1
|
Matakatsu H, Fehon RG. Dachsous and Fat coordinately repress the Dachs-Dlish-Approximated complex to control growth. J Cell Biol 2024; 223:e202406119. [PMID: 39373700 PMCID: PMC11461286 DOI: 10.1083/jcb.202406119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024] Open
Abstract
Two protocadherins, Dachsous and Fat, regulate organ growth in Drosophila via the Hippo pathway. Dachsous and Fat bind heterotypically to regulate the abundance and subcellular localization of a "core complex" consisting of Dachs, Dlish, and Approximated. This complex localizes to the junctional cortex where it represses Warts. Dachsous is believed to promote growth by recruiting and stabilizing this complex, while Fat represses growth by promoting its degradation. Here, we examine the functional relationships between the intracellular domains of Dachsous and Fat and the core complex. While Dachsous promotes the accumulation of core complex proteins in puncta, it is not required for their assembly. Indeed, the core complex accumulates maximally in the absence of both Dachsous and Fat. Furthermore, Dachsous represses growth in the absence of Fat by removing the core complex from the junctional cortex. Fat similarly recruits core complex components but promotes their degradation. Our findings reveal that Dachsous and Fat coordinately constrain tissue growth by repressing the core complex.
Collapse
Affiliation(s)
- Hitoshi Matakatsu
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Richard G. Fehon
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Tripathi BK, Irvine KD. Contributions of the Dachsous intracellular domain to Dachsous-Fat signaling. Development 2024; 151:dev202919. [PMID: 39503213 PMCID: PMC11634027 DOI: 10.1242/dev.202919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024]
Abstract
The protocadherins Fat and Dachsous regulate organ growth, shape, patterning, and planar cell polarity. Although Dachsous and Fat have been described as ligand and receptor, respectively, in a signal transduction pathway, there is also evidence for bidirectional signaling. Here, we assess signaling downstream of Dachsous through analysis of its intracellular domain. Genomic deletions of conserved sequences within dachsous identified regions of the intracellular domain that contribute to Dachsous activity. Deletion of the A motif increased Dachsous protein levels and decreased wing size. Deletion of the D motif decreased Dachsous levels at cell membranes, increased wing size, and disrupted wing, leg and hindgut patterning and planar cell polarity. Co-immunoprecipitation experiments established that the D motif is necessary and sufficient for association of Dachsous with key partners, including Lowfat, Dachs, Spiny-legs, Fat and MyoID. Subdivision of the D motif identified distinct regions that preferentially contribute to different Dachsous activities. Our results identify motifs that are essential for Dachsous function and are consistent with the hypothesis that the key function of Dachsous is regulation of Fat.
Collapse
Affiliation(s)
- Bipin Kumar Tripathi
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D. Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
3
|
Lapraz F, Fixary-Schuster C, Noselli S. Brain bilateral asymmetry - insights from nematodes, zebrafish, and Drosophila. Trends Neurosci 2024; 47:803-818. [PMID: 39322499 DOI: 10.1016/j.tins.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 09/27/2024]
Abstract
Chirality is a fundamental trait of living organisms, encompassing the homochirality of biological molecules and the left-right (LR) asymmetry of visceral organs and the brain. The nervous system in bilaterian organisms displays a lateralized organization characterized by the presence of asymmetrical neuronal circuits and brain functions that are predominantly localized within one hemisphere. Although body asymmetry is relatively well understood, and exhibits robust phenotypic expression and regulation via conserved molecular mechanisms across phyla, current findings indicate that the asymmetry of the nervous system displays greater phenotypic, genetic, and evolutionary variability. In this review we explore the use of nematode, zebrafish, and Drosophila genetic models to investigate neuronal circuit asymmetry. We discuss recent discoveries in the context of body-brain concordance and highlight the distinct characteristics of nervous system asymmetry and its cognitive correlates.
Collapse
|
4
|
Matakatsu H, Fehon RG. Dachsous and Fat coordinately repress the Dachs-Dlish-Approximated complex to control growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599638. [PMID: 38948705 PMCID: PMC11212998 DOI: 10.1101/2024.06.18.599638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Two protocadherins, Dachsous (Ds) and Fat (Ft), regulate organ growth in Drosophila via the Hippo pathway. Ds and Ft bind heterotypically to regulate the abundance and subcellular localization of a 'core complex' consisting of Dachs, Dlish and Approximated. This complex localizes to the junctional cortex where it promotes growth by repressing the pathway kinase Warts. Ds is believed to promote growth by recruiting and stabilizing the core complex at the junctional cortex, while Ft represses growth by promoting degradation of core complex components. Here, we examine the functions of intracellular domains of Ds and Ft and their relationship to the core complex. While Ds promotes accumulation of the core complex proteins in cortical puncta, it is not required for core complex assembly. Indeed, the core complex assembles maximally in the absence of both Ds and Ft. Furthermore, while Ds promotes growth in the presence of Ft, it represses growth in the absence of Ft by removing the core complex from the junctional cortex. Ft similarly recruits core complex components, however it normally promotes their degradation. Our findings reveal that Ds and Ft constrain tissue growth by repressing the default 'on' state of the core complex.
Collapse
|
5
|
Kurup AJ, Bailet F, Fürthauer M. Myosin1G promotes Nodal signaling to control zebrafish left-right asymmetry. Nat Commun 2024; 15:6547. [PMID: 39095343 PMCID: PMC11297164 DOI: 10.1038/s41467-024-50868-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Myosin1D (Myo1D) has recently emerged as a conserved regulator of animal Left-Right (LR) asymmetry that governs the morphogenesis of the vertebrate central LR Organizer (LRO). In addition to Myo1D, the zebrafish genome encodes the closely related Myo1G. Here we show that while Myo1G also controls LR asymmetry, it does so through an entirely different mechanism. Myo1G promotes the Nodal-mediated transfer of laterality information from the LRO to target tissues. At the cellular level, Myo1G is associated with endosomes positive for the TGFβ signaling adapter SARA. myo1g mutants have fewer SARA-positive Activin receptor endosomes and a reduced responsiveness to Nodal ligands that results in a delay of left-sided Nodal propagation and tissue-specific laterality defects in organs that are most distant from the LRO. Additionally, Myo1G promotes signaling by different Nodal ligands in specific biological contexts. Our findings therefore identify Myo1G as a context-dependent regulator of the Nodal signaling pathway.
Collapse
|
6
|
Blackie L, Gaspar P, Mosleh S, Lushchak O, Kong L, Jin Y, Zielinska AP, Cao B, Mineo A, Silva B, Ameku T, Lim SE, Mao Y, Prieto-Godino L, Schoborg T, Varela M, Mahadevan L, Miguel-Aliaga I. The sex of organ geometry. Nature 2024; 630:392-400. [PMID: 38811741 PMCID: PMC11168936 DOI: 10.1038/s41586-024-07463-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/24/2024] [Indexed: 05/31/2024]
Abstract
Organs have a distinctive yet often overlooked spatial arrangement in the body1-5. We propose that there is a logic to the shape of an organ and its proximity to its neighbours. Here, by using volumetric scans of many Drosophila melanogaster flies, we develop methods to quantify three-dimensional features of organ shape, position and interindividual variability. We find that both the shapes of organs and their relative arrangement are consistent yet differ between the sexes, and identify unexpected interorgan adjacencies and left-right organ asymmetries. Focusing on the intestine, which traverses the entire body, we investigate how sex differences in three-dimensional organ geometry arise. The configuration of the adult intestine is only partially determined by physical constraints imposed by adjacent organs; its sex-specific shape is actively maintained by mechanochemical crosstalk between gut muscles and vascular-like trachea. Indeed, sex-biased expression of a muscle-derived fibroblast growth factor-like ligand renders trachea sexually dimorphic. In turn, tracheal branches hold gut loops together into a male or female shape, with physiological consequences. Interorgan geometry represents a previously unrecognized level of biological complexity which might enable or confine communication across organs and could help explain sex or species differences in organ function.
Collapse
Affiliation(s)
- Laura Blackie
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Pedro Gaspar
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Salem Mosleh
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | | | - Lingjin Kong
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Yuhong Jin
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Agata P Zielinska
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Boxuan Cao
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Alessandro Mineo
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Bryon Silva
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Tomotsune Ameku
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Shu En Lim
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Yanlan Mao
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | | | - Todd Schoborg
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Marta Varela
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, London, UK
| | - L Mahadevan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Departments of Physics and Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Irene Miguel-Aliaga
- MRC Laboratory of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
7
|
Zhang X, Wang Y, Wang L, Zhang Y, Xing X, Zhao Z, Dong W, Moussian B, Zhang J. Determination of the larval precursor configuration of the Drosophila adult hindgut by G-TRACE analysis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 168:104114. [PMID: 38552809 DOI: 10.1016/j.ibmb.2024.104114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
The Drosophila hindgut is a classical model to study organogenesis. The adult hindgut originates from the precursor cells in the larval hindgut. However, the territory of these cells has still not been well determined. A ring of wingless (wg)-expressing cells lies at the anterior zone of both the larval and adult hindgut. The larval Wg ring was thought as a portion of precursor of the adult hindgut. By applying a cell lineage tracing tool (G-TRACE), we demonstrate that larval wg-expressing cells have no cell lineage contribution to the adult hindgut. Additionally, adult Wg ring cells do not divide and move posteriorly to replenish the hindgut tissue. Instead, we determine that the precursors of the adult pylorus and ileum are situated in the cubitus interruptus (ci)-expressing cells in the anterior zone, and deduce that the precursor stem cells of the adult rectum locate in the trunk region of the larval pylorus including hedgehog (hh)-expressing cells. Together, this research advances our understanding of cell lineage origins and the development of the Drosophila hindgut.
