-C or CENP-I recruit the centromere-specific histone CENP-A to form an artificial kinetochore remains unclear. In this study, we analyzed this issue using the tethering assay combined with an auxin-inducible degron (AID)-based knockout method in chicken DT40 cells. We found that tethering of CENP-C or CENP-I induced CENP-A incorporation at the non-centromeric locus in the absence of Knl2 (or MIS18BP1), a component of the Mis18 complex, and that Knl2 tethering recruited CENP-A in the absence of CENP-C. We also showed that CENP-C coimmunoprecipitated with HJURP, independently of Knl2. Considering these results, we propose that CENP-C recruits CENP-A by HJURP binding to form an artificial kinetochore. Our results suggest that CENP-C or CENP-I exert CENP-A recruitment activity, independently of Knl2, for artificial kinetochore formation in chicken DT40 cells. This gives us a new insight into mechanisms for CENP-A incorporation.
Collapse
Affiliation(s)
- JingHui Cao
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tetsuya Hori
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mariko Ariyoshi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
31
|
Hoang M, Marçais G, Kingsford C. Density and Conservation Optimization of the Generalized Masked-Minimizer Sketching Scheme. J Comput Biol 2024; 31:2-20. [PMID: 37975802 PMCID: PMC10794853 DOI: 10.1089/cmb.2023.0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Minimizers and syncmers are sketching methods that sample representative k-mer seeds from a long string. The minimizer scheme guarantees a well-spread k-mer sketch (high coverage) while seeking to minimize the sketch size (low density). The syncmer scheme yields sketches that are more robust to base substitutions (high conservation) on random sequences, but do not have the coverage guarantee of minimizers. These sketching metrics are generally adversarial to one another, especially in the context of sketch optimization for a specific sequence, and thus are difficult to be simultaneously achieved. The parameterized syncmer scheme was recently introduced as a generalization of syncmers with more flexible sampling rules and empirically better coverage than the original syncmer variants. However, no approach exists to optimize parameterized syncmers. To address this shortcoming, we introduce a new scheme called masked minimizers that generalizes minimizers in manner analogous to how parameterized syncmers generalize syncmers and allows us to extend existing optimization techniques developed for minimizers. This results in a practical algorithm to optimize the masked minimizer scheme with respect to both density and conservation. We evaluate the optimization algorithm on various benchmark genomes and show that our algorithm finds sketches that are overall more compact, well-spread, and robust to substitutions than those found by previous methods. Our implementation is released at https://github.com/Kingsford-Group/maskedminimizer. This new technique will enable more efficient and robust genomic analyses in the many settings where minimizers and syncmers are used.
Collapse
Affiliation(s)
- Minh Hoang
- Department of Computer Science, and Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Guillaume Marçais
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Carl Kingsford
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
32
|
Wang M, Meng G, Yang Y, Wang X, Xie R, Dong C. Telomere-to-Telomere Genome Assembly of Tibetan Medicinal Mushroom Ganoderma leucocontextum and the First Copia Centromeric Retrotransposon in Macro-Fungi Genome. J Fungi (Basel) 2023; 10:15. [PMID: 38248925 PMCID: PMC10817607 DOI: 10.3390/jof10010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
A complete telomere-to-telomere (T2T) genome has been a longstanding goal in the field of genomic research. By integrating high-coverage and precise long-read sequencing data using multiple assembly strategies, we present here the first T2T gap-free genome assembly of Ganoderma leucocontextum strain GL72, a Tibetan medicinal mushroom. The T2T genome, with a size of 46.69 Mb, consists 13 complete nuclear chromosomes and typical telomeric repeats (CCCTAA)n were detected at both ends of 13 chromosomes. The high mapping rate, uniform genome coverage, a complete BUSCOs of 99.7%, and base accuracy exceeding 99.999% indicate that this assembly represents the highest level of completeness and quality. Regions characterized by distinct structural attributes, including highest Hi-C interaction intensity, high repeat content, decreased gene density, low GC content, and minimal or no transcription levels across all chromosomes may represent potential centromeres. Sequence analysis revealed the first Copia centromeric retrotransposon in macro-fungi genome. Phylogenomic analysis identified that G. leucocontextum and G. tsugae diverged from the other Ganoderma species approximately 9.8-17.9 MYA. The prediction of secondary metabolic clusters confirmed the capability of this fungus to produce a substantial quantity of metabolites. This T2T gap-free genome will contribute to the genomic 'dark matter' elucidation and server as a great reference for genetics, genomics, and evolutionary studies of G. leucocontextum.
