1
|
Emili E, Pérez-Posada A, Vanni V, Salamanca-Díaz D, Ródriguez-Fernández D, Christodoulou MD, Solana J. Allometry of cell types in planarians by single-cell transcriptomics. SCIENCE ADVANCES 2025; 11:eadm7042. [PMID: 40333969 PMCID: PMC12057665 DOI: 10.1126/sciadv.adm7042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/02/2025] [Indexed: 05/09/2025]
Abstract
Allometry explores the relationship between an organism's body size and its various components, offering insights into ecology, physiology, metabolism, and disease. The cell is the basic unit of biological systems, and yet the study of cell-type allometry remains relatively unexplored. Single-cell RNA sequencing (scRNA-seq) provides a promising tool for investigating cell-type allometry. Planarians, capable of growing and degrowing following allometric scaling rules, serve as an excellent model for these studies. We used scRNA-seq to examine cell-type allometry in asexual planarians of different sizes, revealing that they consist of the same basic cell types but in varying proportions. Notably, the gut basal cells are the most responsive to changes in size, suggesting a role in energy storage. We capture the regulated gene modules of distinct cell types in response to body size. This research sheds light on the molecular and cellular aspects of cell-type allometry in planarians and underscores the utility of scRNA-seq in these investigations.
Collapse
Affiliation(s)
- Elena Emili
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Alberto Pérez-Posada
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, University of Exeter, Exeter, UK
| | - Virginia Vanni
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, University of Exeter, Exeter, UK
| | - David Salamanca-Díaz
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, University of Exeter, Exeter, UK
| | | | | | - Jordi Solana
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
2
|
Dai X, Li X, Tyshkovskiy A, Zuckerman C, Cheng N, Lin P, Paris D, Qureshi S, Kruglyak L, Mao X, Nandakumar J, Gladyshev VN, Pletcher S, Sobota J, Guo L. Regeneration leads to global tissue rejuvenation in aging sexual planarians. NATURE AGING 2025; 5:780-798. [PMID: 40181188 DOI: 10.1038/s43587-025-00847-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 03/03/2025] [Indexed: 04/05/2025]
Abstract
The possibility of reversing the adverse impacts of aging could significantly reduce age-related diseases and improve quality of life in older populations. Here we report that the sexual lineage of the planarian Schmidtea mediterranea exhibits physiological decline within 18 months of birth, including altered tissue architecture, impaired fertility and motility, and increased oxidative stress. Single-cell profiling of young and older planarian heads uncovered loss of neurons and muscle, increase of glia, and revealed minimal changes in somatic pluripotent stem cells, along with molecular signatures of aging across tissues. Remarkably, amputation followed by regeneration of lost tissues in older planarians led to reversal of these age-associated changes in tissues both proximal and distal to the injury at physiological, cellular and molecular levels. Our work suggests mechanisms of rejuvenation in both new and old tissues concurring with planarian regeneration, which may provide valuable insights for antiaging interventions.
Collapse
Affiliation(s)
- Xiaoting Dai
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Institute of Gerontology, Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - Xinghua Li
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Institute of Gerontology, Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cassandra Zuckerman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Nan Cheng
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Peter Lin
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - David Paris
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Institute of Gerontology, Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - Saad Qureshi
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Leonid Kruglyak
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xiaoming Mao
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Scott Pletcher
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Institute of Gerontology, Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - Jacob Sobota
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Institute of Gerontology, Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - Longhua Guo
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Institute of Gerontology, Geriatrics Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Chai C, Sultan E, Sarkar SR, Zhong L, Sarfati DN, Gershoni-Yahalom O, Jacobs-Wagner C, Rosental B, Wang B. Explosive cytotoxicity of 'ruptoblasts' bridges hormonal surveillance and immune defense. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.645876. [PMID: 40236000 PMCID: PMC11996342 DOI: 10.1101/2025.03.28.645876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Cytotoxic killing is an essential immune function, yet its cellular mechanisms have been characterized in only a few model species. Here, we show that planarian flatworms harness a unique cytotoxic strategy. In planarians, activin, a hormone regulating regeneration and reproduction, also acts as an inflammatory cytokine. Overactivation of activin signaling - through protein injection, genetic chimerism, or bacterial infection - triggers 'ruptoblasts', an undocumented immune cell type, to undergo 'ruptosis', a unique mode of cell bursting that eliminates nearby cells and bacteria in mere minutes, representing one of the fastest cytotoxic mechanisms observed. Ablating ruptoblasts suppresses inflammation but compromises bacterial clearance, highlighting ruptoblasts' broad-spectrum immune functions. We further identified ruptoblast-like cells in diverse basal bilaterians, unveiling an alternative strategy that couples hormonal regulation with immune defense and expanding the landscape of evolutionary immune innovations.
Collapse
|
4
|
Campos SE, Naziri S, Crane J, Tsverov J, Cox BD, Ciampa C, Juliano CE. Wnt signaling restores evolutionary loss of regenerative potential in Hydra. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643955. [PMID: 40166132 PMCID: PMC11957054 DOI: 10.1101/2025.03.18.643955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The regenerative potential of animals varies widely, even among closely-related species. In a comparative study of regeneration across the Hydra genus, we found that while most species exhibit robust whole-body regeneration, Hydra oligactis and other members of the Oligactis clade consistently fail to regenerate their feet. To investigate the mechanisms underlying this deficiency, we analyzed transcriptional responses during head and foot regeneration in H. oligactis. Our analysis revealed that the general injury response in H. oligactis lacks activation of Wnt signaling, a pathway essential for Hydra vulgaris foot regeneration. Notably, transient treatment with a Wnt agonist in H. oligactis triggered a foot-specific transcriptional program, successfully rescuing foot regeneration. Our transcriptional profiling also revealed dlx2 as a likely high-level regulator of foot regeneration, dependent on Wnt signaling activation. Our study establishes a comparative framework for understanding the molecular basis of regeneration and its evolutionary loss in closely-related species.
Collapse
Affiliation(s)
- Sergio E. Campos
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, United States
- Centro de Investigación sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CIE-Cinvestav), Sede Sur, Mexico City, 14330, Mexico
| | - Sahar Naziri
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, United States
- Department of Neuroscience and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Jackson Crane
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, United States
| | - Jennifer Tsverov
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, United States
| | - Ben D. Cox
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, United States
| | - Craig Ciampa
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, United States
| | - Celina E. Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, United States
| |
Collapse
|
5
|
Canales BII, King HO, Reddien PW. map3k1 is required for spatial restriction of progenitor differentiation in planarians. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.04.641450. [PMID: 40093160 PMCID: PMC11908231 DOI: 10.1101/2025.03.04.641450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Planarian regeneration and tissue turnover involve fate specification in pluripotent stem cells called neoblasts. Neoblasts select fates through the expression of fate-specific transcription factors (FSTFs), generating specialized neoblasts. Specialized neoblasts are spatially intermingled and can be dispersed broadly, frequently being far from their target tissue. The post-mitotic progeny of neoblasts, serving as progenitors, migrate and differentiate into mature cell types. Pattern formation is thus strongly influenced by the migratory assortment and differentiation of fate-specified progenitors in precise locations, which we refer to as progenitor targeting. This central step of pattern maintenance and formation, however, is poorly understood. Here, we describe a requirement for the conserved map3k1 gene in targeting, restricting post-mitotic progenitor differentiation to precise locations. RNAi of map3k1 causes ectopic differentiation of eye progenitors along their migratory path, resulting in dispersed ectopic eyes and eye cells. Other neural tissues similarly display ectopic posterior differentiation and pharynx cells emerge dispersed laterally and anteriorly in map3k1 RNAi animals. Ectopic differentiated cells are also found within the incorrect organs after map3k1 RNAi, and ultimately teratomas form. These findings implicate map3k1 signaling in controlling the positional regulation of progenitor behavior - restricting progenitor differentiation to targeted locations in response to external cues in the local tissue environment.
Collapse
Affiliation(s)
- Bryanna Isela-Inez Canales
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hunter O King
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
6
|
Lo KC, Petersen CP. map3k1 suppresses terminal differentiation of migratory eye progenitors in planarian regeneration. PLoS Genet 2025; 21:e1011457. [PMID: 40096024 PMCID: PMC11981174 DOI: 10.1371/journal.pgen.1011457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 04/09/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025] Open
Abstract
Proper stem cell targeting and differentiation is necessary for regeneration to succeed. In organisms capable of whole body regeneration, considerable progress has been made identifying wound signals initiating this process, but the mechanisms that control the differentiation of progenitors into mature organs are not fully understood. Using the planarian as a model system, we identify a novel function for map3k1, a MAP3K family member possessing both kinase and ubiquitin ligase domains, to negatively regulate terminal differentiation of stem cells during eye regeneration. Inhibition of map3k1 caused the formation of multiple ectopic eyes within the head, but without controlling overall head, brain, or body patterning. By contrast, other known regulators of planarian eye patterning like wnt11-6/wntA and notum also regulate head regionalization, suggesting map3k1 acts distinctly. Consistent with these results, eye resection and regeneration experiments suggest that unlike Wnt signaling perturbation, map3k1 inhibition did not shift the target destination of eye formation in the animal. map3k1(RNAi) ectopic eyes emerged in the regions normally occupied by migratory eye progenitors, and these animals produced a net excess of differentiated eye cells. Furthermore, the formation of ectopic eyes after map3k1 inhibition coincided with an increase to numbers of differentiated eye cells, a decrease in numbers of ovo+ eye progenitors, and also was preceded by eye progenitors prematurely expressing opsin/tyosinase markers of eye cell terminal differentiation. Therefore, map3k1 negatively regulates the process of terminal differentiation within the eye lineage. Similar ectopic eye phenotypes were also observed after inhibition of map2k4, map2k7, jnk, and p38, identifying a putative pathway through which map3k1 prevents differentiation. Together, these results suggest that map3k1 regulates a novel control point in the eye regeneration pathway which suppresses the terminal differentiation of progenitors during their migration to target destinations.
Collapse
Affiliation(s)
- Katherine C. Lo
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Christian P. Petersen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
7
|
Galliot B, Wenger Y. Organizer formation, organizer maintenance and epithelial cell plasticity in Hydra: Role of the Wnt3/β-catenin/TCF/Sp5/Zic4 gene network. Cells Dev 2025:204002. [PMID: 39929422 DOI: 10.1016/j.cdev.2025.204002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
The experimental and conceptual knowledge in 1909 led to the discovery of the Hydra head organizer through transplantation experiments between pigmented and non-pigmented animals; a discovery followed by numerous transplantations demonstrating cross-regulation between activating and inhibiting components distributed along the body axis. This experimental work inspired mathematicians, engineers, physicists and computer scientists to develop theoretical models predicting the principles of developmental mechanisms. Today, we know that the Wnt/β-catenin/Sp5/Zic4 gene regulatory network (GRN) links organizer activity, morphogenesis and cellular identity in Hydra, with variable conformations depending on the region or epithelial layer, and varied phenotypes depending on which GRN element is misregulated. In intact animals, Wnt/β-catenin signaling acts as the head activator at the tip of the hypostome, restricted by Sp5 in the other regions of the animal. Moreover, in the tentacle ring, Sp5 and Zic4 act epistatically to support tentacle differentiation and prevent basal disc differentiation. Along the body column, Sp5 is self-repressed in the epidermis and acts as a head inhibitor along the gastrodermis. Other players modulate these activities, such as TSP and Margin/RAX apically, Notch signaling in the tentacle zone, Dkk1/2/4 and HAS-7 in the body column. In the developmental context of regeneration, cells below the amputation zone switch from repressed to locally de novo activated head organizer status, a transition driven by immediate symmetrical and asymmetrical metabolic changes that lead to gene expression regulations involving components and modulators of Wnt/β-catenin signaling, early-pulse and early-late transient both often symmetrical, together with sustained ones, specific to head regeneration.