Collapse
Affiliation(s)
- Xubo Zhang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, College of Life Science, Shanxi University, Taiyuan, Shanxi, 030006, China.
| | - Yi Wang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, College of Life Science, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Lihua Wang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, College of Life Science, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Yue Zhang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, College of Life Science, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Xiaoyu Xing
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, College of Life Science, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Zhangwu Zhao
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, College of Life Science, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Wei Dong
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, College of Life Science, Shanxi University, Taiyuan, Shanxi, 030006, China.
| | - Bernard Moussian
- INRAE, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, Université Côte d'Azur, 06108, Nice, France
| | - Jianzhen Zhang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, College of Life Science, Shanxi University, Taiyuan, Shanxi, 030006, China.
| |
Collapse
|
8
|
Tripathi BK, Irvine KD. Contributions of the Dachsous intracellular domain to Dachsous-Fat signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587940. [PMID: 38617303 PMCID: PMC11014530 DOI: 10.1101/2024.04.03.587940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The protocadherins Fat and Dachsous regulate organ growth, shape, patterning, and planar cell polarity. Although Dachsous and Fat have been described as ligand and receptor, respectively, in a signal transduction pathway, there is also evidence for bidirectional signaling. Here we assess signaling downstream of Dachsous through analysis of its intracellular domain. Genomic deletions of conserved sequences within dachsous identified regions of the intracellular domain required for normal development. Deletion of the A motif increased Dachsous protein levels and decreased wing size. Deletion of the D motif decreased Dachsous levels at cell membranes, increased wing size, and disrupted wing, leg and hindgut patterning and planar cell polarity. Co-immunoprecipitation experiments established that the D motif is necessary and sufficient for association of Dachsous with four key partners: Lowfat, Dachs, Spiny-legs, and MyoID. Subdivision of the D motif identified distinct regions that are preferentially responsible for association with Lft versus Dachs. Our results identify motifs that are essential for Dachsous function and are consistent with the hypothesis that the key function of Dachsous is regulation of Fat.
Collapse
|
9
|
Chess MM, Douglas W, Saunders J, Ettensohn CA. Genome-wide identification and spatiotemporal expression analysis of cadherin superfamily members in echinoderms. EvoDevo 2023; 14:15. [PMID: 38124068 PMCID: PMC10734073 DOI: 10.1186/s13227-023-00219-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Cadherins are calcium-dependent transmembrane cell-cell adhesion proteins that are essential for metazoan development. They consist of three subfamilies: classical cadherins, which bind catenin, protocadherins, which contain 6-7 calcium-binding repeat domains, and atypical cadherins. Their functions include forming adherens junctions, establishing planar cell polarity (PCP), and regulating cell shape, proliferation, and migration. Because they are basal deuterostomes, echinoderms provide important insights into bilaterian evolution, but their only well-characterized cadherin is G-cadherin, a classical cadherin that is expressed by many embryonic epithelia. We aimed to better characterize echinoderm cadherins by conducting phylogenetic analyses and examining the spatiotemporal expression patterns of cadherin-encoding genes during Strongylocentrotus purpuratus development. RESULTS Our phylogenetic analyses conducted on two echinoid, three asteroid, and one crinoid species identified ten echinoderm cadherins, including one deuterostome-specific ortholog, cadherin-23, and an echinoderm-specific atypical cadherin that possibly arose in an echinoid-asteroid ancestor. Catenin-binding domains in dachsous-2 orthologs were found to be a deuterostome-specific innovation that was selectively lost in mouse, while those in Fat4 orthologs appeared to be Ambulacraria-specific and were selectively lost in non-crinoid echinoderms. The identified suite of echinoderm cadherins lacks vertebrate-specific innovations but contains two proteins that are present in protostomes and absent from mouse. The spatiotemporal expression patterns of four embryonically expressed cadherins (fat atypical cadherins 1 and 4, dachsous-2, and protocadherin-9) were dynamic and mirrored the expression pattern of Frizzled 5/8, a non-canonical Wnt PCP pathway receptor protein essential for archenteron morphogenesis. CONCLUSIONS The echinoderm cadherin toolkit is more similar to that of an ancient bilaterian predating protostomes and deuterostomes than it is to the suite of cadherins found in extant vertebrates. However, it also appears that deuterostomes underwent several cadherin-related innovations. Based on their similar spatiotemporal expression patterns and orthologous relationships to PCP-related and tumor-suppressing proteins, we hypothesize that sea urchin cadherins may play a role in regulating the shape and growth of embryonic epithelia and organs. Future experiments will examine cadherin expression in non-echinoid echinoderms and explore the functions of cadherins during echinoderm development.
Collapse
Affiliation(s)
- Macie M Chess
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - William Douglas
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Josiah Saunders
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
10
|
Lapraz F, Boutres C, Fixary-Schuster C, De Queiroz BR, Plaçais PY, Cerezo D, Besse F, Préat T, Noselli S. Asymmetric activity of NetrinB controls laterality of the Drosophila brain. Nat Commun 2023; 14:1052. [PMID: 36828820 PMCID: PMC9958012 DOI: 10.1038/s41467-023-36644-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/01/2023] [Indexed: 02/26/2023] Open
Abstract
Left-Right (LR) asymmetry of the nervous system is widespread across animals and is thought to be important for cognition and behaviour. But in contrast to visceral organ asymmetry, the genetic basis and function of brain laterality remain only poorly characterized. In this study, we performed RNAi screening to identify genes controlling brain asymmetry in Drosophila. We found that the conserved NetrinB (NetB) pathway is required for a small group of bilateral neurons to project asymmetrically into a pair of neuropils (Asymmetrical Bodies, AB) in the central brain in both sexes. While neurons project unilaterally into the right AB in wild-type flies, netB mutants show a bilateral projection phenotype and hence lose asymmetry. Developmental time course analysis reveals an initially bilateral connectivity, eventually resolving into a right asymmetrical circuit during metamorphosis, with the NetB pathway being required just prior symmetry breaking. We show using unilateral clonal analysis that netB activity is required specifically on the right side for neurons to innervate the right AB. We finally show that loss of NetB pathway activity leads to specific alteration of long-term memory, providing a functional link between asymmetrical circuitry determined by NetB and animal cognitive functions.
Collapse
Affiliation(s)
- F Lapraz
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France.
| | - C Boutres
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | | | - P Y Plaçais
- Plasticité du Cerveau, UMR 8249, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - D Cerezo
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | - F Besse
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | - T Préat
- Plasticité du Cerveau, UMR 8249, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - S Noselli
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France.
| |
Collapse
|
11
|
Rahman T, Peters F, Wan LQ. Cell jamming regulates epithelial chiral morphogenesis. J Biomech 2023; 147:111435. [PMID: 36641827 PMCID: PMC10020895 DOI: 10.1016/j.jbiomech.2023.111435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/24/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Internal organs such as the heart demonstrate apparent left-right (LR) asymmetric morphology and positioning. Cellular chirality and associated LR biased mechanical behavior such as cell migration have been attributed to LR symmetry breaking during embryonic development. Mathematical models have shown that chiral directional migration can be driven by cellular intrinsic torque. Tissue jamming state (i.e., solid-like vs fluid-like state) strongly regulates collective migratory behavior, but how it might affect chiral morphogenesis is still unknown. Here, we develop a cell vertex model to study the role of tissue rigidity or jamming state on chiral morphogenesis of the cells on a patterned ring-shaped tissue, simulating a previously reported experimental setup for measuring cell chirality. We simulate chirality as torsional forces acting on cell vertices. As expected, the cells undergo bidirectional migration at the opposing (inner and outer) boundaries of the ring-shaped tissue. We discover that more fluid-like tissues (unjammed) demonstrate a stronger chiral cell alignment and elongation than more solid-like (jammed) tissues and maintain a bigger difference in migration velocity between opposing tissue boundaries. Finally, we find that fluid-like tissues undergo more cell-neighbor exchange events. This study reveals that chiral torque is sufficient to achieve a biased cellular alignment as seen in vitro. It further sheds light on the mechanical regulation of chiral morphogenesis of tissues and reveals a role of cell density-independent tissue rigidity in this process.
