1
|
Lin C, Kuzmanović A, Wang N, Liao L, Ernst S, Penners C, Jans A, Hammoor T, Stach PB, Peltzer M, Volkert I, Zechendorf E, Hassan R, Myllys M, Liedtke C, Herrmann A, Chakraborty G, Trautwein C, Hengstler J, Müller‐Newen G, Wang J, Ghallab A, Bartneck M. Exceptional Uptake, Limited Protein Expression: Liver Macrophages Lost in Translation of Synthetic mRNA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409729. [PMID: 39792811 PMCID: PMC11884593 DOI: 10.1002/advs.202409729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/26/2024] [Indexed: 01/12/2025]
Abstract
Most gene therapies exert their actions via manipulation of hepatocytes (parenchymal cells) and the reasons behind the suboptimal performance of synthetic mRNA in non-parenchymal cells (NPC) such as Kupffer cells (KC), and liver macrophages, remain unclear. Here, the spatio-temporal distribution of mRNA encoding enhanced green fluorescent protein (Egfp), siRNA, or both co-encapsulated into lipid nanoparticles (LNP) in the liver in vivo using real-time intravital imaging is investigated. Although both KC and hepatocytes demonstrate comparable high and rapid uptake of mRNA-LNP and siRNA-LNP in vivo, the translation of Egfp mRNA occurs exclusively in hepatocytes during intravital imaging. Despite attempts such as inhibiting intracellular ribonuclease, substituting uridine bases in mRNA with pseudouridine, and using a different ionizable lipid in the LNP mixture, no substantial increase in Egfp translation by NPC is possible. The investigation reveals that hepatocytes, which are distinct from other liver cells due to their polyploidy, exhibit significantly elevated levels of total RNA and protein, along with a higher proportion of ribosomal protein per individual cell. Consequently, fundamental cellular differences account for the low mRNA translation observed in NPC. The findings therefore suggest that cellular biology imposes a natural limitation on synthetic mRNA translation that is strongly influenced by cellular ploidy.
Collapse
Affiliation(s)
- Cheng Lin
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
- Department of Rheumatology and Shanghai Institute of RheumatologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Adrian Kuzmanović
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Nan Wang
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
- Department of General SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240China
| | - Liangliang Liao
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
- Japan Union Hospital of Jilin University130033ChangchunChina
| | - Sabrina Ernst
- Confocal Microscopy FacilityInterdisciplinary Center for Clinical Research IZKFUniversity Hospital RWTH Aachen52074AachenGermany
| | - Christian Penners
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Alexander Jans
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Thomas Hammoor
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
| | - Petra Bumnuri Stach
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Mona Peltzer
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Ines Volkert
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Elisabeth Zechendorf
- Department of Intensive and Intermediate CareUniversity Hospital RWTH Aachen52074AachenGermany
| | - Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors44139DortmundGermany
- Department of Forensic and Veterinary ToxicologyFaculty of Veterinary MedicineSouth Valley University83523QenaEgypt
| | - Maiju Myllys
- Leibniz Research Centre for Working Environment and Human Factors44139DortmundGermany
| | - Christian Liedtke
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Andreas Herrmann
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
| | - Gurudas Chakraborty
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Christian Trautwein
- Leibniz Research Centre for Working Environment and Human Factors44139DortmundGermany
| | - Jan Hengstler
- Leibniz Research Centre for Working Environment and Human Factors44139DortmundGermany
| | - Gerhard Müller‐Newen
- Institute of Biochemistry and Molecular BiologyRWTH Aachen UniversityPauwelsstraße 3052074AachenGermany
| | - Junqing Wang
- Department of General SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240China
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors44139DortmundGermany
- Department of Forensic and Veterinary ToxicologyFaculty of Veterinary MedicineSouth Valley University83523QenaEgypt
| | - Matthias Bartneck
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
| |
Collapse
|
2
|
Darmasaputra GS, Geerlings CC, Chuva de Sousa Lopes SM, Clevers H, Galli M. Binucleated human hepatocytes arise through late cytokinetic regression during endomitosis M phase. J Cell Biol 2024; 223:e202403020. [PMID: 38727809 PMCID: PMC11090133 DOI: 10.1083/jcb.202403020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/15/2024] Open
Abstract
Binucleated polyploid cells are common in many animal tissues, where they arise by endomitosis, a non-canonical cell cycle in which cells enter M phase but do not undergo cytokinesis. Different steps of cytokinesis have been shown to be inhibited during endomitosis M phase in rodents, but it is currently unknown how human cells undergo endomitosis. In this study, we use fetal-derived human hepatocyte organoids (Hep-Orgs) to investigate how human hepatocytes initiate and execute endomitosis. We find that cells in endomitosis M phase have normal mitotic timings, but lose membrane anchorage to the midbody during cytokinesis, which is associated with the loss of four cortical anchoring proteins, RacGAP1, Anillin, SEPT9, and citron kinase (CIT-K). Moreover, reduction of WNT activity increases the percentage of binucleated cells in Hep-Orgs, an effect that is dependent on the atypical E2F proteins, E2F7 and E2F8. Together, we have elucidated how hepatocytes undergo endomitosis in human Hep-Orgs, providing new insights into the mechanisms of endomitosis in mammals.
Collapse
Affiliation(s)
- Gabriella S. Darmasaputra
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, Netherlands
| | - Cindy C. Geerlings
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Matilde Galli
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
3
|
Garyn CM, Bover O, Murray JW, Ma J, Salas-Briceno K, Ross SR, Snoeck HW. G2 arrest primes hematopoietic stem cells for megakaryopoiesis. Cell Rep 2024; 43:114388. [PMID: 38935497 PMCID: PMC11330628 DOI: 10.1016/j.celrep.2024.114388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/22/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024] Open
Abstract
In contrast to most hematopoietic lineages, megakaryocytes (MKs) can derive rapidly and directly from hematopoietic stem cells (HSCs). The underlying mechanism is unclear, however. Here, we show that DNA damage induces MK markers in HSCs and that G2 arrest, an integral part of the DNA damage response, suffices for MK priming followed by irreversible MK differentiation in HSCs, but not in progenitors. We also show that replication stress causes DNA damage in HSCs and is at least in part due to uracil misincorporation in vitro and in vivo. Consistent with this notion, thymidine attenuated DNA damage, improved HSC maintenance, and reduced the generation of CD41+ MK-committed HSCs. Replication stress and concomitant MK differentiation is therefore one of the barriers to HSC maintenance. DNA damage-induced MK priming may allow rapid generation of a lineage essential to immediate organismal survival, while also removing damaged cells from the HSC pool.
Collapse
Affiliation(s)
- Corey M Garyn
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Oriol Bover
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - John W Murray
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jing Ma
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Karen Salas-Briceno
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Susan R Ross
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Hans-Willem Snoeck
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
4
|
Becker IC, Wilkie AR, Nikols E, Carminita E, Roweth HG, Tilburg J, Sciaudone AR, Noetzli LJ, Fatima F, Couldwell G, Ray A, Mogilner A, Machlus KR, Italiano JE. Cell cycle-dependent centrosome clustering precedes proplatelet formation. SCIENCE ADVANCES 2024; 10:eadl6153. [PMID: 38896608 PMCID: PMC11186502 DOI: 10.1126/sciadv.adl6153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Platelet-producing megakaryocytes (MKs) primarily reside in the bone marrow, where they duplicate their DNA content with each cell cycle resulting in polyploid cells with an intricate demarcation membrane system. While key elements of the cytoskeletal reorganizations during proplatelet formation have been identified, what initiates the release of platelets into vessel sinusoids remains largely elusive. Using a cell cycle indicator, we observed a unique phenomenon, during which amplified centrosomes in MKs underwent clustering following mitosis, closely followed by proplatelet formation, which exclusively occurred in G1 of interphase. Forced cell cycle arrest in G1 increased proplatelet formation not only in vitro but also in vivo following short-term starvation of mice. We identified that inhibition of the centrosomal protein kinesin family member C1 (KIFC1) impaired clustering and subsequent proplatelet formation, while KIFC1-deficient mice exhibited reduced platelet counts. In summary, we identified KIFC1- and cell cycle-mediated centrosome clustering as an important initiator of proplatelet formation from MKs.