Collapse
Affiliation(s)
- Miao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (M.W.); (G.M.); (Y.Y.); (X.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Meng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (M.W.); (G.M.); (Y.Y.); (X.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (M.W.); (G.M.); (Y.Y.); (X.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofang Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (M.W.); (G.M.); (Y.Y.); (X.W.)
| | - Rong Xie
- Institute of Vegetable Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China;
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (M.W.); (G.M.); (Y.Y.); (X.W.)
| |
Collapse
|
33
|
Simmons JR, Estrem B, Zagoskin MV, Oldridge R, Zadegan SB, Wang J. Chromosome fusion and programmed DNA elimination shape karyotypes of parasitic nematodes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572835. [PMID: 38187595 PMCID: PMC10769430 DOI: 10.1101/2023.12.21.572835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
A growing list of metazoans undergo programmed DNA elimination (PDE), where a significant amount of DNA is selectively lost from the somatic genome during development. In some nematodes, PDE leads to the removal and remodeling of the ends of all germline chromosomes. In several species, PDE also generates internal breaks that lead to sequence loss and an increased number of somatic chromosomes. The biological significance of these karyotype changes associated with PDE and the origin and evolution of nematode PDE remain largely unknown. Here, we assembled the single germline chromosome of the horse parasite Parascaris univalens and compared the karyotypes, chromosomal gene organization, and PDE features among ascarid nematodes. We show that PDE in Parascaris converts an XX/XY sex-determination system in the germline into an XX/XO system in the somatic cells. Comparisons of Ascaris, Parascaris, and Baylisascaris ascarid chromosomes suggest that PDE existed in the ancestor of these parasites, and their current distinct germline karyotypes were derived from fusion events of smaller ancestral chromosomes. The DNA breaks involved in PDE resolve these fused germline chromosomes into their pre-fusion karyotypes, leading to alterations in genome architecture and gene expression in the somatic cells. Cytological and genomic analyses further suggest that satellite DNA and the heterochromatic chromosome arms play a dynamic role in the Parascaris germline chromosome during meiosis. Overall, our results show that chromosome fusion and PDE have been harnessed in these ascarids to sculpt their karyotypes, altering the genome organization and serving specific functions in the germline and somatic cells.
Collapse
Affiliation(s)
- James R. Simmons
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Brandon Estrem
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Maxim V. Zagoskin
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Ryan Oldridge
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Sobhan Bahrami Zadegan
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Jianbin Wang
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, 37996, USA
- Lead Contact
| |
Collapse
|
34
|
Nagpal H, Ali-Ahmad A, Hirano Y, Cai W, Halic M, Fukagawa T, Sekulić N, Fierz B. CENP-A and CENP-B collaborate to create an open centromeric chromatin state. Nat Commun 2023; 14:8227. [PMID: 38086807 PMCID: PMC10716449 DOI: 10.1038/s41467-023-43739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Centromeres are epigenetically defined via the presence of the histone H3 variant CENP-A. Contacting CENP-A nucleosomes, the constitutive centromere associated network (CCAN) and the kinetochore assemble, connecting the centromere to spindle microtubules during cell division. The DNA-binding centromeric protein CENP-B is involved in maintaining centromere stability and, together with CENP-A, shapes the centromeric chromatin state. The nanoscale organization of centromeric chromatin is not well understood. Here, we use single-molecule fluorescence and cryoelectron microscopy (cryoEM) to show that CENP-A incorporation establishes a dynamic and open chromatin state. The increased dynamics of CENP-A chromatin create an opening for CENP-B DNA access. In turn, bound CENP-B further opens the chromatin fiber structure and induces nucleosomal DNA unwrapping. Finally, removal of CENP-A increases CENP-B mobility in cells. Together, our studies show that the two centromere-specific proteins collaborate to reshape chromatin structure, enabling the binding of centromeric factors and establishing a centromeric chromatin state.
Collapse
Affiliation(s)
- Harsh Nagpal
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, CH-1015, Lausanne, Switzerland
| | - Ahmad Ali-Ahmad
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Yasuhiro Hirano
- Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871, Japan
| | - Wei Cai
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, CH-1015, Lausanne, Switzerland
| | - Mario Halic
- Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105-3678, USA
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871, Japan
| | - Nikolina Sekulić
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway.