Collapse
Affiliation(s)
- Brigitte Galliot
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.
| | - Yvan Wenger
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
Chen X. Stem cells (neoblasts) and positional information jointly dominate regeneration in planarians. Heliyon 2025; 11:e41833. [PMID: 39877626 PMCID: PMC11773080 DOI: 10.1016/j.heliyon.2025.e41833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025] Open
Abstract
Regeneration is the ability to accurately regrow missing body parts. The unparalleled regenerative capacity and incredible tissue plasticity of planarians, both resulting from the presence of abundant adult stem cells referred to as neoblasts, offer a unique opportunity to investigate the cellular and molecular principles underlying regeneration. Neoblasts are capable of self-renewal and differentiation into the desired cell types for correct replacement of lost parts after tissue damage. Positional information in muscle cells governs the polarity and patterning of the body plan during homeostasis and regeneration. For planarians, removal of neoblasts disables the regenerative feats and disruption of positional information results in the regeneration of inappropriate missing body regions, only the combination of neoblasts and positional information enables regeneration. Here, I summarize the current state of the field in neoblast lineage potential, subclasses and specification, and in the roles of positional information for proper tissue turnover and regeneration in planarians.
Collapse
Affiliation(s)
- Xuhui Chen
- Affiliated Infectious Diseases Hospital of Zhengzhou University (Henan Infectious Diseases Hospital, The Sixth People's Hospital of Zhengzhou), Center for Translational Medicine, Zhengzhou, 45000, China
| |
Collapse
|
9
|
Poss KD, Tanaka EM. Hallmarks of regeneration. Cell Stem Cell 2024; 31:1244-1261. [PMID: 39163854 PMCID: PMC11410156 DOI: 10.1016/j.stem.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/12/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024]
Abstract
Regeneration is a heroic biological process that restores tissue architecture and function in the face of day-to-day cell loss or the aftershock of injury. Capacities and mechanisms for regeneration can vary widely among species, organs, and injury contexts. Here, we describe "hallmarks" of regeneration found in diverse settings of the animal kingdom, including activation of a cell source, initiation of regenerative programs in the source, interplay with supporting cell types, and control of tissue size and function. We discuss these hallmarks with an eye toward major challenges and applications of regenerative biology.
Collapse
Affiliation(s)
- Kenneth D Poss
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Elly M Tanaka
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
10
|
Li Z, Li M, Huang S, Yu J, Liu M, Liu Y, Xu M. The expression pattern of Wnt6, Wnt10A, and HOXA13 during regenerating tails of Gekko Japonicus. Gene Expr Patterns 2024; 53:119374. [PMID: 39128795 DOI: 10.1016/j.gep.2024.119374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/28/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Wnt signal is crucial to correctly regenerate tissues along the original axis in many animals. Lizards are able to regenerate their tails spontaneously, while the anterior-posterior axis information required for the successful regeneration is still elusive. In this study, we investigated the expression pattern of Wnt ligands and HOX genes during regeneration. The results of in situ hybridization revealed that Wnt6 and Wnt10A mRNA levels are higher in wound epithelium (WE) than that in blastema during regeneration. In addition, we showed that Wnt agonist positively regulated the expression of HOXA13 in cultured blastema cells, while did not show similar effect on that of HOXB13, HOXC13 and HOXD13. Finally, we found that HOXA13 showed a gradient level along the anterior-posterior axis of regenerated blastema, with higher level at the caudal end. These data proposed that Wnt6, Wnt10A and HOXA13 might play an important role in establishing distal position for regeneration.
Collapse
Affiliation(s)
- Zhen Li
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Mingxuan Li
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Shuai Huang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Jing Yu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Man Xu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
11
|
Schumacher S, Fernkorn M, Marten M, Chen R, Kim YS, Bedzhov I, Schröter C. Tissue-intrinsic beta-catenin signals antagonize Nodal-driven anterior visceral endoderm differentiation. Nat Commun 2024; 15:5055. [PMID: 38871742 PMCID: PMC11176336 DOI: 10.1038/s41467-024-49380-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
The anterior-posterior axis of the mammalian embryo is laid down by the anterior visceral endoderm (AVE), an extraembryonic signaling center that is specified within the visceral endoderm. Current models posit that AVE differentiation is promoted globally by epiblast-derived Nodal signals, and spatially restricted by a BMP gradient established by the extraembryonic ectoderm. Here, we report spatially restricted AVE differentiation in bilayered embryo-like aggregates made from mouse embryonic stem cells that lack an extraembryonic ectoderm. Notably, clusters of AVE cells also form in pure visceral endoderm cultures upon activation of Nodal signaling, indicating that tissue-intrinsic factors can restrict AVE differentiation. We identify β-catenin activity as a tissue-intrinsic factor that antagonizes AVE-inducing Nodal signals. Together, our results show how an AVE-like population can arise through interactions between epiblast and visceral endoderm alone. This mechanism may be a flexible solution for axis patterning in a wide range of embryo geometries, and provide robustness to axis patterning when coupled with signal gradients.
Collapse
Affiliation(s)
- Sina Schumacher
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Max Fernkorn
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Michelle Marten
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Rui Chen
- Embryonic Self-Organization research group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Yung Su Kim
- Embryonic Self-Organization research group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Integrated Biosystems and Biomechanics Laboratory, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ivan Bedzhov
- Embryonic Self-Organization research group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Christian Schröter
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
12
|
Brückner DB, Tkačik G. Information content and optimization of self-organized developmental systems. Proc Natl Acad Sci U S A 2024; 121:e2322326121. [PMID: 38819997 PMCID: PMC11161761 DOI: 10.1073/pnas.2322326121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/27/2024] [Indexed: 06/02/2024] Open
Abstract
A key feature of many developmental systems is their ability to self-organize spatial patterns of functionally distinct cell fates. To ensure proper biological function, such patterns must be established reproducibly, by controlling and even harnessing intrinsic and extrinsic fluctuations. While the relevant molecular processes are increasingly well understood, we lack a principled framework to quantify the performance of such stochastic self-organizing systems. To that end, we introduce an information-theoretic measure for self-organized fate specification during embryonic development. We show that the proposed measure assesses the total information content of fate patterns and decomposes it into interpretable contributions corresponding to the positional and correlational information. By optimizing the proposed measure, our framework provides a normative theory for developmental circuits, which we demonstrate on lateral inhibition, cell type proportioning, and reaction-diffusion models of self-organization. This paves a way toward a classification of developmental systems based on a common information-theoretic language, thereby organizing the zoo of implicated chemical and mechanical signaling processes.
Collapse
Affiliation(s)
- David B. Brückner
- Institute of Science and Technology Austria, AT-3400Klosterneuburg, Austria
| | - Gašper Tkačik
- Institute of Science and Technology Austria, AT-3400Klosterneuburg, Austria
| |
Collapse
|
13
|
Merle M, Friedman L, Chureau C, Shoushtarizadeh A, Gregor T. Precise and scalable self-organization in mammalian pseudo-embryos. Nat Struct Mol Biol 2024; 31:896-902. [PMID: 38491138 DOI: 10.1038/s41594-024-01251-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 02/08/2024] [Indexed: 03/18/2024]
Abstract
Gene expression is inherently noisy, posing a challenge to understanding how precise and reproducible patterns of gene expression emerge in mammals. Here we investigate this phenomenon using gastruloids, a three-dimensional in vitro model for early mammalian development. Our study reveals intrinsic reproducibility in the self-organization of gastruloids, encompassing growth dynamics and gene expression patterns. We observe a remarkable degree of control over gene expression along the main body axis, with pattern boundaries positioned with single-cell precision. Furthermore, as gastruloids grow, both their physical proportions and gene expression patterns scale proportionally with system size. Notably, these properties emerge spontaneously in self-organizing cell aggregates, distinct from many in vivo systems constrained by fixed boundary conditions. Our findings shed light on the intricacies of developmental precision, reproducibility and size scaling within a mammalian system, suggesting that these phenomena might constitute fundamental features of multicellularity.
Collapse
Affiliation(s)
- Mélody Merle
- Department of Developmental and Stem Cell Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, Paris, France
| | - Leah Friedman
- Department of Developmental and Stem Cell Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, Paris, France
| | - Corinne Chureau
- Department of Developmental and Stem Cell Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, Paris, France
| | - Armin Shoushtarizadeh
- Department of Developmental and Stem Cell Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, Paris, France
| | - Thomas Gregor
- Department of Developmental and Stem Cell Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, Paris, France.
- Joseph Henry Laboratories of Physics & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
14
|
Zhang L, Xue G, Zhou X, Huang J, Li Z. A mathematical framework for understanding the spontaneous emergence of complexity applicable to growing multicellular systems. PLoS Comput Biol 2024; 20:e1011882. [PMID: 38838038 PMCID: PMC11182560 DOI: 10.1371/journal.pcbi.1011882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/17/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
In embryonic development and organogenesis, cells sharing identical genetic codes acquire diverse gene expression states in a highly reproducible spatial distribution, crucial for multicellular formation and quantifiable through positional information. To understand the spontaneous growth of complexity, we constructed a one-dimensional division-decision model, simulating the growth of cells with identical genetic networks from a single cell. Our findings highlight the pivotal role of cell division in providing positional cues, escorting the system toward states rich in information. Moreover, we pinpointed lateral inhibition as a critical mechanism translating spatial contacts into gene expression. Our model demonstrates that the spatial arrangement resulting from cell division, combined with cell lineages, imparts positional information, specifying multiple cell states with increased complexity-illustrated through examples in C.elegans. This study constitutes a foundational step in comprehending developmental intricacies, paving the way for future quantitative formulations to construct synthetic multicellular patterns.
Collapse
Affiliation(s)
- Lu Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gang Xue
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaolin Zhou
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Jiandong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhiyuan Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
15
|
Ko JM, Reginato W, Wolff A, Lobo D. Mechanistic regulation of planarian shape during growth and degrowth. Development 2024; 151:dev202353. [PMID: 38619319 PMCID: PMC11128284 DOI: 10.1242/dev.202353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Adult planarians can grow when fed and degrow (shrink) when starved while maintaining their whole-body shape. It is unknown how the morphogens patterning the planarian axes are coordinated during feeding and starvation or how they modulate the necessary differential tissue growth or degrowth. Here, we investigate the dynamics of planarian shape together with a theoretical study of the mechanisms regulating whole-body proportions and shape. We found that the planarian body proportions scale isometrically following similar linear rates during growth and degrowth, but that fed worms are significantly wider than starved worms. By combining a descriptive model of planarian shape and size with a mechanistic model of anterior-posterior and medio-lateral signaling calibrated with a novel parameter optimization methodology, we theoretically demonstrate that the feedback loop between these positional information signals and the shape they control can regulate the planarian whole-body shape during growth. Furthermore, the computational model produced the correct shape and size dynamics during degrowth as a result of a predicted increase in apoptosis rate and pole signal during starvation. These results offer mechanistic insights into the dynamic regulation of whole-body morphologies.
