1
|
Kha M, Magnusson Y, Johansson I, Altiparmak G, Lundgren J, Nyström J, Ebefors K, Swärd K, Johansson ME. Injured Proximal Tubular Epithelial Cells Lose Hepatocyte Nuclear Factor 4α Expression Crucial for Brush Border Formation and Transport. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:845-860. [PMID: 39954965 DOI: 10.1016/j.ajpath.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/30/2024] [Accepted: 01/10/2025] [Indexed: 02/17/2025]
Abstract
Recent studies have demonstrated that the transcription factor hepatocyte nuclear factor 4α (HNF4A) drives epithelial differentiation in the renal proximal tubules (PTs) and is critical for maintaining a mature PT phenotype. Furthermore, HNF4A down-regulation has been observed following kidney injury in mouse models. The aim of the present work was to investigate the role of HNF4A during acute and chronic human kidney disease and the loss of the mature PT phenotype in cultured PT cells. Loss of HNF4A expression and gain of vimentin expression were reciprocal and gradual during both acute and chronic kidney disease, as indicated by immunohistochemistry. Healthy human kidneys demonstrated partial or total loss of HNF4A expression in vimentin-positive scattered tubular cells. Primary cell isolation and subculture of PT cells recapitulated HNF4A-associated loss of the PT phenotype. Re-expression of HNF4A in cultured PT cells by adenoviral transduction increased transcripts related to brush border formation as well as absorptive and transport processes, as shown by RNA sequencing and gene set enrichment analyses. Thus, the reduction of HNF4A and increase of vimentin expression were connected to both acute and chronic kidney disease and represented a stereotypic injury response of the PT, resulting in dedifferentiation. HNF4A re-expression in cultured primary PT cells could provide a more reliable and predictive in vitro model to study PT function and injury.
Collapse
Affiliation(s)
- Michelle Kha
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ylva Magnusson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Iva Johansson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Gülay Altiparmak
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jaana Lundgren
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jenny Nyström
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kerstin Ebefors
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Martin E Johansson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
2
|
Ye P, Liu W, Tang X, Liu M, Han J, Wang X, Zhu J, He X, Zhu X, Cao M, Zhao L, Ren Q. Effects of hydroxypropyl starch on intestinal health and transcriptome of geese. Sci Rep 2025; 15:12284. [PMID: 40210970 PMCID: PMC11986093 DOI: 10.1038/s41598-025-96020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/25/2025] [Indexed: 04/12/2025] Open
Abstract
In recent years, gout resulting from uric acid metabolism disorders has led to significant economic losses in goose production. The intestine is a vital organ crucial for uric acid metabolism. Hydroxypropyl starch (HPS) is a resistant starch modified from natural starch, which can enhance intestinal health as a dietary ingredient fiber. In this study, 240 30-day-old Yangzhou geese with similar body weights were divided into three groups: The control group (CG) received a basal diet + 5% corn starch; the hydroxypropyl starch group (HPS) and the sodium urate group (SU) were given a basal diet + 5% hydroxypropyl starch. The experiment lasted for 21 days, and the SU group was administered 30 mg of sodium urate per day during the last 4 days of the study. The results indicated that the level of uric acid in the HPS group was 56.6 µmol/L, significantly lower than that in the CG group (70.8 µmol/L) and the SU group (129.7 µmol/L). The morphological findings revealed that the ileum of the CG group and the SU group exhibited varying degrees of damage, while the HPS group maintained complete structure. The villus height and the ratio of villus height to crypt depth in the HPS group were significantly higher compared to those in the CG and SU groups, while the crypt depth was significantly lower than that in the SU group. A total of 1462 differentially expressed genes (DEGs) were identified at the transcriptome level. GO and KEGG functional enrichment analyses indicated that the DEGs were significantly enriched in the Brush border membrane, Brush border, PPAR signaling pathway, PI3K-Akt signaling pathway, and other related processes. Subsequent analysis revealed that HPS up-regulated the expression of genes associated with intestinal function (such as SLC5A12 and SLC5A8), structure (including NR5A2, IPMK), and uric acid metabolism (PDZK1). The accuracy and reliability of transcriptome sequencing data were confirmed by RT-qPCR. In this study, we systematically demonstrated that HPS can improve intestinal morphology and reduce serum uric acid levels, emphasizing its potential as a dietary supplement for geese.
Collapse
Affiliation(s)
- Pengfei Ye
- College of Animal Science, Anhui Science and Technology University, Chuzhou, 239000, China.
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou, 233100, China.
| | - Wenquan Liu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, 239000, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou, 233100, China
| | - Xiaotong Tang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, 239000, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou, 233100, China
| | - Mengxue Liu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, 239000, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou, 233100, China
| | - Jingfan Han
- College of Animal Science, Anhui Science and Technology University, Chuzhou, 239000, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou, 233100, China
| | - Xiaoxue Wang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, 239000, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou, 233100, China
| | - Jie Zhu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, 239000, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou, 233100, China
| | - Xiaorong He
- College of Animal Science, Anhui Science and Technology University, Chuzhou, 239000, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou, 233100, China
| | - Xueqi Zhu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, 239000, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou, 233100, China
| | - Mixia Cao
- College of Animal Science, Anhui Science and Technology University, Chuzhou, 239000, China
| | - Lei Zhao
- College of Animal Science, Anhui Science and Technology University, Chuzhou, 239000, China
| | - Qingchang Ren
- College of Animal Science, Anhui Science and Technology University, Chuzhou, 239000, China.
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou, 233100, China.
| |
Collapse
|
3
|
Vincenzi M, Mercurio FA, Leone M. Cataract-related mutations in EphA2: a survey of literature data and the relevance of the receptor Sam domain. Expert Opin Ther Targets 2025; 29:239-265. [PMID: 40310271 DOI: 10.1080/14728222.2025.2500422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/24/2025] [Accepted: 04/15/2025] [Indexed: 05/02/2025]
Abstract
INTRODUCTION EphA2 is a receptor tyrosine kinase that is associated with various pathological conditions. Mutations in EphA2 are linked to cataract, an eye disorder manifesting as lens opacity, and representing one of the most prominent causes of blindness worldwide. AREAS COVERED We collected a list of cataract-related EphA2 mutations and positioned them inside the different protein domains to identify regions of the receptor that could be more likely considered targets in the 'anti-cataract' drug discovery field. Moreover, we analyzed the structural consequences these mutations could induce. A search for literature related to EphA2 and cataracts was carried out through the PubMed National Library of Medicine. Structural information on diverse EphA2 domains was obtained from the Protein Data Bank. EphA2 variants connected to cataract were checked on the databases Cat-Map and dbSNP. EXPERT OPINION Cataract-related mutations are gathered within diverse EphA2 domains and are abundant inside its Sam (Sterile alpha motif, EphA2-Sam) domain. Mutations affecting EphA2-Sam could disturb domain helical fold and hamper interaction with other Sam domains, eventually interfering with EphA2 cell migration activity. Identification of stabilizing small molecules targeting EphA2-Sam pathogenic variants could represent an original route to discover novel therapeutic compounds against lens opacity.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council of Italy (IBB-CNR), Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, National Research Council of Italy (IBB-CNR), Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council of Italy (IBB-CNR), Naples, Italy
| |
Collapse
|
4
|
Fritze JS, Stiehler FF, Wolfrum U. Nuclear-Cytoplasmic Shuttling of the Usher Syndrome 1G Protein SANS Differs from Its Paralog ANKS4B. Cells 2024; 13:1855. [PMID: 39594604 PMCID: PMC11592671 DOI: 10.3390/cells13221855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The USH1G protein SANS is a small multifunctional scaffold protein. It is involved in several different cellular processes, such as intracellular transport, in the cytoplasm, or splicing of pre-mRNA, in the cell nucleus. Here, we aimed to gain insight into the regulation of the subcellular localization and the nuclear-cytoplasmic shuttling of SANS and its paralog ANKS4B, not yet reported in the nucleus. We identified karyopherins mediating the nuclear import and export by screening the nuclear interactome of SANS. Sequence analyses predicted in silico evolutionarily conserved nuclear localization sequences (NLSs) and nuclear export sequences (NESs) in SANS, but only NESs in ANKS4B, which are suitable for karyopherin binding. Quantifying the nuclear-cytoplasmic localization of wild-type SANS and NLS/NES mutants, we experimentally confirmed in silico predicted NLS and NES functioning in the nuclear-cytoplasmic shuttling in situ in cells. The comparison of SANS and its paralog ANKS4B revealed substantial differences in the interaction with the nuclear splicing protein PRPF31 and in their nuclear localization. Finally, our results on pathogenic USH1G/SANS mutants suggest that the loss of NLSs and NESs and thereby the ability to control nuclear-cytoplasmic shuttling is disease-relevant.
Collapse
Affiliation(s)
| | | | - Uwe Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (J.S.F.); (F.F.S.)
| |
Collapse
|
5
|
Stubler R, Dooley SA, Edens R, Nicholson MR, Engevik AC. Intestinal Tuft Cells Are Enriched With Protocadherins. J Histochem Cytochem 2024; 72:611-622. [PMID: 39360911 PMCID: PMC11471013 DOI: 10.1369/00221554241287267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/23/2024] [Indexed: 10/13/2024] Open
Abstract
Intestinal tuft cells are rare cells that regulate diverse functions. They harbor chemosensory receptors and signal to the mucosal immune system in response to external stimuli, though their full function and structure remain unclear. Named for their apical "tuft" of long actin-rich microvilli, tuft cells facilitate chemoreception and other physiological responses. In enterocytes, microvilli are stabilized by intermicrovillar adhesion complexes (IMACs) composed of several proteins, including cadherin-related family member-2 (CDHR2) and cadherin-related family member-5 (CDHR5), Myosin 7b, and Usher syndrome type 1 C (USH1C). We hypothesized that IMACs would be enriched in tuft cells to regulate microvillar organization. Immunostaining of murine intestinal tissue revealed that CDHR2 and CDHR5 colocalize with the tuft cell markers, DCLK1, phospho-EGFR, advillin, and cytokeratin 18. CDHR2 was dispersed throughout murine tuft cells, while CDHR5 was concentrated on the apical surface. USH1C and Myosin 7b were present in tuft cells, but at lower levels. Human single-cell RNA sequencing revealed robust CDHR2 and CDHR5 expression in tuft cells in the small intestine and colon. Immunostaining of human intestinal tissue confirmed CDHR2 and CDHR5 localization to the apical surface of tuft cells. Our findings demonstrate that protocadherins are key components of murine and human intestinal tuft cells.