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315, Norway.
| | - Beat Fierz
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
35
|
Sankaranarayanan SR, Polisetty SD, Das K, Dumbrepatil A, Medina-Pritchard B, Singleton M, Jeyaprakash AA, Sanyal K. Functional plasticity in chromosome-microtubule coupling on the evolutionary time scale. Life Sci Alliance 2023; 6:e202201720. [PMID: 37793775 PMCID: PMC10551642 DOI: 10.26508/lsa.202201720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023] Open
Abstract
The Dam1 complex is essential for mitotic progression across evolutionarily divergent fungi. Upon analyzing amino acid (aa) sequences of Dad2, a Dam1 complex subunit, we identified a conserved 10-aa-long Dad2 signature sequence (DSS). An arginine residue (R126) in the DSS is essential for viability in Saccharomyces cerevisiae that possesses point centromeres. The corresponding arginine residues are functionally important but not essential for viability in Candida albicans and Cryptococcus neoformans; both carry several kilobases long regional centromeres. The purified recombinant Dam1 complex containing either Dad2ΔDSS or Dad2R126A failed to bind microtubules (MTs) or form any visible rings like the WT complex. Intriguingly, functional analysis revealed that the requirement of the conserved arginine residue for chromosome biorientation and mitotic progression reduced with increasing centromere length. We propose that plasticity of the invariant arginine of Dad2 in organisms with regional centromeres is achieved by conditional elevation of the kinetochore protein(s) to enable multiple kinetochore MTs to bind to each chromosome. The capacity of a chromosome to bind multiple kinetochore MTs may mask the deleterious effects of such lethal mutations.
Collapse
Affiliation(s)
- Sundar Ram Sankaranarayanan
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Satya Dev Polisetty
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Kuladeep Das
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Arti Dumbrepatil
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | | | - Martin Singleton
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - A Arockia Jeyaprakash
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
- Gene Center and Department of Biochemistry, Ludwig-Maximilian-Universität, Munich, Germany
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
36
|
Sen Gupta A, Seidel C, Tsuchiya D, McKinney S, Yu Z, Smith SE, Unruh JR, Gerton JL. Defining a core configuration for human centromeres during mitosis. Nat Commun 2023; 14:7947. [PMID: 38040722 PMCID: PMC10692335 DOI: 10.1038/s41467-023-42980-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/25/2023] [Indexed: 12/03/2023] Open
Abstract
The centromere components cohesin, CENP-A, and centromeric DNA are essential for biorientation of sister chromatids on the mitotic spindle and accurate sister chromatid segregation. Insight into the 3D organization of centromere components would help resolve how centromeres function on the mitotic spindle. We use ChIP-seq and super-resolution microscopy with single particle averaging to examine the geometry of essential centromeric components on human chromosomes. Both modalities suggest cohesin is enriched at pericentromeric DNA. CENP-A localizes to a subset of the α-satellite DNA, with clusters separated by ~562 nm and a perpendicular intervening ~190 nM wide axis of cohesin in metaphase chromosomes. Differently sized α-satellite arrays achieve a similar core structure. Here we present a working model for a common core configuration of essential centromeric components that includes CENP-A nucleosomes, α-satellite DNA and pericentromeric cohesion. This configuration helps reconcile how centromeres function and serves as a foundation to add components of the chromosome segregation machinery.
Collapse
Affiliation(s)
| | - Chris Seidel
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sarah E Smith
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO, USA.
- Department of Biochemistry and Molecular Biology, University of Kansas, Kansas City, KS, USA.
| |
Collapse
|
37
|
Ariyoshi M, Fukagawa T. An updated view of the kinetochore architecture. Trends Genet 2023; 39:941-953. [PMID: 37775394 DOI: 10.1016/j.tig.2023.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 10/01/2023]
Abstract
The kinetochore is a supramolecular complex that facilitates faithful chromosome segregation by bridging the centromere and spindle microtubules. Recent functional and structural studies on the inner kinetochore subcomplex, constitutive centromere-associated network (CCAN) have updated our understanding of kinetochore architecture. While the CCAN core establishes a stable interface with centromeric chromatin, CCAN organization is dynamically altered and coupled with cell cycle progression. Furthermore, the CCAN components, centromere protein (CENP)-C and CENP-T, mediate higher-order assembly of multiple kinetochore units on the regional centromeres of vertebrates. This review highlights new insights into kinetochore rigidity, plasticity, and clustering, which are key to understanding temporal and spatial regulatory mechanisms of chromosome segregation.