Collapse
Affiliation(s)
- Tasnif Rahman
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Frank Peters
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Leo Q Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
12
|
Forrest K, Barricella AC, Pohar SA, Hinman AM, Amack JD. Understanding laterality disorders and the left-right organizer: Insights from zebrafish. Front Cell Dev Biol 2022; 10:1035513. [PMID: 36619867 PMCID: PMC9816872 DOI: 10.3389/fcell.2022.1035513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Vital internal organs display a left-right (LR) asymmetric arrangement that is established during embryonic development. Disruption of this LR asymmetry-or laterality-can result in congenital organ malformations. Situs inversus totalis (SIT) is a complete concordant reversal of internal organs that results in a low occurrence of clinical consequences. Situs ambiguous, which gives rise to Heterotaxy syndrome (HTX), is characterized by discordant development and arrangement of organs that is associated with a wide range of birth defects. The leading cause of health problems in HTX patients is a congenital heart malformation. Mutations identified in patients with laterality disorders implicate motile cilia in establishing LR asymmetry. However, the cellular and molecular mechanisms underlying SIT and HTX are not fully understood. In several vertebrates, including mouse, frog and zebrafish, motile cilia located in a "left-right organizer" (LRO) trigger conserved signaling pathways that guide asymmetric organ development. Perturbation of LRO formation and/or function in animal models recapitulates organ malformations observed in SIT and HTX patients. This provides an opportunity to use these models to investigate the embryological origins of laterality disorders. The zebrafish embryo has emerged as an important model for investigating the earliest steps of LRO development. Here, we discuss clinical characteristics of human laterality disorders, and highlight experimental results from zebrafish that provide insights into LRO biology and advance our understanding of human laterality disorders.
Collapse
Affiliation(s)
- Kadeen Forrest
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Alexandria C. Barricella
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Sonny A. Pohar
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Anna Maria Hinman
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, NY, United States
| |
Collapse
|
13
|
Dong M, Chen D, Che L, Gu N, Yin M, Du X, Shen J, Yan S. Biotoxicity Evaluation of a Cationic Star Polymer on a Predatory Ladybird and Cooperative Pest Control by Polymer-Delivered Pesticides and Ladybird. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6083-6092. [PMID: 35072467 DOI: 10.1021/acsami.1c24077] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although employing nanocarriers for gene/drug delivery shows great potential in agricultural fields, the biotoxicity of nanocarriers is a major concern for large-scale applications. Herein, we synthesized a cationic star polymer (SPc) as a pesticide nanocarrier/adjuvant to evaluate its safety against a widely used predatory ladybird (Harmonia axyridis). The application of SPc at extremely high concentrations nearly did not influence the hatching of ladybird eggs but it led to the death of ladybird larvae at lethal concentration 50 (LC50) values of 43.96 and 19.85 mg/mL through the soaking and feeding methods, respectively. The oral feeding of SPc downregulated many membrane protein genes and lysosome genes significantly, and the cell membrane and nucleus in gut tissues were remarkably damaged by SPc application, revealing that the lethal mechanism might be SPc-mediated membrane damage. Furthermore, the oral feeding of SPc increased the relative abundance of Serratia bacteria in ladybird guts to result in bacterial infection. Coapplication of ladybird and SPc-loaded thiamethoxam/matrine achieved desired control efficacies of more than 80% against green peach aphids, revealing that the coapplication could overcome the slow-acting property of ladybirds. To our knowledge, this is the first attempt to investigate the polymer-mediated lethal mechanism toward natural enemies and explore the possibility of coapplying SPc-loaded pesticides and natural enemies for pest management.
Collapse
Affiliation(s)
- Min Dong
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Dingming Chen
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Lin Che
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Na Gu
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Meizhen Yin
- State Key Lab of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xiangge Du
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Jie Shen
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Shuo Yan
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
14
|
Kato Y, Sawada A, Tonai K, Tatsuno H, Uenoyama T, Itoh M. A new allele of <i>engrailed</i>, <i>en<sup>NK14</sup></i>, causes supernumerary spermathecae in <i>Drosophila melanogaster</i>. Genes Genet Syst 2021; 96:259-269. [DOI: 10.1266/ggs.21-00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yasuko Kato
- Department of Applied Biology, Kyoto Institute of Technology
| | - Akiko Sawada
- Department of Applied Biology, Kyoto Institute of Technology
| | - Kazuki Tonai
- Department of Applied Biology, Kyoto Institute of Technology
| | - Hisashi Tatsuno
- Department of Applied Biology, Kyoto Institute of Technology
| | | | - Masanobu Itoh
- Advanced Insect Research Promotion Center, Kyoto Institute of Technology
| |
Collapse
|
15
|
Alsafwani RS, Nasser KK, Shinawi T, Banaganapalli B, ElSokary HA, Zaher ZF, Shaik NA, Abdelmohsen G, Al-Aama JY, Shapiro AJ, O Al-Radi O, Elango R, Alahmadi T. Novel MYO1D Missense Variant Identified Through Whole Exome Sequencing and Computational Biology Analysis Expands the Spectrum of Causal Genes of Laterality Defects. Front Med (Lausanne) 2021; 8:724826. [PMID: 34589502 PMCID: PMC8473696 DOI: 10.3389/fmed.2021.724826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
Laterality defects (LDs) or asymmetrically positioned organs are a group of rare developmental disorders caused by environmental and/or genetic factors. However, the exact molecular pathophysiology of LD is not yet fully characterised. In this context, studying Arab population presents an ideal opportunity to discover the novel molecular basis of diseases owing to the high rate of consanguinity and genetic disorders. Therefore, in the present study, we studied the molecular basis of LD in Arab patients, using next-generation sequencing method. We discovered an extremely rare novel missense variant in MYO1D gene (Pro765Ser) presenting with visceral heterotaxy and left isomerism with polysplenia syndrome. The proband in this index family has inherited this homozygous variant from her heterozygous parents following the autosomal recessive pattern. This is the first report to show MYO1D genetic variant causing left-right axis defects in humans, besides previous known evidence from zebrafish, frog and Drosophila models. Moreover, our multilevel bioinformatics-based structural (protein variant structural modelling, divergence, and stability) analysis has suggested that Ser765 causes minor structural drifts and stability changes, potentially affecting the biophysical and functional properties of MYO1D protein like calmodulin binding and microfilament motor activities. Functional bioinformatics analysis has shown that MYO1D is ubiquitously expressed across several human tissues and is reported to induce severe phenotypes in knockout mouse models. In conclusion, our findings show the expanded genetic spectrum of LD, which could potentially pave way for the novel drug target identification and development of personalised medicine for high-risk families.
Collapse
Affiliation(s)
- Rabab Said Alsafwani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalidah K Nasser
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thoraia Shinawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Babajan Banaganapalli
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hanan Abdelhalim ElSokary
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zhaher F Zaher
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Pediatric Cardiac Center of Excellence, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor Ahmad Shaik
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Genetics, Al Borg Medical Laboratories, Jeddah, Saudi Arabia
| | - Gaser Abdelmohsen
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Pediatric Cardiology Division, Department of Pediatrics, Cairo University, Kasr Al Ainy Faculty of Medicine, Cairo, Egypt
| | - Jumana Yousuf Al-Aama
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adam J Shapiro
- Division of Pediatric Respiratory Medicine, McGill University Health Centre Research Institute, Montreal Children's Hospital, Montreal, QC, Canada
| | - Osman O Al-Radi
- Department of Surgery Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Turki Alahmadi
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Pediatric Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
16
|
Statistical Validation Verifies That Enantiomorphic States of Chiral Cells Are Determinant Dictating the Left- or Right-Handed Direction of the Hindgut Rotation in Drosophila. Symmetry (Basel) 2020. [DOI: 10.3390/sym12121991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the left–right (LR) asymmetric development of invertebrates, cell chirality is crucial. A left- or right-handed cell structure directs morphogenesis with corresponding LR-asymmetry. In Drosophila, cell chirality is thought to drive the LR-asymmetric development of the embryonic hindgut and other organs. This hypothesis is supported only by an apparent concordance between the LR-directionality of cell chirality and hindgut rotation and by computer simulations that connect the two events. In this article, we mathematically evaluated the causal relationship between the chirality of the hindgut epithelial cells and the LR-direction of hindgut rotation. Our logistic model, drawn from several Drosophila genotypes, significantly explained the correlation between the enantiomorphic (sinistral or dextral) state of chiral cells and the LR-directionality of hindgut rotation—even in individual live mutant embryos with stochastically determined cell chirality and randomized hindgut rotation, suggesting that the mechanism by which cell chirality forms is irrelevant to the direction of hindgut rotation. Thus, our analysis showed that cell chirality, which forms before hindgut rotation, is both sufficient and required for the subsequent rotation, validating the hypothesis that cell chirality causally defines the LR-directionality of hindgut rotation.