Collapse
Affiliation(s)
- Isabelle C. Becker
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Adrian R. Wilkie
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Emma Nikols
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
| | - Estelle Carminita
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Harvey G. Roweth
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Brigham and Women’s Hospital, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Julia Tilburg
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | | | - Leila J. Noetzli
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Brigham and Women’s Hospital, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Farheen Fatima
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
| | | | - Anjana Ray
- Brigham and Women’s Hospital, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| | - Kellie R. Machlus
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Joseph E. Italiano
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| |
Collapse
|
5
|
Zhao Y, He S, Zhao M, Huang Q. Surviving the Storm: The Role of Poly- and Depolyploidization in Tissues and Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306318. [PMID: 38629780 PMCID: PMC11199982 DOI: 10.1002/advs.202306318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/18/2024] [Indexed: 06/27/2024]
Abstract
Polyploidization and depolyploidization are critical processes in the normal development and tissue homeostasis of diploid organisms. Recent investigations have revealed that polyaneuploid cancer cells (PACCs) exploit this ploidy variation as a survival strategy against anticancer treatment and for the repopulation of tumors. Unscheduled polyploidization and chromosomal instability in PACCs enhance malignancy and treatment resistance. However, their inability to undergo mitosis causes catastrophic cellular death in most PACCs. Adaptive ploid reversal mechanisms, such as multipolar mitosis, centrosome clustering, meiosis-like division, and amitosis, counteract this lethal outcome and drive cancer relapse. The purpose of this work is to focus on PACCs induced by cytotoxic therapy, highlighting the latest discoveries in ploidy dynamics in physiological and pathological contexts. Specifically, by emphasizing the role of "poly-depolyploidization" in tumor progression, the aim is to identify novel therapeutic targets or paradigms for combating diseases associated with aberrant ploidies.
Collapse
Affiliation(s)
- Yucui Zhao
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Sijia He
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Minghui Zhao
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Department of Radiation OncologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Qian Huang
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Shanghai Key Laboratory of Pancreatic DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| |
Collapse
|
6
|
Herriage HC, Huang YT, Calvi BR. The antagonistic relationship between apoptosis and polyploidy in development and cancer. Semin Cell Dev Biol 2024; 156:35-43. [PMID: 37331841 PMCID: PMC10724375 DOI: 10.1016/j.semcdb.2023.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023]
Abstract
One of the important functions of regulated cell death is to prevent cells from inappropriately acquiring extra copies of their genome, a state known as polyploidy. Apoptosis is the primary cell death mechanism that prevents polyploidy, and defects in this apoptotic response can result in polyploid cells whose subsequent error-prone chromosome segregation are a major contributor to genome instability and cancer progression. Conversely, some cells actively repress apoptosis to become polyploid as part of normal development or regeneration. Thus, although apoptosis prevents polyploidy, the polyploid state can actively repress apoptosis. In this review, we discuss progress in understanding the antagonistic relationship between apoptosis and polyploidy in development and cancer. Despite recent advances, a key conclusion is that much remains unknown about the mechanisms that link apoptosis to polyploid cell cycles. We suggest that drawing parallels between the regulation of apoptosis in development and cancer could help to fill this knowledge gap and lead to more effective therapies.
Collapse
Affiliation(s)
- Hunter C Herriage
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Yi-Ting Huang
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
7
|
Garyn CM, Bover O, Murray JW, Jing M, Salas-Briceno K, Ross SR, Snoeck HW. DNA damage primes hematopoietic stem cells for direct megakaryopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.13.540665. [PMID: 37333356 PMCID: PMC10274687 DOI: 10.1101/2023.05.13.540665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Hematopoietic stem cells (HSCs) reside in the bone marrow (BM), can self-renew, and generate all cells of the hematopoietic system. 1 Most hematopoietic lineages arise through successive, increasingly lineage-committed progenitors. In contrast, megakaryocytes (MKs), hyperploid cells that generate platelets essential to hemostasis, can derive rapidly and directly from HSCs. 2 The underlying mechanism is unknown however. Here we show that DNA damage and subsequent arrest in the G2 phase of the cell cycle rapidly induce MK commitment specifically in HSCs, but not in progenitors, through an initially predominantly post-transcriptional mechanism. Cycling HSCs show extensive replication-induced DNA damage associated with uracil misincorporation in vivo and in vitro . Consistent with this notion, thymidine attenuated DNA damage, rescued HSC maintenance and reduced the generation of CD41 + MK-committed HSCs in vitro . Similarly, overexpression of the dUTP-scavenging enzyme, dUTPase, enhanced in vitro maintenance of HSCs. We conclude that a DNA damage response drives direct megakaryopoiesis and that replication stress-induced direct megakaryopoiesis, at least in part caused by uracil misincorporation, is a barrier to HSC maintenance in vitro . DNA damage-induced direct megakaryopoiesis may allow rapid generation of a lineage essential to immediate organismal survival, while simultaneously removing damaged HSCs and potentially avoiding malignant transformation of self-renewing stem cells.
Collapse
|
8
|
Sanz-Gómez N, González-Álvarez M, De Las Rivas J, de Cárcer G. Whole-Genome Doubling as a source of cancer: how, when, where, and why? Front Cell Dev Biol 2023; 11:1209136. [PMID: 37342233 PMCID: PMC10277508 DOI: 10.3389/fcell.2023.1209136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023] Open
Abstract
Chromosome instability is a well-known hallmark of cancer, leading to increased genetic plasticity of tumoral cells, which favors cancer aggressiveness, and poor prognosis. One of the main sources of chromosomal instability are events that lead to a Whole-Genome Duplication (WGD) and the subsequently generated cell polyploidy. In recent years, several studies showed that WGD occurs at the early stages of cell transformation, which allows cells to later become aneuploid, thus leading to cancer progression. On the other hand, other studies convey that polyploidy plays a tumor suppressor role, by inducing cell cycle arrest, cell senescence, apoptosis, and even prompting cell differentiation, depending on the tissue cell type. There is still a gap in understanding how cells that underwent WGD can overcome the deleterious effect on cell fitness and evolve to become tumoral. Some laboratories in the chromosomal instability field recently explored this paradox, finding biomarkers that modulate polyploid cells to become oncogenic. This review brings a historical view of how WGD and polyploidy impact cell fitness and cancer progression, and bring together the last studies that describe the genes helping cells to adapt to polyploidy.
Collapse
Affiliation(s)
- Natalia Sanz-Gómez
- Cell Cycle and Cancer Biomarkers Laboratory, Cancer Biology Department, Instituto de Investigaciones Biomédicas “Alberto Sols“. (IIBM) CSIC-UAM, Madrid, Spain
| | - María González-Álvarez
- Cell Cycle and Cancer Biomarkers Laboratory, Cancer Biology Department, Instituto de Investigaciones Biomédicas “Alberto Sols“. (IIBM) CSIC-UAM, Madrid, Spain
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IBMCC), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), Salamanca, Spain
| | - Guillermo de Cárcer
- Cell Cycle and Cancer Biomarkers Laboratory, Cancer Biology Department, Instituto de Investigaciones Biomédicas “Alberto Sols“. (IIBM) CSIC-UAM, Madrid, Spain
| |
Collapse
|
9
|
Martin JF, D'Avino PP. A theory of rapid evolutionary change explaining the de novo appearance of megakaryocytes and platelets in mammals. J Cell Sci 2022; 135:285954. [PMID: 36515566 PMCID: PMC10112974 DOI: 10.1242/jcs.260286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Platelets are found only in mammals. Uniquely, they have a log Gaussian volume distribution and are produced from megakaryocytes, large cells that have polyploid nuclei. In this Hypothesis, we propose that a possible explanation for the origin of megakaryocytes and platelets is that, ∼220 million years ago, an inheritable change occurred in a mammalian ancestor that caused the haemostatic cell line of the animal to become polyploid. This inheritable change occurred specifically in the genetic programme of the cell lineage from which the haemostatic cell originated and led, because of increase in cell size, to its fragmentation into cytoplasmic particles (platelets) in the pulmonary circulatory system, as found in modern mammals. We hypothesize that these fragments originating from the new large haemostatic polyploid cells proved to be more efficient at stopping bleeding, and, therefore, the progeny of this ancestor prospered through natural selection. We also propose experimental strategies that could provide evidence to support this hypothesis.
Collapse
Affiliation(s)
- John F Martin
- Division of Medicine, University College London, 5 University Street, London WC1E 6JF, UK
| | - Paolo Pier D'Avino
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| |
Collapse
|
10
|
van Rijnberk LM, Barrull-Mascaró R, van der Palen RL, Schild ES, Korswagen HC, Galli M. Endomitosis controls tissue-specific gene expression during development. PLoS Biol 2022; 20:e3001597. [PMID: 35609035 PMCID: PMC9129049 DOI: 10.1371/journal.pbio.3001597] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/09/2022] [Indexed: 11/19/2022] Open
Abstract
Polyploid cells contain more than 2 copies of the genome and are found in many plant and animal tissues. Different types of polyploidy exist, in which the genome is confined to either 1 nucleus (mononucleation) or 2 or more nuclei (multinucleation). Despite the widespread occurrence of polyploidy, the functional significance of different types of polyploidy is largely unknown. Here, we assess the function of multinucleation in Caenorhabditis elegans intestinal cells through specific inhibition of binucleation without altering genome ploidy. Through single-worm RNA sequencing, we find that binucleation is important for tissue-specific gene expression, most prominently for genes that show a rapid up-regulation at the transition from larval development to adulthood. Regulated genes include vitellogenins, which encode yolk proteins that facilitate nutrient transport to the germline. We find that reduced expression of vitellogenins in mononucleated intestinal cells leads to progeny with developmental delays and reduced fitness. Together, our results show that binucleation facilitates rapid up-regulation of intestine-specific gene expression during development, independently of genome ploidy, underscoring the importance of spatial genome organization for polyploid cell function. Why do some cells contain more than one nucleus? By comparing mononucleated and multinucleated polyploid cells in C. elegans, this study shows that having multiple nuclei is important for optimal transcriptional upregulation of developmentally controlled genes.