Collapse
Affiliation(s)
- Mariko Ariyoshi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
38
|
Arora UP, Sullivan BA, Dumont BL. Variation in the CENP-A sequence association landscape across diverse inbred mouse strains. Cell Rep 2023; 42:113178. [PMID: 37742188 PMCID: PMC10873113 DOI: 10.1016/j.celrep.2023.113178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/25/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Centromeres are crucial for chromosome segregation, but their underlying sequences evolve rapidly, imposing strong selection for compensatory changes in centromere-associated kinetochore proteins to assure the stability of genome transmission. While this co-evolution is well documented between species, it remains unknown whether population-level centromere diversity leads to functional differences in kinetochore protein association. Mice (Mus musculus) exhibit remarkable variation in centromere size and sequence, but the amino acid sequence of the kinetochore protein CENP-A is conserved. Here, we apply k-mer-based analyses to CENP-A chromatin profiling data from diverse inbred mouse strains to investigate the interplay between centromere variation and kinetochore protein sequence association. We show that centromere sequence diversity is associated with strain-level differences in both CENP-A positioning and sequence preference along the mouse core centromere satellite. Our findings reveal intraspecies sequence-dependent differences in CENP-A/centromere association and open additional perspectives for understanding centromere-mediated variation in genome stability.
Collapse
Affiliation(s)
- Uma P Arora
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA.
| | - Beth A Sullivan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Box 3054, Durham, NC 27710, USA
| | - Beth L Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA; Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Room 46, Orono, ME 04469, USA.
| |
Collapse
|
39
|
Scelfo A, Fachinetti D. Centromere: A Trojan horse for genome stability. DNA Repair (Amst) 2023; 130:103569. [PMID: 37708591 DOI: 10.1016/j.dnarep.2023.103569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
Centromeres play a key role in the maintenance of genome stability to prevent carcinogenesis and diseases. They are specialized chromosome loci essential to ensure faithful transmission of genomic information across cell generations by mediating the interaction with spindle microtubules. Nonetheless, while fulfilling these essential roles, their distinct repetitive composition and susceptibility to mechanical stresses during cell division render them susceptible to breakage events. In this review, we delve into the present understanding of the underlying causes of centromere fragility, from the mechanisms governing its DNA replication and repair, to the pathways acting to counteract potential challenges. We propose that the centromere represents a "Trojan horse" exerting vital functions that, at the same time, potentially threatens whole genome stability.
Collapse
Affiliation(s)
- Andrea Scelfo
- Institut Curie, CNRS, UMR 144, Sorbonne University, 26 rue d'Ulm, 75005 Paris, France.
| | - Daniele Fachinetti
- Institut Curie, CNRS, UMR 144, Sorbonne University, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
40
|
Takata H, Masuda Y, Ohmido N. CRISPR imaging reveals chromatin fluctuation at the centromere region related to cellular senescence. Sci Rep 2023; 13:14609. [PMID: 37670098 PMCID: PMC10480159 DOI: 10.1038/s41598-023-41770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/31/2023] [Indexed: 09/07/2023] Open
Abstract
The human genome is spatially and temporally organized in the nucleus as chromatin, and the dynamic structure of chromatin is closely related to genome functions. Cellular senescence characterized by an irreversible arrest of proliferation is accompanied by chromatin reorganisation in the nucleus during senescence. However, chromatin dynamics in chromatin reorganisation is poorly understood. Here, we report chromatin dynamics at the centromere region during senescence in cultured human cell lines using live imaging based on the clustered regularly interspaced short palindromic repeat/dCas9 system. The repetitive sequence at the centromere region, alpha-satellite DNA, was predominantly detected on chromosomes 1, 12, and 19. Centromeric chromatin formed irregular-shaped domains with high fluctuation in cells undergoing 5'-aza-2'-deoxycytidine-induced senescence. Our findings suggest that the increased fluctuation of the chromatin structure facilitates centromere disorganisation during cellular senescence.
Collapse
Affiliation(s)
- Hideaki Takata
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka, 563-8577, Japan.
| | - Yumena Masuda
- Graduate School of Human Development and Environment, Kobe University, Nada-ku, Kobe, 657-8501, Japan
| | - Nobuko Ohmido
- Graduate School of Human Development and Environment, Kobe University, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
41
|
Kirkiz E, Meers O, Grebien F, Buschbeck M. Histone Variants and Their Chaperones in Hematological Malignancies. Hemasphere 2023; 7:e927. [PMID: 37449197 PMCID: PMC10337764 DOI: 10.1097/hs9.0000000000000927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Epigenetic regulation occurs on the level of compacting DNA into chromatin. The functional unit of chromatin is the nucleosome, which consists of DNA wrapped around a core of histone proteins. While canonical histone proteins are incorporated into chromatin through a replication-coupled process, structural variants of histones, commonly named histone variants, are deposited into chromatin in a replication-independent manner. Specific chaperones and chromatin remodelers mediate the locus-specific deposition of histone variants. Although histone variants comprise one of the least understood layers of epigenetic regulation, it has been proposed that they play an essential role in directly regulating gene expression in health and disease. Here, we review the emerging evidence suggesting that histone variants have a role at different stages of hematopoiesis, with a particular focus on the histone variants H2A, H3, and H1. Moreover, we discuss the current knowledge on how the dysregulation of histone variants can contribute to hematopoietic malignancies.