Collapse
|
17
|
Petri ND. Evolutionary Diversity of the Mechanisms Providing the Establishment of Left-Right Asymmetry in Metazoans. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420020058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Chougule A, Lapraz F, Földi I, Cerezo D, Mihály J, Noselli S. The Drosophila actin nucleator DAAM is essential for left-right asymmetry. PLoS Genet 2020; 16:e1008758. [PMID: 32324733 PMCID: PMC7200016 DOI: 10.1371/journal.pgen.1008758] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 05/05/2020] [Accepted: 04/05/2020] [Indexed: 12/14/2022] Open
Abstract
Left-Right (LR) asymmetry is essential for organ positioning, shape and function. Myosin 1D (Myo1D) has emerged as an evolutionary conserved chirality determinant in both Drosophila and vertebrates. However, the molecular interplay between Myo1D and the actin cytoskeleton underlying symmetry breaking remains poorly understood. To address this question, we performed a dual genetic screen to identify new cytoskeletal factors involved in LR asymmetry. We identified the conserved actin nucleator DAAM as an essential factor required for both dextral and sinistral development. In the absence of DAAM, organs lose their LR asymmetry, while its overexpression enhances Myo1D-induced de novo LR asymmetry. These results show that DAAM is a limiting, LR-specific actin nucleator connecting up Myo1D with a dedicated F-actin network important for symmetry breaking. Although our body looks symmetrical when viewed from the outside, it is in fact highly asymmetrical when we consider the shape and implantation of organs. For example, our heart is on the left side of the thorax, while the liver is on the right. In addition, our heart is made up of two distinct parts, the right heart and the left heart, which play different roles for blood circulation. These asymmetries, called left-right asymmetries, play a fundamental role in the morphogenesis and function of visceral organs and the brain. Aberrant LR asymmetry in human results in severe anatomical defects leading to embryonic lethality, spontaneous abortion and a number of congenital disorders. Our recent work has identified a particular myosin (Myo1D) as a major player in asymmetry in Drosophila and vertebrates. Myosins are proteins that can interact with the skeleton of cells (called the cytoskeleton) to transport other proteins, contract the cells, allow them to move, etc. In this work, we were able to identify all the genes of the cytoskeleton involved with myosin in left-right asymmetry, in particular a so-called 'nucleator' gene because it is capable of forming new parts of the cytoskeleton necessary for setting up asymmetries.
Collapse
Affiliation(s)
- Anil Chougule
- Université Côte D’Azur, CNRS, Inserm, iBV, Nice, France
| | | | - István Földi
- Biological Research Centre, Hungarian Academy of Sciences, Institute of Genetics, Hungary
| | | | - József Mihály
- Biological Research Centre, Hungarian Academy of Sciences, Institute of Genetics, Hungary
| | - Stéphane Noselli
- Université Côte D’Azur, CNRS, Inserm, iBV, Nice, France
- * E-mail:
| |
Collapse
|
19
|
Abstract
Left-right (L-R) asymmetry of visceral organs in animals is established during embryonic development via a stepwise process. While some steps are conserved, different strategies are employed among animals for initiating the breaking of body symmetry. In zebrafish (teleost),
Xenopus (amphibian), and mice (mammal), symmetry breaking is elicited by directional fluid flow at the L-R organizer, which is generated by motile cilia and sensed by mechanoresponsive cells. In contrast, birds and reptiles do not rely on the cilia-driven fluid flow. Invertebrates such as
Drosophila and snails employ another distinct mechanism, where the symmetry breaking process is underpinned by cellular chirality acquired downstream of the molecular interaction of myosin and actin. Here, we highlight the convergent entry point of actomyosin interaction and planar cell polarity to the diverse L-R symmetry breaking mechanisms among animals.
Collapse
Affiliation(s)
- Hiroshi Hamada
- Organismal Pattterning Lab, RIKEN Center for Biosystems Dynamics Research, RIKEN, Kobe, Hyogo, Japan
| | - Patrick Tam
- Embryology Unit, Children's Medical Research Institute and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
20
|
A chordate species lacking Nodal utilizes calcium oscillation and Bmp for left-right patterning. Proc Natl Acad Sci U S A 2020; 117:4188-4198. [PMID: 32029598 DOI: 10.1073/pnas.1916858117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Larvaceans are chordates with a tadpole-like morphology. In contrast to most chordates of which early embryonic morphology is bilaterally symmetric and the left-right (L-R) axis is specified by the Nodal pathway later on, invariant L-R asymmetry emerges in four-cell embryos of larvaceans. The asymmetric cell arrangements exist through development of the tailbud. The tail thus twists 90° in a counterclockwise direction relative to the trunk, and the tail nerve cord localizes on the left side. Here, we demonstrate that larvacean embryos have nonconventional L-R asymmetries: 1) L- and R-cells of the two-cell embryo had remarkably asymmetric cell fates; 2) Ca2+ oscillation occurred through embryogenesis; 3) Nodal, an evolutionarily conserved left-determining gene, was absent in the genome; and 4) bone morphogenetic protein gene (Bmp) homolog Bmp.a showed right-sided expression in the tailbud and larvae. We also showed that Ca2+ oscillation is required for Bmp.a expression, and that BMP signaling suppresses ectopic expression of neural genes. These results indicate that there is a chordate species lacking Nodal that utilizes Ca2+ oscillation and Bmp.a for embryonic L-R patterning. The right-side Bmp.a expression may have arisen via cooption of conventional BMP signaling in order to restrict neural gene expression on the left side.
Collapse
|
21
|
Fat/Dachsous family cadherins in cell and tissue organisation. Curr Opin Cell Biol 2020; 62:96-103. [DOI: 10.1016/j.ceb.2019.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/24/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023]
|
22
|
Axelrod JD. Planar cell polarity signaling in the development of left–right asymmetry. Curr Opin Cell Biol 2020; 62:61-69. [DOI: 10.1016/j.ceb.2019.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/27/2019] [Accepted: 09/10/2019] [Indexed: 11/27/2022]
|
23
|
Cohen E, Sawyer JK, Peterson NG, Dow JAT, Fox DT. Physiology, Development, and Disease Modeling in the Drosophila Excretory System. Genetics 2020; 214:235-264. [PMID: 32029579 PMCID: PMC7017010 DOI: 10.1534/genetics.119.302289] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
The insect excretory system contains two organ systems acting in concert: the Malpighian tubules and the hindgut perform essential roles in excretion and ionic and osmotic homeostasis. For over 350 years, these two organs have fascinated biologists as a model of organ structure and function. As part of a recent surge in interest, research on the Malpighian tubules and hindgut of Drosophila have uncovered important paradigms of organ physiology and development. Further, many human disease processes can be modeled in these organs. Here, focusing on discoveries in the past 10 years, we provide an overview of the anatomy and physiology of the Drosophila excretory system. We describe the major developmental events that build these organs during embryogenesis, remodel them during metamorphosis, and repair them following injury. Finally, we highlight the use of the Malpighian tubules and hindgut as accessible models of human disease biology. The Malpighian tubule is a particularly excellent model to study rapid fluid transport, neuroendocrine control of renal function, and modeling of numerous human renal conditions such as kidney stones, while the hindgut provides an outstanding model for processes such as the role of cell chirality in development, nonstem cell-based injury repair, cancer-promoting processes, and communication between the intestine and nervous system.
Collapse
Affiliation(s)
| | - Jessica K Sawyer
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| | | | - Julian A T Dow
- Institute of Molecular, Cell, and Systems Biology, University of Glasgow, G12 8QQ, United Kingdom
| | - Donald T Fox
- Department of Cell Biology and
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| |
Collapse
|
24
|
Cho B, Song S, Axelrod JD. Prickle isoforms determine handedness of helical morphogenesis. eLife 2020; 9:51456. [PMID: 31934858 PMCID: PMC7004564 DOI: 10.7554/elife.51456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
Subcellular asymmetry directed by the planar cell polarity (PCP) signaling pathway orients numerous morphogenetic events in both invertebrates and vertebrates. Here, we describe a morphogenetic movement in which the intertwined socket and shaft cells of the Drosophila anterior wing margin mechanosensory bristles undergo PCP-directed apical rotation, inducing twisting that results in a helical structure of defined chirality. We show that the Frizzled/Vang PCP signaling module coordinates polarity among and between bristles and surrounding cells to direct this rotation. Furthermore, we show that dynamic interplay between two isoforms of the Prickle protein determines right- or left-handed bristle morphogenesis. We provide evidence that, Frizzled/Vang signaling couples to the Fat/Dachsous PCP directional signal in opposite directions depending on whether Pkpk or Pksple predominates. Dynamic interplay between Pk isoforms is likely to be an important determinant of PCP outcomes in diverse contexts. Similar mechanisms may orient other lateralizing morphogenetic processes.
Collapse
Affiliation(s)
- Bomsoo Cho
- Department of Pathology, Stanford University School of Medicine, Stanford, United States
| | - Song Song
- Department of Pathology, Stanford University School of Medicine, Stanford, United States
| | - Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
25
|
Davison A. Flipping Shells! Unwinding LR Asymmetry in Mirror-Image Molluscs. Trends Genet 2020; 36:189-202. [PMID: 31952839 DOI: 10.1016/j.tig.2019.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/08/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
In seeking to understand the establishment of left-right (LR) asymmetry, a limiting factor is that most animals are ordinarily invariant in their asymmetry, except when manipulated or mutated. It is therefore surprising that the wider scientific field does not appear to fully appreciate the remarkable fact that normal development in molluscs, especially snails, can flip between two chiral types without pathology. Here, I describe recent progress in understanding the evolution, development, and genetics of chiral variation in snails, and place it in context with other animals. I argue that the natural variation of snails is a crucial resource towards understanding the invariance in other animal groups and, ultimately, will be key in revealing the common factors that define cellular and organismal LR asymmetry.