Collapse
Affiliation(s)
- Lotte M. van Rijnberk
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ramon Barrull-Mascaró
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Reinier L. van der Palen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Erik S. Schild
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hendrik C. Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Matilde Galli
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
11
|
Su CH, Liao WJ, Ke WC, Yang RB, Tarn WY. The Y14-p53 regulatory circuit in megakaryocyte differentiation and thrombocytopenia. iScience 2021; 24:103368. [PMID: 34816104 PMCID: PMC8593568 DOI: 10.1016/j.isci.2021.103368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/27/2021] [Accepted: 10/26/2021] [Indexed: 11/19/2022] Open
Abstract
Thrombocytopenia-absent radius (TAR) syndrome is caused by RBM8A insufficiency. We generated megakaryocyte-specific Rbm8a knockout (Rbm8aKOMK) mice that exhibited marked thrombocytopenia, internal hemorrhage, and splenomegaly, providing evidence that genetic deficiency of Rbm8a causes a disorder of platelet production. Rbm8aKOMK mice accumulated low-ploidy immature megakaryocytes in the bone marrow and exhibited defective platelet activation and aggregation. Accordingly, depletion of Y14 (RBM8A) in human erythroleukemia (HEL) cells compromised phorbol-ester-induced polyploidization. Notably, Y14/RBM8A deficiency induced both p53 and p21 in megakaryocytes and HEL cells. Treatment with a p53 inhibitor restored ex vivo differentiation of Rbm8aKOMK megakaryocytes and unexpectedly activated Y14 expression in HEL cells. Trp53 knockout partially restored megakaryocyte differentiation by reversing cell-cycle arrest and increased platelet counts of Rbm8aKOMK, indicating that excess p53 in part accounts for thrombocytopenia in TAR syndrome. This study provides evidence for the role of the Y14-p53 circuit in platelet production and a potential therapeutic strategy.
Collapse
Affiliation(s)
- Chun-Hao Su
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Section 2, Nangang, Taipei 11529, Taiwan
| | - Wei-Ju Liao
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Section 2, Nangang, Taipei 11529, Taiwan
| | - Wei-Chi Ke
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Section 2, Nangang, Taipei 11529, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Section 2, Nangang, Taipei 11529, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Section 2, Nangang, Taipei 11529, Taiwan
- Corresponding author
| |
Collapse
|
12
|
Bailey EC, Kobielski S, Park J, Losick VP. Polyploidy in Tissue Repair and Regeneration. Cold Spring Harb Perspect Biol 2021; 13:a040881. [PMID: 34187807 PMCID: PMC8485745 DOI: 10.1101/cshperspect.a040881] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Polyploidy is defined as a cell with three or more whole genome sets and enables cell growth across the kingdoms of life. Studies in model organisms have revealed that polyploid cell growth can be required for optimal tissue repair and regeneration. In mammals, polyploid cell growth contributes to repair of many tissues, including the liver, heart, kidney, bladder, and eye, and similar strategies have been identified in Drosophila and zebrafish tissues. This review discusses the heterogeneity and versatility of polyploidy in tissue repair and regeneration. Polyploidy has been shown to restore tissue mass and maintain organ size as well as protect against oncogenic insults and genotoxic stress. Polyploid cells can also serve as a reservoir for new diploid cells in regeneration. The numerous mechanisms to generate polyploid cells provide an unlimited resource for tissues to exploit to undergo repair or regeneration.
Collapse
Affiliation(s)
- Erin C Bailey
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Sara Kobielski
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - John Park
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Vicki P Losick
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| |
Collapse
|
13
|
Lv Z, Xiao L, Tang Y, Chen Y, Chen D. Rb deficiency induces p21cip1 expression and delays retinal degeneration in rd1 mice. Exp Eye Res 2021; 210:108701. [PMID: 34252413 DOI: 10.1016/j.exer.2021.108701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 02/08/2023]
Abstract
Retinitis pigmentosa (RP) is a major cause of inherited blindness, and there is presently no cure for RP. Rd1 mouse is the most commonly used RP animal model. Re-expression of cell cycle proteins in post-mitotic neurons is considered an important mechanism of neurodegenerative diseases, including RP. The retinoblastoma tumor suppressor (Rb) is a major regulator of cell cycle progression, yet its role in rd1 mouse retina and related signaling pathways have never been analyzed. By crossing α-Cre, Rbf/f mice with rd1 mice, p21cip1-/- mice, Cdk1f/f mice and Cdk2f/f mice, we established multiple rd1 mouse models with deletions of Rb gene, Cdkn1a (p21cip1) gene, Cdk1 and Cdk2 gene in the retina. Cdk inhibitor CR8 was injected into the vitreous of rd1 mouse to investigate its effects on photoreceptor survival. Rb gene knockout (KO) induces cell death in excitatory retinal neurons (rods, rod bipolar and ganglions) and ectopic proliferation of retinal cells; but it paradoxically delays the rod death of rd1 mice, which is primarily mediated by the Cdk inhibitor Cdkn1a (p21cip1). Interestingly, p21cip1 protects the ectopic dividing rd1 rod cells by inhibiting Cdk1 and Cdk2. However, inhibiting Cdk1 and Cdk2 in rd1 mice with non-dividing rods only has limited and transient protective effects. Our data suggest that there is no ectopic division of rd1 rod cells, and RbKO induces ectopic division but delays the death of rd1 rod cells. This reveals the important protective role of Rb-p21cip1-Cdk axis in rd1 rod cells. P21cip1 is a potential target for future therapy of RP.
Collapse
Affiliation(s)
- Zhongping Lv
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lirong Xiao
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunjing Tang
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongjiang Chen
- The School of Optometry and Vision Science, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada
| | - Danian Chen
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Nandakumar S, Rozich E, Buttitta L. Cell Cycle Re-entry in the Nervous System: From Polyploidy to Neurodegeneration. Front Cell Dev Biol 2021; 9:698661. [PMID: 34249947 PMCID: PMC8264763 DOI: 10.3389/fcell.2021.698661] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Terminally differentiated cells of the nervous system have long been considered to be in a stable non-cycling state and are often considered to be permanently in G0. Exit from the cell cycle during development is often coincident with the differentiation of neurons, and is critical for neuronal function. But what happens in long lived postmitotic tissues that accumulate cell damage or suffer cell loss during aging? In other contexts, cells that are normally non-dividing or postmitotic can or re-enter the cell cycle and begin replicating their DNA to facilitate cellular growth in response to cell loss. This leads to a state called polyploidy, where cells contain multiple copies of the genome. A growing body of literature from several vertebrate and invertebrate model organisms has shown that polyploidy in the nervous system may be more common than previously appreciated and occurs under normal physiological conditions. Moreover, it has been found that neuronal polyploidization can play a protective role when cells are challenged with DNA damage or oxidative stress. By contrast, work over the last two and a half decades has discovered a link between cell-cycle reentry in neurons and several neurodegenerative conditions. In this context, neuronal cell cycle re-entry is widely considered to be aberrant and deleterious to neuronal health. In this review, we highlight historical and emerging reports of polyploidy in the nervous systems of various vertebrate and invertebrate organisms. We discuss the potential functions of polyploidization in the nervous system, particularly in the context of long-lived cells and age-associated polyploidization. Finally, we attempt to reconcile the seemingly disparate associations of neuronal polyploidy with both neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
| | | | - Laura Buttitta
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
15
|
Zhang J, Qiao Q, Xu H, Zhou R, Liu X. Human cell polyploidization: The good and the evil. Semin Cancer Biol 2021; 81:54-63. [PMID: 33839294 DOI: 10.1016/j.semcancer.2021.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
Therapeutic resistance represents a major cause of death for most lethal cancers. However, the underlying mechanisms of such resistance have remained unclear. The polyploid cells are due to an increase in DNA content, commonly associated with cell enlargement. In human, they play a variety of roles in physiology and pathologic conditions and perform the specialized functions during development, inflammation, and cancer. Recent work shows that cancer cells can be induced into polyploid giant cancer cells (PGCCs) that leads to reprogramming of surviving cancer cells to acquire resistance. In this article, we will review the polyploidy involved in development and inflammation, and the process of PGCCs formation and propagation that benefits to cell survival. We will discuss the potential opportunities in fighting resistant cancers. The increased knowledge of PGCCs will offer a completely new paradigm to explore the therapeutic intervention for lethal cancers.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Qing Qiao
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Hong Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ru Zhou
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xinzhe Liu
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
16
|
Potts KS, Farley A, Dawson CA, Rimes J, Biben C, de Graaf C, Potts MA, Stonehouse OJ, Carmagnac A, Gangatirkar P, Josefsson EC, Anttila C, Amann-Zalcenstein D, Naik S, Alexander WS, Hilton DJ, Hawkins ED, Taoudi S. Membrane budding is a major mechanism of in vivo platelet biogenesis. J Exp Med 2021; 217:151972. [PMID: 32706855 PMCID: PMC7478734 DOI: 10.1084/jem.20191206] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/16/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
How platelets are produced by megakaryocytes in vivo remains controversial despite more than a century of investigation. Megakaryocytes readily produce proplatelet structures in vitro; however, visualization of platelet release from proplatelets in vivo has remained elusive. We show that within the native prenatal and adult environments, the frequency and rate of proplatelet formation is incompatible with the physiological demands of platelet replacement. We resolve this inconsistency by performing in-depth analysis of plasma membrane budding, a cellular process that has previously been dismissed as a source of platelet production. Our studies demonstrate that membrane budding results in the sustained release of platelets directly into the peripheral circulation during both fetal and adult life without induction of cell death or proplatelet formation. In support of this model, we demonstrate that in mice deficient for NF-E2 (the thrombopoietic master regulator), the absence of membrane budding correlates with failure of in vivo platelet production. Accordingly, we propose that membrane budding, rather than proplatelet formation, supplies the majority of the platelet biomass.