Collapse
Affiliation(s)
- Rachel Stubler
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC
| | - Sarah A. Dooley
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC
| | - Rachel Edens
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC
| | - Maribeth R. Nicholson
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Monroe Carell Jr. Children’s Hospital at Vanderbilt, Nashville, TN
| | - Amy C. Engevik
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
6
|
Matoo S, Graves MJ, Choi MS, Idris RAES, Acharya P, Thapa G, Nguyen T, Atallah SY, Tipirneni AK, Stevenson PJ, Crawley SW. The microvillar protocadherin CDHR5 associates with EBP50 to promote brush border assembly. Mol Biol Cell 2024; 35:ar36. [PMID: 38170579 PMCID: PMC10916864 DOI: 10.1091/mbc.e23-02-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/27/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Transporting epithelial cells of the gut and kidney interact with their luminal environment through a densely packed collection of apical microvilli known as a brush border (BB). Proper brush border assembly depends on the intermicrovillar adhesion complex (IMAC), a protocadherin-based adhesion complex found at the distal tips of microvilli that mediates adhesion between neighboring protrusions to promote their organized packing. Loss of the IMAC adhesion molecule Cadherin-related family member 5 (CDHR5) results in significant brush border defects, though the functional properties of this protocadherin have not been thoroughly explored. Here, we show that the cytoplasmic tail of CDHR5 contributes to its correct apical targeting and functional properties in an isoform-specific manner. Library screening identified the Ezrin-associated scaffolds EBP50 and E3KARP as cytoplasmic binding partners for CDHR5. Consistent with this, loss of EBP50 disrupted proper brush border assembly with cells exhibiting markedly reduced apical IMAC levels. Together, our results shed light on the apical targeting determinants of CDHR5 and further define the interactome of the IMAC involved in brush border assembly.
Collapse
Affiliation(s)
- Samaneh Matoo
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Maura J. Graves
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Myoung Soo Choi
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | | | - Prashun Acharya
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Garima Thapa
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Tram Nguyen
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Sarah Y. Atallah
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Ashna K. Tipirneni
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | | | - Scott W. Crawley
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| |
Collapse
|
7
|
Cencer CS, Silverman JB, Meenderink LM, Krystofiak ES, Millis BA, Tyska MJ. Adhesion-based capture stabilizes nascent microvilli at epithelial cell junctions. Dev Cell 2023; 58:2048-2062.e7. [PMID: 37832537 PMCID: PMC10615885 DOI: 10.1016/j.devcel.2023.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/21/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023]
Abstract
To maximize solute transport, epithelial cells build an apical "brush border," where thousands of microvilli are linked to their neighbors by protocadherin-containing intermicrovillar adhesion complexes (IMACs). Previous studies established that the IMAC is needed to build a mature brush border, but how this complex contributes to the accumulation of new microvilli during differentiation remains unclear. We found that early in differentiation, mouse, human, and porcine epithelial cells exhibit a marginal accumulation of microvilli, which span junctions and interact with protrusions on neighboring cells using IMAC protocadherins. These transjunctional IMACs are highly stable and reinforced by tension across junctions. Finally, long-term live imaging showed that the accumulation of microvilli at cell margins consistently leads to accumulation in medial regions. Thus, nascent microvilli are stabilized by a marginal capture mechanism that depends on the formation of transjunctional IMACs. These results may offer insights into how apical specializations are assembled in diverse epithelial systems.
Collapse
Affiliation(s)
- Caroline S Cencer
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jennifer B Silverman
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Leslie M Meenderink
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA; United States Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN 37212, USA
| | - Evan S Krystofiak
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Bryan A Millis
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN 37235, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
8
|
Cencer CS, Silverman JB, Meenderink LM, Krystofiak ES, Millis BA, Tyska MJ. Adhesion-based capture stabilizes nascent microvilli at epithelial cell junctions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531705. [PMID: 36945471 PMCID: PMC10028856 DOI: 10.1101/2023.03.08.531705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Differentiated transporting epithelial cells present an extensive apical array of microvilli - a "brush border" - where neighboring microvilli are linked together by intermicrovillar adhesion complexes (IMACs) composed of protocadherins CDHR2 and CDHR5. Although loss-of-function studies provide strong evidence that IMAC function is needed to build a mature brush border, how the IMAC contributes to the stabilization and accumulation of nascent microvilli remains unclear. We found that, early in differentiation, the apical surface exhibits a marginal accumulation of microvilli, characterized by higher packing density relative to medial regions of the surface. While medial microvilli are highly dynamic and sample multiple orientations over time, marginal protrusions exhibit constrained motion and maintain a vertical orientation. Unexpectedly, we found that marginal microvilli span the junctional space and contact protrusions on neighboring cells, mediated by complexes of CDHR2/CDHR5. FRAP analysis indicated that these transjunctional IMACs are highly stable relative to adhesion complexes between medial microvilli, which explains the restricted motion of protrusions in the marginal zone. Finally, long-term live imaging revealed that the accumulation of microvilli at cell margins consistently leads to accumulation in medial regions of the cell. Collectively, our findings suggest that nascent microvilli are stabilized by a capture mechanism that is localized to cell margins and enabled by the transjunctional formation of IMACs. These results inform our understanding of how apical specializations are assembled in diverse epithelial systems.
Collapse
|
9
|
Sharkova M, Chow E, Erickson T, Hocking JC. The morphological and functional diversity of apical microvilli. J Anat 2023; 242:327-353. [PMID: 36281951 PMCID: PMC9919547 DOI: 10.1111/joa.13781] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022] Open
Abstract
Sensory neurons use specialized apical processes to perceive external stimuli and monitor internal body conditions. The apical apparatus can include cilia, microvilli, or both, and is adapted for the functions of the particular cell type. Photoreceptors detect light through a large, modified cilium (outer segment), that is supported by a surrounding ring of microvilli-like calyceal processes (CPs). Although first reported 150 years ago, CPs remain poorly understood. As a basis for future study, we therefore conducted a review of existing literature about sensory cell microvilli, which can act either as the primary sensory detector or as support for a cilia-based detector. While all microvilli are finger-like cellular protrusions with an actin core, the processes vary across cell types in size, number, arrangement, dynamics, and function. We summarize the current state of knowledge about CPs and the characteristics of the microvilli found on inner ear hair cells (stereocilia) and cerebral spinal fluid-contacting neurons, with comparisons to the brush border of the intestinal and renal epithelia. The structure, stability, and dynamics of the actin core are regulated by a complement of actin-binding proteins, which includes both common components and unique features when compared across cell types. Further, microvilli are often supported by lateral links, a glycocalyx, and a defined extracellular matrix, each adapted to the function and environment of the cell. Our comparison of microvillar features will inform further research into how CPs support photoreceptor function, and also provide a general basis for investigations into the structure and functions of apical microvilli found on sensory neurons.
Collapse
Affiliation(s)
- Maria Sharkova
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Erica Chow
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Timothy Erickson
- Department of BiologyUniversity of New BrunswickFrederictonNew BrunswickCanada
| | - Jennifer C. Hocking
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Division of Anatomy, Department of Surgery, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Department of Medical Genetics, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Women and Children's Health Research InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
10
|
Schäfer J, Wenck N, Janik K, Linnert J, Stingl K, Kohl S, Nagel-Wolfrum K, Wolfrum U. The Usher syndrome 1C protein harmonin regulates canonical Wnt signaling. Front Cell Dev Biol 2023; 11:1130058. [PMID: 36846582 PMCID: PMC9944737 DOI: 10.3389/fcell.2023.1130058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Human Usher syndrome (USH) is the most common form of hereditary combined deaf-blindness. USH is a complex genetic disorder, and the pathomechanisms underlying the disease are far from being understood, especially in the eye and retina. The USH1C gene encodes the scaffold protein harmonin which organizes protein networks due to binary interactions with other proteins, such as all USH proteins. Interestingly, only the retina and inner ear show a disease-related phenotype, although USH1C/harmonin is almost ubiquitously expressed in the human body and upregulated in colorectal cancer. We show that harmonin binds to β-catenin, the key effector of the canonical Wnt (cWnt) signaling pathway. We also demonstrate the interaction of the scaffold protein USH1C/harmonin with the stabilized acetylated β-catenin, especially in nuclei. In HEK293T cells, overexpression of USH1C/harmonin significantly reduced cWnt signaling, but a USH1C-R31* mutated form did not. Concordantly, we observed an increase in cWnt signaling in dermal fibroblasts derived from an USH1C R31*/R80Pfs*69 patient compared with healthy donor cells. RNAseq analysis reveals that both the expression of genes related to the cWnt signaling pathway and cWnt target genes were significantly altered in USH1C patient-derived fibroblasts compared to healthy donor cells. Finally, we show that the altered cWnt signaling was reverted in USH1C patient fibroblast cells by the application of Ataluren, a small molecule suitable to induce translational read-through of nonsense mutations, hereby restoring some USH1C expression. Our results demonstrate a cWnt signaling phenotype in USH establishing USH1C/harmonin as a suppressor of the cWnt/β-catenin pathway.
Collapse
Affiliation(s)
- Jessica Schäfer
- Institute of Molecular Physiology, Molecular Cell Biology and Photoreceptor Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nicole Wenck
- Institute of Molecular Physiology, Molecular Cell Biology and Photoreceptor Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katharina Janik
- Institute of Molecular Physiology, Molecular Cell Biology and Photoreceptor Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Joshua Linnert
- Institute of Molecular Physiology, Molecular Cell Biology and Photoreceptor Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katarina Stingl
- Centre for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology and Photoreceptor Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany,Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology and Photoreceptor Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany,*Correspondence: Uwe Wolfrum,
| |
Collapse
|
11
|
Morales EA, Gaeta I, Tyska MJ. Building the brush border, one microvillus at a time. Curr Opin Cell Biol 2023; 80:102153. [PMID: 36827850 PMCID: PMC10033394 DOI: 10.1016/j.ceb.2023.102153] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 02/24/2023]
Abstract
Microvilli are actin bundle-supported surface protrusions assembled by diverse cell types to mediate biochemical and physical interactions with the external environment. Found on the surface of some of the earliest animal cells, primordial microvilli likely contributed to bacterial entrapment and feeding. Although millions of years of evolution have repurposed these protrusions to fulfill diverse roles such as detection of mechanical or visual stimuli in inner ear hair cells or retinal pigmented epithelial cells, respectively, solute uptake remains a key essential function linked to these structures. In this mini review, we offer a brief overview of the composition and structure of epithelial microvilli, highlight recent discoveries on the growth of these protrusions early in differentiation, and point to fundamental questions surrounding microvilli biogenesis that remain open for future studies.