Collapse
Affiliation(s)
- Jason M. Ko
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Waverly Reginato
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Andrew Wolff
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Daniel Lobo
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
- Greenebaum Comprehensive Cancer Center and Center for Stem Cell Biology & Regenerative Medicine, University of Maryland, School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
16
|
Wang R, Bialas AL, Goel T, Collins EMS. Mechano-Chemical Coupling in Hydra Regeneration and Patterning. Integr Comp Biol 2023; 63:1422-1441. [PMID: 37339912 DOI: 10.1093/icb/icad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
The freshwater cnidarian Hydra can regenerate from wounds, small tissue fragments and even from aggregated cells. This process requires the de novo development of a body axis and oral-aboral polarity, a fundamental developmental process that involves chemical patterning and mechanical shape changes. Gierer and Meinhardt recognized that Hydra's simple body plan and amenability to in vivo experiments make it an experimentally and mathematically tractable model to study developmental patterning and symmetry breaking. They developed a reaction-diffusion model, involving a short-range activator and a long-range inhibitor, which successfully explained patterning in the adult animal. In 2011, HyWnt3 was identified as a candidate for the activator. However, despite the continued efforts of both physicists and biologists, the predicted inhibitor remains elusive. Furthermore, the Gierer-Meinhardt model cannot explain de novo axis formation in cellular aggregates that lack inherited tissue polarity. The aim of this review is to synthesize the current knowledge on Hydra symmetry breaking and patterning. We summarize the history of patterning studies and insights from recent biomechanical and molecular studies, and highlight the need for continued validation of theoretical assumptions and collaboration across disciplinary boundaries. We conclude by proposing new experiments to test current mechano-chemical coupling models and suggest ideas for expanding the Gierer-Meinhardt model to explain de novo patterning, as observed in Hydra aggregates. The availability of a fully sequenced genome, transgenic fluorescent reporter strains, and modern imaging techniques, that enable unprecedented observation of cellular events in vivo, promise to allow the community to crack Hydra's secret to patterning.
Collapse
Affiliation(s)
- Rui Wang
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, 92093 CA, USA
| | - April L Bialas
- Department of Biology, Swarthmore College, 500 College Ave, Swarthmore, 19081 PA, USA
| | - Tapan Goel
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA
- Department of Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, 92093 CA, USA
| | - Eva-Maria S Collins
- Department of Biology, Swarthmore College, 500 College Ave, Swarthmore, 19081 PA, USA
- Department of Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, 92093 CA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104 PA, USA
| |
Collapse
|
17
|
Vila-Farré M, Rozanski A, Ivanković M, Cleland J, Brand JN, Thalen F, Grohme MA, von Kannen S, Grosbusch AL, Vu HTK, Prieto CE, Carbayo F, Egger B, Bleidorn C, Rasko JEJ, Rink JC. Evolutionary dynamics of whole-body regeneration across planarian flatworms. Nat Ecol Evol 2023; 7:2108-2124. [PMID: 37857891 PMCID: PMC10697840 DOI: 10.1038/s41559-023-02221-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/14/2023] [Indexed: 10/21/2023]
Abstract
Regenerative abilities vary dramatically across animals. Even amongst planarian flatworms, well-known for complete regeneration from tiny body fragments, some species have restricted regeneration abilities while others are almost entirely regeneration incompetent. Here, we assemble a diverse live collection of 40 planarian species to probe the evolution of head regeneration in the group. Combining quantification of species-specific head-regeneration abilities with a comprehensive transcriptome-based phylogeny reconstruction, we show multiple independent transitions between robust whole-body regeneration and restricted regeneration in freshwater species. RNA-mediated genetic interference inhibition of canonical Wnt signalling in RNA-mediated genetic interference-sensitive species bypassed all head-regeneration defects, suggesting that the Wnt pathway is linked to the emergence of planarian regeneration defects. Our finding that Wnt signalling has multiple roles in the reproductive system of the model species Schmidtea mediterranea raises the possibility that a trade-off between egg-laying, asexual reproduction by fission/regeneration and Wnt signalling drives regenerative trait evolution. Although quantitative comparisons of Wnt signalling levels, yolk content and reproductive strategy across our species collection remained inconclusive, they revealed divergent Wnt signalling roles in the reproductive system of planarians. Altogether, our study establishes planarians as a model taxon for comparative regeneration research and presents a framework for the mechanistic evolution of regenerative abilities.
Collapse
Affiliation(s)
- Miquel Vila-Farré
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Andrei Rozanski
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Mario Ivanković
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - James Cleland
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jeremias N Brand
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Felix Thalen
- Animal Evolution and Biodiversity, Georg-August-Universität Göttingen, Göttingen, Germany
- Cardio-CARE, Medizincampus Davos, Davos, Switzerland
| | - Markus A Grohme
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | - Hanh T-K Vu
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Carlos E Prieto
- Department of Zoology & Animal Cell Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Fernando Carbayo
- Laboratório de Ecologia e Evolução. Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, Brazil
| | - Bernhard Egger
- Department of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Christoph Bleidorn
- Animal Evolution and Biodiversity, Georg-August-Universität Göttingen, Göttingen, Germany
| | - John E J Rasko
- Gene and Stem Cell Therapy Program Centenary Institute, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Jochen C Rink
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
18
|
Żak M, Støle TP, Plagnol V, Daudet N. Regulation of otic neurosensory specification by Notch and Wnt signalling: insights from RNA-seq screenings in the embryonic chicken inner ear. Front Cell Dev Biol 2023; 11:1245330. [PMID: 37900277 PMCID: PMC10600479 DOI: 10.3389/fcell.2023.1245330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
The Notch and Wnt signalling pathways play key roles in the formation of inner ear sensory organs, but little is known about their transcriptional effectors and targets in this context. Here, we perturbed Notch and Wnt activities in the embryonic chicken otic vesicle using pharmacological treatment or in ovo electroporation of plasmid DNA, and used RNA-Seq to analyse the resulting changes in gene expression. Compared to pharmacological treatments, in ovo electroporation changed the expression of fewer genes, a likely consequence of the variability and mosaicism of transfection. The pharmacological inhibition of Notch activity induced a rapid change in the expression of known effectors of this pathway and genes associated with neurogenesis, consistent with a switch towards an otic neurosensory fate. The Wnt datasets contained many genes associated with a neurosensory biological function, confirming the importance of this pathway for neurosensory specification in the otocyst. Finally, the results of a preliminary gain-of-function screening of selected transcription factors and Wnt signalling components suggest that the endogenous programs of otic neurosensory specification are very robust, and in general unaffected by the overexpression of a single factor. Altogether this work provides new insights into the effectors and candidate targets of the Notch and Wnt pathways in the early developing inner ear and could serve as a useful reference for future functional genomics experiments in the embryonic avian inner ear.
Collapse
Affiliation(s)
- Magdalena Żak
- UCL Ear Institute, University College London, London, United Kingdom
| | - Thea P. Støle
- UCL Ear Institute, University College London, London, United Kingdom
| | - Vincent Plagnol
- Genetics Institute, University College London, London, United Kingdom
| | - Nicolas Daudet
- UCL Ear Institute, University College London, London, United Kingdom
| |
Collapse
|
19
|
Clark EG, Petersen CP. BMP suppresses WNT to integrate patterning of orthogonal body axes in adult planarians. PLoS Genet 2023; 19:e1010608. [PMID: 37729232 PMCID: PMC10545109 DOI: 10.1371/journal.pgen.1010608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 10/02/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
Adult regeneration restores patterning of orthogonal body axes after damage in a post-embryonic context. Planarians regenerate using distinct body-wide signals primarily regulating each axis dimension: anteroposterior Wnts, dorsoventral BMP, and mediolateral Wnt5 and Slit determinants. How regeneration can coordinate perpendicular tissue axes without symmetry-breaking embryonic events is not fully understood. Here, we report that the planarian dorsoventral regulator bmp4 suppresses the posterior determinant wnt1 to provide patterning input to the anteroposterior axis. Double-FISH identified distinct anteroposterior domains within dorsal midline muscle that express either bmp4 or wnt1. Homeostatic inhibition bmp4 and smad1 expanded the wnt1 expression anteriorly, while elevation of BMP signaling through nog1;nog2 RNAi reduced the wnt1 expression domain and elevated bmp4 expression. Homeostatic BMP signal perturbation broadly affected anteroposterior identity as measured by expression of posterior Wnt pathway factors, and caused mislocalization of AP-regionalized pharynx progenitors, without strongly affecting expression domains of anterior regulators. Additionally, wnt1 inhibition elevated bmp4 expression in the tip of the tail. Therefore, dorsal BMP signals and posterior wnt1 mutually antagonize for patterning the tail. Furthermore, homeostatic bmp4 RNAi caused medial expansion of the lateral determinant wnt5 and reduced expression of the medial regulator slit. By contrast, nog1;nog2 RNAi restricted wnt5 expression. Double RNAi of bmp4 and wnt5 resulted in lateral ectopic eye phenotypes, suggesting bmp4 acts upstream of wnt5 to pattern the mediolateral axis. These results indicate bmp4 controls dorsoventral information and also, through suppression of Wnt signals, influences anteroposterior and mediolateral identity. Based on related functions across vertebrates and Cnidarians, Wnt and BMP cross-regulation could form an ancient mechanism for coordinating orthogonal axis patterning.
Collapse
Affiliation(s)
- Eleanor G. Clark
- Department of Molecular Biosciences, Northwestern University; Evanston Illinois, United States of America
| | - Christian P. Petersen
- Department of Molecular Biosciences, Northwestern University; Evanston Illinois, United States of America
- Robert Lurie Comprehensive Cancer Center, Northwestern University; Evanston, Illinois, United States of America
| |
Collapse
|
20
|
Fan Y, Chai C, Li P, Zou X, Ferrell JE, Wang B. Ultrafast distant wound response is essential for whole-body regeneration. Cell 2023; 186:3606-3618.e16. [PMID: 37480850 PMCID: PMC10957142 DOI: 10.1016/j.cell.2023.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 01/11/2023] [Accepted: 06/23/2023] [Indexed: 07/24/2023]
Abstract
Injury induces systemic responses, but their functions remain elusive. Mechanisms that can rapidly synchronize wound responses through long distances are also mostly unknown. Using planarian flatworms capable of whole-body regeneration, we report that injury induces extracellular signal-regulated kinase (Erk) activity waves to travel at a speed 10-100 times faster than those in other multicellular tissues. This ultrafast propagation requires longitudinal body-wall muscles, elongated cells forming dense parallel tracks running the length of the organism. The morphological properties of muscles allow them to act as superhighways for propagating and disseminating wound signals. Inhibiting Erk propagation prevents tissues distant to the wound from responding and blocks regeneration, which can be rescued by a second injury to distal tissues shortly after the first injury. Our findings provide a mechanism for long-range signal propagation in large, complex tissues to coordinate responses across cell types and highlight the function of feedback between spatially separated tissues during whole-body regeneration.