Collapse
Affiliation(s)
- Angus Davison
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
26
|
Abe M, Kuroda R. The development of CRISPR for a mollusc establishes the formin Lsdia1 as the long-sought gene for snail dextral/sinistral coiling. Development 2019; 146:dev.175976. [PMID: 31088796 DOI: 10.1242/dev.175976] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/11/2019] [Indexed: 01/09/2023]
Abstract
The establishment of left-right body asymmetry is a key biological process that is tightly regulated genetically. In the first application of CRISPR/Cas9 to a mollusc, we show decisively that the actin-related diaphanous gene Lsdia1 is the single maternal gene that determines the shell coiling direction of the freshwater snail Lymnaea stagnalis Biallelic frameshift mutations of the gene produced sinistrally coiled offspring generation after generation, in the otherwise totally dextral genetic background. This is the gene sought for over a century. We also show that the gene sets the chirality at the one-cell stage, the earliest observed symmetry-breaking event linked directly to body handedness in the animal kingdom. The early intracellular chirality is superseded by the inter-cellular chirality during the 3rd cleavage, leading to asymmetric nodal and Pitx expression, and then to organismal body handedness. Thus, our findings have important implications for chiromorphogenesis in invertebrates as well as vertebrates, including humans, and for the evolution of snail chirality. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Masanori Abe
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Reiko Kuroda
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan .,Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| |
Collapse
|
27
|
Lebreton G, Géminard C, Lapraz F, Pyrpassopoulos S, Cerezo D, Spéder P, Ostap EM, Noselli S. Molecular to organismal chirality is induced by the conserved myosin 1D. Science 2019; 362:949-952. [PMID: 30467170 DOI: 10.1126/science.aat8642] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/04/2018] [Indexed: 11/02/2022]
Abstract
The emergence of asymmetry from an initially symmetrical state is a universal transition in nature. Living organisms show asymmetries at the molecular, cellular, tissular, and organismal level. However, whether and how multilevel asymmetries are related remains unclear. In this study, we show that Drosophila myosin 1D (Myo1D) and myosin 1C (Myo1C) are sufficient to generate de novo directional twisting of cells, single organs, or the whole body in opposite directions. Directionality lies in the myosins' motor domain and is swappable between Myo1D and Myo1C. In addition, Myo1D drives gliding of actin filaments in circular, counterclockwise paths in vitro. Altogether, our results reveal the molecular motor Myo1D as a chiral determinant that is sufficient to break symmetry at all biological scales through chiral interaction with the actin cytoskeleton.
Collapse
Affiliation(s)
- G Lebreton
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - C Géminard
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - F Lapraz
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - S Pyrpassopoulos
- Pennsylvania Muscle Institute and the Center for Engineering Mechanobiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - D Cerezo
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - P Spéder
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - E M Ostap
- Pennsylvania Muscle Institute and the Center for Engineering Mechanobiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - S Noselli
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
28
|
Cells with Broken Left–Right Symmetry: Roles of Intrinsic Cell Chirality in Left–Right Asymmetric Epithelial Morphogenesis. Symmetry (Basel) 2019. [DOI: 10.3390/sym11040505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Chirality is a fundamental feature in biology, from the molecular to the organismal level. An animal has chirality in the left–right asymmetric structure and function of its body. In general, chirality occurring at the molecular and organ/organism scales has been studied separately. However, recently, chirality was found at the cellular level in various species. This “cell chirality” can serve as a link between molecular chirality and that of an organ or animal. Cell chirality is observed in the structure, motility, and cytoplasmic dynamics of cells and the mechanisms of cell chirality formation are beginning to be understood. In all cases studied so far, proteins that interact chirally with F-actin, such as formin and myosin I, play essential roles in cell chirality formation or the switching of a cell’s enantiomorphic state. Thus, the chirality of F-actin may represent the ultimate origin of cell chirality. Links between cell chirality and left–right body asymmetry are also starting to be revealed in various animal species. In this review, the mechanisms of cell chirality formation and its roles in left–right asymmetric development are discussed, with a focus on the fruit fly Drosophila, in which many of the pioneering studies were conducted.
Collapse
|
29
|
Ishibashi T, Hatori R, Maeda R, Nakamura M, Taguchi T, Matsuyama Y, Matsuno K. E and ID proteins regulate cell chirality and left-right asymmetric development in Drosophila. Genes Cells 2019; 24:214-230. [PMID: 30624823 DOI: 10.1111/gtc.12669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/13/2018] [Accepted: 12/28/2018] [Indexed: 02/07/2023]
Abstract
How left-right (LR) asymmetric forms in the animal body is a fundamental problem in Developmental Biology. Although the mechanisms for LR asymmetry are well studied in some species, they are still poorly understood in invertebrates. We previously showed that the intrinsic LR asymmetry of cells (designated as cell chirality) drives LR asymmetric development in the Drosophila embryonic hindgut, although the machinery of the cell chirality formation remains elusive. Here, we found that the Drosophila homologue of the Id gene, extra macrochaetae (emc), is required for the normal LR asymmetric morphogenesis of this organ. Id proteins, including Emc, are known to interact with and inhibit E-box-binding proteins (E proteins), such as Drosophila Daughterless (Da). We found that the suppression of da by wild-type emc was essential for cell chirality formation and for normal LR asymmetric development of the embryonic hindgut. Myosin ID (MyoID), which encodes the Drosophila Myosin ID protein, is known to regulate cell chirality. We further showed that Emc-Da regulates cell chirality formation, in which Emc functions upstream of or parallel to MyoID. Abnormal Id-E protein regulation is involved in various human diseases. Our results suggest that defects in cell shape may contribute to the pathogenesis of such diseases.
Collapse
Affiliation(s)
- Tomoki Ishibashi
- Department of Biological Sciences, Osaka University, Toyonaka, Osaka, Japan
| | - Ryo Hatori
- Department of Biological Sciences, Osaka University, Toyonaka, Osaka, Japan
| | - Reo Maeda
- Department of Biological Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | | | - Tomohiro Taguchi
- Department of Biological Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Yoko Matsuyama
- Department of Biological Sciences, Osaka University, Toyonaka, Osaka, Japan
| | - Kenji Matsuno
- Department of Biological Sciences, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
30
|
Chiral Neuronal Motility: The Missing Link between Molecular Chirality and Brain Asymmetry. Symmetry (Basel) 2019. [DOI: 10.3390/sym11010102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Left–right brain asymmetry is a fundamental property observed across phyla from invertebrates to humans, but the mechanisms underlying its formation are still largely unknown. Rapid progress in our knowledge of the formation of body asymmetry suggests that brain asymmetry might be controlled by the same mechanisms. However, most of the functional brain laterality, including language processing and handedness, does not share common mechanisms with visceral asymmetry. Accumulating evidence indicates that asymmetry is manifested as chirality at the single cellular level. In neurons, the growth cone filopodia at the tips of neurites exhibit a myosin V-dependent, left-helical, and right-screw rotation, which drives the clockwise circular growth of neurites on adhesive substrates. Here, I propose an alternative model for the formation of brain asymmetry that is based on chiral neuronal motility. According to this chiral neuron model, the molecular chirality of actin filaments and myosin motors is converted into chiral neuronal motility, which is in turn transformed into the left–right asymmetry of neural circuits and lateralized brain functions. I also introduce automated, numerical, and quantitative methods to analyze the chirality and the left–right asymmetry that would enable the efficient testing of the model and to accelerate future investigations in this field.
Collapse
|
31
|
Desgrange A, Le Garrec JF, Meilhac SM. Left-right asymmetry in heart development and disease: forming the right loop. Development 2018; 145:145/22/dev162776. [PMID: 30467108 DOI: 10.1242/dev.162776] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Extensive studies have shown how bilateral symmetry of the vertebrate embryo is broken during early development, resulting in a molecular left-right bias in the mesoderm. However, how this early asymmetry drives the asymmetric morphogenesis of visceral organs remains poorly understood. The heart provides a striking model of left-right asymmetric morphogenesis, undergoing rightward looping to shape an initially linear heart tube and align cardiac chambers. Importantly, abnormal left-right patterning is associated with severe congenital heart defects, as exemplified in heterotaxy syndrome. Here, we compare the mechanisms underlying the rightward looping of the heart tube in fish, chick and mouse embryos. We propose that heart looping is not only a question of direction, but also one of fine-tuning shape. This is discussed in the context of evolutionary and clinical perspectives.