Collapse
Affiliation(s)
- Kathryn S Potts
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Alison Farley
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Caleb A Dawson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Joel Rimes
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Christine Biben
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Carolyn de Graaf
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Margaret A Potts
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Olivia J Stonehouse
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Amandine Carmagnac
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Pradnya Gangatirkar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Emma C Josefsson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Casey Anttila
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Daniela Amann-Zalcenstein
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Shalin Naik
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Warren S Alexander
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Douglas J Hilton
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Edwin D Hawkins
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Samir Taoudi
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
17
|
Communal living: the role of polyploidy and syncytia in tissue biology. Chromosome Res 2021; 29:245-260. [PMID: 34075512 PMCID: PMC8169410 DOI: 10.1007/s10577-021-09664-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 01/22/2023]
Abstract
Multicellular organisms are composed of tissues with diverse cell sizes. Whether a tissue primarily consists of numerous, small cells as opposed to fewer, large cells can impact tissue development and function. The addition of nuclear genome copies within a common cytoplasm is a recurring strategy to manipulate cellular size within a tissue. Cells with more than two genomes can exist transiently, such as in developing germlines or embryos, or can be part of mature somatic tissues. Such nuclear collectives span multiple levels of organization, from mononuclear or binuclear polyploid cells to highly multinucleate structures known as syncytia. Here, we review the diversity of polyploid and syncytial tissues found throughout nature. We summarize current literature concerning tissue construction through syncytia and/or polyploidy and speculate why one or both strategies are advantageous.
Collapse
|
18
|
Gemble S, Basto R. CHRONOCRISIS: When Cell Cycle Asynchrony Generates DNA Damage in Polyploid Cells. Bioessays 2020; 42:e2000105. [PMID: 32885500 DOI: 10.1002/bies.202000105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/19/2020] [Indexed: 12/16/2022]
Abstract
Polyploid cells contain multiple copies of all chromosomes. Polyploidization can be developmentally programmed to sustain tissue barrier function or to increase metabolic potential and cell size. Programmed polyploidy is normally associated with terminal differentiation and poor proliferation capacity. Conversely, non-programmed polyploidy can give rise to cells that retain the ability to proliferate. This can fuel rapid genome rearrangements and lead to diseases like cancer. Here, the mechanisms that generate polyploidy are reviewed and the possible challenges upon polyploid cell division are discussed. The discussion is framed around a recent study showing that asynchronous cell cycle progression (an event that is named "chronocrisis") of different nuclei from a polyploid cell can generate DNA damage at mitotic entry. The potential mechanisms explaining how mitosis in non-programmed polyploid cells can generate abnormal karyotypes and genetic instability are highlighted.
Collapse
Affiliation(s)
- Simon Gemble
- Biology of Centrosomes and Genetic Instability Lab, Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, Paris, 75005, France
| | - Renata Basto
- Biology of Centrosomes and Genetic Instability Lab, Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, Paris, 75005, France
| |
Collapse
|
19
|
Sanz-Gómez N, de Pedro I, Ortigosa B, Santamaría D, Malumbres M, de Cárcer G, Gandarillas A. Squamous differentiation requires G2/mitosis slippage to avoid apoptosis. Cell Death Differ 2020; 27:2451-2467. [PMID: 32080348 PMCID: PMC7370216 DOI: 10.1038/s41418-020-0515-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/21/2022] Open
Abstract
The cellular mechanisms controlling cell fate in self-renewal tissues remain unclear. Cell cycle failure often leads to an apoptosis anti-oncogenic response. We have inactivated Cdk1 or Polo-like-1 kinases, essential targets of the mitotic checkpoints, in the epithelia of skin and oral mucosa. Here, we show that inactivation of the mitotic kinases leading to polyploidy in vivo, produces a fully differentiated epithelium. Cells within the basal layer aberrantly differentiate and contain large or various nuclei. Freshly isolated KO cells were also differentiated and polyploid. However, sustained metaphase arrest downstream of the spindle anaphase checkpoint (SAC) due to abrogation of CDC20 (essential cofactor of anaphase-promoting complex), impaired squamous differentiation and resulted in apoptosis. Therefore, upon prolonged arrest keratinocytes need to slip beyond G2 or mitosis in order to initiate differentiation. The results altogether demonstrate that mitotic checkpoints drive squamous cell fate towards differentiation or apoptosis in response to genetic damage.
Collapse
Affiliation(s)
- Natalia Sanz-Gómez
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Isabel de Pedro
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Beatriz Ortigosa
- Cell Cycle & Cancer Biomarkers Group, Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBm) CSIC-UAM, 28029, Madrid, Spain
| | - David Santamaría
- CNIO, Experimental Oncology Group, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
- INSERM U1218, ACTION Laboratory, IECB, University of Bordeaux, Pessac, France
| | - Marcos Malumbres
- CNIO, Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Guillermo de Cárcer
- Cell Cycle & Cancer Biomarkers Group, Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBm) CSIC-UAM, 28029, Madrid, Spain
- CNIO, Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Alberto Gandarillas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain.
- INSERM, Languedoc-Roussillon, 34394, Montpellier, France.
| |
Collapse
|
20
|
Lei XH, Yang YQ, Ma CY, Duan EK. Induction of differentiation of human stem cells ex vivo: Toward large-scale platelet production. World J Stem Cells 2019; 11:666-676. [PMID: 31616542 PMCID: PMC6789181 DOI: 10.4252/wjsc.v11.i9.666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/12/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Platelet transfusion is one of the most reliable strategies to cure patients suffering from thrombocytopenia or platelet dysfunction. With the increasing demand for transfusion, however, there is an undersupply of donors to provide the platelet source. Thus, scientists have sought to design methods for deriving clinical-scale platelets ex vivo. Although there has been considerable success ex vivo in the generation of transformative platelets produced by human stem cells (SCs), the platelet yields achieved using these strategies have not been adequate for clinical application. In this review, we provide an overview of the developmental process of megakaryocytes and the production of platelets in vivo and ex vivo, recapitulate the key advances in the production of SC-derived platelets using several SC sources, and discuss some strategies that apply three-dimensional bioreactor devices and biochemical factors synergistically to improve the generation of large-scale platelets for use in future biomedical and clinical settings.
Collapse
Affiliation(s)
- Xiao-Hua Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi-Qing Yang
- Faculty of Laboratory Medical Science, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Chi-Yuan Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - En-Kui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
21
|
Lei XH, Yang YQ, Ma CY, Duan EK. Induction of differentiation of human stem cellsex vivo: Toward large-scale platelet production. World J Stem Cells 2019. [DOI: dx.doi.org/10.4252/wjsc.v11.i9.666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
22
|
Abstract
Mammal megakaryocytes (MK) undergo polyploidization during their differentiation. This process leads to a marked increase in the MK size and of their cytoplasm. Contrary to division by classical mitosis, ploidization allows an economical manner to produce platelets as they arise from the fragmentation of the MK cytoplasm. The platelet production in vivo correlates to the entire MK cytoplasm mass that depends both upon the number of MKs and their size. Polyploidization occurs by several rounds of DNA replication with at the end of each round an aborted mitosis at late phase of cytokinesis. As there is also a defect in karyokinesis, MKs are giant cells with a single polylobulated nucleus with a 2xN ploidy. However, polyploidization per se does not increase platelet production because it requires a parallel development of MK organelles such as mitochondria, granules and the demarcation membrane system. MK polyploidization is regulated by extrinsic factors, more particularly by thrombopoietin (TPO), which during a platelet stress increases first polyploidization before enhancing the MK number and by transcription factors such as RUNX1, GATA1, and FLI1 that regulate MK differentiation explaining why polyploidization and cytoplasmic maturation are intermingled. MK polyploidization is ontogenically regulated and is markedly altered in malignant myeloid disorders such as acute megakaryoblastic leukemia and myeloproliferative disorders as well as in hereditary thrombocytopenia, more particularly those involving transcription factors or signaling pathways. In addition, MKs arising from progenitors in vitro have a much lower ploidy in vitro than in vivo leading to a low yield of platelet production in vitro. Thus, it is tempting to find approaches to increase MK polyploidization in vitro. However, these approaches require molecules that are able to simultaneously increase MK polyploidization and to induce terminal differentiation. Here, we will focus on the regulation by extrinsic and intrinsic factors of MK polyploidization during development and pathological conditions.