Collapse
Affiliation(s)
- Ecem Kirkiz
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Oliver Meers
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Spain
- PhD Programme in Biomedicine, University of Barcelona, Spain
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Marcus Buschbeck
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| |
Collapse
|
42
|
Hara M, Ariyoshi M, Sano T, Nozawa RS, Shinkai S, Onami S, Jansen I, Hirota T, Fukagawa T. Centromere/kinetochore is assembled through CENP-C oligomerization. Mol Cell 2023:S1097-2765(23)00379-9. [PMID: 37295434 DOI: 10.1016/j.molcel.2023.05.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Kinetochore is an essential protein complex required for accurate chromosome segregation. The constitutive centromere-associated network (CCAN), a subcomplex of the kinetochore, associates with centromeric chromatin and provides a platform for the kinetochore assembly. The CCAN protein CENP-C is thought to be a central hub for the centromere/kinetochore organization. However, the role of CENP-C in CCAN assembly needs to be elucidated. Here, we demonstrate that both the CCAN-binding domain and the C-terminal region that includes the Cupin domain of CENP-C are necessary and sufficient for chicken CENP-C function. Structural and biochemical analyses reveal self-oligomerization of the Cupin domains of chicken and human CENP-C. We find that the CENP-C Cupin domain oligomerization is vital for CENP-C function, centromeric localization of CCAN, and centromeric chromatin organization. These results suggest that CENP-C facilitates the centromere/kinetochore assembly through its oligomerization.
Collapse
Affiliation(s)
- Masatoshi Hara
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Mariko Ariyoshi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoki Sano
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryu-Suke Nozawa
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Soya Shinkai
- Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Shuichi Onami
- Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | | | - Toru Hirota
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
43
|
Sen Gupta A, Seidel C, Tsuchiya D, McKinney S, Yu Z, Smith S, Unruh J, Gerton JL. Defining a core configuration for human centromeres during mitosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.539634. [PMID: 37214893 PMCID: PMC10197669 DOI: 10.1101/2023.05.10.539634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The biorientation of sister chromatids on the mitotic spindle, essential for accurate sister chromatid segregation, relies on critical centromere components including cohesin, the centromere-specific H3 variant CENP-A, and centromeric DNA. Centromeric DNA is highly variable between chromosomes yet must accomplish a similar function. Moreover, how the 50 nm cohesin ring, proposed to encircle sister chromatids, accommodates inter-sister centromeric distances of hundreds of nanometers on the metaphase spindle is a conundrum. Insight into the 3D organization of centromere components would help resolve how centromeres function on the mitotic spindle. We used ChIP-seq and super-resolution microscopy to examine the geometry of essential centromeric components on human chromosomes. ChIP-seq demonstrates that cohesin subunits are depleted in α-satellite arrays where CENP-A nucleosomes and kinetochores assemble. Cohesin is instead enriched at pericentromeric DNA. Structured illumination microscopy of sister centromeres is consistent, revealing a non-overlapping pattern of CENP-A and cohesin. We used single particle averaging of hundreds of mitotic sister chromatids to develop an average centromere model. CENP-A clusters on sister chromatids, connected by α-satellite, are separated by ~562 nm with a perpendicular intervening ~190 nM wide axis of cohesin. Two differently sized α-satellite arrays on chromosome 7 display similar inter-sister CENP-A cluster distance, demonstrating different sized arrays can achieve a common spacing. Our data suggest a working model for a common core configuration of essential centromeric components that includes CENP-A nucleosomes at the outer edge of extensible α-satellite DNA and pericentromeric cohesion. This configuration helps reconcile how centromeres function and serves as a foundation for future studies of additional components required for centromere function.