Collapse
Affiliation(s)
- Audrey Desgrange
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France.,INSERM UMR1163, Université Paris Descartes, 75015 Paris, France
| | - Jean-François Le Garrec
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France.,INSERM UMR1163, Université Paris Descartes, 75015 Paris, France
| | - Sigolène M Meilhac
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France .,INSERM UMR1163, Université Paris Descartes, 75015 Paris, France
| |
Collapse
|
32
|
Uechi H, Kuranaga E. Mechanisms of unusual collective cell movement lacking a free front edge in Drosophila. Curr Opin Genet Dev 2018; 51:46-51. [DOI: 10.1016/j.gde.2018.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/25/2018] [Accepted: 06/22/2018] [Indexed: 12/22/2022]
|
33
|
Inaki M, Hatori R, Nakazawa N, Okumura T, Ishibashi T, Kikuta J, Ishii M, Matsuno K, Honda H. Chiral cell sliding drives left-right asymmetric organ twisting. eLife 2018; 7:32506. [PMID: 29891026 PMCID: PMC5997448 DOI: 10.7554/elife.32506] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 05/06/2018] [Indexed: 11/23/2022] Open
Abstract
Polarized epithelial morphogenesis is an essential process in animal development. While this process is mostly attributed to directional cell intercalation, it can also be induced by other mechanisms. Using live-imaging analysis and a three-dimensional vertex model, we identified ‘cell sliding,’ a novel mechanism driving epithelial morphogenesis, in which cells directionally change their position relative to their subjacent (posterior) neighbors by sliding in one direction. In Drosophila embryonic hindgut, an initial left-right (LR) asymmetry of the cell shape (cell chirality in three dimensions), which occurs intrinsically before tissue deformation, is converted through LR asymmetric cell sliding into a directional axial twisting of the epithelial tube. In a Drosophila inversion mutant showing inverted cell chirality and hindgut rotation, cell sliding occurs in the opposite direction to that in wild-type. Unlike directional cell intercalation, cell sliding does not require junctional remodeling. Cell sliding may also be involved in other cases of LR-polarized epithelial morphogenesis. Many organs arise from simple sheets and tubes of cells. During development these sheets bend and deform into the more complex shape of the final organ. This can be seen, for example, in the hindgut of fruit flies, which is an organ that is equivalent to our intestines. Initially, the hindgut is a simple tube of cells. Later the hindgut develops a twist to the left that renders its right and left sides non-symmetrical. During twisting, the cells in the hindgut also change shape. It was not known how this shape change and other behaviors of the cells cause the hindgut to twist. Inaki et al. have now filmed how the hindgut develops in live fruit flies and produced computer simulations of the development process. The results suggest that a previously unidentified type of cell behavior called ‘cell sliding’ is responsible for twisting the hindgut. During sliding, the cells stay in contact with their neighbors as they move in a single direction. Sliding is triggered by the cells in the hindgut taking on a more symmetrical shape. Cell sliding may prove to be a common way to shape organs, many of which feature non-symmetrical twisted tubes of cells. In the future, learning how to control cell sliding could help researchers to create organs and biological structures in the laboratory that could be used in organ transplants and regenerative medicine.
Collapse
Affiliation(s)
- Mikiko Inaki
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Ryo Hatori
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Naotaka Nakazawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Takashi Okumura
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Tomoki Ishibashi
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kenji Matsuno
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Hisao Honda
- Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
34
|
Juan T, Géminard C, Coutelis JB, Cerezo D, Polès S, Noselli S, Fürthauer M. Myosin1D is an evolutionarily conserved regulator of animal left-right asymmetry. Nat Commun 2018; 9:1942. [PMID: 29769531 PMCID: PMC5955935 DOI: 10.1038/s41467-018-04284-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/13/2018] [Indexed: 12/30/2022] Open
Abstract
The establishment of left-right (LR) asymmetry is fundamental to animal development, but the identification of a unifying mechanism establishing laterality across different phyla has remained elusive. A cilia-driven, directional fluid flow is important for symmetry breaking in numerous vertebrates, including zebrafish. Alternatively, LR asymmetry can be established independently of cilia, notably through the intrinsic chirality of the acto-myosin cytoskeleton. Here, we show that Myosin1D (Myo1D), a previously identified regulator of Drosophila LR asymmetry, is essential for the formation and function of the zebrafish LR organizer (LRO), Kupffer's vesicle (KV). Myo1D controls the orientation of LRO cilia and interacts functionally with the planar cell polarity (PCP) pathway component VanGogh-like2 (Vangl2), to shape a productive LRO flow. Our findings identify Myo1D as an evolutionarily conserved regulator of animal LR asymmetry, and show that functional interactions between Myo1D and PCP are central to the establishment of animal LR asymmetry.
Collapse
Affiliation(s)
- Thomas Juan
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, F-06108, France
| | - Charles Géminard
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, F-06108, France
| | - Jean-Baptiste Coutelis
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, F-06108, France
| | - Delphine Cerezo
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, F-06108, France
| | - Sophie Polès
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, F-06108, France
| | - Stéphane Noselli
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, F-06108, France.
| | - Maximilian Fürthauer
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, F-06108, France.
| |
Collapse
|
35
|
Xu K, Liu X, Wang Y, Wong C, Song Y. Temporospatial induction of homeodomain gene cut dictates natural lineage reprogramming. eLife 2018; 7:33934. [PMID: 29714689 PMCID: PMC5986271 DOI: 10.7554/elife.33934] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
Understanding how cellular identity naturally interconverts with high efficiency and temporospatial precision is crucial for regenerative medicine. Here, we revealed a natural midgut-to-renal lineage conversion event during Drosophila metamorphosis and identified the evolutionarily-conserved homeodomain protein Cut as a master switch in this process. A steep Wnt/Wingless morphogen gradient intersects with a pulse of steroid hormone ecdysone to induce cut expression in a subset of midgut progenitors and reprogram them into renal progenitors. Molecularly, ecdysone-induced temporal factor Broad physically interacts with cut enhancer-bound Wnt pathway effector TCF/β-catenin and likely bridges the distant enhancer and promoter region of cut through its self-association. Such long-range enhancer-promoter looping could subsequently trigger timely cut transcription. Our results therefore led us to propose an unexpected poising-and-bridging mechanism whereby spatial and temporal cues intersect, likely via chromatin looping, to turn on a master transcription factor and dictate efficient and precise lineage reprogramming. As an embryo develops, an organism transforms from a single cell into an organized collection of different cells, tissues and organs. Regulated by genes and messenger molecules, non-specialized cells known as precursor cells, move, divide and adapt to produce the different cells in the adult body. However, sometimes already-specialized adult cells can acquire a new role in a process known as lineage reprogramming. Finding ways to artificially induce and control lineage reprogramming could be useful in regenerative medicine. This would allow cells to be reprogrammed to replace those that are lost or damaged. So far, scientists have been unable to develop a clear view of how lineage reprogramming happens naturally. Here, Xu et al. identified a cell-conversion event in the developing fruit fly. As the fly larva develops into an adult, a group of cells in the midgut reprogramme to become renal cells – the equivalent to human kidney cells. The experiments revealed that a combination of signals from a cell messenger system important for cell specialization (called Wnt) and the hormone that controls molting in insects, activate a gene called cut, which controls the midgut-to-renal lineage reprogramming. Together, Wnt and the hormone ensure that cut is activated only in a small, specific group of midgut precursor cells at a precise time. The reprogrammed cells then move into the excretory organs, the renal tubes, where they give rise to renal cells. Midgut precursor cells in which cut had been experimentally removed, still traveled into the renal tubes. However, they failed to switch their identity and gave rise to midgut cells instead. Further examination revealed that both Wnt and the ecdysone hormone are needed to activate the cut gene. This is probably achieved by creating loops in the DNA to bring together the two distantly located key regulatory elements of cut gene expression. If this mechanism can be seen in other contexts it may be possible to adapt it for medical purposes. The ability to reprogramme groups of cells with high specificity could transform medicine. It would make it easier for our bodies to regenerate and repair.
Collapse
Affiliation(s)
- Ke Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Xiaodan Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Yuchun Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Chouin Wong
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Yan Song
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
36
|
|
37
|
Inaki M, Sasamura T, Matsuno K. Cell Chirality Drives Left-Right Asymmetric Morphogenesis. Front Cell Dev Biol 2018; 6:34. [PMID: 29666795 PMCID: PMC5891590 DOI: 10.3389/fcell.2018.00034] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/14/2018] [Indexed: 12/23/2022] Open
Abstract
Most macromolecules found in cells are chiral, meaning that they cannot be superimposed onto their mirror image. However, cells themselves can also be chiral, a subject that has received little attention until very recently. In our studies on the mechanisms of left-right (LR) asymmetric development in Drosophila, we discovered that cells can have an intrinsic chirality to their structure, and that this “cell chirality” is generally responsible for the LR asymmetric development of certain organs in this species. The actin cytoskeleton plays important roles in the formation of cell chirality. In addition, Myosin31DF (Myo31DF), which encodes Drosophila Myosin ID, was identified as a molecular switch for cell chirality. In other invertebrate species, including snails and Caenorhabditis elegans, chirality of the blastomeres, another type of cell chirality, determines the LR asymmetry of structures in the body. Thus, chirality at the cellular level may broadly contribute to LR asymmetric development in various invertebrate species. Recently, cell chirality was also reported for various vertebrate cultured cells, and studies suggested that cell chirality is evolutionarily conserved, including the essential role of the actin cytoskeleton. Although the biological roles of cell chirality in vertebrates remain unknown, it may control LR asymmetric development or other morphogenetic events. The investigation of cell chirality has just begun, and this new field should provide valuable new insights in biology and medicine.
Collapse
Affiliation(s)
- Mikiko Inaki
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Takeshi Sasamura
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Kenji Matsuno
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
38
|
Abstract
To create an intricately patterned and reproducibly sized and shaped organ, many cellular processes must be tightly regulated. Cell elongation, migration, metabolism, proliferation rates, cell-cell adhesion, planar polarization and junctional contractions all must be coordinated in time and space. Remarkably, a pair of extremely large cell adhesion molecules called Fat (Ft) and Dachsous (Ds), acting largely as a ligand-receptor system, regulate, and likely coordinate, these many diverse processes. Here we describe recent exciting progress on how the Ds-Ft pathway controls these diverse processes, and highlight a few of the many questions remaining as to how these enormous cell adhesion molecules regulate development.