Collapse
Affiliation(s)
- William Vainchenker
- UMR 1170, Institut National de la Santé et de la Recherche Médicale, Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy Cancer Campus, Equipe Labellisée Ligue Nationale Contre le Cancer , Villejuif, France
| | - Hana Raslova
- UMR 1170, Institut National de la Santé et de la Recherche Médicale, Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy Cancer Campus, Equipe Labellisée Ligue Nationale Contre le Cancer , Villejuif, France
| |
Collapse
|
23
|
Zhang Y, Li Z, Hao Q, Tan W, Sun J, Li J, Chen CW, Li Z, Meng Y, Zhou Y, Han Z, Pei H, DePamphilis ML, Zhu W. The Cdk2-c-Myc-miR-571 Axis Regulates DNA Replication and Genomic Stability by Targeting Geminin. Cancer Res 2019; 79:4896-4910. [PMID: 31431461 DOI: 10.1158/0008-5472.can-19-0020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/02/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
Abstract
DNA rereplication leads to genomic instability and has been implicated in the pathology of a variety of human cancers. Eukaryotic DNA replication is tightly controlled to ensure it occurs only once during each cell cycle. Geminin is a critical component of this control, it prevents DNA rereplication from occurring during S, G2, and early M phases by preventing MCM helicases from forming prereplication complexes. Geminin is targeted for degradation by the anaphase-promoting complex (APC/C) from anaphase through G1-phase, however, accumulating evidence indicates that Geminin is downregulated in late S-phase due to an unknown mechanism. Here, we used a high-throughput screen to identify miRNAs that can induce excess DNA replication and found that miR-571 could reduce the protein level of Geminin in late S-phase independent of the APC/C. Furthermore, miR-571 regulated efficient DNA replication and S-phase cell-cycle progression. Strikingly, c-Myc suppressed miR-571 expression by binding directly to the miR-571 promoter. At the beginning of S-phase, Cdk2 phosphorylated c-Myc at Serine 62, promoting its association with the miR-571 promoter region. Collectively, we identify miR-571 as the first miRNA that prevents aberrant DNA replication and the Cdk2-c-Myc-miR-571 axis as a new pathway for regulating DNA replication, cell cycle, and genomic stability in cancer cells. SIGNIFICANCE: These findings identify a novel regulatory mechanism that is critical for maintaining genome integrity by regulating DNA replication and cell-cycle progression.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Zhuqing Li
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Qiang Hao
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Wei Tan
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Jing Sun
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Jing Li
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Chi-Wei Chen
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Zongzhu Li
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Yunxiao Meng
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Yuan Zhou
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Zhiyong Han
- Department of Medical Sciences, Seton Hall-Hackensack Meridian School of Medicine, South Orange, New Jersey
| | - Huadong Pei
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Melvin L DePamphilis
- National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Wenge Zhu
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C.
| |
Collapse
|
24
|
Noetzli LJ, French SL, Machlus KR. New Insights Into the Differentiation of Megakaryocytes From Hematopoietic Progenitors. Arterioscler Thromb Vasc Biol 2019; 39:1288-1300. [PMID: 31043076 PMCID: PMC6594866 DOI: 10.1161/atvbaha.119.312129] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/22/2019] [Indexed: 02/07/2023]
Abstract
Megakaryocytes are hematopoietic cells, which are responsible for the production of blood platelets. The traditional view of megakaryopoiesis describes the cellular journey from hematopoietic stem cells, through a hierarchical series of progenitor cells, ultimately to a mature megakaryocyte. Once mature, the megakaryocyte then undergoes a terminal maturation process involving multiple rounds of endomitosis and cytoplasmic restructuring to allow platelet formation. However, recent studies have begun to redefine this hierarchy and shed new light on alternative routes by which hematopoietic stem cells are differentiated into megakaryocytes. In particular, the origin of megakaryocytes, including the existence and hierarchy of megakaryocyte progenitors, has been redefined, as new studies are suggesting that hematopoietic stem cells originate as megakaryocyte-primed and can bypass traditional lineage checkpoints. Overall, it is becoming evident that megakaryopoiesis does not only occur as a stepwise process, but is dynamic and adaptive to biological needs. In this review, we will reexamine the canonical dogmas of megakaryopoiesis and provide an updated framework for interpreting the roles of traditional pathways in the context of new megakaryocyte biology. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Leila J Noetzli
- Division of Hematology, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Shauna L French
- Division of Hematology, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Kellie R Machlus
- Division of Hematology, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
25
|
Abstract
Polyploid cells contain more than two homologous sets of chromosomes. The original observations of liver polyploidy date back to the 1940s, but functional roles for polyploid cells are still unclear. Liver polyploidy may influence regeneration, stress response, and cancer, although little evidence has established direct causal links between polyploidy and these biological phenotypes. In this review, we will introduce broad concepts about polyploidy including its distribution in nature and how polyploids form in normal and pathological situations. Then we will examine recent discoveries that have begun to clarify functionality and disease relevance of liver polyploidy. Finally, we will discuss implications and future directions of research about polyploidy in the liver.
Collapse
Affiliation(s)
- Shuyuan Zhang
- a Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine , University of Texas Southwestern Medical Center , Dallas , USA
| | - Yu-Hsuan Lin
- a Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine , University of Texas Southwestern Medical Center , Dallas , USA
| | - Branden Tarlow
- b Department of Internal Medicine , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Hao Zhu
- a Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine , University of Texas Southwestern Medical Center , Dallas , USA
| |
Collapse
|
26
|
p38γ is essential for cell cycle progression and liver tumorigenesis. Nature 2019; 568:557-560. [PMID: 30971822 DOI: 10.1038/s41586-019-1112-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/07/2019] [Indexed: 11/08/2022]
Abstract
The cell cycle is a tightly regulated process that is controlled by the conserved cyclin-dependent kinase (CDK)-cyclin protein complex1. However, control of the G0-to-G1 transition is not completely understood. Here we demonstrate that p38 MAPK gamma (p38γ) acts as a CDK-like kinase and thus cooperates with CDKs, regulating entry into the cell cycle. p38γ shares high sequence homology, inhibition sensitivity and substrate specificity with CDK family members. In mouse hepatocytes, p38γ induces proliferation after partial hepatectomy by promoting the phosphorylation of retinoblastoma tumour suppressor protein at known CDK target residues. Lack of p38γ or treatment with the p38γ inhibitor pirfenidone protects against the chemically induced formation of liver tumours. Furthermore, biopsies of human hepatocellular carcinoma show high expression of p38γ, suggesting that p38γ could be a therapeutic target in the treatment of this disease.
Collapse
|
27
|
Gjelsvik KJ, Besen-McNally R, Losick VP. Solving the Polyploid Mystery in Health and Disease. Trends Genet 2019; 35:6-14. [PMID: 30470486 PMCID: PMC6457904 DOI: 10.1016/j.tig.2018.10.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/12/2018] [Accepted: 10/22/2018] [Indexed: 01/12/2023]
Abstract
Polyploidy (the more than doubling of a cell's genome) frequently arises during organogenesis, tissue repair, and age-associated diseases. Despite its prevalence, major gaps exist in how polyploid cells emerge and affect tissue function. Studies have begun to elucidate the signals required for polyploid cell growth as well as the advantages and disadvantages of polyploidy in health and disease. This review highlights the recent advances on the role and regulation of polyploidy in Drosophila and vertebrate models. The newly discovered versatility of polyploid cells has the potential to provide alternative strategies to promote tissue growth and repair, while limiting disease and dysfunction.