Collapse
Affiliation(s)
- E Angelo Morales
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Isabella Gaeta
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
12
|
Towards a Cure for HARS Disease. Genes (Basel) 2023; 14:genes14020254. [PMID: 36833180 PMCID: PMC9956352 DOI: 10.3390/genes14020254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Histidyl-tRNA synthetase (HARS) ligates histidine to its cognate transfer RNA (tRNAHis). Mutations in HARS cause the human genetic disorders Usher syndrome type 3B (USH3B) and Charcot-Marie-Tooth syndrome type 2W (CMT2W). Treatment for these diseases remains symptomatic, and no disease specific treatments are currently available. Mutations in HARS can lead to destabilization of the enzyme, reduced aminoacylation, and decreased histidine incorporation into the proteome. Other mutations lead to a toxic gain-of-function and mistranslation of non-cognate amino acids in response to histidine codons, which can be rescued by histidine supplementation in vitro. We discuss recent advances in characterizing HARS mutations and potential applications of amino acid and tRNA therapy for future gene and allele specific therapy.
Collapse
|
13
|
Nagel-Wolfrum K, Fadl BR, Becker MM, Wunderlich KA, Schäfer J, Sturm D, Fritze J, Gür B, Kaplan L, Andreani T, Goldmann T, Brooks M, Starostik MR, Lokhande A, Apel M, Fath KR, Stingl K, Kohl S, DeAngelis MM, Schlötzer-Schrehardt U, Kim IK, Owen LA, Vetter JM, Pfeiffer N, Andrade-Navarro MA, Grosche A, Swaroop A, Wolfrum U. Expression and subcellular localization of USH1C/harmonin in human retina provides insights into pathomechanisms and therapy. Hum Mol Genet 2023; 32:431-449. [PMID: 35997788 PMCID: PMC9851744 DOI: 10.1093/hmg/ddac211] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 01/24/2023] Open
Abstract
Usher syndrome (USH) is the most common form of hereditary deaf-blindness in humans. USH is a complex genetic disorder, assigned to three clinical subtypes differing in onset, course and severity, with USH1 being the most severe. Rodent USH1 models do not reflect the ocular phenotype observed in human patients to date; hence, little is known about the pathophysiology of USH1 in the human eye. One of the USH1 genes, USH1C, exhibits extensive alternative splicing and encodes numerous harmonin protein isoforms that function as scaffolds for organizing the USH interactome. RNA-seq analysis of human retinae uncovered harmonin_a1 as the most abundant transcript of USH1C. Bulk RNA-seq analysis and immunoblotting showed abundant expression of harmonin in Müller glia cells (MGCs) and retinal neurons. Furthermore, harmonin was localized in the terminal endfeet and apical microvilli of MGCs, presynaptic region (pedicle) of cones and outer segments (OS) of rods as well as at adhesive junctions between MGCs and photoreceptor cells (PRCs) in the outer limiting membrane (OLM). Our data provide evidence for the interaction of harmonin with OLM molecules in PRCs and MGCs and rhodopsin in PRCs. Subcellular expression and colocalization of harmonin correlate with the clinical phenotype observed in USH1C patients. We also demonstrate that primary cilia defects in USH1C patient-derived fibroblasts could be reverted by the delivery of harmonin_a1 transcript isoform. Our studies thus provide novel insights into PRC cell biology, USH1C pathophysiology and development of gene therapy treatment(s).
Collapse
Affiliation(s)
- Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Benjamin R Fadl
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mirjana M Becker
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Kirsten A Wunderlich
- Department of Physiological Genomics, BioMedical Center, Ludwig-Maximilian University Munich, 82152 Planegg-Martinsried, Germany
| | - Jessica Schäfer
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Daniel Sturm
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Jacques Fritze
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Burcu Gür
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Lew Kaplan
- Department of Physiological Genomics, BioMedical Center, Ludwig-Maximilian University Munich, 82152 Planegg-Martinsried, Germany
| | - Tommaso Andreani
- Computational Biology and Data Mining, Institute of Organismic & Molecular Evolution Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Tobias Goldmann
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Matthew Brooks
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Margaret R Starostik
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anagha Lokhande
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Melissa Apel
- Department of Ophthalmology, University Medical Centre Mainz, 55131 Mainz, Germany
| | - Karl R Fath
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Department of Biology, Queens College of CUNY, Kissena Blvd, Flushing, NY 11367, USA
| | - Katarina Stingl
- University Eye Hospital, Centre for Ophthalmology, University of Tubingen, 72076 Tubingen, Germany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tubingen, 72076 Tubingen, Germany
| | - Margaret M DeAngelis
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, NY 14209, USA
| | | | - Ivana K Kim
- Retina Service, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Leah A Owen
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Jan M Vetter
- Department of Ophthalmology, University Medical Centre Mainz, 55131 Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Centre Mainz, 55131 Mainz, Germany
| | - Miguel A Andrade-Navarro
- Computational Biology and Data Mining, Institute of Organismic & Molecular Evolution Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Antje Grosche
- Department of Physiological Genomics, BioMedical Center, Ludwig-Maximilian University Munich, 82152 Planegg-Martinsried, Germany
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| |
Collapse
|
14
|
Li J. Liquid-liquid phase separation in hair cell stereocilia development and maintenance. Comput Struct Biotechnol J 2023; 21:1738-1745. [PMID: 36890881 PMCID: PMC9986246 DOI: 10.1016/j.csbj.2023.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
As an emerging concept, liquid-liquid phase separation (LLPS) in biological systems has shed light on the formation mechanisms of membrane-less compartments in cells. The process is driven by multivalent interactions of biomolecules such as proteins and/or nucleic acids, allowing them to form condensed structures. In the inner ear hair cells, LLPS-based biomolecular condensate assembly plays a vital role in the development and maintenance of stereocilia, the mechanosensing organelles located at the apical surface of hair cells. This review aims to summarize recent findings on the molecular basis governing the LLPS of Usher syndrome-related gene-encoding proteins and their binding partners, which may ultimately result in the formation of upper tip-link density and tip complex density in hair cell stereocilia, offering a better understanding of this severe inherited disease that causes deaf-blindness.
Collapse
Affiliation(s)
- Jianchao Li
- Department of Otorhinolaryngology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China.,Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
15
|
Dooley SA, Engevik KA, Digrazia J, Stubler R, Kaji I, Krystofiak E, Engevik AC. Myosin 5b is required for proper localization of the intermicrovillar adhesion complex in the intestinal brush border. Am J Physiol Gastrointest Liver Physiol 2022; 323:G501-G510. [PMID: 36218265 PMCID: PMC9639760 DOI: 10.1152/ajpgi.00212.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 01/31/2023]
Abstract
Intestinal enterocytes have an elaborate apical membrane of actin-rich protrusions known as microvilli. The organization of microvilli is orchestrated by the intermicrovillar adhesion complex (IMAC), which connects the distal tips of adjacent microvilli. The IMAC is composed of CDHR2 and CDHR5 as well as the scaffolding proteins USH1C, ANKS4B, and Myosin 7b (MYO7B). To create an IMAC, cells must transport the proteins to the apical membrane. Myosin 5b (MYO5B) is a molecular motor that traffics ion transporters to the apical membrane of enterocytes, and we hypothesized that MYO5B may also be responsible for the localization of IMAC proteins. To address this question, we used two different mouse models: 1) neonatal germline MYO5B knockout (MYO5B KO) mice and 2) adult intestinal-specific tamoxifen-inducible VillinCreERT2;MYO5Bflox/flox mice. In control mice, immunostaining revealed that CDHR2, CDHR5, USH1C, and MYO7B were highly enriched at the tips of the microvilli. In contrast, neonatal germline and adult MYO5B-deficient mice showed loss of apical CDHR2, CDHR5, and MYO7B in the brush border and accumulation in a subapical compartment. Colocalization analysis revealed decreased Mander's coefficients in adult inducible MYO5B-deficient mice compared with control mice for CDHR2, CDHR5, USH1C, and MYO7B. Scanning electron microscopy images further demonstrated aberrant microvilli packing in adult inducible MYO5B-deficient mouse small intestine. These data indicate that MYO5B is responsible for the delivery of IMAC components to the apical membrane.NEW & NOTEWORTHY The intestinal epithelium absorbs nutrients and water through an elaborate apical membrane of highly organized microvilli. Microvilli organization is regulated by the intermicrovillar adhesion complexes, which create links between neighboring microvilli and control microvilli packing and density. In this study, we report a new trafficking partner of the IMAC, Myosin 5b. Loss of Myosin 5b results in a disorganized brush border and failure of IMAC proteins to reach the distal tips of microvilli.