Collapse
Affiliation(s)
- Seth Blair
- Department of Integrative Biology, University of Wisconsin, Madison, USA
| | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Genetics, University of Toronto, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada.
| |
Collapse
|
39
|
Tingler M, Kurz S, Maerker M, Ott T, Fuhl F, Schweickert A, LeBlanc-Straceski JM, Noselli S, Blum M. A Conserved Role of the Unconventional Myosin 1d in Laterality Determination. Curr Biol 2018; 28:810-816.e3. [PMID: 29478852 DOI: 10.1016/j.cub.2018.01.075] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/01/2018] [Accepted: 01/24/2018] [Indexed: 02/05/2023]
Abstract
Anatomical and functional asymmetries are widespread in the animal kingdom [1, 2]. In vertebrates, many visceral organs are asymmetrically placed [3]. In snails, shells and inner organs coil asymmetrically, and in Drosophila, genitalia and hindgut undergo a chiral rotation during development. The evolutionary origin of these asymmetries remains an open question [1]. Nodal signaling is widely used [4], and many, but not all, vertebrates use cilia for symmetry breaking [5]. In Drosophila, which lacks both cilia and Nodal, the unconventional myosin ID (myo1d) gene controls dextral rotation of chiral organs [6, 7]. Here, we studied the role of myo1d in left-right (LR) axis formation in Xenopus. Morpholino oligomer-mediated myo1d downregulation affected organ placement in >50% of morphant tadpoles. Induction of the left-asymmetric Nodal cascade was aberrant in >70% of cases. Expression of the flow-target gene dand5 was compromised, as was flow itself, due to shorter, fewer, and non-polarized cilia at the LR organizer. Additional phenotypes pinpointed Wnt/planar cell polarity signaling and suggested that myo1d, like in Drosophila [8], acted in the context of the planar cell polarity pathway. Indeed, convergent extension of gastrula explant cultures was inhibited in myo1d morphants, and the ATF2 reporter gene for non-canonical Wnt signaling was downregulated. Finally, genetic interference experiments demonstrated a functional interaction between the core planar cell polarity signaling gene vangl2 and myo1d in LR axis formation. Thus, our data identified myo1d as a common denominator of arthropod and chordate asymmetry, in agreement with a monophyletic origin of animal asymmetry.
Collapse
Affiliation(s)
- Melanie Tingler
- University of Hohenheim, Institute of Zoology, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Sabrina Kurz
- University of Hohenheim, Institute of Zoology, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Markus Maerker
- University of Hohenheim, Institute of Zoology, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Tim Ott
- University of Hohenheim, Institute of Zoology, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Franziska Fuhl
- University of Hohenheim, Institute of Zoology, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Axel Schweickert
- University of Hohenheim, Institute of Zoology, Garbenstrasse 30, 70593 Stuttgart, Germany
| | | | - Stéphane Noselli
- Université Côte d'Azur, CNRS, INSERM, Institut de Biologie Valrose, Parc Valrose, 06108 Nice, France
| | - Martin Blum
- University of Hohenheim, Institute of Zoology, Garbenstrasse 30, 70593 Stuttgart, Germany.
| |
Collapse
|
40
|
McDowell G, Rajadurai S, Levin M. From cytoskeletal dynamics to organ asymmetry: a nonlinear, regulative pathway underlies left-right patterning. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0409. [PMID: 27821521 DOI: 10.1098/rstb.2015.0409] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2016] [Indexed: 12/25/2022] Open
Abstract
Consistent left-right (LR) asymmetry is a fundamental aspect of the bodyplan across phyla, and errors of laterality form an important class of human birth defects. Its molecular underpinning was first discovered as a sequential pathway of left- and right-sided gene expression that controlled positioning of the heart and visceral organs. Recent data have revised this picture in two important ways. First, the physical origin of chirality has been identified; cytoskeletal dynamics underlie the asymmetry of single-cell behaviour and patterning of the LR axis. Second, the pathway is not linear: early disruptions that alter the normal sidedness of upstream asymmetric genes do not necessarily induce defects in the laterality of the downstream genes or in organ situs Thus, the LR pathway is a unique example of two fascinating aspects of biology: the interplay of physics and genetics in establishing large-scale anatomy, and regulative (shape-homeostatic) pathways that correct molecular and anatomical errors over time. Here, we review aspects of asymmetry from its intracellular, cytoplasmic origins to the recently uncovered ability of the LR control circuitry to achieve correct gene expression and morphology despite reversals of key 'determinant' genes. We provide novel functional data, in Xenopus laevis, on conserved elements of the cytoskeleton that drive asymmetry, and comparatively analyse it together with previously published results in the field. Our new observations and meta-analysis demonstrate that despite aberrant expression of upstream regulatory genes, embryos can progressively normalize transcriptional cascades and anatomical outcomes. LR patterning can thus serve as a paradigm of how subcellular physics and gene expression cooperate to achieve developmental robustness of a body axis.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Gary McDowell
- Biology Department, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA.,Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| | - Suvithan Rajadurai
- Biology Department, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA.,Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| | - Michael Levin
- Biology Department, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA .,Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| |
Collapse
|
41
|
Inaki M, Liu J, Matsuno K. Cell chirality: its origin and roles in left-right asymmetric development. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0403. [PMID: 27821533 PMCID: PMC5104503 DOI: 10.1098/rstb.2015.0403] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2016] [Indexed: 12/19/2022] Open
Abstract
An item is chiral if it cannot be superimposed on its mirror image. Most biological molecules are chiral. The homochirality of amino acids ensures that proteins are chiral, which is essential for their functions. Chirality also occurs at the whole-cell level, which was first studied mostly in ciliates, single-celled protozoans. Ciliates show chirality in their cortical structures, which is not determined by genetics, but by 'cortical inheritance'. These studies suggested that molecular chirality directs whole-cell chirality. Intriguingly, chirality in cellular structures and functions is also found in metazoans. In Drosophila, intrinsic cell chirality is observed in various left-right (LR) asymmetric tissues, and appears to be responsible for their LR asymmetric morphogenesis. In other invertebrates, such as snails and Caenorhabditis elegans, blastomere chirality is responsible for subsequent LR asymmetric development. Various cultured cells of vertebrates also show intrinsic chirality in their cellular behaviours and intracellular structural dynamics. Thus, cell chirality may be a general property of eukaryotic cells. In Drosophila, cell chirality drives the LR asymmetric development of individual organs, without establishing the LR axis of the whole embryo. Considering that organ-intrinsic LR asymmetry is also reported in vertebrates, this mechanism may contribute to LR asymmetric development across phyla.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Mikiko Inaki
- Department of Biological Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Jingyang Liu
- Department of Biological Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kenji Matsuno
- Department of Biological Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
42
|
Le Garrec JF, Domínguez JN, Desgrange A, Ivanovitch KD, Raphaël E, Bangham JA, Torres M, Coen E, Mohun TJ, Meilhac SM. A predictive model of asymmetric morphogenesis from 3D reconstructions of mouse heart looping dynamics. eLife 2017; 6:28951. [PMID: 29179813 PMCID: PMC5705212 DOI: 10.7554/elife.28951] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/15/2017] [Indexed: 01/14/2023] Open
Abstract
How left-right patterning drives asymmetric morphogenesis is unclear. Here, we have quantified shape changes during mouse heart looping, from 3D reconstructions by HREM. In combination with cell labelling and computer simulations, we propose a novel model of heart looping. Buckling, when the cardiac tube grows between fixed poles, is modulated by the progressive breakdown of the dorsal mesocardium. We have identified sequential left-right asymmetries at the poles, which bias the buckling in opposite directions, thus leading to a helical shape. Our predictive model is useful to explore the parameter space generating shape variations. The role of the dorsal mesocardium was validated in Shh-/- mutants, which recapitulate heart shape changes expected from a persistent dorsal mesocardium. Our computer and quantitative tools provide novel insight into the mechanism of heart looping and the contribution of different factors, beyond the simple description of looping direction. This is relevant to congenital heart defects.