Collapse
Affiliation(s)
- Yuhang Fan
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Chew Chai
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Pengyang Li
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Xinzhi Zou
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - James E Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
21
|
Fan Y, Chai C, Li P, Zou X, Ferrell JE, Wang B. Ultrafast and long-range coordination of wound responses is essential for whole-body regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532844. [PMID: 36993633 PMCID: PMC10055111 DOI: 10.1101/2023.03.15.532844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Injury induces systemic, global responses whose functions remain elusive. In addition, mechanisms that rapidly synchronize wound responses through long distances across the organismal scale are mostly unknown. Using planarians, which have extreme regenerative ability, we report that injury induces Erk activity to travel in a wave-like manner at an unexpected speed (∼1 mm/h), 10-100 times faster than those measured in other multicellular tissues. This ultrafast signal propagation requires longitudinal body-wall muscles, elongated cells forming dense parallel tracks running the length of the organism. Combining experiments and computational models, we show that the morphological properties of muscles allow them to minimize the number of slow intercellular signaling steps and act as bidirectional superhighways for propagating wound signals and instructing responses in other cell types. Inhibiting Erk propagation prevents cells distant to the wound from responding and blocks regeneration, which can be rescued by a second injury to distal tissues within a narrow time window after the first injury. These results suggest that rapid responses in uninjured tissues far from wounds are essential for regeneration. Our findings provide a mechanism for long-range signal propagation in large and complex tissues to coordinate cellular responses across diverse cell types, and highlights the function of feedback between spatially separated tissues during whole-body regeneration.
Collapse
Affiliation(s)
- Yuhang Fan
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Chew Chai
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Pengyang Li
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Xinzhi Zou
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - James E. Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
22
|
Cervera J, Manzanares JA, Levin M, Mafe S. Transplantation of fragments from different planaria: A bioelectrical model for head regeneration. J Theor Biol 2023; 558:111356. [PMID: 36403806 DOI: 10.1016/j.jtbi.2022.111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/16/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
Head-tail planaria morphologies are influenced by the electric potential differences across the animal's primary axis, as evidenced e.g. by voltage-sensitive dyes and functional experiments that create permanent lines of 2-headed but genetically wild-type animals. However, bioelectrical and biochemical models that make predictions on what would happen in the case of spatial chimeras made by tissue transplantation from different planaria (different species and head shapes) are lacking. Here, we use a bioelectrical model to qualitatively describe the effects of tissue transplantation on the shape of the regenerated head. To this end, we assume that the cells may have distinct sets of ion channels and ascribe the system outcome to the axial distributions of average cell potentials over morphologically relevant regions. Our rationale is that the distributions of signaling ions and molecules are spatially coupled with multicellular electric potentials. Thus, long-time downstream transcriptional events should be triggered by short-time bioelectrical processes. We show that relatively small differences between the ion channel characteristics of the cells could eventually give noticeable changes in the electric potential profiles and the expected morphological deviations, which suggests that small but timely bioelectrical actions may have significant morphological effects. Our approach is based on the observed relationships between bioelectrical regionalization and biochemical gradients in body-plan studies. Such models are relevant to regenerative, developmental, and cancer biology in which cells with distinct properties and morphogenetic target states confront each other in the same tissue.
Collapse
Affiliation(s)
- Javier Cervera
- Dept. Termodinàmica, Facultat de Física, Universitat de València, E-46100 Burjassot, Spain.
| | - José A Manzanares
- Dept. Termodinàmica, Facultat de Física, Universitat de València, E-46100 Burjassot, Spain
| | - Michael Levin
- Dept. of Biology and Allen Discovery Center at Tufts University, Medford, MA 02155-4243, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, USA
| | - Salvador Mafe
- Dept. Termodinàmica, Facultat de Física, Universitat de València, E-46100 Burjassot, Spain
| |
Collapse
|
23
|
Wnt/β-catenin signalling is required for pole-specific chromatin remodeling during planarian regeneration. Nat Commun 2023; 14:298. [PMID: 36653403 PMCID: PMC9849279 DOI: 10.1038/s41467-023-35937-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
For successful regeneration, the identity of the missing tissue must be specified according to the pre-existing tissue. Planarians are ideal for the study of the mechanisms underlying this process; the same field of cells can regrow a head or a tail according to the missing body part. After amputation, the differential activation of the Wnt/β-catenin signal specifies anterior versus posterior identity. Initially, both wnt1 and notum (Wnt inhibitor) are expressed in all wounds, but 48 hours later they are restricted to posterior or anterior facing wounds, respectively, by an unknown mechanism. Here we show that 12 hours after amputation, the chromatin accessibility of cells in the wound region changes according to the polarity of the pre-existing tissue in a Wnt/β-catenin-dependent manner. Genomic analyses suggest that homeobox transcription factors and chromatin-remodeling proteins are direct Wnt/β-catenin targets, which trigger the expression of posterior effectors. Finally, we identify FoxG as a wnt1 up-stream regulator, probably via binding to its first intron enhancer region.
Collapse
|
24
|
Clark EG, Petersen CP. BMP suppresses WNT to integrate patterning of orthogonal body axes in adult planarians. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523528. [PMID: 36711474 PMCID: PMC9882038 DOI: 10.1101/2023.01.10.523528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Adult regeneration restores patterning of orthogonal body axes after damage in a post-embryonic context. Planarians regenerate using distinct body-wide signals primarily regulating each axis dimension: anteroposterior Wnts, dorsoventral BMP, and mediolateral Wnt5 and Slit determinants. How regeneration can consistently form perpendicular tissue axes without symmetry-breaking embryonic events is unknown, and could either occur using fully independent, or alternatively, integrated signals defining each dimension. Here, we report that the planarian dorsoventral regulator bmp4 suppresses the posterior determinant wnt1 to pattern the anteroposterior axis. Double-FISH identified distinct anteroposterior domains within dorsal midline muscle that express either bmp4 or wnt1 . Homeostatic inhibition bmp4 and smad1 expanded the wnt1 expression anteriorly, while elevation of BMP signaling through nog1;nog2 RNAi reduced the wnt1 expression domain. BMP signal perturbation broadly affected anteroposterior identity as measured by expression of posterior Wnt pathway factors, without affecting head regionalization. Therefore, dorsal BMP signals broadly limit posterior identity. Furthermore, bmp4 RNAi caused medial expansion of the lateral determinant wnt5 and reduced expression of the medial regulator slit . Double RNAi of bmp4 and wnt5 resulted in lateral ectopic eye phenotypes, suggesting bmp4 acts upstream of wnt5 to pattern the mediolateral axis. Therefore, bmp4 acts at the top of a patterning hierarchy both to control dorsoventral information and also, through suppression of Wnt signals, to regulate anteroposterior and mediolateral identity. These results reveal that adult pattern formation involves integration of signals controlling individual orthogonal axes. Author Summary Systems that coordinate long-range communication across axes are likely critical for enabling tissue restoration in regenerative animals. While individual axis pathways have been identified, there is not yet an understanding of how signal integration allows repatterning across 3-dimensions. Here, we report an unanticipated linkage between anteroposterior, dorsoventral, and mediolateral systems in planarians through BMP signaling. We find that dorsally expressed BMP restricts posterior and lateral identity by suppressing distinct Wnt signals in adult planarians. These results demonstrate that orthogonal axis information is not fully independent and suggest a potentially ancient role of integrated axis patterning in generating stable 3-dimensional adult forms.
Collapse
Affiliation(s)
- Eleanor G. Clark
- Department of Molecular Biosciences, Northwestern University; Evanston IL 60208
| | - Christian P. Petersen
- Department of Molecular Biosciences, Northwestern University; Evanston IL 60208
- Robert Lurie Comprehensive Cancer Center, Northwestern University; Evanston IL 60208
| |
Collapse
|
25
|
Drees L, Rink JC. The planarian flatworm Schmidtea mediterranea. Nat Methods 2023; 20:3-5. [PMID: 36635538 DOI: 10.1038/s41592-022-01727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Leonard Drees
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Jochen C Rink
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
26
|
Gittin DI, Petersen CP. A Wnt11 and Dishevelled signaling pathway acts prior to injury to control wound polarization for the onset of planarian regeneration. Curr Biol 2022; 32:5262-5273.e2. [PMID: 36495871 PMCID: PMC9901562 DOI: 10.1016/j.cub.2022.10.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/20/2022] [Accepted: 10/27/2022] [Indexed: 12/13/2022]
Abstract
Regeneration is initiated by wounding, but it is unclear how injury-induced signals precisely convey the identity of the tissues requiring replacement. In the planarian Schmidtea mediterranea, the first event in head regeneration is the asymmetric activation of the Wnt inhibitor notum in longitudinal body-wall muscle cells, preferentially at anterior-facing versus posterior-facing wound sites. However, the mechanism driving this early symmetry-breaking event is unknown. We identify a noncanonical Wnt11 and Dishevelled pathway regulating notum polarization, which opposes injury-induced notum-activating Wnt/β-catenin signals and regulates muscle orientation. Using expression analysis and experiments to define a critical time of action, we demonstrate that Wnt11 and Dishevelled signals act prior to injury and in a growth-dependent manner to orient the polarization of notum induced by wounding. In turn, injury-induced notum dictates polarization used in the next round of regeneration. These results identify a self-reinforcing feedback system driving the polarization of blastema outgrowth and indicate that regeneration uses pre-existing tissue information to determine the outcome of wound-induced signals.
Collapse
Affiliation(s)
- David I Gittin
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Christian P Petersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
27
|
Dickmann JEM, Rink JC, Jülicher F. Long-range morphogen gradient formation by cell-to-cell signal propagation. Phys Biol 2022; 19. [PMID: 35921820 DOI: 10.1088/1478-3975/ac86b4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022]
Abstract
Morphogen gradients are a central concept in developmental biology. Their formation often involves the secretion of morphogens from a local source, that spread by diffusion in the cell field, where molecules eventually get degraded. This implies limits to both the time and length scales over which morphogen gradients can form which are set by diffusion coefficients and degradation rates. Towards the goal of identifying plausible mechanisms capable of extending the gradient range, we here use theory to explore properties of a cell-to-cell signaling relay. Inspired by the millimeter-scale Wnt-expression and signaling gradients in flatworms, we consider morphogen-mediated morphogen production in the cell field. We show that such a relay can generate stable morphogen and signaling gradients that are oriented by a local, morphogen-independent source of morphogen at a boundary. This gradient formation can be related to an effective diffusion and an effective degradation that result from morphogen production due to signaling relay. If the secretion of morphogen produced in response to the relay is polarized, it further gives rise to an effective drift. We find that signaling relay can generate long-ranged gradients in relevant times without relying on extreme choices of diffusion coefficients or degradation rates, thus exceeding the limits set by physiological diffusion coefficients and degradation rates. A signaling relay is hence an attractive principle to conceptualize long-range gradient formation by slowly diffusing morphogens that are relevant for patterning in adult contexts such as regeneration and tissue turn-over.