Collapse
Affiliation(s)
- Sarah A Dooley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Kristen A Engevik
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Jessica Digrazia
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Rachel Stubler
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | - Izumi Kaji
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Evan Krystofiak
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Cell Imaging Shared Resource, Vanderbilt University, Nashville, Tennessee
| | - Amy C Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
16
|
Engevik MA, Engevik AC. Myosins and membrane trafficking in intestinal brush border assembly. Curr Opin Cell Biol 2022; 77:102117. [PMID: 35870341 DOI: 10.1016/j.ceb.2022.102117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022]
Abstract
Myosins are a class of motors that participate in a wide variety of cellular functions including organelle transport, cell adhesion, endocytosis and exocytosis, movement of RNA, and cell motility. Among the emerging roles for myosins is regulation of the assembly, morphology, and function of actin protrusions such as microvilli. The intestine harbors an elaborate apical membrane composed of highly organized microvilli. Microvilli assembly and function are intricately tied to several myosins including Myosin 1a, non-muscle Myosin 2c, Myosin 5b, Myosin 6, and Myosin 7b. Here, we review the research progress made in our understanding of myosin mediated apical assembly.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina
| | - Amy C Engevik
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina.
| |
Collapse
|
17
|
Yan W, Chen G, Li J. Structure of the Harmonin PDZ2 and coiled-coil domains in a complex with CDHR2 tail and its implications. FASEB J 2022; 36:e22425. [PMID: 35747925 DOI: 10.1096/fj.202200403rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 11/11/2022]
Abstract
Harmonin is a protein containing multiple PDZ domains and is required for the development and maintenance of hair cell stereocilia and brush border microvilli. Mutations in the USH1C gene can cause Usher syndrome type 1C, a severe inheritable disease characterized by the loss of hearing and vision. Here, by solving the high-resolution crystal structure of Harmonin PDZ2 and coiled-coil domains in a complex with the tail of cadherin-related family member 2, we demonstrated that mutations located in the Harmonin PDZ2 domain and found in patients could affect its stability, and thus, the target binding capability. The structure also implies that the coiled-coil domain could form antiparallel dimers under high concentrations, possibly when Harmonin underwent liquid-liquid phase separation in the upper tip-link density in hair cell stereocilia or microvilli of enterocytes of the intestinal epithelium. The crystal structure, together with the biochemical analysis, provided mechanistic implications for Harmonin mutations causing Usher syndrome, non-syndromic deafness, or enteropathy.
Collapse
Affiliation(s)
- Wenxia Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Guanhao Chen
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jianchao Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Otorhinolaryngology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
18
|
Deafness-related protein PDZD7 forms complex with the C-terminal tail of FCHSD2. Biochem J 2022; 479:1393-1405. [PMID: 35695292 PMCID: PMC9317961 DOI: 10.1042/bcj20220147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022]
Abstract
In cochlea, deafness-related protein PDZD7 is an indispensable component of the ankle link complex, which is critical for the maturation of inner-ear hair cell for sound perception. Ankle links, connecting the different rows of cochlear stereocilia, are essential for the staircase-like development of stereocilia. However, the molecular mechanism of how PDZD7 governs stereociliary development remains unknown. Here, we reported a novel PDZD7-binding partner, FCHSD2, identified by yeast two-hybrid screening. FCHSD2 was reported to be expressed in hair cell, where it co-operated with CDC42 and N-WASP to regulate the formation of cell protrusion. The association between FCHSD2 and PDZD7 was further confirmed in COS-7 cells. More importantly, we solved the complex structure of FCHSD2 tail with PDZD7 PDZ3 domain at 2.0 Å resolution. The crystal structure shows that PDZD7 PDZ3 adopts a typical PDZ domain topology, comprising five β strands and two α helixes. The PDZ-binding motif of FCHSD2 tail stretches through the αB/βB groove of PDZD7 PDZ3. Our study not only uncovers the interaction between FCHSD2 tail and PDZD7 PDZ3 at the atomic level, but also provides clues of connecting the ankle link complex with cytoskeleton dynamics for exploiting the molecular mechanism of stereociliary development.
Collapse
|
19
|
Miyoshi T, Belyantseva IA, Kitajiri SI, Miyajima H, Nishio SY, Usami SI, Kim BJ, Choi BY, Omori K, Shroff H, Friedman TB. Human deafness-associated variants alter the dynamics of key molecules in hair cell stereocilia F-actin cores. Hum Genet 2022; 141:363-382. [PMID: 34232383 PMCID: PMC11351816 DOI: 10.1007/s00439-021-02304-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022]
Abstract
Stereocilia protrude up to 100 µm from the apical surface of vertebrate inner ear hair cells and are packed with cross-linked filamentous actin (F-actin). They function as mechanical switches to convert sound vibration into electrochemical neuronal signals transmitted to the brain. Several genes encode molecular components of stereocilia including actin monomers, actin regulatory and bundling proteins, motor proteins and the proteins of the mechanotransduction complex. A stereocilium F-actin core is a dynamic system, which is continuously being remodeled while maintaining an outwardly stable architecture under the regulation of F-actin barbed-end cappers, severing proteins and crosslinkers. The F-actin cores of stereocilia also provide a pathway for motor proteins to transport cargos including components of tip-link densities, scaffolding proteins and actin regulatory proteins. Deficiencies and mutations of stereocilia components that disturb this "dynamic equilibrium" in stereocilia can induce morphological changes and disrupt mechanotransduction causing sensorineural hearing loss, best studied in mouse and zebrafish models. Currently, at least 23 genes, associated with human syndromic and nonsyndromic hearing loss, encode proteins involved in the development and maintenance of stereocilia F-actin cores. However, it is challenging to predict how variants associated with sensorineural hearing loss segregating in families affect protein function. Here, we review the functions of several molecular components of stereocilia F-actin cores and provide new data from our experimental approach to directly evaluate the pathogenicity and functional impact of reported and novel variants of DIAPH1 in autosomal-dominant DFNA1 hearing loss using single-molecule fluorescence microscopy.
Collapse
Affiliation(s)
- Takushi Miyoshi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Room 1F-143A, Bethesda, MD, 20892, USA.
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| | - Inna A Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Room 1F-143A, Bethesda, MD, 20892, USA
| | - Shin-Ichiro Kitajiri
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 390-8621, Matsumoto, Japan
| | - Hiroki Miyajima
- Department of Otolaryngology, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
- Department of Otolaryngology, Aizawa Hospital, Matsumoto, 390-8510, Japan
| | - Shin-Ya Nishio
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 390-8621, Matsumoto, Japan
| | - Shin-Ichi Usami
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 390-8621, Matsumoto, Japan
| | - Bong Jik Kim
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Chungnam National University Sejong Hospital, Sejong, 30099, South Korea
- Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, South Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, 13620, South Korea
| | - Koichi Omori
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Room 1F-143A, Bethesda, MD, 20892, USA
| |
Collapse
|
20
|
Joo SY, Na G, Kim JA, Yoo JE, Kim DH, Kim SJ, Jang SH, Yu S, Kim HY, Choi JY, Gee HY, Jung J. Clinical Heterogeneity Associated with MYO7A Variants Relies on Affected Domains. Biomedicines 2022; 10:biomedicines10040798. [PMID: 35453549 PMCID: PMC9028242 DOI: 10.3390/biomedicines10040798] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Autosomal dominant hearing loss (ADHL) manifests as an adult-onset disease or a progressive disease. MYO7A variants are associated with DFNA11, a subtype of ADHL. Here, we examined the role and genotype–phenotype correlation of MYO7A in ADHL. Enrolled families suspected of having post-lingual sensorineural hearing loss were selected for exome sequencing. Mutational alleles in MYO7A were identified according to ACMG guidelines. Segregation analysis was performed to examine whether pathogenic variants segregated with affected status of families. All identified pathogenic variants were evaluated for a phenotype–genotype correlation. MYO7A variants were detected in 4.7% of post-lingual families, and 12 of 14 families were multiplex. Five potentially pathogenic missense variants were identified. Fourteen variants causing autosomal dominant deafness were clustered in motor and MyTH4 domains of MYO7A protein. Missense variants in the motor domain caused late onset of hearing loss with ascending tendency. A severe audiological phenotype was apparent in individuals carrying tail domain variants. We report two new pathogenic variants responsible for DFNA11 in the Korean ADHL population. Dominant pathogenic variants of MYO7A occur frequently in motor and MyTH4 domains. Audiological differences among individuals correspond to specific domains which contain the variants. Therefore, appropriate rehabilitation is needed, particularly for patients with late-onset familial hearing loss.
Collapse
Affiliation(s)
- Sun Young Joo
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea; (S.Y.J.); (J.A.K.); (S.J.K.); (S.H.J.); (S.Y.); (H.-Y.K.)
| | - Gina Na
- Department of Otorhinolaryngology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang 10380, Korea;
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.E.Y.); (D.H.K.); (J.Y.C.)
| | - Jung Ah Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea; (S.Y.J.); (J.A.K.); (S.J.K.); (S.H.J.); (S.Y.); (H.-Y.K.)
| | - Jee Eun Yoo
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.E.Y.); (D.H.K.); (J.Y.C.)
| | - Da Hye Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.E.Y.); (D.H.K.); (J.Y.C.)
| | - Se Jin Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea; (S.Y.J.); (J.A.K.); (S.J.K.); (S.H.J.); (S.Y.); (H.-Y.K.)
| | - Seung Hyun Jang
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea; (S.Y.J.); (J.A.K.); (S.J.K.); (S.H.J.); (S.Y.); (H.-Y.K.)
| | - Seyoung Yu
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea; (S.Y.J.); (J.A.K.); (S.J.K.); (S.H.J.); (S.Y.); (H.-Y.K.)
| | - Hye-Youn Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea; (S.Y.J.); (J.A.K.); (S.J.K.); (S.H.J.); (S.Y.); (H.-Y.K.)
| | - Jae Young Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.E.Y.); (D.H.K.); (J.Y.C.)
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea; (S.Y.J.); (J.A.K.); (S.J.K.); (S.H.J.); (S.Y.); (H.-Y.K.)
- Correspondence: (H.Y.G.); (J.J.); Tel.: +82-2-2228-0755 (H.Y.G.); +82-2228-3622 (J.J.)
| | - Jinsei Jung
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.E.Y.); (D.H.K.); (J.Y.C.)
- Correspondence: (H.Y.G.); (J.J.); Tel.: +82-2-2228-0755 (H.Y.G.); +82-2228-3622 (J.J.)
| |
Collapse
|
21
|
Gray ME, Johnson ZR, Modak D, Tamilselvan E, Tyska MJ, Sotomayor M. Heterophilic and homophilic cadherin interactions in intestinal intermicrovillar links are species dependent. PLoS Biol 2021; 19:e3001463. [PMID: 34871294 PMCID: PMC8691648 DOI: 10.1371/journal.pbio.3001463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/21/2021] [Accepted: 10/30/2021] [Indexed: 11/19/2022] Open
Abstract
Enterocytes are specialized epithelial cells lining the luminal surface of the small intestine that build densely packed arrays of microvilli known as brush borders. These microvilli drive nutrient absorption and are arranged in a hexagonal pattern maintained by intermicrovillar links formed by 2 nonclassical members of the cadherin superfamily of calcium-dependent cell adhesion proteins: protocadherin-24 (PCDH24, also known as CDHR2) and the mucin-like protocadherin (CDHR5). The extracellular domains of these proteins are involved in heterophilic and homophilic interactions important for intermicrovillar function, yet the structural determinants of these interactions remain unresolved. Here, we present X-ray crystal structures of the PCDH24 and CDHR5 extracellular tips and analyze their species-specific features relevant for adhesive interactions. In parallel, we use binding assays to identify the PCDH24 and CDHR5 domains involved in both heterophilic and homophilic adhesion for human and mouse proteins. Our results suggest that homophilic and heterophilic interactions involving PCDH24 and CDHR5 are species dependent with unique and distinct minimal adhesive units.