Collapse
Affiliation(s)
- K J Gjelsvik
- MDI Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609, USA
| | - R Besen-McNally
- MDI Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609, USA
| | - V P Losick
- MDI Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609, USA.
| |
Collapse
|
28
|
Ortiz-Rivero S, Baquero C, Hernández-Cano L, Roldán-Etcheverry JJ, Gutiérrez-Herrero S, Fernández-Infante C, Martín-Granado V, Anguita E, de Pereda JM, Porras A, Guerrero C. C3G, through its GEF activity, induces megakaryocytic differentiation and proplatelet formation. Cell Commun Signal 2018; 16:101. [PMID: 30567575 PMCID: PMC6299959 DOI: 10.1186/s12964-018-0311-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/03/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Megakaryopoiesis allows platelet formation, which is necessary for coagulation, also playing an important role in different pathologies. However, this process remains to be fully characterized. C3G, an activator of Rap1 GTPases, is involved in platelet activation and regulates several differentiation processes. METHODS We evaluated C3G function in megakaryopoiesis using transgenic mouse models where C3G and C3GΔCat (mutant lacking the GEF domain) transgenes are expressed exclusively in megakaryocytes and platelets. In addition, we used different clones of K562, HEL and DAMI cell lines with overexpression or silencing of C3G or GATA-1. RESULTS We found that C3G participates in the differentiation of immature hematopoietic cells to megakaryocytes. Accordingly, bone marrow cells from transgenic C3G, but not those from transgenic C3GΔCat mice, showed increased expression of the differentiation markers CD41 and CD61, upon thrombopoietin treatment. Furthermore, C3G overexpression increased the number of CD41+ megakaryocytes with high DNA content. These results are supported by data obtained in the different models of megakaryocytic cell lines. In addition, it was uncovered GATA-1 as a positive regulator of C3G expression. Moreover, C3G transgenic megakaryocytes from fresh bone marrow explants showed increased migration from the osteoblastic to the vascular niche and an enhanced ability to form proplatelets. Although the transgenic expression of C3G in platelets did not alter basal platelet counts, it did increase slightly those induced by TPO injection in vivo. Moreover, platelet C3G induced adipogenesis in the bone marrow under pathological conditions. CONCLUSIONS All these data indicate that C3G plays a significant role in different steps of megakaryopoiesis, acting through a mechanism dependent on its GEF activity.
Collapse
Affiliation(s)
- Sara Ortiz-Rivero
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), Universidad de Salamanca-CSIC, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Cristina Baquero
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Luis Hernández-Cano
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), Universidad de Salamanca-CSIC, Salamanca, Spain
| | - Juan José Roldán-Etcheverry
- Servicio de Hematología y Hemoterapia, Hospital Clínico San Carlos, IdISSC, Departamento de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Sara Gutiérrez-Herrero
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), Universidad de Salamanca-CSIC, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Cristina Fernández-Infante
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), Universidad de Salamanca-CSIC, Salamanca, Spain
| | - Víctor Martín-Granado
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), Universidad de Salamanca-CSIC, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Eduardo Anguita
- Servicio de Hematología y Hemoterapia, Hospital Clínico San Carlos, IdISSC, Departamento de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - José María de Pereda
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), Universidad de Salamanca-CSIC, Salamanca, Spain
| | - Almudena Porras
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| | - Carmen Guerrero
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), Universidad de Salamanca-CSIC, Salamanca, Spain. .,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain. .,Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain. .,Centro de Investigación del Cáncer, Campus Unamuno s/n, Salamanca, Spain.
| |
Collapse
|
29
|
Hurtado B, Trakala M, Ximénez-Embún P, El Bakkali A, Partida D, Sanz-Castillo B, Álvarez-Fernández M, Maroto M, Sánchez-Martínez R, Martínez L, Muñoz J, García de Frutos P, Malumbres M. Thrombocytopenia-associated mutations in Ser/Thr kinase MASTL deregulate actin cytoskeletal dynamics in platelets. J Clin Invest 2018; 128:5351-5367. [PMID: 30252678 DOI: 10.1172/jci121876] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/18/2018] [Indexed: 12/18/2022] Open
Abstract
MASTL, a Ser/Thr kinase that inhibits PP2A-B55 complexes during mitosis, is mutated in autosomal dominant thrombocytopenia. However, the connections between the cell-cycle machinery and this human disease remain unexplored. We report here that, whereas Mastl ablation in megakaryocytes prevented proper maturation of these cells, mice carrying the thrombocytopenia-associated mutation developed thrombocytopenia as a consequence of aberrant activation and survival of platelets. Activation of mutant platelets was characterized by hyperstabilized pseudopods mimicking the effect of PP2A inhibition and actin polymerization defects. These aberrations were accompanied by abnormal hyperphosphorylation of multiple components of the actin cytoskeleton and were rescued both in vitro and in vivo by inhibiting upstream kinases such as PKA, PKC, or AMPK. These data reveal an unexpected role of Mastl in actin cytoskeletal dynamics in postmitotic cells and suggest that the thrombocytopenia-associated mutation in MASTL is a pathogenic dominant mutation that mimics decreased PP2A activity resulting in altered phosphorylation of cytoskeletal regulatory pathways.
Collapse
Affiliation(s)
- Begoña Hurtado
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas- Institut d'Investigacions Biomèdiques August Pi i Sunyer- (IIBB-CSIC-IDIBAPS), Barcelona, Spain
| | - Marianna Trakala
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Pilar Ximénez-Embún
- ProteoRed - Instituto de Salud Carlos III (ISCIII) and Proteomics Unit, CNIO, Madrid, Spain
| | - Aicha El Bakkali
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - David Partida
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Belén Sanz-Castillo
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - María Maroto
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ruth Sánchez-Martínez
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Javier Muñoz
- ProteoRed - Instituto de Salud Carlos III (ISCIII) and Proteomics Unit, CNIO, Madrid, Spain
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas- Institut d'Investigacions Biomèdiques August Pi i Sunyer- (IIBB-CSIC-IDIBAPS), Barcelona, Spain
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
30
|
Zhang S, Zhu H. Cytokinesis and the Hippo Pathway: New Molecular Links Between Intimate Partners. Gastroenterology 2018; 155:976-978. [PMID: 30201365 DOI: 10.1053/j.gastro.2018.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Shuyuan Zhang
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
31
|
Abstract
Polyploid cells, which contain multiple copies of the typically diploid genome, are widespread in plants and animals. Polyploidization can be developmentally programmed or stress induced, and arises from either cell-cell fusion or a process known as endoreplication, in which cells replicate their DNA but either fail to complete cytokinesis or to progress through M phase entirely. Polyploidization offers cells several potential fitness benefits, including the ability to increase cell size and biomass production without disrupting cell and tissue structure, and allowing improved cell longevity through higher tolerance to genomic stress and apoptotic signals. Accordingly, recent studies have uncovered crucial roles for polyploidization in compensatory cell growth during tissue regeneration in the heart, liver, epidermis and intestine. Here, we review current knowledge of the molecular pathways that generate polyploidy and discuss how polyploidization is used in tissue repair and regeneration.
Collapse
Affiliation(s)
| | - Bruce A Edgar
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| |
Collapse
|
32
|
CDK1 inhibition facilitates formation of syncytiotrophoblasts and expression of human Chorionic Gonadotropin. Placenta 2018; 66:57-64. [PMID: 29884303 DOI: 10.1016/j.placenta.2018.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/05/2018] [Accepted: 05/09/2018] [Indexed: 11/22/2022]
Abstract
AIMS The human placental syncytiotrophoblast (STB) cells play essential roles in embryo implantation and nutrient exchange between the mother and the fetus. STBs are polyploid which are formed by fusion of diploid cytotrophoblast (CTB) cells. Abnormality in STBs formation can result in pregnancy-related disorders. While a number of genes have been associated with CTB fusion the initial events that trigger cell fusion are not well understood. Primary objective of this study was to enhance our understanding about the molecular mechanism of placental cell fusion. METHODS FACS and microscopic analysis was used to optimize Forskolin-induced fusion of BeWo cells (surrogate of CTBs) and subsequently, changes in the expression of different cell cycle regulator genes were analyzed through Western blotting and qPCR. Immunohistochemistry was performed on the first trimester placental tissue sections to validate the results in the context of placental tissue. Effect of Cyclin Dependent Kinase 1 (CDK1) inhibitor, RO3306, on BeWo cell fusion was studied by microscopy and FACS, and by monitoring the expression of human Chorionic Gonadotropin (hCG) by Western blotting and qPCR. RESULTS The data showed that the placental cell fusion was associated with down regulation of CDK1 and its associated cyclin B, and significant decrease in DNA replication. Moreover, inhibition of CDK1 by an exogenous inhibitor induced placental cell fusion and expression of hCG. CONCLUSION Here, we report that the placental cell fusion can be induced by inhibiting CDK1. This study has a high therapeutic significance to manage pregnancy related abnormalities.
Collapse
|
33
|
Von Stetina JR, Frawley LE, Unhavaithaya Y, Orr-Weaver TL. Variant cell cycles regulated by Notch signaling control cell size and ensure a functional blood-brain barrier. Development 2018; 145:145/3/dev157115. [PMID: 29440220 PMCID: PMC5818001 DOI: 10.1242/dev.157115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/09/2018] [Indexed: 12/31/2022]
Abstract
Regulation of cell size is crucial in development. In plants and animals two cell cycle variants are employed to generate large cells by increased ploidy: the endocycle and endomitosis. The rationale behind the choice of which of these cycles is implemented is unknown. We show that in the Drosophila nervous system the subperineurial glia (SPG) are unique in using both the endocycle and endomitosis to grow. In the brain, the majority of SPG initially endocycle, then switch to endomitosis during larval development. The Notch signaling pathway and the String Cdc25 phosphatase are crucial for the endocycle versus endomitosis choice, providing the means experimentally to change cells from one to the other. This revealed fundamental insights into the control of cell size and the properties of endomitotic cells. Endomitotic cells attain a higher ploidy and larger size than endocycling cells, and endomitotic SPG are necessary for the blood-brain barrier. Decreased Notch signaling promotes endomitosis even in the ventral nerve cord SPG that normally are mononucleate, but not in the endocycling salivary gland cells, revealing tissue-specific cell cycle responses. Highlighted Article: In Drosophila brain lobes, Notch and the mitosis-activating phosphatase String regulate the switch of subperineurial glia from endocycle to endomitosis during larval development, with endomitotic cells attaining increased ploidy and size.