Collapse
Affiliation(s)
- Johanna E M Dickmann
- Max-Planck-Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, Dresden, Sachsen, 01187, GERMANY
| | - Jochen C Rink
- Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, Gottingen, Niedersachsen, 37077, GERMANY
| | - Frank Jülicher
- Max-Planck-Institut fuer Physik komplexer Systeme, Nöthnitzer Strasse 38, 01187 Dresden, Dresden, 01187, GERMANY
| |
Collapse
|
28
|
Sarkar SR, Dubey VK, Jahagirdar A, Lakshmanan V, Haroon MM, Sowndarya S, Sowdhamini R, Palakodeti D. DDX24 is required for muscle fiber organization and the suppression of wound-induced Wnt activity necessary for pole re-establishment during planarian regeneration. Dev Biol 2022; 488:11-29. [PMID: 35523320 DOI: 10.1016/j.ydbio.2022.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022]
Abstract
Planarians have a remarkable ability to undergo whole-body regeneration. Successful regeneration outcome is determined by processes like polarity establishment at the wound site, which is followed by pole (organizer) specification. Interestingly, these determinants are almost exclusively expressed by muscles in these animals. However, the molecular toolkit that enables the functional versatility of planarian muscles remains poorly understood. Here we report that SMED_DDX24, a D-E-A-D Box RNA helicase, is necessary for planarian survival and regeneration. We found that DDX24 is enriched in muscles and its knockdown disrupts muscle fiber organization. This leads to defective pole specification, which in turn results in misregulation of many positional control genes specifically during regeneration. ddx24 RNAi also upregulates wound-induced Wnt signalling. Suppressing this ectopic Wnt activity rescues the knockdown phenotype by enabling better anterior pole regeneration. To summarize, our work highlights the role of an RNA helicase in muscle fiber organization, and modulating amputation-induced wnt levels, both of which seem critical for pole re-organization, thereby regulating whole-body regeneration.
Collapse
Affiliation(s)
- Souradeep R Sarkar
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bengaluru, 560065, India; Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, 560065, India
| | - Vinay Kumar Dubey
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, 560065, India; Manipal Academy of Higher Education, Manipal, 576104, India
| | - Anusha Jahagirdar
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, 560065, India
| | - Vairavan Lakshmanan
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, 560065, India
| | - Mohamed Mohamed Haroon
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, 560065, India; SASTRA University, Thanjavur, 613401, India
| | - Sai Sowndarya
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, 560065, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bengaluru, 560065, India
| | - Dasaradhi Palakodeti
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, 560065, India.
| |
Collapse
|
29
|
Bonar NA, Gittin DI, Petersen CP. Src acts with WNT/FGFRL signaling to pattern the planarian anteroposterior axis. Development 2022; 149:274880. [PMID: 35297964 PMCID: PMC8995084 DOI: 10.1242/dev.200125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/03/2022] [Indexed: 01/18/2023]
Abstract
Tissue identity determination is crucial for regeneration, and the planarian anteroposterior (AP) axis uses positional control genes expressed from body wall muscle to determine body regionalization. Canonical Wnt signaling establishes anterior versus posterior pole identities through notum and wnt1 signaling, and two Wnt/FGFRL signaling pathways control head and trunk domains, but their downstream signaling mechanisms are not fully understood. Here, we identify a planarian Src homolog that restricts head and trunk identities to anterior positions. src-1(RNAi) animals formed enlarged brains and ectopic eyes and also duplicated trunk tissue, similar to a combination of Wnt/FGFRL RNAi phenotypes. src-1 was required for establishing territories of positional control gene expression in Schmidtea mediterranea, indicating that it acts at an upstream step in patterning the AP axis. Double RNAi experiments and eye regeneration assays suggest src-1 can act in parallel to at least some Wnt and FGFRL factors. Co-inhibition of src-1 with other posterior-promoting factors led to dramatic patterning changes and a reprogramming of Wnt/FGFRLs into controlling new positional outputs. These results identify src-1 as a factor that promotes robustness of the AP positional system that instructs appropriate regeneration.
Collapse
Affiliation(s)
- Nicolle A Bonar
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - David I Gittin
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Christian P Petersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.,Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
30
|
Presnell JS, Wirsching E, Weis VM. Tentacle patterning during Exaiptasia diaphana pedal lacerate development differs between symbiotic and aposymbiotic animals. PeerJ 2022; 10:e12770. [PMID: 35047238 PMCID: PMC8757374 DOI: 10.7717/peerj.12770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/19/2021] [Indexed: 01/07/2023] Open
Abstract
Exaiptasia diaphana, a tropical sea anemone known as Aiptasia, is a tractable model system for studying the cellular, physiological, and ecological characteristics of cnidarian-dinoflagellate symbiosis. Aiptasia is widely used as a proxy for coral-algal symbiosis, since both Aiptasia and corals form a symbiosis with members of the family Symbiodiniaceae. Laboratory strains of Aiptasia can be maintained in both the symbiotic (Sym) and aposymbiotic (Apo, without algae) states. Apo Aiptasia allow for the study of the influence of symbiosis on different biological processes and how different environmental conditions impact symbiosis. A key feature of Aiptasia is the ease of propagating both Sym and Apo individuals in the laboratory through a process called pedal laceration. In this form of asexual reproduction, small pieces of tissue rip away from the pedal disc of a polyp, then these lacerates eventually develop tentacles and grow into new polyps. While pedal laceration has been described in the past, details of how tentacles are formed or how symbiotic and nutritional state influence this process are lacking. Here we describe the stages of development in both Sym and Apo pedal lacerates. Our results show that Apo lacerates develop tentacles earlier than Sym lacerates, while over the course of 20 days, Sym lacerates end up with a greater number of tentacles. We describe both tentacle and mesentery patterning during lacerate development and show that they form through a single pattern in early stages regardless of symbiotic state. In later stages of development, Apo lacerate tentacles and mesenteries progress through a single pattern, while variable patterns were observed in Sym lacerates. We discuss how Aiptasia lacerate mesentery and tentacle patterning differs from oral disc regeneration and how these patterning events compare to postembryonic development in Nematostella vectensis, another widely-used sea anemone model. In addition, we demonstrate that Apo lacerates supplemented with a putative nutrient source developed an intermediate number of tentacles between un-fed Apo and Sym lacerates. Based on these observations, we hypothesize that pedal lacerates progress through two different, putatively nutrient-dependent phases of development. In the early phase, the lacerate, regardless of symbiotic state, preferentially uses or relies on nutrients carried over from the adult polyp. These resources are sufficient for lacerates to develop into a functional polyp. In the late phase of development, continued growth and tentacle formation is supported by nutrients obtained from either symbionts and/or the environment through heterotrophic feeding. Finally, we advocate for the implementation of pedal lacerates as an additional resource in the Aiptasia model system toolkit for studies of cnidarian-dinoflagellate symbiosis.
Collapse
Affiliation(s)
- Jason S. Presnell
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States of America,Department of Human Genetics, University of Utah, Salt Lake City, UT, United States of America
| | - Elizabeth Wirsching
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States of America,Department of Biology, Western Washington University, Bellingham, WA, United States of America
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States of America
| |
Collapse
|
31
|
Inoue T, Agata K. Quantification of planarian behaviors. Dev Growth Differ 2021; 64:16-37. [PMID: 34866186 DOI: 10.1111/dgd.12765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/06/2021] [Accepted: 10/23/2021] [Indexed: 11/30/2022]
Abstract
Research on individual behaviors can help to reveal the processes and mechanisms that mediate an animal's habits and interactions with the environment. Importantly, individual behaviors arise as outcomes of genetic programs, morphogenesis, physiological processes, and neural functions; thus, behavioral analyses can be used to detect disorders in these processes. Planarians belong to an early branching bilateral group of organisms that possess a simple central nervous system. Furthermore, planarians display various behavioral responses to the environment via their nervous system. Planarians also have remarkable regenerative abilities, including whole-brain regeneration. Therefore, the combination of planarians' phylogenetic position, behavioral properties, regenerative ability, and genetic accessibility provides a unique opportunity to understand the basic mechanisms underlying the anatomical properties of neural morphogenesis and the dynamic physiological processes and neural function. Here, we describe a step-by-step protocol for conducting simple behavioral analyses in planarians with the aim of helping to introduce researchers to the utility of performing behavioral analyses in planarians. Since the conditions of planarians impact experimental results and reproducibility, this protocol begins with a method for maintaining planarians. Next, we introduce the behavioral tests as well as the methods for quantifying them using minimal and cost-effective equipment and materials. Finally, we present a unique RNAi technique that enables conditional silencing of neural activity in the brain of planarians.
Collapse
Affiliation(s)
- Takeshi Inoue
- Division of Adaptation Physiology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Kiyokazu Agata
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
| |
Collapse
|
32
|
Arnold CP, Lozano AM, Mann FG, Nowotarski SH, Haug JO, Lange JJ, Seidel CW, Alvarado AS. Hox genes regulate asexual reproductive behavior and tissue segmentation in adult animals. Nat Commun 2021; 12:6706. [PMID: 34795249 PMCID: PMC8602322 DOI: 10.1038/s41467-021-26986-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
Hox genes are highly conserved transcription factors renowned for their roles in the segmental patterning of the embryonic anterior-posterior (A/P) axis. We report functions for Hox genes in A/P tissue segmentation and transverse fission behavior underlying asexual reproduction in adult planarian flatworms, Schmidtea mediterranea. Silencing of each of the Hox family members identifies 5 Hox genes required for asexual reproduction. Among these, silencing of hox3 genes results in supernumerary fission segments, while silencing of post2b eliminates segmentation altogether. The opposing roles of hox3 and post2b in segmentation are paralleled in their respective regulation of fission behavior. Silencing of hox3 increases the frequency of fission behavior initiation while silencing of post2b eliminates fission behavior entirely. Furthermore, we identify a network of downstream effector genes mediating Hox gene functions, providing insight into their respective mechanisms of action. In particular, we resolve roles for post2b and effector genes in the functions of the marginal adhesive organ in fission behavior regulation. Collectively, our study establishes adult stage roles for Hox genes in the regulation of tissue segmentation and behavior associated with asexual reproduction.
Collapse
|
33
|
Goel T, Ireland D, Shetty V, Rabeler C, Diamond PH, Collins EMS. Let it rip: the mechanics of self-bisection in asexual planarians determines their population reproductive strategies. Phys Biol 2021; 19. [PMID: 34638110 DOI: 10.1088/1478-3975/ac2f29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/12/2021] [Indexed: 11/11/2022]
Abstract
Asexual freshwater planarians reproduce by transverse bisection (binary fission) into two pieces. This process produces a head and a tail, which fully regenerate within 1-2 weeks. How planarians split into two offspring-using only their musculature and substrate traction-is a challenging biomechanics problem. We found that three different species,Dugesia japonica,Girardia tigrinaandSchmidtea mediterranea, have evolved three different mechanical solutions to self-bisect. Using time lapse imaging of the fission process, we quantitatively characterize the main steps of division in the three species and extract the distinct and shared key features. Across the three species, planarians actively alter their body shape, regulate substrate traction, and use their muscles to generate tensile stresses large enough to overcome the ultimate tensile strength of the tissue. Moreover, we show thathoweach planarian species divides dictates how resources are split among its offspring. This ultimately determines offspring survival and reproductive success. Thus, heterospecific differences in the mechanics of self-bisection of individual worms explain the observed differences in the population reproductive strategies of different planarian species.