Collapse
Affiliation(s)
| | - Chris Seidel
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sarah Smith
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jay Unruh
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, MO, USA
- University of Kansas Department of Biochemistry and Molecular Biology, Kansas City, KS, USA
| |
Collapse
|
44
|
Otake K, Kugou K, Robertlee J, Ohzeki JI, Okazaki K, Hanano S, Takahashi S, Shibata D, Masumoto H. De novo induction of a DNA-histone H3K9 methylation loop on synthetic human repetitive DNA in cultured tobacco cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:668-682. [PMID: 36825961 DOI: 10.1111/tpj.16164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/19/2023] [Indexed: 05/10/2023]
Abstract
Genetic modifications in plants are crucial tools for fundamental and applied research. Transgene expression usually varies among independent lines or their progeny and is associated with the chromatin structure of the insertion site. Strategies based on understanding how to manipulate the epigenetic state of the inserted gene cassette would help to ensure transgene expression. Here, we report a strategy for chromatin manipulation by the artificial tethering of epigenetic effectors to a synthetic human centromeric repetitive DNA (alphoid DNA) platform in plant Bright-Yellow-2 (BY-2) culture cells. By tethering DNA-methyltransferase (Nicotiana tabacum DRM1), we effectively induced DNA methylation and histone methylation (H3K9me2) on the alphoid DNA platform. Tethering of the Arabidopsis SUVH9, which has been reported to lack histone methyltransferase activity, also induced a similar epigenetic state on the alphoid DNA in BY-2 cells, presumably by activating the RNA-dependent DNA methylation (RdDM) pathway. Our results emphasize that the interplay between DNA and histone methylation mechanisms is intrinsic to plant cells. We also found that once epigenetic modification states were induced by the tethering of either DRM1 or SUVH9, the modification was maintained even when the direct tethering of the effector was inhibited. Our system enables the analysis of more diverse epigenetic effectors and will help to elucidate the chromatin assembly mechanisms of plant cells.
Collapse
Affiliation(s)
- Koichiro Otake
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Kazuto Kugou
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Jekson Robertlee
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Jun-Ichirou Ohzeki
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Koei Okazaki
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Shigeru Hanano
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Seiji Takahashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, 980-8579, Japan
| | - Daisuke Shibata
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Hiroshi Masumoto
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| |
Collapse
|
45
|
van den Berg SJW, Jansen LET. SUMO control of centromere homeostasis. Front Cell Dev Biol 2023; 11:1193192. [PMID: 37181753 PMCID: PMC10172491 DOI: 10.3389/fcell.2023.1193192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Centromeres are unique chromosomal loci that form the anchorage point for the mitotic spindle during mitosis and meiosis. Their position and function are specified by a unique chromatin domain featuring the histone H3 variant CENP-A. While typically formed on centromeric satellite arrays, CENP-A nucleosomes are maintained and assembled by a strong self-templated feedback mechanism that can propagate centromeres even at non-canonical sites. Central to the epigenetic chromatin-based transmission of centromeres is the stable inheritance of CENP-A nucleosomes. While long-lived at centromeres, CENP-A can turn over rapidly at non-centromeric sites and even erode from centromeres in non-dividing cells. Recently, SUMO modification of the centromere complex has come to the forefront as a mediator of centromere complex stability, including CENP-A chromatin. We review evidence from different models and discuss the emerging view that limited SUMOylation appears to play a constructive role in centromere complex formation, while polySUMOylation drives complex turnover. The deSUMOylase SENP6/Ulp2 and the proteins segregase p97/Cdc48 constitute the dominant opposing forces that balance CENP-A chromatin stability. This balance may be key to ensuring proper kinetochore strength at the centromere while preventing ectopic centromere formation.
Collapse
Affiliation(s)
- Sebastiaan J. W. van den Berg
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Instituto Gulbenkian de Ciencia, Oeiras, Portugal
| | - Lars E. T. Jansen
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
46
|
Ding W, Zhu Y, Han J, Zhang H, Xu Z, Khurshid H, Liu F, Hasterok R, Shen X, Wang K. Characterization of centromeric DNA of Gossypium anomalum reveals sequence-independent enrichment dynamics of centromeric repeats. Chromosome Res 2023; 31:12. [PMID: 36971835 DOI: 10.1007/s10577-023-09721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 03/29/2023]
Abstract
Centromeres in eukaryotes are composed of highly repetitive DNAs, which evolve rapidly and are thought to achieve a favorable structure in mature centromeres. However, how the centromeric repeat evolves into an adaptive structure is largely unknown. We characterized the centromeric sequences of Gossypium anomalum through chromatin immunoprecipitation against CENH3 antibodies. We revealed that the G. anomalum centromeres contained only retrotransposon-like repeats but were depleted in long arrays of satellites. These retrotransposon-like centromeric repeats were present in the African-Asian and Australian lineage species, suggesting that they might have arisen in the common ancestor of these diploid species. Intriguingly, we observed a substantial increase and decrease in copy numbers among African-Asian and Australian lineages, respectively, for the retrotransposon-derived centromeric repeats without apparent structure or sequence variation in cotton. This result indicates that the sequence content is not a decisive aspect of the adaptive evolution of centromeric repeats or at least retrotransposon-like centromeric repeats. In addition, two active genes with potential roles in gametogenesis or flowering were identified in CENH3 nucleosome-binding regions. Our results provide new insights into the constitution of centromeric repetitive DNA and the adaptive evolution of centromeric repeats in plants.