Collapse
Affiliation(s)
| | - Laura E Frawley
- Whitehead Institute, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | - Terry L Orr-Weaver
- Whitehead Institute, Cambridge, MA 02142, USA .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
34
|
Mammalian endoreplication emerges to reveal a potential developmental timer. Cell Death Differ 2018; 25:471-476. [PMID: 29352263 PMCID: PMC5864232 DOI: 10.1038/s41418-017-0040-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 01/27/2023] Open
Abstract
Among the most intriguing and relevant questions in physiology is how developing tissues correctly coordinate proliferation with differentiation. Endoreplication, in a broad sense, is a consequence of a cell division block in the presence of an active cell cycle, and it typically occurs as cells differentiate terminally to fulfill a specialised function. Until recently, endoreplication was thought to be a rare variation of the cell cycle in mammals, more common in invertebrates and plants. However, in the last years, endoreplication has been uncovered in various tissues in mammalian organisms, including human. A recent report showing that cells in the mammary gland become binucleate at lactation sheds new insight into the importance of mammalian polyploidisation. We here propose that endoreplication is a widespread phenomenon in mammalian developing tissues that results from an automatic, robust and simple self-limiting mechanism coordinating cell multiplication with differentiation. This mechanism might act as a developmental timer. The model has implications for homeostasis control and carcinogenesis.
Collapse
|
35
|
Vassilev A, Lee CY, Vassilev B, Zhu W, Ormanoglu P, Martin SE, DePamphilis ML. Identification of genes that are essential to restrict genome duplication to once per cell division. Oncotarget 2018; 7:34956-76. [PMID: 27144335 PMCID: PMC5085202 DOI: 10.18632/oncotarget.9008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/07/2016] [Indexed: 12/02/2022] Open
Abstract
Nuclear genome duplication is normally restricted to once per cell division, but aberrant events that allow excess DNA replication (EDR) promote genomic instability and aneuploidy, both of which are characteristics of cancer development. Here we provide the first comprehensive identification of genes that are essential to restrict genome duplication to once per cell division. An siRNA library of 21,584 human genes was screened for those that prevent EDR in cancer cells with undetectable chromosomal instability. Candidates were validated by testing multiple siRNAs and chemical inhibitors on both TP53+ and TP53- cells to reveal the relevance of this ubiquitous tumor suppressor to preventing EDR, and in the presence of an apoptosis inhibitor to reveal the full extent of EDR. The results revealed 42 genes that prevented either DNA re-replication or unscheduled endoreplication. All of them participate in one or more of eight cell cycle events. Seventeen of them have not been identified previously in this capacity. Remarkably, 14 of the 42 genes have been shown to prevent aneuploidy in mice. Moreover, suppressing a gene that prevents EDR increased the ability of the chemotherapeutic drug Paclitaxel to induce EDR, suggesting new opportunities for synthetic lethalities in the treatment of human cancers.
Collapse
Affiliation(s)
- Alex Vassilev
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2753, USA
| | - Chrissie Y Lee
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2753, USA.,Current address: NantBioscience, Culver City, CA 90232, USA
| | - Boris Vassilev
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2753, USA
| | - Wenge Zhu
- Department of Biochemistry and Molecular Biology, George Washington University, Washington DC 20037, USA
| | - Pinar Ormanoglu
- National Center of Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Scott E Martin
- National Center of Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA.,Current Address: Genentech, Inc., South San Francisco, CA 94080, USA
| | - Melvin L DePamphilis
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2753, USA
| |
Collapse
|
36
|
Megakaryocyte and polyploidization. Exp Hematol 2018; 57:1-13. [DOI: 10.1016/j.exphem.2017.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
|
37
|
Links between DNA Replication, Stem Cells and Cancer. Genes (Basel) 2017; 8:genes8020045. [PMID: 28125050 PMCID: PMC5333035 DOI: 10.3390/genes8020045] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/02/2017] [Accepted: 01/12/2017] [Indexed: 12/31/2022] Open
Abstract
Cancers can be categorized into two groups: those whose frequency increases with age, and those resulting from errors during mammalian development. The first group is linked to DNA replication through the accumulation of genetic mutations that occur during proliferation of developmentally acquired stem cells that give rise to and maintain tissues and organs. These mutations, which result from DNA replication errors as well as environmental insults, fall into two categories; cancer driver mutations that initiate carcinogenesis and genome destabilizing mutations that promote aneuploidy through excess genome duplication and chromatid missegregation. Increased genome instability results in accelerated clonal evolution leading to the appearance of more aggressive clones with increased drug resistance. The second group of cancers, termed germ cell neoplasia, results from the mislocation of pluripotent stem cells during early development. During normal development, pluripotent stem cells that originate in early embryos give rise to all of the cell lineages in the embryo and adult, but when they mislocate to ectopic sites, they produce tumors. Remarkably, pluripotent stem cells, like many cancer cells, depend on the Geminin protein to prevent excess DNA replication from triggering DNA damage-dependent apoptosis. This link between the control of DNA replication during early development and germ cell neoplasia reveals Geminin as a potential chemotherapeutic target in the eradication of cancer progenitor cells.
Collapse
|
38
|
Malara A, Fresia C, Di Buduo CA, Soprano PM, Moccia F, Balduini C, Zocchi E, De Flora A, Balduini A. The Plant Hormone Abscisic Acid Is a Prosurvival Factor in Human and Murine Megakaryocytes. J Biol Chem 2017; 292:3239-3251. [PMID: 28049729 DOI: 10.1074/jbc.m116.751693] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/23/2016] [Indexed: 11/06/2022] Open
Abstract
Abscisic acid (ABA) is a phytohormone involved in pivotal physiological functions in higher plants. Recently, ABA has been proven to be also secreted and active in mammals, where it stimulates the activity of innate immune cells, mesenchymal and hematopoietic stem cells, and insulin-releasing pancreatic β cells through a signaling pathway involving the second messenger cyclic ADP-ribose (cADPR). In addition to behaving like an animal hormone, ABA also holds promise as a nutraceutical plant-derived compound in humans. Many biological functions of ABA in mammals are mediated by its binding to the LANCL-2 receptor protein. A putative binding of ABA to GRP78, a key regulator of endoplasmic reticulum stress, has also been proposed. Here we investigated the role of exogenous ABA in modulating thrombopoiesis, the process of platelet generation. Our results demonstrate that expression of both LANCL-2 and GRP78 is up-regulated during hematopoietic stem cell differentiation into mature megakaryocytes (Mks). Functional ABA receptors exist in mature Mks because ABA induces an intracellular Ca2+ increase ([Ca2+] i ) through PKA activation and subsequent cADPR generation. In vitro exposure of human or murine hematopoietic progenitor cells to 10 μm ABA does not increase recombinant thrombopoietin (rTpo)-dependent Mk differentiation or platelet release. However, under conditions of cell stress induced by rTpo and serum deprivation, ABA stimulates, in a PKA- and cADPR-dependent fashion, the mitogen-activated kinase ERK 1/2, resulting in the modulation of lymphoma 2 (Bcl-2) family members, increased Mk survival, and higher rates of platelet production. In conclusion, we demonstrate that ABA is a prosurvival factor for Mks in a Tpo-independent manner.
Collapse
Affiliation(s)
- Alessandro Malara
- Departments of Molecular Medicine, Laboratories of Biotechnology, IRCCS San Matteo Foundation
| | - Chiara Fresia
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Genova 16132, Italy
| | | | - Paolo Maria Soprano
- Departments of Molecular Medicine, Laboratories of Biotechnology, IRCCS San Matteo Foundation
| | - Francesco Moccia
- Biology and Biotechnology, University of Pavia, Pavia 27100, Italy
| | - Cesare Balduini
- Biology and Biotechnology, University of Pavia, Pavia 27100, Italy
| | - Elena Zocchi
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Genova 16132, Italy
| | - Antonio De Flora
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Genova 16132, Italy
| | - Alessandra Balduini
- Departments of Molecular Medicine, Laboratories of Biotechnology, IRCCS San Matteo Foundation; Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155.
| |
Collapse
|
39
|
Chen S, Stout JR, Dharmaiah S, Yde S, Calvi BR, Walczak CE. Transient endoreplication down-regulates the kinesin-14 HSET and contributes to genomic instability. Mol Biol Cell 2016; 27:2911-23. [PMID: 27489338 PMCID: PMC5042578 DOI: 10.1091/mbc.e16-03-0159] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 12/28/2022] Open
Abstract
Polyploid cancer cells exhibit chromosomal instability (CIN), which is associated with tumorigenesis and therapy resistance. The mechanisms that induce polyploidy and how these mechanisms contribute to CIN are not fully understood. Here we evaluate CIN in human cells that become polyploid through an experimentally induced endoreplication cycle. When these induced endoreplicating cells (iECs) returned to mitosis, it resulted in aneuploidy in daughter cells. This aneuploidy resulted from multipolar divisions, chromosome missegregation, and failure in cytokinesis. The iECs went through several rounds of division, ultimately spawning proliferative cells of reduced ploidy. iECs have reduced levels of the kinesin-14 HSET, which likely accounts for the multipolar divisions, and overexpression of HSET reduced spindle multipolarity. However, HSET overexpression had only mild effects on CIN, suggesting that additional defects must contribute to genomic instability in dividing iECs. Overall our results suggest that transient endoreplication cycles generate a diverse population of proliferative aneuploid cells that have the potential to contribute to tumor heterogeneity.