Collapse
Affiliation(s)
- Tapan Goel
- Physics Department, UC San Diego, La Jolla, CA, United States of America
| | - Danielle Ireland
- Biology Department, Swarthmore College, Swarthmore, PA, United States of America
| | - Vir Shetty
- Physics and Astronomy Department, Swarthmore College, Swarthmore, PA, United States of America
| | - Christina Rabeler
- Biology Department, Swarthmore College, Swarthmore, PA, United States of America
| | - Patrick H Diamond
- Physics Department, UC San Diego, La Jolla, CA, United States of America
| | - Eva-Maria S Collins
- Physics Department, UC San Diego, La Jolla, CA, United States of America.,Biology Department, Swarthmore College, Swarthmore, PA, United States of America.,Physics and Astronomy Department, Swarthmore College, Swarthmore, PA, United States of America
| |
Collapse
|
34
|
Minh-Thai TN, Samarasinghe S, Levin M. A Comprehensive Conceptual and Computational Dynamics Framework for Autonomous Regeneration Systems. ARTIFICIAL LIFE 2021; 27:80-104. [PMID: 34473826 DOI: 10.1162/artl_a_00343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many biological organisms regenerate structure and function after damage. Despite the long history of research on molecular mechanisms, many questions remain about algorithms by which cells can cooperate towards the same invariant morphogenetic outcomes. Therefore, conceptual frameworks are needed not only for motivating hypotheses for advancing the understanding of regeneration processes in living organisms, but also for regenerative medicine and synthetic biology. Inspired by planarian regeneration, this study offers a novel generic conceptual framework that hypothesizes mechanisms and algorithms by which cell collectives may internally represent an anatomical target morphology towards which they build after damage. Further, the framework contributes a novel nature-inspired computing method for self-repair in engineering and robotics. Our framework, based on past in vivo and in silico studies on planaria, hypothesizes efficient novel mechanisms and algorithms to achieve complete and accurate regeneration of a simple in silico flatwormlike organism from any damage, much like the body-wide immortality of planaria, with minimal information and algorithmic complexity. This framework that extends our previous circular tissue repair model integrates two levels of organization: tissue and organism. In Level 1, three individual in silico tissues (head, body, and tail-each with a large number of tissue cells and a single stem cell at the centre) repair themselves through efficient local communications. Here, the contribution extends our circular tissue model to other shapes and invests them with tissue-wide immortality through an information field holding the minimum body plan. In Level 2, individual tissues combine to form a simple organism. Specifically, the three stem cells form a network that coordinates organism-wide regeneration with the help of Level 1. Here we contribute novel concepts for collective decision-making by stem cells for stem cell regeneration and large-scale recovery. Both levels (tissue cells and stem cells) represent networks that perform simple neural computations and form a feedback control system. With simple and limited cellular computations, our framework minimises computation and algorithmic complexity to achieve complete recovery. We report results from computer simulations of the framework to demonstrate its robustness in recovering the organism after any injury. This comprehensive hypothetical framework that significantly extends the existing biological regeneration models offers a new way to conceptualise the information-processing aspects of regeneration, which may also help design living and non-living self-repairing agents.
Collapse
Affiliation(s)
- Tran Nguyen Minh-Thai
- Lincoln University, Complex Systems, Big Data and Informatics Initiative (CSBII)
- Can Tho University, College of Information and Communication Technology
| | - Sandhya Samarasinghe
- Lincoln University, Complex Systems, Big Data and Informatics Initiative (CSBII).
| | | |
Collapse
|
35
|
Steventon B, Busby L, Arias AM. Establishment of the vertebrate body plan: Rethinking gastrulation through stem cell models of early embryogenesis. Dev Cell 2021; 56:2405-2418. [PMID: 34520764 DOI: 10.1016/j.devcel.2021.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/20/2021] [Accepted: 08/14/2021] [Indexed: 12/28/2022]
Abstract
A striking property of vertebrate embryos is the emergence of a conserved body plan across a wide range of organisms through the process of gastrulation. As the body plan unfolds, gene regulatory networks (GRNs) and multicellular interactions (cell regulatory networks, CRNs) combine to generate a conserved set of morphogenetic events that lead to the phylotypic stage. Interrogation of these multilevel interactions requires manipulation of the mechanical environment, which is difficult in vivo. We review recent studies of stem cell models of early embryogenesis from different species showing that, independent of species origin, cells in culture form similar structures. The main difference between embryos and in vitro models is the boundary conditions of the multicellular ensembles. We discuss these observations and suggest that the mechanical and geometric boundary conditions of different embryos before gastrulation hide a morphogenetic ground state that is revealed in the stem-cell-based models of embryo development.
Collapse
Affiliation(s)
| | - Lara Busby
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Alfonso Martinez Arias
- Systems Bioengineering, DCEXS, Universidad Pompeu Fabra, Doctor Aiguader, 88 ICREA, Pag Lluis Companys 23, Barcelona, Spain.
| |
Collapse
|
36
|
Subramanian SP, Lakshmanan V, Palakodeti D, Subramanian R. Glycomic and glycotranscriptomic profiling of mucin-type O-glycans in planarian Schmidtea mediterranea. Glycobiology 2021; 32:36-49. [PMID: 34499167 DOI: 10.1093/glycob/cwab097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/21/2021] [Accepted: 08/21/2021] [Indexed: 11/14/2022] Open
Abstract
O-Glycans on cell surfaces play important roles in cell-cell, cell-matrix, and receptor-ligand interaction. Therefore, glycan-based interactions are important for tissue regeneration and homeostasis. Free-living flatworm Schmidtea mediterranea, because of its robust regenerative potential, is of great interest in the field of stem cell biology and tissue regeneration. Nevertheless, information on the composition and structure of O-glycans in planaria is unknown. Using mass spectrometry and in silico approaches, we characterized the glycome and the related transcriptome of mucin-type O-glycans of planarian S. mediterranea. Mucin-type O-glycans were composed of multiple isomeric, methylated, and unusually extended mono- and di-substituted O-GalNAc structures. Extensions made of hexoses and 3-O methyl hexoses were the glycoforms observed. From glycotranscriptomic analysis, sixty genes belonging to five distinct enzyme classes were identified to be involved in mucin-type O-glycan biosynthesis. These genes shared homology with those in other invertebrate systems. While a majority of the genes involved in mucin-type O-glycan biosynthesis was highly expressed during organogenesis and in differentiated cells, a few select genes in each enzyme class were specifically enriched during early embryogenesis. Our results indicate a unique temporal and spatial role for mucin-type O-glycans during embryogenesis and organogenesis and in adulthood. In summary, this is the first report on O-glycans in planaria. This study expands the structural and biosynthetic possibilities in cellular glycosylation in the invertebrate glycome and provides a framework towards understanding the biological role of mucin-type O-glycans in tissue regeneration using planarians.
Collapse
Affiliation(s)
- Sabarinath Peruvemba Subramanian
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post Office, Bellary Road, Bangalore-560065, Karnataka, India
| | - Vairavan Lakshmanan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post Office, Bellary Road, Bangalore-560065, Karnataka, India
| | - Dasaradhi Palakodeti
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post Office, Bellary Road, Bangalore-560065, Karnataka, India
| | - Ramaswamy Subramanian
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post Office, Bellary Road, Bangalore-560065, Karnataka, India.,Department of Biological Sciences and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
37
|
Grodstein J, Levin M. Stability and robustness properties of bioelectric networks: A computational approach. BIOPHYSICS REVIEWS 2021; 2:031305. [PMID: 38505634 PMCID: PMC10903393 DOI: 10.1063/5.0062442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/07/2021] [Indexed: 03/21/2024]
Abstract
Morphogenesis during development and regeneration requires cells to communicate and cooperate toward the construction of complex anatomical structures. One important set of mechanisms for coordinating growth and form occurs via developmental bioelectricity-the dynamics of cellular networks driving changes of resting membrane potential which interface with transcriptional and biomechanical downstream cascades. While many molecular details have been elucidated about the instructive processes mediated by ion channel-dependent signaling outside of the nervous system, future advances in regenerative medicine and bioengineering require the understanding of tissue, organ, or whole body-level properties. A key aspect of bioelectric networks is their robustness, which can drive correct, invariant patterning cues despite changing cell number and anatomical configuration of the underlying tissue network. Here, we computationally analyze the minimal models of bioelectric networks and use the example of the regenerating planarian flatworm, to reveal important system-level aspects of bioelectrically derived patterns. These analyses promote an understanding of the robustness of circuits controlling regeneration and suggest design properties that can be exploited for synthetic bioengineering.
Collapse
Affiliation(s)
- Joel Grodstein
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | |
Collapse
|
38
|
Cervera J, Levin M, Mafe S. Morphology changes induced by intercellular gap junction blocking: A reaction-diffusion mechanism. Biosystems 2021; 209:104511. [PMID: 34411690 DOI: 10.1016/j.biosystems.2021.104511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/14/2021] [Indexed: 02/07/2023]
Abstract
Complex anatomical form is regulated in part by endogenous physiological communication between cells; however, the dynamics by which gap junctional (GJ) states across tissues regulate morphology are still poorly understood. We employed a biophysical modeling approach combining different signaling molecules (morphogens) to qualitatively describe the anteroposterior and lateral morphology changes in model multicellular systems due to intercellular GJ blockade. The model is based on two assumptions for blocking-induced patterning: (i) the local concentrations of two small antagonistic morphogens diffusing through the GJs along the axial direction, together with that of an independent, uncoupled morphogen concentration along an orthogonal direction, constitute the instructive patterns that modulate the morphological outcomes, and (ii) the addition of an external agent partially blocks the intercellular GJs between neighboring cells and modifies thus the establishment of these patterns. As an illustrative example, we study how the different connectivity and morphogen patterns obtained in presence of a GJ blocker can give rise to novel head morphologies in regenerating planaria. We note that the ability of GJs to regulate the permeability of morphogens post-translationally suggests a mechanism by which different anatomies can be produced from the same genome without the modification of gene-regulatory networks. Conceptually, our model biosystem constitutes a reaction-diffusion information processing mechanism that allows reprogramming of biological morphologies through the external manipulation of the intercellular GJs and the resulting changes in instructive biochemical signals.
Collapse
Affiliation(s)
- Javier Cervera
- Dept. Termodinàmica, Facultat de Física, Universitat de València, E-46100, Burjassot, Spain.
| | - Michael Levin
- Dept. of Biology and Allen Discovery Center at Tufts University, Medford, MA, 02155-4243, USA
| | - Salvador Mafe
- Dept. Termodinàmica, Facultat de Física, Universitat de València, E-46100, Burjassot, Spain
| |
Collapse
|
39
|
Scheel A, Stevens A, Tenbrock C. Signaling gradients in surface dynamics as basis for planarian regeneration. J Math Biol 2021; 83:6. [PMID: 34173885 DOI: 10.1007/s00285-021-01627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 06/01/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Based on experimental data, we introduce and analyze a system of reaction-diffusion equations for the regeneration of planarian flatworms. We model dynamics of head and tail cells expressing positional control genes that translate into localized signals which in turn guide stem cell differentiation. Tissue orientation and positional information are encoded in a long range wnt-related signaling gradient. Our system correctly reproduces typical cut and graft experiments, and improves on previous models by preserving polarity in regeneration over orders of magnitude in body size during growth phases. Key to polarity preservation in our model flatworm is the sensitivity of cell differentiation to gradients of wnt-related signals relative to the tissue surface. This process is particularly relevant in small tissue layers close to cuts during their healing, and modeled in a robust fashion through dynamic boundary conditions.