Collapse
Affiliation(s)
- Michelle E. Gray
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Zachary R. Johnson
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Debadrita Modak
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Elakkiya Tamilselvan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
- Biophysics Program, The Ohio State University, Columbus, Ohio, United States of America
| | - Matthew J. Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Marcos Sotomayor
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
- Biophysics Program, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
22
|
Abstract
Filopodia, microvilli and stereocilia represent an important group of plasma membrane protrusions. These specialized projections are supported by parallel bundles of actin filaments and have critical roles in sensing the external environment, increasing cell surface area, and acting as mechanosensors. While actin-associated proteins are essential for actin-filament elongation and bundling in these protrusions, myosin motors have a surprising role in the formation and extension of filopodia and stereocilia and in the organization of microvilli. Actin regulators and specific myosins collaborate in controlling the length of these structures. Myosins can transport cargoes along the length of these protrusions, and, in the case of stereocilia and microvilli, interactions with adaptors and cargoes can also serve to anchor adhesion receptors to the actin-rich core via functionally conserved motor-adaptor complexes. This review highlights recent progress in understanding the diverse roles myosins play in filopodia, microvilli and stereocilia.
Collapse
Affiliation(s)
- Anne Houdusse
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, 75005 Paris, France.
| | - Margaret A Titus
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
23
|
Kapustina M, Cheney RE. A new light chain for myosin-7. J Biol Chem 2021; 295:9297-9298. [PMID: 32651283 DOI: 10.1074/jbc.h120.014595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
Recent research has revealed that an adhesion complex based on cadherins and the motor protein myosin-7b (MYO7B) links the tips of intestinal microvilli. Choi et al. now report that a largely uncharacterized protein known as calmodulin-like protein 4 (CALML4) is a component of this adhesion complex and functions as a light chain for myosin-7b. Because the intermicrovillar adhesion complex is homologous to the myosin-7a (MYO7A)-based Usher syndrome complex and Choi et al. also report that CALML4 can bind to myosin-7a, this work also has important implications for research on myosin-7a and hereditary deaf-blindness.
Collapse
Affiliation(s)
- Maryna Kapustina
- Dept. of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Richard E Cheney
- Dept. of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
24
|
Weck ML, Crawley SW, Tyska MJ. A heterologous in-cell assay for investigating intermicrovillar adhesion complex interactions reveals a novel protrusion length-matching mechanism. J Biol Chem 2020; 295:16191-16206. [PMID: 33051206 DOI: 10.1074/jbc.ra120.015929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/30/2020] [Indexed: 01/18/2023] Open
Abstract
Solute transporting epithelial cells build arrays of microvilli on their apical surface to increase membrane scaffolding capacity and enhance function potential. In epithelial tissues such as the kidney and gut, microvilli are length-matched and assembled into tightly packed "brush borders," which are organized by ∼50-nm thread-like links that form between the distal tips of adjacent protrusions. Composed of protocadherins CDHR2 and CDHR5, adhesion links are stabilized at the tips by a cytoplasmic tripartite module containing the scaffolds USH1C and ANKS4B and the actin-based motor MYO7B. Because several questions about the formation and function of this "intermicrovillar adhesion complex" remain open, we devised a system that allows one to study individual binary interactions between specific complex components and MYO7B. Our approach employs a chimeric myosin consisting of the MYO10 motor domain fused to the MYO7B cargo-binding tail domain. When expressed in HeLa cells, which do not normally produce adhesion complex proteins, this chimera trafficked to the tips of filopodia and was also able to transport individual complex components to these sites. Unexpectedly, the MYO10-MYO7B chimera was able to deliver CDHR2 and CDHR5 to distal tips in the absence of USH1C or ANKS4B. Cells engineered to localize high levels of CDHR2 at filopodial tips acquired interfilopodial adhesion and exhibited a striking dynamic length-matching activity that aligned distal tips over time. These findings deepen our understanding of mechanisms that promote the distal tip accumulation of intermicrovillar adhesion complex components and also offer insight on how epithelial cells minimize microvillar length variability.
Collapse
Affiliation(s)
- Meredith L Weck
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Scott W Crawley
- Department of Biology, University of Toledo, Toledo, Ohio, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
25
|
He Y, Li J, Zhang M. Myosin VII, USH1C, and ANKS4B or USH1G Together Form Condensed Molecular Assembly via Liquid-Liquid Phase Separation. Cell Rep 2020; 29:974-986.e4. [PMID: 31644917 DOI: 10.1016/j.celrep.2019.09.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/18/2019] [Accepted: 09/11/2019] [Indexed: 01/01/2023] Open
Abstract
Hair cell stereocilia tip-links function to sense mechanical forces generated by sound waves and maintain the structure of stereocilia by rooting the tail of cadherins to highly dense structures known as tip-link densities. Although the molecular components are largely known, the mechanisms underlying the tip-link density formation are unknown. Here, we show that Myosin VIIB (MYO7B), USH1C, and ANKS4B, which form a specific complex stabilizing tip-links in intestine microvilli, could form dense condensates via liquid-liquid phase separation in vitro and in cells. The MYO7A, USH1C, and USH1G complex also undergoes phase separation in cells. Formation of the MYO7A/USH1C/USH1G and MYO7B/USH1C/ANKS4B condensates requires strong and multivalent interactions between proteins in both tripartite complexes. Point mutations of MYO7A found in Usher syndrome patients weaken or even disrupt the multivalent interactions of the MYO7A/USH1C/USH1G complex and impair its phase separation. Thus, the stereocilia tip-link densities may form via phase separation of the MYO7A/USH1C/USH1G complex.
Collapse
Affiliation(s)
- Yunyun He
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jianchao Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China.
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
26
|
Abstract
Myosins constitute a superfamily of actin-based molecular motor proteins that mediates a variety of cellular activities including muscle contraction, cell migration, intracellular transport, the formation of membrane projections, cell adhesion, and cell signaling. The 12 myosin classes that are expressed in humans share sequence similarities especially in the N-terminal motor domain; however, their enzymatic activities, regulation, ability to dimerize, binding partners, and cellular functions differ. It is becoming increasingly apparent that defects in myosins are associated with diseases including cardiomyopathies, colitis, glomerulosclerosis, neurological defects, cancer, blindness, and deafness. Here, we review the current state of knowledge regarding myosins and disease.
Collapse
|
27
|
Graves MJ, Matoo S, Choi MS, Storad ZA, El Sheikh Idris RA, Pickles BK, Acharya P, Shinder PE, Arvay TO, Crawley SW. A cryptic sequence targets the adhesion complex scaffold ANKS4B to apical microvilli to promote enterocyte brush border assembly. J Biol Chem 2020; 295:12588-12604. [PMID: 32636301 DOI: 10.1074/jbc.ra120.013790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/30/2020] [Indexed: 12/31/2022] Open
Abstract
Nutrient-transporting enterocytes interact with their luminal environment using a densely packed collection of apical microvilli known as the brush border. Assembly of the brush border is controlled by the intermicrovillar adhesion complex (IMAC), a protocadherin-based complex found at the tips of brush border microvilli that mediates adhesion between neighboring protrusions. ANKS4B is known to be an essential scaffold within the IMAC, although its functional properties have not been thoroughly characterized. We report here that ANKS4B is directed to the brush border using a noncanonical apical targeting sequence that maps to a previously unannotated region of the scaffold. When expressed on its own, this sequence targeted to microvilli in the absence of any direct interaction with the other IMAC components. Sequence analysis revealed a coiled-coil motif and a putative membrane-binding basic-hydrophobic repeat sequence within this targeting region, both of which were required for the scaffold to target and mediate brush border assembly. Size-exclusion chromatography of the isolated targeting sequence coupled with in vitro brush border binding assays suggests that it functions as an oligomer. We further show that the corresponding sequence found in the closest homolog of ANKS4B, the scaffold USH1G that operates in sensory epithelia as part of the Usher complex, lacks the inherent ability to target to microvilli. This study further defines the underlying mechanism of how ANKS4B targets to the apical domain of enterocytes to drive brush border assembly and identifies a point of functional divergence between the ankyrin repeat-based scaffolds found in the IMAC and Usher complex.
Collapse
Affiliation(s)
- Maura J Graves
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Samaneh Matoo
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Myoung Soo Choi
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Zachary A Storad
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | | | - Brooke K Pickles
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Prashun Acharya
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Paula E Shinder
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Taylen O Arvay
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Scott W Crawley
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
28
|
Abstract
Unconventional myosins are a large superfamily of actin-based molecular motors that use ATP as fuel to generate mechanical motions/forces. The distinct tails in different unconventional myosin subfamilies can recognize various cargoes including proteins and lipids. Thus, they can play diverse roles in many biological processes such as cellular trafficking, mechanical supports, force sensing, etc. This chapter focuses on some recent advances on the structural studies of how unconventional myosins specifically bind to cargoes with their cargo-binding domains.