Collapse
Affiliation(s)
- Shengyao Chen
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Jane R Stout
- Medical Sciences Program, Indiana University, Bloomington, IN 47405
| | | | - Sarah Yde
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Claire E Walczak
- Medical Sciences Program, Indiana University, Bloomington, IN 47405
| |
Collapse
|
40
|
Importance of environmental stiffness for megakaryocyte differentiation and proplatelet formation. Blood 2016; 128:2022-2032. [PMID: 27503502 DOI: 10.1182/blood-2016-02-699959] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/20/2016] [Indexed: 12/31/2022] Open
Abstract
Megakaryocyte (MK) differentiation occurs within the bone marrow (BM), a complex 3-dimensional (3D) environment of low stiffness exerting local external constraints. To evaluate the influence of the 3D mechanical constraints that MKs may encounter in vivo, we differentiated mouse BM progenitors in methylcellulose (MC) hydrogels tuned to mimic BM stiffness. We found that MKs grown in a medium of 30- to 60-Pa stiffness more closely resembled those in the BM in terms of demarcation membrane system (DMS) morphological aspect and exhibited higher ploidy levels, as compared with MKs in liquid culture. Following resuspension in a liquid medium, MC-grown MKs displayed twice as much proplatelet formation as cells grown in liquid culture. Thus, the MC gel, by mimicking external constraints, appeared to positively influence MK differentiation. To determine whether MKs adapt to extracellular stiffness through mechanotransduction involving actomyosin-based modulation of the intracellular tension, myosin-deficient (Myh9-/-) progenitors were grown in MC gels. Absence of myosin resulted in abnormal cell deformation and strongly decreased proplatelet formation, similarly to features observed for Myh9-/- MKs differentiated in situ but not in vitro. Moreover, megakaryoblastic leukemia 1 (MKL1), a well-known actor in mechanotransduction, was found to be preferentially relocated within the nucleus of MC-differentiated MKs, whereas its inhibition prevented MC-mediated increased proplatelet formation. Altogether, these data show that a 3D medium mimicking BM stiffness contributes, through the myosin IIA and MKL1 pathways, to a more favorable in vitro environment for MK differentiation, which ultimately translates into increased proplatelet production.
Collapse
|
41
|
Aiello NM, Stanger BZ. Echoes of the embryo: using the developmental biology toolkit to study cancer. Dis Model Mech 2016; 9:105-14. [PMID: 26839398 PMCID: PMC4770149 DOI: 10.1242/dmm.023184] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The hallmark of embryonic development is regulation - the tendency for cells to find their way into organized and 'well behaved' structures - whereas cancer is characterized by dysregulation and disorder. At face value, cancer biology and developmental biology would thus seem to have little to do with each other. But if one looks beneath the surface, embryos and cancers share a number of cellular and molecular features. Embryos arise from a single cell and undergo rapid growth involving cell migration and cell-cell interactions: features that are also seen in the context of cancer. Consequently, many of the experimental tools that have been used to study embryogenesis for over a century are well-suited to studying cancer. This article will review the similarities between embryogenesis and cancer progression and discuss how some of the concepts and techniques used to understand embryos are now being adapted to provide insight into tumorigenesis, from the origins of cancer cells to metastasis.
Collapse
Affiliation(s)
- Nicole M Aiello
- Departments of Medicine and Cell and Developmental Biology, Abramson Family Cancer Research Institute, and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Ben Z Stanger
- Departments of Medicine and Cell and Developmental Biology, Abramson Family Cancer Research Institute, and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
42
|
Abstract
The mechanism that duplicates the nuclear genome during the trillions of cell divisions required to develop from zygote to adult is the same throughout the eukarya, but the mechanisms that determine where, when and how much nuclear genome duplication occur regulate development and differ among the eukarya. They allow organisms to change the rate of cell proliferation during development, to activate zygotic gene expression independently of DNA replication, and to restrict nuclear DNA replication to once per cell division. They allow specialized cells to exit their mitotic cell cycle and differentiate into polyploid cells, and in some cases, to amplify the number of copies of specific genes. It is genome duplication that drives evolution, by virtue of the errors that inevitably occur when the same process is repeated trillions of times. It is, unfortunately, the same errors that produce age-related genetic disorders such as cancer.
Collapse
Affiliation(s)
- Melvin L DePamphilis
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
43
|
|
44
|
Trakala M, Partida D, Salazar-Roa M, Maroto M, Wachowicz P, de Cárcer G, Malumbres M. Activation of the endomitotic spindle assembly checkpoint and thrombocytopenia in Plk1-deficient mice. Blood 2015; 126:1707-14. [PMID: 26185128 DOI: 10.1182/blood-2015-03-634402] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/09/2015] [Indexed: 12/12/2022] Open
Abstract
Polyploidization in megakaryocytes is achieved by endomitosis, a specialized cell cycle in which DNA replication is followed by aberrant mitosis. Typical mitotic regulators such as Aurora kinases or Cdk1 are dispensable for megakaryocyte maturation, and inhibition of mitotic kinases may in fact promote megakaryocyte maturation. However, we show here that Polo-like kinase 1 (Plk1) is required for endomitosis, and ablation of the Plk1 gene in megakaryocytes results in defective polyploidization accompanied by mitotic arrest and cell death. Lack of Plk1 results in defective centrosome maturation and aberrant spindle pole formation, thus impairing the formation of multiple poles typically found in megakaryocytes. In these conditions, megakaryocytes arrest for a long time in mitosis and frequently die. Mitotic arrest in wild-type megakaryocytes treated with Plk1 inhibitors or Plk1-null cells is triggered by the spindle assembly checkpoint (SAC), and can be rescued in the presence of SAC inhibitors. These data suggest that, despite the dispensability of proper chromosome segregation in megakaryocytes, an endomitotic SAC is activated in these cells upon Plk1 inhibition. SAC activation results in defective maturation of megakaryocytes and cell death, thus raising a note of caution in the use of Plk1 inhibitors in therapeutic strategies based on polyploidization regulators.
Collapse
Affiliation(s)
- Marianna Trakala
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - David Partida
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - María Salazar-Roa
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - María Maroto
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Paulina Wachowicz
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Guillermo de Cárcer
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Marcos Malumbres
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| |
Collapse
|
45
|
Abstract
Polyploidy is defined as an increase in genome DNA content. Throughout the plant and animal kingdoms specific cell types become polyploid as part of their differentiation programs. When this occurs in subsets of tissues within an organism it is termed somatic polyploidy, because it is distinct from the increase in ploidy that is inherited through the germline and present in every cell type of the organism. Germline polyploidy is common in plants and occurs in some animals, such as amphibians, but will not be discussed further here. Somatic polyploid cells can be mononucleate or multinucleate, and the replicated sister chromatids can remain attached and aligned, producing polytene chromosomes, or they can be dispersed (Figure 1). In this Primer, we focus on why somatic polyploidy occurs and how cells become polyploid — the first of these issues being more speculative, given the status of the field.
Collapse
|
46
|
Orr-Weaver TL. When bigger is better: the role of polyploidy in organogenesis. Trends Genet 2015; 31:307-15. [PMID: 25921783 DOI: 10.1016/j.tig.2015.03.011] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/29/2015] [Accepted: 03/30/2015] [Indexed: 12/28/2022]
Abstract
Defining how organ size is regulated, a process controlled not only by the number of cells but also by the size of the cells, is a frontier in developmental biology. Large cells are produced by increasing DNA content or ploidy, a developmental strategy employed throughout the plant and animal kingdoms. The widespread use of polyploidy during cell differentiation makes it important to define how this hypertrophy contributes to organogenesis. I discuss here examples from a variety of animals and plants in which polyploidy controls organ size, the size and function of specific tissues within an organ, or the differentiated properties of cells. In addition, I highlight how polyploidy functions in wound healing and tissue regeneration.
Collapse
Affiliation(s)
- Terry L Orr-Weaver
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|