Collapse
Affiliation(s)
- Arnd Scheel
- School of Mathematics, University of Minnesota, 206 Church St. S.E., Minneapolis, MN, 55455, USA.
| | - Angela Stevens
- Applied Mathematics, University of Münster (WWU), Einsteinstr. 62, D-48149, Münster, Germany
| | - Christoph Tenbrock
- Applied Mathematics, University of Münster (WWU), Einsteinstr. 62, D-48149, Münster, Germany
| |
Collapse
|
40
|
Dias Gomes M, Iden S. Orchestration of tissue-scale mechanics and fate decisions by polarity signalling. EMBO J 2021; 40:e106787. [PMID: 33998017 PMCID: PMC8204866 DOI: 10.15252/embj.2020106787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic development relies on dynamic cell shape changes and segregation of fate determinants to achieve coordinated compartmentalization at larger scale. Studies in invertebrates have identified polarity programmes essential for morphogenesis; however, less is known about their contribution to adult tissue maintenance. While polarity-dependent fate decisions in mammals utilize molecular machineries similar to invertebrates, the hierarchies and effectors can differ widely. Recent studies in epithelial systems disclosed an intriguing interplay of polarity proteins, adhesion molecules and mechanochemical pathways in tissue organization. Based on major advances in biophysics, genome editing, high-resolution imaging and mathematical modelling, the cell polarity field has evolved to a remarkably multidisciplinary ground. Here, we review emerging concepts how polarity and cell fate are coupled, with emphasis on tissue-scale mechanisms, mechanobiology and mammalian models. Recent findings on the role of polarity signalling for tissue mechanics, micro-environmental functions and fate choices in health and disease will be summarized.
Collapse
Affiliation(s)
- Martim Dias Gomes
- CECAD Cluster of ExcellenceUniversity of CologneCologneGermany
- Cell and Developmental BiologyFaculty of MedicineCenter of Human and Molecular Biology (ZHMB)Saarland UniversityHomburgGermany
| | - Sandra Iden
- CECAD Cluster of ExcellenceUniversity of CologneCologneGermany
- Cell and Developmental BiologyFaculty of MedicineCenter of Human and Molecular Biology (ZHMB)Saarland UniversityHomburgGermany
- CMMCUniversity of CologneCologneGermany
| |
Collapse
|
41
|
Discovery of a body-wide photosensory array that matures in an adult-like animal and mediates eye-brain-independent movement and arousal. Proc Natl Acad Sci U S A 2021; 118:2021426118. [PMID: 33941643 DOI: 10.1073/pnas.2021426118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The ability to respond to light has profoundly shaped life. Animals with eyes overwhelmingly rely on their visual circuits for mediating light-induced coordinated movements. Building on previously reported behaviors, we report the discovery of an organized, eye-independent (extraocular), body-wide photosensory framework that allows even a head-removed animal to move like an intact animal. Despite possessing sensitive cerebral eyes and a centralized brain that controls most behaviors, head-removed planarians show acute, coordinated ultraviolet-A (UV-A) aversive phototaxis. We find this eye-brain-independent phototaxis is mediated by two noncanonical rhabdomeric opsins, the first known function for this newly classified opsin-clade. We uncover a unique array of dual-opsin-expressing photoreceptor cells that line the periphery of animal body, are proximal to a body-wide nerve net, and mediate UV-A phototaxis by engaging multiple modes of locomotion. Unlike embryonically developing cerebral eyes that are functional when animals hatch, the body-wide photosensory array matures postembryonically in "adult-like animals." Notably, apart from head-removed phototaxis, the body-wide, extraocular sensory organization also impacts physiology of intact animals. Low-dose UV-A, but not visible light (ocular-stimulus), is able to arouse intact worms that have naturally cycled to an inactive/rest-like state. This wavelength selective, low-light arousal of resting animals is noncanonical-opsin dependent but eye independent. Our discovery of an autonomous, multifunctional, late-maturing, organized body-wide photosensory system establishes a paradigm in sensory biology and evolution of light sensing.
Collapse
|
42
|
Lakshmanan V, Sujith TN, Bansal D, Shivaprasad PV, Palakodeti D, Krishna S. Comprehensive annotation and characterization of planarian tRNA and tRNA-derived fragments (tRFs). RNA (NEW YORK, N.Y.) 2021; 27:477-495. [PMID: 33446492 PMCID: PMC7962491 DOI: 10.1261/rna.077701.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
tRNA-derived fragments (tRFs) have recently gained a lot of scientific interest due to their diverse regulatory roles in several cellular processes. However, their function in dynamic biological processes such as development and regeneration remains unexplored. Here, we show that tRFs are dynamically expressed during planarian regeneration, suggesting a possible role for these small RNAs in the regulation of regeneration. In order to characterize planarian tRFs, we first annotated 457 tRNAs in S. mediterranea combining two tRNA prediction algorithms. Annotation of tRNAs facilitated the identification of three main species of tRFs in planarians-the shorter tRF-5s and itRFs, and the abundantly expressed 5'-tsRNAs. Spatial profiling of tRFs in sequential transverse sections of planarians revealed diverse expression patterns of these small RNAs, including those that are enriched in the head and pharyngeal regions. Expression analysis of these tRF species revealed dynamic expression of these small RNAs over the course of regeneration suggesting an important role in planarian anterior and posterior regeneration. Finally, we show that 5'-tsRNA in planaria interact with all three SMEDWI proteins and an involvement of AGO1 in the processing of itRFs. In summary, our findings implicate a novel role for tRFs in planarian regeneration, highlighting their importance in regulating complex systemic processes. Our study adds to the catalog of posttranscriptional regulatory systems in planaria, providing valuable insights on the biogenesis and the function of tRFs in neoblasts and planarian regeneration.
Collapse
MESH Headings
- Algorithms
- Animals
- Argonaute Proteins/genetics
- Argonaute Proteins/metabolism
- Base Pairing
- Base Sequence
- Gene Expression Regulation
- Helminth Proteins/genetics
- Helminth Proteins/metabolism
- Molecular Sequence Annotation
- Nucleic Acid Conformation
- Planarians/genetics
- Planarians/metabolism
- RNA, Helminth/chemistry
- RNA, Helminth/classification
- RNA, Helminth/genetics
- RNA, Helminth/metabolism
- RNA, Small Untranslated/chemistry
- RNA, Small Untranslated/classification
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/classification
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Regeneration/genetics
Collapse
Affiliation(s)
- Vairavan Lakshmanan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), 560065 Bangalore, India
- SASTRA University, 613401 Thanjavur, India
| | - T N Sujith
- National Centre for Biological Sciences (NCBS), 560065 Bangalore, India
| | - Dhiru Bansal
- Institute for Stem Cell Science and Regenerative Medicine (inStem), 560065 Bangalore, India
| | | | - Dasaradhi Palakodeti
- Institute for Stem Cell Science and Regenerative Medicine (inStem), 560065 Bangalore, India
| | - Srikar Krishna
- Institute for Stem Cell Science and Regenerative Medicine (inStem), 560065 Bangalore, India
- SASTRA University, 613401 Thanjavur, India
| |
Collapse
|
43
|
Cloutier JK, McMann CL, Oderberg IM, Reddien PW. activin-2 is required for regeneration of polarity on the planarian anterior-posterior axis. PLoS Genet 2021; 17:e1009466. [PMID: 33780442 PMCID: PMC8057570 DOI: 10.1371/journal.pgen.1009466] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/20/2021] [Accepted: 03/03/2021] [Indexed: 01/16/2023] Open
Abstract
Planarians are flatworms and can perform whole-body regeneration. This ability involves a mechanism to distinguish between anterior-facing wounds that require head regeneration and posterior-facing wounds that require tail regeneration. How this head-tail regeneration polarity decision is made is studied to identify principles underlying tissue-identity specification in regeneration. We report that inhibition of activin-2, which encodes an Activin-like signaling ligand, resulted in the regeneration of ectopic posterior-facing heads following amputation. During tissue turnover in uninjured planarians, positional information is constitutively expressed in muscle to maintain proper patterning. Positional information includes Wnts expressed in the posterior and Wnt antagonists expressed in the anterior. Upon amputation, several wound-induced genes promote re-establishment of positional information. The head-versus-tail regeneration decision involves preferential wound induction of the Wnt antagonist notum at anterior-facing over posterior-facing wounds. Asymmetric activation of notum represents the earliest known molecular distinction between head and tail regeneration, yet how it occurs is unknown. activin-2 RNAi animals displayed symmetric wound-induced activation of notum at anterior- and posterior-facing wounds, providing a molecular explanation for their ectopic posterior-head phenotype. activin-2 RNAi animals also displayed anterior-posterior (AP) axis splitting, with two heads appearing in anterior blastemas, and various combinations of heads and tails appearing in posterior blastemas. This was associated with ectopic nucleation of anterior poles, which are head-tip muscle cells that facilitate AP and medial-lateral (ML) pattern at posterior-facing wounds. These findings reveal a role for Activin signaling in determining the outcome of AP-axis-patterning events that are specific to regeneration. A central problem in animal regeneration is how animals determine what body part to regenerate. Planarians are flatworms that can regenerate any missing body region, and are studied to identify mechanisms underlying regeneration. At transverse amputation planes, a poorly understood mechanism specifies regeneration of either a head or a tail. This head-versus-tail regeneration decision-making process is referred to as regeneration polarity and has been studied for over a century to identify mechanisms that specify what to regenerate. The gene notum, which encodes a Wnt antagonist, is induced within hours after injury preferentially at anterior-facing wounds, where it specifies head regeneration. We report that Activin signaling is required for regeneration polarity, and the underlying asymmetric activation of notum at anterior- over posterior-facing wounds. We propose that Activin signaling is involved in regeneration-specific responses broadly in the animal kingdom.
Collapse
Affiliation(s)
- Jennifer K. Cloutier
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Howard Hughes Medical Institute, Chevy Chase, MD, United States of America
- Harvard/MIT MD-PhD, Harvard Medical School, Boston, MA, United States of America
| | - Conor L. McMann
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Howard Hughes Medical Institute, Chevy Chase, MD, United States of America
| | - Isaac M. Oderberg
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Howard Hughes Medical Institute, Chevy Chase, MD, United States of America
| | - Peter W. Reddien
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Howard Hughes Medical Institute, Chevy Chase, MD, United States of America
- * E-mail:
| |
Collapse
|
44
|
Cazet JF, Cho A, Juliano CE. Generic injuries are sufficient to induce ectopic Wnt organizers in Hydra. eLife 2021; 10:60562. [PMID: 33779545 PMCID: PMC8049744 DOI: 10.7554/elife.60562] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 03/28/2021] [Indexed: 12/13/2022] Open
Abstract
During whole-body regeneration, a bisection injury can trigger two different types of regeneration. To understand the transcriptional regulation underlying this adaptive response, we characterized transcript abundance and chromatin accessibility during oral and aboral regeneration in the cnidarian Hydra vulgaris. We found that the initial response to amputation at both wound sites is identical and includes widespread apoptosis and the activation of the oral-specifying Wnt signaling pathway. By 8 hr post amputation, Wnt signaling became restricted to oral regeneration. Wnt pathway genes were also upregulated in puncture wounds, and these wounds induced the formation of ectopic oral structures if pre-existing organizers were simultaneously amputated. Our work suggests that oral patterning is activated as part of a generic injury response in Hydra, and that alternative injury outcomes are dependent on signals from the surrounding tissue. Furthermore, Wnt signaling is likely part of a conserved wound response predating the split of cnidarians and bilaterians.