Collapse
|
29
|
Postema MM, Grega-Larson NE, Meenderink LM, Tyska MJ. PACSIN2-dependent apical endocytosis regulates the morphology of epithelial microvilli. Mol Biol Cell 2019; 30:2515-2526. [PMID: 31390291 PMCID: PMC6743356 DOI: 10.1091/mbc.e19-06-0352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Apical microvilli are critical for the homeostasis of transporting epithelia, yet mechanisms that control the assembly and morphology of these protrusions remain poorly understood. Previous studies in intestinal epithelial cell lines suggested a role for the F-BAR domain protein PACSIN2 in normal microvillar assembly. Here we report the phenotype of PACSIN2 KO mice and provide evidence that through its role in promoting apical endocytosis, this molecule plays a role in controlling microvillar morphology. PACSIN2 KO enterocytes exhibit reduced numbers of microvilli and defects in the microvillar ultrastructure, with membranes lifting away from rootlets of core bundles. Dynamin2, a PACSIN2 binding partner, and other endocytic factors were also lost from their normal localization near microvillar rootlets. To determine whether loss of endocytic machinery could explain defects in microvillar morphology, we examined the impact of PACSIN2 KD and endocytosis inhibition on live intestinal epithelial cells. These assays revealed that when endocytic vesicle scission fails, tubules are pulled into the cytoplasm and this, in turn, leads to a membrane-lifting phenomenon reminiscent of that observed at PACSIN2 KO brush borders. These findings lead to a new model where inward forces generated by endocytic machinery on the plasma membrane control the membrane wrapping of cell surface protrusions.
Collapse
Affiliation(s)
- Meagan M Postema
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, University Medical Center, Nashville, TN 37232
| | - Nathan E Grega-Larson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, University Medical Center, Nashville, TN 37232
| | - Leslie M Meenderink
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, University Medical Center, Nashville, TN 37232
| |
Collapse
|
30
|
Pinette JA, Mao S, Millis BA, Krystofiak ES, Faust JJ, Tyska MJ. Brush border protocadherin CDHR2 promotes the elongation and maximized packing of microvilli in vivo. Mol Biol Cell 2018; 30:108-118. [PMID: 30403560 PMCID: PMC6337912 DOI: 10.1091/mbc.e18-09-0558] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Transporting epithelial cells optimize their morphology for solute uptake by building an apical specialization: a dense array of microvilli that serves to increase membrane surface area. In the intestinal tract, individual cells build thousands of microvilli, which pack tightly to form the brush border. Recent studies implicate adhesion molecule CDHR2 in the regulation of microvillar packing via the formation of adhesion complexes between the tips of adjacent protrusions. To gain insight on how CDHR2 contributes to brush border morphogenesis and enterocyte function under native in vivo conditions, we generated mice lacking CDHR2 expression in the intestinal tract. Although CDHR2 knockout (KO) mice are viable, body weight trends lower and careful examination of tissue, cell, and brush border morphology revealed several perturbations that likely contribute to reduced functional capacity of KO intestine. In the absence of CDHR2, microvilli are significantly shorter, and exhibit disordered packing and a 30% decrease in packing density. These structural perturbations are linked to decreased levels of key solute processing and transporting factors in the brush border. Thus, CDHR2 functions to elongate microvilli and maximize their numbers on the apical surface, which together serve to increase the functional capacity of enterocyte.
Collapse
Affiliation(s)
- Julia A Pinette
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Suli Mao
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Bryan A Millis
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Evan S Krystofiak
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - James J Faust
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
31
|
Guo JR, Dong XF, Liu S, Tong JM. High-throughput sequencing reveals the effect of Bacillus subtilis CGMCC 1.921 on the cecal microbiota and gene expression in ileum mucosa of laying hens. Poult Sci 2018; 97:2543-2556. [PMID: 29897524 DOI: 10.3382/ps/pey112] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/09/2018] [Indexed: 12/16/2022] Open
Abstract
This study evaluated the effects of Bacillus subtilis CGMCC 1.921 supplementation on the production performance, cecal microbiota and mucosal transcriptome of laying hens by 16s rRNA gene sequencing and RNA-seq. A total of 144 27-week-old Hy-Line Brown laying hens were allocated into two treatments, namely, a basal diet without additions (T0) and the basal diet supplemented with 1.0 × 108 cfu/g (T1) B. subtilis CGMCC 1.921, with six replicates of 12 birds in each for 24 weeks. The results showed that T1 significantly decreased feed:egg ratio compared with T0 (P < 0.05). Dietary supplementation with B. subtilis CGMCC 1.921 increased the Shannon index (P < 0.05) which indicated enhanced diversity of cecal microflora. An increasing trend in Observed species index (P = 0.072) was observed in hens fed with diets supplemented with B. subtilis CGMCC 1.921 that showed a higher species richness. And T1 modulated cecal microbiota by increasing the relative proportion of Alistipes, Subdoligranulum, Ruminococcaceae UCG-014, Anaerotruncus, Ruminiclostridium 5, Ruminococcaceae UCG-010, Erysipelatoclostridium, Ruminococcaceae UCG-009, Family XIII AD3011 group, Bacillus, Faecalicoccus, Firmicutes bacterium CAG822, Oxalobacter, and Dielma at genus level (P < 0.05). In addition, there was a tendency of increase in the relative abundance of Lactobacillus (P = 0.055), Anaerobiospirillum (P = 0.059) and Family XIII UCG-001 (P = 0.054), Peptococcus (P = 0.078), and Ruminococcaceae UCG-004 (P = 0.078). Moreover, heatmap analysis indicated that the abundance of Campylobacter and Clostridium sensu stricto 1 was lower than T0. A total of 942 genes were identified by differential expression analysis, among which 400 genes were upregulated and 542 genes were downregulated. Bioinformatics analysis suggested that the upregulated genes were involved in Peroxisome Proliferator Activated Receptor (PPAR) signaling pathway, starch and sucrose metabolism, glycine/serine/threonine metabolism, and galactose metabolism, which may promote nutrient absorption. This study provided novel insights into the probiotic mechanisms of B. subtilis on laying hens.
Collapse
Affiliation(s)
- J R Guo
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - X F Dong
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - S Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - J M Tong
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| |
Collapse
|
32
|
Pelaseyed T, Bretscher A. Regulation of actin-based apical structures on epithelial cells. J Cell Sci 2018; 131:131/20/jcs221853. [PMID: 30333133 DOI: 10.1242/jcs.221853] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cells of transporting epithelia are characterized by the presence of abundant F-actin-based microvilli on their apical surfaces. Likewise, auditory hair cells have highly reproducible rows of apical stereocilia (giant microvilli) that convert mechanical sound into an electrical signal. Analysis of mutations in deaf patients has highlighted the critical components of tip links between stereocilia, and related structures that contribute to the organization of microvilli on epithelial cells have been found. Ezrin/radixin/moesin (ERM) proteins, which are activated by phosphorylation, provide a critical link between the plasma membrane and underlying actin cytoskeleton in surface structures. Here, we outline recent insights into how microvilli and stereocilia are built, and the roles of tip links. Furthermore, we highlight how ezrin is locally regulated by phosphorylation, and that this is necessary to maintain polarity. Localized phosphorylation is achieved through an intricate coincidence detection mechanism that requires the membrane lipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and the apically localized ezrin kinase, lymphocyte-oriented kinase (LOK, also known as STK10) or Ste20-like kinase (SLK). We also discuss how ezrin-binding scaffolding proteins regulate microvilli and how, despite these significant advances, it remains to be discovered how the cell polarity program ultimately interfaces with these processes.
Collapse
Affiliation(s)
- Thaher Pelaseyed
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Anthony Bretscher
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
33
|
Postema MM, Grega-Larson NE, Neininger AC, Tyska MJ. IRTKS (BAIAP2L1) Elongates Epithelial Microvilli Using EPS8-Dependent and Independent Mechanisms. Curr Biol 2018; 28:2876-2888.e4. [PMID: 30197089 DOI: 10.1016/j.cub.2018.07.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/05/2018] [Accepted: 07/09/2018] [Indexed: 11/24/2022]
Abstract
Transporting epithelial cells like those that line the gut build large arrays of actin-supported protrusions called microvilli, which extend from the apical surface into luminal spaces to increase functional surface area. Although critical for maintaining physiological homeostasis, mechanisms controlling the formation of microvilli remain poorly understood. Here, we report that the inverse-bin-amphiphysin-Rvs (I-BAR)-domain-containing protein insulin receptor tyrosine kinase substrate (IRTKS) (also known as BAIAP2L1) promotes the growth of epithelial microvilli. Super-resolution microscopy and live imaging of differentiating epithelial cells revealed that IRTKS localizes to the distal tips of actively growing microvilli via a mechanism that requires its N-terminal I-BAR domain. At microvillar tips, IRTKS promotes elongation through a mechanism involving its C-terminal actin-binding WH2 domain. IRTKS can also drive microvillar elongation using its SH3 domain to recruit the bundling protein EPS8 to microvillar tips. These results provide new insight on mechanisms that control microvillar growth during the differentiation of transporting epithelial cells and help explain why IRTKS is targeted by enteric pathogens that disrupt microvillar structure during infection of the intestinal epithelium.
Collapse
Affiliation(s)
- Meagan M Postema
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nathan E Grega-Larson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Abigail C Neininger
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
34
|
VanDussen KL, Stojmirović A, Li K, Liu TC, Kimes PK, Muegge BD, Simpson KF, Ciorba MA, Perrigoue JG, Friedman JR, Towne JE, Head RD, Stappenbeck TS. Abnormal Small Intestinal Epithelial Microvilli in Patients With Crohn's Disease. Gastroenterology 2018; 155:815-828. [PMID: 29782846 PMCID: PMC6378688 DOI: 10.1053/j.gastro.2018.05.028] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 04/16/2018] [Accepted: 05/07/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Crohn disease (CD) presents as chronic and often progressive intestinal inflammation, but the contributing pathogenic mechanisms are unclear. We aimed to identify alterations in intestinal cells that could contribute to the chronic and progressive course of CD. METHODS We took an unbiased system-wide approach by performing sequence analysis of RNA extracted from formalin-fixed paraffin-embedded ileal tissue sections from patients with CD (n = 36) and without CD (controls; n = 32). We selected relatively uninflamed samples, based on histology, before gene expression profiling; validation studies were performed using adjacent serial tissue sections. A separate set of samples (3 control and 4 CD samples) was analyzed by transmission electron microscopy. We developed methods to visualize an overlapping modular network of genes dysregulated in the CD samples. We validated our findings using biopsy samples (110 CD samples for gene expression analysis and 54 for histologic analysis) from the UNITI-2 phase 3 trial of ustekinumab for patients with CD and healthy individuals (26 samples used in gene expression analysis). RESULTS We identified gene clusters that were altered in nearly all CD samples. One cluster encoded genes associated with the enterocyte brush border, leading us to investigate microvilli. In ileal tissues from patients with CD, the microvilli were of decreased length and had ultrastructural defects compared with tissues from controls. Microvilli length correlated with expression of genes that regulate microvilli structure and function. Network analysis linked the microvilli cluster to several other down-regulated clusters associated with altered intracellular trafficking and cellular metabolism. Enrichment of a core microvilli gene set also was lower in the UNITI-2 trial CD samples compared with controls; expression of microvilli genes was correlated with microvilli length and endoscopy score and was associated with response to treatment. CONCLUSIONS In a transcriptome analysis of formalin-fixed and paraffin-embedded ileal tissues from patients with CD and controls, we associated transcriptional alterations with histologic alterations, such as differences in microvilli length. Decreased microvilli length and decreased expression of the microvilli gene set might contribute to epithelial malfunction and the chronic and progressive disease course in patients with CD.