Collapse
Affiliation(s)
- Jean-François Le Garrec
- Imagine - Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France.,INSERM UMR1163, Université Paris Descartes, Paris, France
| | - Jorge N Domínguez
- Department of Experimental Biology, University of Jaén, CU Las Lagunillas, Jaén, Spain
| | - Audrey Desgrange
- Imagine - Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France.,INSERM UMR1163, Université Paris Descartes, Paris, France
| | - Kenzo D Ivanovitch
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Etienne Raphaël
- Imagine - Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France.,INSERM UMR1163, Université Paris Descartes, Paris, France
| | | | - Miguel Torres
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Enrico Coen
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | | | - Sigolène M Meilhac
- Imagine - Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France.,INSERM UMR1163, Université Paris Descartes, Paris, France
| |
Collapse
|
43
|
Viktorinová I, Henry I, Tomancak P. Epithelial rotation is preceded by planar symmetry breaking of actomyosin and protects epithelial tissue from cell deformations. PLoS Genet 2017; 13:e1007107. [PMID: 29176774 PMCID: PMC5720821 DOI: 10.1371/journal.pgen.1007107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 12/07/2017] [Accepted: 11/07/2017] [Indexed: 12/18/2022] Open
Abstract
Symmetry breaking is involved in many developmental processes that form bodies and organs. One of them is the epithelial rotation of developing tubular and acinar organs. However, how epithelial cells move, how they break symmetry to define their common direction, and what function rotational epithelial motions have remains elusive. Here, we identify a dynamic actomyosin network that breaks symmetry at the basal surface of the Drosophila follicle epithelium of acinar-like primitive organs, called egg chambers, and may represent a candidate force-generation mechanism that underlies the unidirectional motion of this epithelial tissue. We provide evidence that the atypical cadherin Fat2, a key planar cell polarity regulator in Drosophila oogenesis, directs and orchestrates transmission of the intracellular actomyosin asymmetry cue onto a tissue plane in order to break planar actomyosin symmetry, facilitate epithelial rotation in the opposite direction, and direct the elongation of follicle cells. In contrast, loss of this rotational motion results in anisotropic non-muscle Myosin II pulses that are disorganized in plane and causes cell deformations in the epithelial tissue of Drosophila eggs. Our work demonstrates that atypical cadherins play an important role in the control of symmetry breaking of cellular mechanics in order to facilitate tissue motion and model epithelial tissue. We propose that their functions may be evolutionarily conserved in tubular/acinar vertebrate organs. Movement of epithelial tissues is essential for organ and body formation as well as function. To facilitate epithelial movements, cells need an internal or external source of mechanical force and a collective decision in which direction to move. However, little is known about the underlying mechanism of collective cell movement in living and moving epithelial tissues. Using high-speed confocal imaging of rotating follicle epithelia in acinar-like Drosophila egg chambers, we find that individual cells polarize their actomyosin network, a potent force-generating source, at their basal surface. We show that the atypical cadherin Fat2, a key regulator of planar cell polarity in Drosophila oogenesis, unifies and amplifies the polarized non-muscle Myosin II of individual follicle cells to break the symmetry of actomyosin contractility at the epithelial level. We propose that this is essential to facilitate epithelial rotation, and thereby directed cell elongation, at the basal surface of follicle cells. In contrast, a lack of unidirectional actomyosin contractility results in disrupted non-muscle Myosin II polarity within follicle cells and causes asynchronous Myosin II pulses that deform follicle cells. This demonstrates the critical function of Fat2, in the planar symmetry breaking of actomyosin, in epithelial motility, and potentially in organ development.
Collapse
Affiliation(s)
- Ivana Viktorinová
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail:
| | - Ian Henry
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Pavel Tomancak
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
44
|
Sawyer JK, Cohen E, Fox DT. Interorgan regulation of Drosophila intestinal stem cell proliferation by a hybrid organ boundary zone. Development 2017; 144:4091-4102. [PMID: 28947534 PMCID: PMC5719245 DOI: 10.1242/dev.153114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/15/2017] [Indexed: 12/27/2022]
Abstract
The molecular identities and regulation of cells at interorgan boundaries are often unclear, despite the increasingly appreciated role of organ boundaries in disease. Using Drosophila as a model, we here show that a specific population of adult midgut organ-boundary intestinal stem cells (OB-ISCs) is regulated by the neighboring hindgut, a developmentally distinct organ. This distinct OB-ISC control occurs through proximity to a specialized transition zone between the endodermal midgut and ectodermal hindgut that shares molecular signatures of both organs, which we term the hybrid zone (HZ). During homeostasis, proximity to the HZ restrains OB-ISC proliferation. However, injury to the adult HZ/hindgut drives upregulation of unpaired-3 cytokine, which signals through a Signal transducer and activator of transcription (STAT) protein to promote cell division only in OB-ISCs. If HZ disruption is severe, hyperplastic OB-ISCs expand across the interorgan boundary. Our data suggest that interorgan signaling plays an important role in controlling OB-ISCs in homeostasis and injury repair, which is likely to be crucial in prevention of disease.
Collapse
Affiliation(s)
- Jessica K. Sawyer
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, DUMC Box 3813, Durham, NC 27710, USA,Regeneration Next, Duke University Medical Center, DUMC Box 3813, Durham, NC 27710, USA
| | - Erez Cohen
- Regeneration Next, Duke University Medical Center, DUMC Box 3813, Durham, NC 27710, USA,Department of Cell Biology, Duke University Medical Center, DUMC Box 3813, Durham, NC 27710, USA
| | - Donald T. Fox
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, DUMC Box 3813, Durham, NC 27710, USA,Regeneration Next, Duke University Medical Center, DUMC Box 3813, Durham, NC 27710, USA,Department of Cell Biology, Duke University Medical Center, DUMC Box 3813, Durham, NC 27710, USA,Author for correspondence ()
| |
Collapse
|
45
|
Uechi H, Kuranaga E. Mechanisms of collective cell movement lacking a leading or free front edge in vivo. Cell Mol Life Sci 2017; 74:2709-2722. [PMID: 28243700 PMCID: PMC11107506 DOI: 10.1007/s00018-017-2489-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 12/15/2022]
Abstract
Collective cell movement is one of the strategies for achieving the complex shapes of tissues and organs. In this process, multiple cells within a group held together by cell-cell adhesion acquire mobility and move together in the same direction. In some well-studied models of collective cell movement, the mobility depends strongly on traction generated at the leading edge by cells located at the front. However, recent advances in live-imaging techniques have led to the discovery of other types of collective cell movement lacking a leading edge or even a free edge at the front, in a diverse array of morphological events, including tubule elongation, epithelial sheet extension, and tissue rotation. We herein review some of the developmental events that are organized by collective cell movement and attempt to elucidate the underlying cellular and molecular mechanisms, which include membrane protrusions, guidance cues, cell intercalation, and planer cell polarity, or chirality pathways.
Collapse
Affiliation(s)
- Hiroyuki Uechi
- Laboratory for Histogenetic Dynamics, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
| | - Erina Kuranaga
- Laboratory for Histogenetic Dynamics, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan.
- Laboratory of Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan.
| |
Collapse
|
46
|
Ferreira RR, Vermot J. The balancing roles of mechanical forces during left-right patterning and asymmetric morphogenesis. Mech Dev 2017; 144:71-80. [DOI: 10.1016/j.mod.2016.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/03/2016] [Indexed: 11/17/2022]
|
47
|
Keira Y, Wada M, Ishikawa HO. Regulation of Drosophila Development by the Golgi Kinase Four-Jointed. Curr Top Dev Biol 2017; 123:143-179. [DOI: 10.1016/bs.ctdb.2016.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
48
|
Naganathan SR, Middelkoop TC, Fürthauer S, Grill SW. Actomyosin-driven left-right asymmetry: from molecular torques to chiral self organization. Curr Opin Cell Biol 2016; 38:24-30. [DOI: 10.1016/j.ceb.2016.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 10/22/2022]
|
49
|
Schröder SS, Tsikolia N, Weizbauer A, Hue I, Viebahn C. Paraxial Nodal Expression Reveals a Novel Conserved Structure of the Left-Right Organizer in Four Mammalian Species. Cells Tissues Organs 2016; 201:77-87. [PMID: 26741372 DOI: 10.1159/000440951] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2015] [Indexed: 11/19/2022] Open
Abstract
Nodal activity in the left lateral plate mesoderm is a conserved sign of irreversible left-right asymmetry at early somite stages of the vertebrate embryo. An earlier, paraxial nodal domain accompanies the emergence and initial extension of the notochord and is either left-sided, as in the chick and pig, or symmetrical, as in the mouse and rabbit; intriguingly, this interspecific dichotomy is mirrored by divergent morphological features of the posterior notochord (also known as the left-right organizer), which is ventrally exposed to the yolk sac cavity and carries motile cilia in the latter 2 species only. By introducing the cattle embryo as a new model organism for early left-right patterning, we present data to establish 2 groups of mammals characterized by both the morphology of the left-right organizer and the dynamics of paraxial nodal expression: presence and absence of a ventrally open surface of the early (plate-like) posterior notochord correlates with a symmetrical (in mice and rabbits) versus an asymmetrical (in pigs and cattle) paraxial nodal expression domain next to the notochordal plate. High-resolution histological analysis reveals that the latter domain defines in all 4 mammals a novel 'parachordal' axial mesoderm compartment, the topography of which changes according to the specific regression of the similarly novel subchordal mesoderm during the initial phases of notochord development. In conclusion, the mammalian axial mesoderm compartment (1) shares critical conserved features despite the marked differences in early notochord morphology and early left-right patterning and (2) provides a dynamic topographical framework for nodal activity as part of the mammalian left-right organizer.
Collapse
Affiliation(s)
- Silke S Schröder
- Institute of Anatomy and Embryology, University Medical Centre Gx00F6;ttingen, Gx00F6;ttingen, Germany
| | | | | | | | | |
Collapse
|
50
|
Cytoskeletal Symmetry Breaking and Chirality: From Reconstituted Systems to Animal Development. Symmetry (Basel) 2015. [DOI: 10.3390/sym7042062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|