Collapse
Affiliation(s)
- Jack F Cazet
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| | - Adrienne Cho
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| | - Celina E Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| |
Collapse
|
45
|
WNT-FRIZZLED-LRP5/6 Signaling Mediates Posterior Fate and Proliferation during Planarian Regeneration. Genes (Basel) 2021; 12:genes12010101. [PMID: 33467529 PMCID: PMC7830089 DOI: 10.3390/genes12010101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/31/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023] Open
Abstract
An organizer is defined as a group of cells that secrete extracellular proteins that specify the fate of surrounding cells according to their concentration. Their function during embryogenesis is key in patterning new growing tissues. Although organizers should also participate in adult development when new structures are regenerated, their presence in adults has only been identified in a few species with striking regenerative abilities, such as planarians. Planarians provide a unique model to understand the function of adult organizers, since the presence of adult pluripotent stem cells provides them with the ability to regenerate any body part. Previous studies have shown that the differential activation of the WNT/β-catenin signal in each wound is fundamental to establish an anterior or a posterior organizer in the corresponding wound. Here, we identify the receptors that mediate the WNT/β-catenin signal in posterior-facing wounds. We found that Wnt1-Fzd1-LRP5/6 signaling is evolutionarily conserved in executing a WNT/β-catenin signal to specify cell fate and to trigger a proliferative response. Our data allow a better understanding of the mechanism through which organizers signal to a “competent” field of cells and integrate the patterning and growth required during de novo formation of organs and tissues.
Collapse
|
46
|
Auwal MA, Kashima M, Nishimura O, Hosoda K, Motoishi M, Kamimura A, Okumura A, Agata K, Umesono Y. Identification and characterization of a fibroblast growth factor gene in the planarian Dugesia japonica. Dev Growth Differ 2020; 62:527-539. [PMID: 33080046 DOI: 10.1111/dgd.12696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/18/2020] [Accepted: 10/02/2020] [Indexed: 11/29/2022]
Abstract
Planarians belong to the phylum Platyhelminthes and can regenerate their missing body parts after injury via activation of somatic pluripotent stem cells called neoblasts. Previous studies suggested that fibroblast growth factor (FGF) signaling plays a crucial role in the regulation of head tissue differentiation during planarian regeneration. To date, however, no FGF homologues in the Platyhelminthes have been reported. Here, we used a planarian Dugesia japonica model and identified an fgf gene termed Djfgf, which encodes a putative secreted protein with a core FGF domain characteristic of the FGF8/17/18 subfamily in bilaterians. Using Xenopus embryos, we found that DjFGF has FGF activity as assayed by Xbra induction. We next examined Djfgf expression in non-regenerating intact and regenerating planarians. In intact planarians, Djfgf was expressed in the auricles in the head and the pharynx. In the early process of regeneration, Djfgf was transiently expressed in a subset of differentiated cells around wounds. Notably, Djfgf expression was highly induced in the process of head regeneration when compared to that in the tail regeneration. Furthermore, assays of head regeneration from tail fragments revealed that combinatorial actions of the anterior extracellular signal-regulated kinase (ERK) and posterior Wnt/ß-catenin signaling restricted Djfgf expression to a certain anterior body part. This is the region where neoblasts undergo active proliferation to give rise to their differentiating progeny in response to wounding. The data suggest the possibility that DjFGF may act as an anterior counterpart of posteriorly localized Wnt molecules and trigger neoblast responses involved in planarian head regeneration.
Collapse
Affiliation(s)
| | - Makoto Kashima
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Osamu Nishimura
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kazutaka Hosoda
- Graduate School of Life Science, University of Hyogo, Kouto, Hyogo, Japan
| | - Minako Motoishi
- Graduate School of Life Science, University of Hyogo, Kouto, Hyogo, Japan
| | - Akifumi Kamimura
- Graduate School of Life Science, University of Hyogo, Kouto, Hyogo, Japan
| | - Akinori Okumura
- Graduate School of Life Science, University of Hyogo, Kouto, Hyogo, Japan
| | - Kiyokazu Agata
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.,Department of Life Science, Faculty of Science Graduate Course in Life Science, Graduate School of Science, Gakushuin University, Tokyo, Japan
| | - Yoshihiko Umesono
- Graduate School of Life Science, University of Hyogo, Kouto, Hyogo, Japan
| |
Collapse
|
47
|
Wang C, Peng R, Yuan X, Liu S, Xu S, Li Y, Zhang Z, Zeng M, Hu L, Zou F. Cellular and molecular responses-mediated by DjMEK1/2 are necessary for planarian regeneration. Int J Biol Macromol 2020; 164:3751-3761. [PMID: 32888997 DOI: 10.1016/j.ijbiomac.2020.08.209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/23/2023]
Abstract
The planarian flatworm is an ideal model to study the regeneration due to its robust regenerative ability. A variety of cellular response activities have been reported to be involved in the regeneration process, including the mitogen-activated protein kinase (MAPK) signaling. However, the mechanism of MAPK pathway in regenerative responses is still unclear. In this study, we employed the planarian, Dugesia japonica, as the model to investigate the function of MAP-extracellular signal-regulated kinase (MEK), an important component of MAPK signaling pathway, in the regeneration process. We found that MEK was required for the missing tissue response after several amputation and subsequent regeneration. MEK not only affected the size of blastema in the early stage of regeneration by regulating stem cell proliferation, but also determined the planarian's regeneration through balancing cell proliferation and apoptosis. In addition, the activation of Wnt pathway partially rescued regenerative defects induced by inhibition of MEK. Taken together, our results highlight a crucial role of MEK signaling in the planarian regeneration.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Rui Peng
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Xieyong Yuan
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Shengpeng Liu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Shutao Xu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Yan Li
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Zhenhua Zhang
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Min Zeng
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Lanlin Hu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Fangdong Zou
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, PR China.
| |
Collapse
|
48
|
Williams KB, Bischof J, Lee FJ, Miller KA, LaPalme JV, Wolfe BE, Levin M. Regulation of axial and head patterning during planarian regeneration by a commensal bacterium. Mech Dev 2020; 163:103614. [PMID: 32439577 DOI: 10.1016/j.mod.2020.103614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023]
Abstract
Some animals, such as planaria, can regenerate complex anatomical structures in a process regulated by genetic and biophysical factors, but additional external inputs into regeneration remain to be uncovered. Microbial communities inhabiting metazoan organisms are important for metabolic, immune, and disease processes, but their instructive influence over host structures remains largely unexplored. Here, we show that Aquitalea sp. FJL05, an endogenous commensal bacterium of Dugesia japonica planarians, and one of the small molecules it produces, indole, can influence axial and head patterning during regeneration, leading to regeneration of permanently two-headed animals. Testing the impact of indole on planaria tissues via RNA sequencing, we find that indole alters the regenerative outcomes in planarians through changes in expression to patterning genes, including a downregulation of Wnt pathway genes. These data provide a unique example of the product of a commensal bacterium modulating transcription of patterning genes to affect the host's anatomical structure during regeneration.
Collapse
Affiliation(s)
| | - Johanna Bischof
- Allen Discovery Center, Tufts University, Medford, MA, United States of America
| | - Frederick J Lee
- Allen Discovery Center, Tufts University, Medford, MA, United States of America
| | - Kelsie A Miller
- Allen Discovery Center, Tufts University, Medford, MA, United States of America
| | - Jennifer V LaPalme
- Allen Discovery Center, Tufts University, Medford, MA, United States of America
| | - Benjamin E Wolfe
- Allen Discovery Center, Tufts University, Medford, MA, United States of America
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, United States of America.
| |
Collapse
|
49
|
Hoel E, Levin M. Emergence of informative higher scales in biological systems: a computational toolkit for optimal prediction and control. Commun Integr Biol 2020; 13:108-118. [PMID: 33014263 PMCID: PMC7518458 DOI: 10.1080/19420889.2020.1802914] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
The biological sciences span many spatial and temporal scales in attempts to understand the function and evolution of complex systems-level processes, such as embryogenesis. It is generally assumed that the most effective description of these processes is in terms of molecular interactions. However, recent developments in information theory and causal analysis now allow for the quantitative resolution of this question. In some cases, macro-scale models can minimize noise and increase the amount of information an experimenter or modeler has about "what does what." This result has numerous implications for evolution, pattern regulation, and biomedical strategies. Here, we provide an introduction to these quantitative techniques, and use them to show how informative macro-scales are common across biology. Our goal is to give biologists the tools to identify the maximally-informative scale at which to model, experiment on, predict, control, and understand complex biological systems.
Collapse
Affiliation(s)
- Erik Hoel
- Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
50
|
Vu HTK, Mansour S, Kücken M, Blasse C, Basquin C, Azimzadeh J, Myers EW, Brusch L, Rink JC. Dynamic Polarization of the Multiciliated Planarian Epidermis between Body Plan Landmarks. Dev Cell 2020; 51:526-542.e6. [PMID: 31743666 DOI: 10.1016/j.devcel.2019.10.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/15/2019] [Accepted: 10/23/2019] [Indexed: 11/18/2022]
Abstract
Polarity is a universal design principle of biological systems that manifests at all organizational scales, yet its coordination across scales remains poorly understood. Here, we make use of the extreme anatomical plasticity of planarian flatworms to probe the interplay between global body plan polarity and local cell polarity. Our quantitative analysis of ciliary rootlet orientation in the epidermis reveals a dynamic polarity field with head and tail as independent determinants of anteroposterior (A/P) polarization and the body margin as determinant of mediolateral (M/L) polarization. Mathematical modeling rationalizes the global polarity field and its response to experimental manipulations as superposition of separate A/P and M/L fields, and we identify the core PCP and Ft/Ds pathways as their molecular mediators. Overall, our study establishes a framework for the alignment of cellular polarity vectors relative to planarian body plan landmarks and establishes the core PCP and Ft/Ds pathways as evolutionarily conserved 2D-polarization module.
Collapse
Affiliation(s)
- Hanh Thi-Kim Vu
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Sarah Mansour
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Michael Kücken
- Technische Universität Dresden, Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH), Helmholtzstrasse 10, 01069 Dresden, Germany
| | - Corinna Blasse
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Cyril Basquin
- Institut Jacques Monod, Bâtiment Buffon, 15 rue Hélène Brion, 75205 Paris CEDEX 13, France
| | - Juliette Azimzadeh
- Institut Jacques Monod, Bâtiment Buffon, 15 rue Hélène Brion, 75205 Paris CEDEX 13, France
| | - Eugene Wimberly Myers
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Lutz Brusch
- Technische Universität Dresden, Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH), Helmholtzstrasse 10, 01069 Dresden, Germany.
| | - Jochen Christian Rink
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|