Collapse
Affiliation(s)
- Kelli L. VanDussen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aleksandar Stojmirović
- Department of Janssen Research and Development, LLC. 1400 McKean Rd., Spring House, PA, 19477, USA
| | - Katherine Li
- Department of Janssen Research and Development, LLC. 1400 McKean Rd., Spring House, PA, 19477, USA
| | - Ta-Chiang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Patrick K. Kimes
- Department of Janssen Research and Development, LLC. 1400 McKean Rd., Spring House, PA, 19477, USA
| | - Brian D. Muegge
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katherine F. Simpson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew A. Ciorba
- Department of Internal Medicine, Division of Gastroenterology, Inflammatory Bowel Disease Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jacqueline G. Perrigoue
- Department of Janssen Research and Development, LLC. 1400 McKean Rd., Spring House, PA, 19477, USA
| | - Joshua R. Friedman
- Department of Janssen Research and Development, LLC. 1400 McKean Rd., Spring House, PA, 19477, USA
| | - Jennifer E. Towne
- Department of Janssen Research and Development, LLC. 1400 McKean Rd., Spring House, PA, 19477, USA
| | - Richard D. Head
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thaddeus S. Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Correspondence: Thaddeus S. Stappenbeck,
| |
Collapse
|
35
|
Jain RK, Pingle SK, Tumane RG, Thakkar LR, Jawade AA, Barapatre A, Trivedi M. Cochlear Proteins Associated with Noise-induced Hearing Loss: An Update. Indian J Occup Environ Med 2018; 22:60-73. [PMID: 30319226 PMCID: PMC6176698 DOI: 10.4103/ijoem.ijoem_43_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Noise-induced hearing loss (NIHL) is one of the major occupational disease that has influence on the quality of life of mining workers. Several reports suggest NIHL is attributed to noise exposure at workplace and approximately 16% of hearing loss is due to it. NIHL occurs as a result of exposure to high-level noise (>85 dB) in the workplace. Noise disrupts proteins present in the micromachinery of the ear that is required for mechano-electric transduction of sound waves. High-level noise exposure can lead to hearing impairment owing to mechanical and metabolic exhaustion in cochlea, the major organ responsible for resilience of sound. Several key proteins of cochlea include tectorial membrane, inner hair cells, outer hair cells, and stereocilia are damaged due to high-level noise exposure. Numerous studies conducted in animals have shown cochlear proteins involvement in NIHL, but the pertinent literature remains limited in humans. Detection of proteins and pathways perturbed within the micromachinery of the ear after excessive sound induction leads toward the early identification of hearing loss. The situation insisted to present this review as an update on cochlear proteins associated with NIHL after an extensive literature search using several electronic databases which help to understand the pathophysiology of NIHL.
Collapse
Affiliation(s)
- Ruchika K Jain
- Department of Biochemistry, National Institute of Miners' Health JNARDDC Campus, Wadi, Nagpur, Maharashtra, India
| | - Shubhangi K Pingle
- Department of Biochemistry, National Institute of Miners' Health JNARDDC Campus, Wadi, Nagpur, Maharashtra, India
| | - Rajani G Tumane
- Department of Biochemistry, National Institute of Miners' Health JNARDDC Campus, Wadi, Nagpur, Maharashtra, India
| | - Lucky R Thakkar
- National Centre for Microbial Resources, National Centre for Cell Science, University of Pune Campus, Pune, Maharashtra, India
| | - Aruna A Jawade
- Department of Biochemistry, National Institute of Miners' Health JNARDDC Campus, Wadi, Nagpur, Maharashtra, India
| | - Anand Barapatre
- Department of Biochemistry, National Institute of Miners' Health JNARDDC Campus, Wadi, Nagpur, Maharashtra, India
| | - Minal Trivedi
- B. K. Birla College of Science, Arts & Commerce (Autonomous), Kalyan, Maharashtra, India
| |
Collapse
|
36
|
Kim SW, Ehrman J, Ahn MR, Kondo J, Lopez AAM, Oh YS, Kim XH, Crawley SW, Goldenring JR, Tyska MJ, Rericha EC, Lau KS. Shear stress induces noncanonical autophagy in intestinal epithelial monolayers. Mol Biol Cell 2017; 28:3043-3056. [PMID: 28855375 PMCID: PMC5662261 DOI: 10.1091/mbc.e17-01-0021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/04/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022] Open
Abstract
Shear stress applied on the apical side of polarizing intestinal cells induces vacuole formation via the autophagy machinery. This response is relayed through apical microvilli that act as mechanosensors linking the physical environment to the intracellular trafficking pathways. Flow of fluids through the gut, such as milk from a neonatal diet, generates a shear stress on the unilaminar epithelium lining the lumen. We report that exposure to physiological levels of fluid shear stress leads to the formation of large vacuoles, containing extracellular contents within polarizing intestinal epithelial cell monolayers. These observations lead to two questions: how can cells lacking primary cilia transduce shear stress, and what molecular pathways support the formation of vacuoles that can exceed 80% of the cell volume? We find that shear forces are sensed by actin-rich microvilli that eventually generate the apical brush border, providing evidence that these structures possess mechanosensing ability. Importantly, we identified the molecular pathway that regulates large vacuole formation downstream from mechanostimulation to involve central components of the autophagy pathway, including ATG5 and LC3, but not Beclin. Together our results establish a novel link between the actin-rich microvilli, the macroscopic transport of fluids across cells, and the noncanonical autophagy pathway in organized epithelial monolayers.
Collapse
Affiliation(s)
- Sun Wook Kim
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Jonathan Ehrman
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
| | - Mok-Ryeon Ahn
- Department of Food Science and Nutrition, Dong-A University, Busan 604-714, Republic of Korea
| | - Jumpei Kondo
- Department of Biochemistry, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Andrea A Mancheno Lopez
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Yun Sik Oh
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Xander H Kim
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Scott W Crawley
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - James R Goldenring
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232.,Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232.,Nashville VA Medical Center, Nashville, TN 37212
| | - Matthew J Tyska
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Erin C Rericha
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
| | - Ken S Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232 .,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
37
|
Gautam G, Rehman SAA, Pandey P, Gourinath S. Crystal structure of the PEG-bound SH3 domain of myosin IB from Entamoeba histolytica reveals its mode of ligand recognition. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2017; 73:672-682. [PMID: 28777082 DOI: 10.1107/s2059798317009639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/29/2017] [Indexed: 11/10/2022]
Abstract
The versatility in the recognition of various interacting proteins by the SH3 domain drives a variety of cellular functions. Here, the crystal structure of the C-terminal SH3 domain of myosin IB from Entamoeba histolytica (EhMySH3) is reported at a resolution of 1.7 Å in native and PEG-bound states. Comparisons with other structures indicated that the PEG molecules occupy protein-protein interaction pockets similar to those occupied by the peptides in other peptide-bound SH3-domain structures. Also, analysis of the PEG-bound EhMySH3 structure led to the recognition of two additional pockets, apart from the conventional polyproline and specificity pockets, that are important for ligand interaction. Molecular-docking studies combined with various comparisons revealed structural similarity between EhMySH3 and the SH3 domain of β-Pix, and this similarity led to the prediction that EhMySH3 preferentially binds targets containing type II-like PXXP motifs. These studies expand the understanding of the EhMySH3 domain and provide extensive structural knowledge, which is expected to help in predicting the interacting partners which function together with myosin IB during phagocytosis in E. histolytica infections.
Collapse
Affiliation(s)
- Gunjan Gautam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110 067, India
| | | | - Preeti Pandey
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110 067, India
| | - Samudrala Gourinath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110 067, India
| |
Collapse
|
38
|
Myosin 7 and its adaptors link cadherins to actin. Nat Commun 2017; 8:15864. [PMID: 28660889 PMCID: PMC5493754 DOI: 10.1038/ncomms15864] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/03/2017] [Indexed: 12/17/2022] Open
Abstract
Cadherin linkages between adjacent stereocilia and microvilli are essential for mechanotransduction and maintaining their organization. They are anchored to actin through interaction of their cytoplasmic domains with related tripartite complexes consisting of a class VII myosin and adaptor proteins: Myo7a/SANS/Harmonin in stereocilia and Myo7b/ANKS4B/Harmonin in microvilli. Here, we determine high-resolution structures of Myo7a and Myo7b C-terminal MyTH4-FERM domain (MF2) and unveil how they recognize harmonin using a novel binding mode. Systematic definition of interactions between domains of the tripartite complex elucidates how the complex assembles and prevents possible self-association of harmonin-a. Several Myo7a deafness mutants that map to the surface of MF2 disrupt harmonin binding, revealing the molecular basis for how they impact the formation of the tripartite complex and disrupt mechanotransduction. Our results also suggest how switching between different harmonin isoforms can regulate the formation of networks with Myo7a motors and coordinate force sensing in stereocilia. Cadherin is essential for mechanotransduction and myosin-adaptor-harmonin complexes anchor it to actin. Here the authors present the structures of myosin 7 MF2 domains bound to the harmonin PDZ3c domain and give insights into myosin-adaptor-harmonin complex assembly.