Collapse
Affiliation(s)
- Wenjie Ding
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Yuanbin Zhu
- School of Life Sciences, Nantong University, Nantong, 226019, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Hui Zhang
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Zhenzhen Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Haris Khurshid
- Oilseeds Research Program, National Agricultural Research Centre, Islamabad, 44500, Pakistan
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland.
| | - Xinlian Shen
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, 226019, China.
| |
Collapse
|
47
|
Jiang H, Ariyoshi M, Hori T, Watanabe R, Makino F, Namba K, Fukagawa T. The cryo-EM structure of the CENP-A nucleosome in complex with ggKNL2. EMBO J 2023; 42:e111965. [PMID: 36744604 PMCID: PMC10015371 DOI: 10.15252/embj.2022111965] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/07/2023] Open
Abstract
Centromere protein A (CENP-A) nucleosomes containing the centromere-specific histone H3 variant CENP-A represent an epigenetic mark that specifies centromere position. The Mis18 complex is a licensing factor for new CENP-A deposition via the CENP-A chaperone, Holliday junction recognition protein (HJURP), on the centromere chromatin. Chicken KINETOCHORE NULL2 (KNL2) (ggKNL2), a Mis18 complex component, has a CENP-C-like motif, and our previous study suggested that ggKNL2 directly binds to the CENP-A nucleosome to recruit HJURP/CENP-A to the centromere. However, the molecular basis for CENP-A nucleosome recognition by ggKNL2 has remained unclear. Here, we present the cryo-EM structure of the chicken CENP-A nucleosome in complex with a ggKNL2 fragment containing the CENP-C-like motif. Chicken KNL2 distinguishes between CENP-A and histone H3 in the nucleosome using the CENP-C-like motif and its downstream region. Both the C-terminal tail and the RG-loop of CENP-A are simultaneously recognized as CENP-A characteristics. The CENP-A nucleosome-ggKNL2 interaction is thus essential for KNL2 functions. Furthermore, our structural, biochemical, and cell biology data indicate that ggKNL2 changes its binding partner at the centromere during chicken cell cycle progression.
Collapse
Affiliation(s)
- Honghui Jiang
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Mariko Ariyoshi
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Tetsuya Hori
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Reito Watanabe
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Fumiaki Makino
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
- JEOL Ltd.AkishimaJapan
| | - Keiichi Namba
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
- RIKEN Center for Biosystems Dynamics Research and SPring‐8 CenterSuitaJapan
- JEOL YOKOGUSHI Research Alliance LaboratoriesOsaka UniversitySuitaJapan
| | - Tatsuo Fukagawa
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| |
Collapse
|
48
|
Huang Z, Xu Z, Bai H, Huang Y, Kang N, Ding X, Liu J, Luo H, Yang C, Chen W, Guo Q, Xue L, Zhang X, Xu L, Chen M, Fu H, Chen Y, Yue Z, Fukagawa T, Liu S, Chang G, Xu L. Evolutionary analysis of a complete chicken genome. Proc Natl Acad Sci U S A 2023; 120:e2216641120. [PMID: 36780517 PMCID: PMC9974502 DOI: 10.1073/pnas.2216641120] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/18/2023] [Indexed: 02/15/2023] Open
Abstract
Microchromosomes are prevalent in nonmammalian vertebrates [P. D. Waters et al., Proc. Natl. Acad. Sci. U.S.A. 118 (2021)], but a few of them are missing in bird genome assemblies. Here, we present a new chicken reference genome containing all autosomes, a Z and a W chromosome, with all gaps closed except for the W. We identified ten small microchromosomes (termed dot chromosomes) with distinct sequence and epigenetic features, among which six were newly assembled. Those dot chromosomes exhibit extremely high GC content and a high level of DNA methylation and are enriched for housekeeping genes. The pericentromeric heterochromatin of dot chromosomes is disproportionately large and continues to expand with the proliferation of satellite DNA and testis-expressed genes. Our analyses revealed that the 41-bp CNM repeat frequently forms higher-order repeats (HORs) at the centromeres of acrocentric chromosomes. The centromere core regions where the kinetochore attaches often encompass telomeric sequence (TTAGGG)n, and in a one of the dot chromosomes, the centromere core recruits an endogenous retrovirus (ERV). We further demonstrate that the W chromosome shares some common features with dot chromosomes, having large arrays of hypermethylated tandem repeats. Finally, using the complete chicken chromosome models, we reconstructed a fine picture of chordate karyotype evolution, revealing frequent chromosomal fusions before and after vertebrate whole-genome duplications. Our sequence and epigenetic characterization of chicken chromosomes shed insights into the understanding of vertebrate genome evolution and chromosome biology.