Collapse
|
39
|
Structure of Myo7b/USH1C complex suggests a general PDZ domain binding mode by MyTH4-FERM myosins. Proc Natl Acad Sci U S A 2017; 114:E3776-E3785. [PMID: 28439001 DOI: 10.1073/pnas.1702251114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Unconventional myosin 7a (Myo7a), myosin 7b (Myo7b), and myosin 15a (Myo15a) all contain MyTH4-FERM domains (myosin tail homology 4-band 4.1, ezrin, radixin, moesin; MF) in their cargo binding tails and are essential for the growth and function of microvilli and stereocilia. Numerous mutations have been identified in the MyTH4-FERM tandems of these myosins in patients suffering visual and hearing impairment. Although a number of MF domain binding partners have been identified, the molecular basis of interactions with the C-terminal MF domain (CMF) of these myosins remains poorly understood. Here we report the high-resolution crystal structure of Myo7b CMF in complex with the extended PDZ3 domain of USH1C (a.k.a., Harmonin), revealing a previously uncharacterized interaction mode both for MyTH4-FERM tandems and for PDZ domains. We predicted, based on the structure of the Myo7b CMF/USH1C PDZ3 complex, and verified that Myo7a CMF also binds to USH1C PDZ3 using a similar mode. The structure of the Myo7b CMF/USH1C PDZ complex provides mechanistic explanations for >20 deafness-causing mutations in Myo7a CMF. Taken together, these findings suggest that binding to PDZ domains, such as those from USH1C, PDZD7, and Whirlin, is a common property of CMFs of Myo7a, Myo7b, and Myo15a.
Collapse
|
40
|
Li J, Chen Y, Deng Y, Unarta IC, Lu Q, Huang X, Zhang M. Ca 2+-Induced Rigidity Change of the Myosin VIIa IQ Motif-Single α Helix Lever Arm Extension. Structure 2017; 25:579-591.e4. [PMID: 28262393 DOI: 10.1016/j.str.2017.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/08/2016] [Accepted: 02/09/2017] [Indexed: 11/17/2022]
Abstract
Several unconventional myosins contain a highly charged single α helix (SAH) immediately following the calmodulin (CaM) binding IQ motifs, functioning to extend lever arms of these myosins. How such SAH is connected to the IQ motifs and whether the conformation of the IQ motifs-SAH segments are regulated by Ca2+ fluctuations are not known. Here, we demonstrate by solving its crystal structure that the predicted SAH of myosin VIIa (Myo7a) forms a stable SAH. The structure of Myo7a IQ5-SAH segment in complex with apo-CaM reveals that the SAH sequence can extend the length of the Myo7a lever arm. Although Ca2+-CaM remains bound to IQ5-SAH, the Ca2+-induced CaM binding mode change softens the conformation of the IQ5-SAH junction, revealing a Ca2+-induced lever arm flexibility change for Myo7a. We further demonstrate that the last IQ motif of several other myosins also binds to both apo- and Ca2+-CaM, suggesting a common Ca2+-induced conformational regulation mechanism.
Collapse
Affiliation(s)
- Jianchao Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Yiyun Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yisong Deng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ilona Christy Unarta
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Qing Lu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xuhui Huang
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
41
|
Blanco-Sánchez B, Clément A, Phillips JB, Westerfield M. Zebrafish models of human eye and inner ear diseases. Methods Cell Biol 2016; 138:415-467. [PMID: 28129854 DOI: 10.1016/bs.mcb.2016.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Eye and inner ear diseases are the most common sensory impairments that greatly impact quality of life. Zebrafish have been intensively employed to understand the fundamental mechanisms underlying eye and inner ear development. The zebrafish visual and vestibulo-acoustic systems are very similar to these in humans, and although not yet mature, they are functional by 5days post-fertilization (dpf). In this chapter, we show how the zebrafish has significantly contributed to the field of biomedical research and how researchers, by establishing disease models and meticulously characterizing their phenotypes, have taken the first steps toward therapies. We review here models for (1) eye diseases, (2) ear diseases, and (3) syndromes affecting eye and/or ear. The use of new genome editing technologies and high-throughput screening systems should increase considerably the speed at which knowledge from zebrafish disease models is acquired, opening avenues for better diagnostics, treatments, and therapies.
Collapse
Affiliation(s)
| | - A Clément
- University of Oregon, Eugene, OR, United States
| | | | | |
Collapse
|
42
|
Weck ML, Grega-Larson NE, Tyska MJ. MyTH4-FERM myosins in the assembly and maintenance of actin-based protrusions. Curr Opin Cell Biol 2016; 44:68-78. [PMID: 27836411 DOI: 10.1016/j.ceb.2016.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/12/2016] [Indexed: 12/13/2022]
Abstract
Unconventional myosins are actin-based molecular motors that serve a multitude of roles within the cell. One group of myosin motors, the MyTH4-FERM myosins, play an integral part in building and maintaining finger-like protrusions, which allow cells to interact with their external environment. Suggested to act primarily as transporters, these motor proteins enrich adhesion molecules, actin-regulatory proteins and other factors at the tips of filopodia, microvilli, and stereocilia. Below we review data from biophysical, biochemical, and cell biological studies, which implicate these myosins as central players in the assembly, maintenance and function of actin-based protrusions.
Collapse
Affiliation(s)
- Meredith L Weck
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 3154 MRB III, PMB 407935, 465 21st Avenue South, Nashville, TN 37240-7935, United States
| | - Nathan E Grega-Larson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 3154 MRB III, PMB 407935, 465 21st Avenue South, Nashville, TN 37240-7935, United States
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 3154 MRB III, PMB 407935, 465 21st Avenue South, Nashville, TN 37240-7935, United States.
| |
Collapse
|
43
|
Weck ML, Crawley SW, Stone CR, Tyska MJ. Myosin-7b Promotes Distal Tip Localization of the Intermicrovillar Adhesion Complex. Curr Biol 2016; 26:2717-2728. [PMID: 27666969 DOI: 10.1016/j.cub.2016.08.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/01/2016] [Accepted: 08/03/2016] [Indexed: 12/11/2022]
Abstract
Transporting epithelial cells interact with the luminal environment using a tightly packed array of microvilli known as the brush border. During intestinal epithelial differentiation, microvillar packing and organization are driven by cadherin-dependent adhesion complexes that localize to the distal tips of microvilli, where they drive physical interactions between neighboring protrusions. Although enrichment of the "intermicrovillar adhesion complex" (IMAC) at distal tips is required for proper function, the mechanism driving tip accumulation of these factors remains unclear. Here, we report that the actin-based motor myosin-7b (Myo7b) promotes the accumulation of IMAC components at microvillar tips. Myo7b is highly enriched at the tips of microvilli in both kidney and intestinal brush borders, and loss of Myo7b in differentiating intestinal epithelial cells disrupts intermicrovillar adhesion and, thus, brush border assembly. Analysis of cells lacking Myo7b revealed that IMAC components and the resulting intermicrovillar adhesion links are mislocalized along the microvillar axis rather than enriched at the distal tips. We also found that Myo7b motor domains are capable of supporting tip-directed transport. However, motor activity is supplemented by other passive targeting mechanisms that together drive highly efficient IMAC accumulation at the tips. These findings illuminate the molecular basis of IMAC enrichment at microvillar tips and hold important implications for understanding apical morphogenesis in transporting and sensory epithelial tissues.
Collapse
Affiliation(s)
- Meredith L Weck
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Scott W Crawley
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Colin R Stone
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA.
| |
Collapse
|
44
|
Tyska MJ. Listen to your gut: Using adhesion to shape the surface of functionally diverse epithelia. Rare Dis 2016. [DOI: 10.1080/21675511.2016.1220469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Matthew J. Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
45
|
Peña JF, Alié A, Richter DJ, Wang L, Funayama N, Nichols SA. Conserved expression of vertebrate microvillar gene homologs in choanocytes of freshwater sponges. EvoDevo 2016; 7:13. [PMID: 27413529 PMCID: PMC4942974 DOI: 10.1186/s13227-016-0050-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/28/2016] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The microvillus is a versatile organelle that serves important functions in disparate animal cell types. However, from a molecular perspective, the microvillus has been well studied in only a few, predominantly vertebrate, contexts. Little is known about how differences in microvillar structure contribute to differences in function, and how these differences evolved. We sequenced the transcriptome of the freshwater sponge, Ephydatia muelleri, and examined the expression of vertebrate microvillar gene homologs in choanocytes-the only microvilli-bearing cell type present in sponges. Sponges offer a distant phylogenetic comparison with vertebrates, and choanocytes are central to discussions about early animal evolution due to their similarity with choanoflagellates, the single-celled sister lineage of modern animals. RESULTS We found that, from a genomic perspective, sponges have conserved homologs of most vertebrate microvillar genes, most of which are expressed in choanocytes, and many of which exhibit choanocyte-specific or choanocyte-enriched expression. Possible exceptions include the cadherins that form intermicrovillar links in the enterocyte brush border and hair cell stereocilia of vertebrates and cnidarians. No obvious orthologs of these proteins were detected in sponges, but at least four candidate cadherins were identified as choanocyte-enriched and might serve this function. In contrast to the evidence for conserved microvillar structure in sponges and vertebrates, we found that choanoflagellates and ctenophores lack homologs of many fundamental microvillar genes, suggesting that microvillar structure may diverge significantly in these lineages, warranting further study. CONCLUSIONS The available evidence suggests that microvilli evolved early in the prehistory of modern animals and have been repurposed to serve myriad functions in different cellular contexts. Detailed understanding of the sequence by which different microvilli-bearing cell/tissue types diversified will require further study of microvillar composition and development in disparate cell types and lineages. Of particular interest are the microvilli of choanoflagellates, ctenophores, and sponges, which collectively bracket the earliest events in animal evolution.
Collapse
Affiliation(s)
- Jesús F. Peña
- />Department of Biological Sciences, University of Denver, F.W. Olin Hall, Room 102, 2190 E. Iliff Ave., Denver, CO 80208 USA
| | - Alexandre Alié
- />Laboratoire de Biologie du Développement de Villefranche-sur-mer, CNRS, Sorbonne Universités, UPMC Univ Paris 06, Observatoire Océanographique, 06230 Villefranche-sur-mer, France
- />Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| | - Daniel J. Richter
- />Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200 USA
- />UMR 7144, CNRS and Sorbonne Universités Université Pierre et Marie Curie (UPMC) Paris 06, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Lingyu Wang
- />Department of Biology, University of Miami, 208 Cox Science Center, 1301 Memorial Drive, Coral Gables, FL 33124 USA
| | - Noriko Funayama
- />Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| | - Scott A. Nichols
- />Department of Biological Sciences, University of Denver, F.W. Olin Hall, Room 102, 2190 E. Iliff Ave., Denver, CO 80208 USA
| |
Collapse
|