Collapse
Affiliation(s)
- Zhen Huang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou350108, China
| | - Zaoxu Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Life Sciences and Technology, Longdong University, Qingyang, Gansu Province745000, China
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou225009, China
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou225009, China
| | - Yongji Huang
- Institute of Oceanography, Minjiang University, Fuzhou350108, China
| | - Na Kang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Xiaoting Ding
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Jing Liu
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna1090, Austria
| | - Haoran Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen361102, China
| | | | | | - Qixin Guo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou225009, China
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou225009, China
| | - Lingzhan Xue
- Aquaculture and Genetic breeding laboratory, Freshwater Fisheries Research Institute of Fujian, Fuzhou350002, China
| | - Xueping Zhang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
| | - Li Xu
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
| | - Meiling Chen
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
| | - Honggao Fu
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
| | - Youling Chen
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
| | - Zhicao Yue
- Department of Cell Biology and Medical Genetics, International Cancer Center, and Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University School of Medicine, Guangdong, 518054, China
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Shanlin Liu
- Department of Entomology, China Agricultural University, Beijing100193, China
| | - Guobin Chang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou225009, China
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou225009, China
| | - Luohao Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
| |
Collapse
|
49
|
Fukagawa T, Kakutani T. Transgenerational epigenetic control of constitutive heterochromatin, transposons, and centromeres. Curr Opin Genet Dev 2023; 78:102021. [PMID: 36716679 DOI: 10.1016/j.gde.2023.102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/30/2023]
Abstract
Epigenetic mechanisms are important not only for development but also for genome stability and chromosome dynamics. The latter types of epigenetic controls can often be transgenerational. Here, we review recent progress in two examples of transgenerational epigenetic control: i) the control of constitutive heterochromatin and transposable elements and ii) epigenetic mechanisms that regulate centromere specification and functions. We also discuss the biological significance of enigmatic associations among centromeres, transposons, and constitutive heterochromatin.
Collapse
Affiliation(s)
- Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan. https://twitter.com/tatsuofukagawa1
| | - Tetsuji Kakutani
- Department of Biological Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
50
|
Di X, Xiang L, Jian Z. YAP-mediated mechanotransduction in urinary bladder remodeling: Based on RNA-seq and CUT&Tag. Front Genet 2023; 14:1106927. [PMID: 36741311 PMCID: PMC9895788 DOI: 10.3389/fgene.2023.1106927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Yes-associated protein (YAP) is an important transcriptional coactivator binding to transcriptional factors that engage in many downstream gene transcription. Partial bladder outlet obstruction (pBOO) causes a massive burden to patients and finally leads to bladder fibrosis. Several cell types engage in the pBOO pathological process, including urothelial cells, smooth muscle cells, and fibroblasts. To clarify the function of YAP in bladder fibrosis, we performed the RNA-seq and CUT&Tag of the bladder smooth muscle cell to analyze the YAP ablation of human bladder smooth muscle cells (hBdSMCs) and immunoprecipitation of YAP. 141 differentially expressed genes (DEGs) were identified through RNA-seq between YAP-knockdown and nature control. After matching with the results of CUT&Tag, 36 genes were regulated directly by YAP. Then we identified the hub genes in the DEGs, including CDCA5, CENPA, DTL, NCAPH, and NEIL3, that contribute to cell proliferation. Thus, our study provides a regulatory network of YAP in smooth muscle proliferation. The possible effects of YAP on hBdSMC might be a vital target for pBOO-associated bladder fibrosis.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liyuan Xiang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China,Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhongyu Jian
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Zhongyu Jian,
| |
Collapse
|