1
|
You L, Huang Z, He W, Zhang L, Yu H, Zeng Y, Huang Y, Zeng S, Zheng L. Dietary alpha-lipoic acid alleviates heat stress by modulating insulin-like signaling to maintain homeostasis in C. elegans. Food Funct 2025; 16:2824-2839. [PMID: 40095598 DOI: 10.1039/d4fo05301j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Prolonged exposure to high temperatures can cause oxidative stress in the body, negatively impacting human health. Alpha-lipoic acid (ALA) is a naturally occurring antioxidant prevalent in both plant and animal foods, exhibiting bioactivity comparable to that of vitamins. Although its roles in antioxidant defense and metabolic regulation have been extensively studied, its potential to mitigate heat stress in organisms is less explored and deserves further study. Our research demonstrates that ALA significantly improves the survival rates of Caenorhabditis elegans under heat stress. ALA achieves this by activating heat shock factor 1 (HSF-1) and promoting mitochondrial fission and mitophagy through the transcription factor HLH-30. These processes help alleviate oxidative damage from heat stress, maintain mitochondrial function, and stabilize cellular energy metabolism. Furthermore, the activation of HSF-1 and enhanced mitophagy by dietary ALA depend on the insulin-like signaling peptide 19 (INS-19), suggesting that ALA may target the insulin-like signaling pathway to combat heat stress and maintain homeostasis. These findings indicate that ALA could serve as a valuable dietary supplement for enhancing heat stress resistance in organisms and may inspire the development of novel food ingredients with protective properties against thermal challenges.
Collapse
Affiliation(s)
- Longnong You
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zirui Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wenyuan He
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lizhu Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Haiyang Yu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yaoyong Zeng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yan Huang
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lingjun Zheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Harris A, Burnham K, Pradhyumnan R, Jaishankar A, Häkkinen L, Góngora-Rosero RE, Piazza Y, Andl CD, Andl T. Human-Specific Organization of Proliferation and Stemness in Squamous Epithelia: A Comparative Study to Elucidate Differences in Stem Cell Organization. Int J Mol Sci 2025; 26:3144. [PMID: 40243939 PMCID: PMC11989042 DOI: 10.3390/ijms26073144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
The mechanisms that influence human longevity are complex and operate on cellular, tissue, and organismal levels. To better understand the tissue-level mechanisms, we compared the organization of cell proliferation, differentiation, and cytoprotective protein expression in the squamous epithelium of the esophagus between mammals with varying lifespans. Humans are the only species with a quiescent basal stem cell layer that is distinctly physically separated from parabasal transit-amplifying cells. In addition to these stark differences in the organization of proliferation, human squamous epithelial stem cells express DNA repair-related markers, such as MECP2 and XPC, which are absent or low in mouse basal cells. Furthermore, we investigated whether the transition from basal to suprabasal is different between species. In humans, the parabasal cells seem to originate from cells detaching from the basement membrane, and these can already begin to proliferate while delaminating. In most other species, delaminating cells have been rare or their proliferation rate is different from that of their human counterparts, indicating an alternative mode of how stem cells maintain the tissue. In humans, the combination of an elevated cytoprotective signature and novel tissue organization may enhance resistance to aging and prevent cancer. Our results point to enhanced cellular cytoprotection and a tissue architecture which separates stemness and proliferation. These are both potential factors contributing to the increased fitness of human squamous epithelia to support longevity by suppressing tumorigenesis. However, the organization of canine oral mucosa shows some similarities to that of human tissue and may provide a useful model to understand the relationship between tissue architecture, gene expression regulation, tumor suppression, and longevity.
Collapse
Affiliation(s)
- Ashlee Harris
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA (K.B.); (R.P.); (R.E.G.-R.)
| | - Kaylee Burnham
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA (K.B.); (R.P.); (R.E.G.-R.)
| | - Ram Pradhyumnan
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA (K.B.); (R.P.); (R.E.G.-R.)
| | - Arthi Jaishankar
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA (K.B.); (R.P.); (R.E.G.-R.)
| | - Lari Häkkinen
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada;
| | - Rafael E. Góngora-Rosero
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA (K.B.); (R.P.); (R.E.G.-R.)
| | - Yelena Piazza
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Claudia D. Andl
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA (K.B.); (R.P.); (R.E.G.-R.)
| | - Thomas Andl
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA (K.B.); (R.P.); (R.E.G.-R.)
| |
Collapse
|
3
|
Outskouni Z, Prapa S, Goutas A, Klagkou E, Vatsellas G, Kosta A, Trachana V, Papathanasiou I. Comparative analysis of transcriptomic profiles of mesenchymal stem cells at the onset of senescence and after exposure to acute exogenous oxidative stress. Biochem Biophys Res Commun 2025; 754:151506. [PMID: 39999682 DOI: 10.1016/j.bbrc.2025.151506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Cellular senescence can be triggered by a wide range of stress-inducing factors, including environmental and internal damaging events, such as oxidative stress. Moreover, stressed and senescent cells exhibit modifications in their transcriptional expression profile, but little is known regarding the common genes and pathways regulating these processes. Here, we analyzed the effects of long-term culture as well as exogenous acute oxidative stress on the transcriptional program of Wharton's jelly mesenchymal stem cells (WJ-MSCs). We demonstrate that, exposure to H2O2 compromised genomic stability and mitochondrial function in early passage WJ-MSCs, potentially initiating senescence to prevent cellular transformation. On the other hand, prolonged in vitro expansion of WJ-MSCs activated processes linked to integrins and extracellular matrix organization, possibly indicating the unfavorable consequences that senescence has on tissue integrity. Additionally, cells entering senescence and oxidative stressed young WJ-MSCs over-activated transcription factors related to permanent proliferative arrest and suppressed anti-senescence factors. Common differentially expressed genes in the late passage and H2O2-treated WJ-MSCs were implicated in DNA damage response and cell cycle arrest, which are known to trigger a senescent phenotype. Notably, the TP53INP1 gene emerged as a significantly upregulated gene in both late passage and H2O2-treated young WJ-MSCs, marking it as a potent senescence indicator. Silencing TP53INP1 mitigated the senescent phenotype, a role that appeared to be facilitated by autophagy regulation. Taken together, our results shed light on how transcriptomic changes govern MSCs' senescence program and identify key molecular drivers that could prove crucial for WJ-MSCs-based clinical applications.
Collapse
Affiliation(s)
- Zozo Outskouni
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, 41500, Greece
| | - Stavroula Prapa
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, 41500, Greece
| | - Andreas Goutas
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, 41500, Greece; Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Eleftheria Klagkou
- Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Giannis Vatsellas
- Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Artemis Kosta
- Microscopy Core Facility, Institut de Microbiologie de la Méditerranée (IMM), FR3479, CNRS, Aix-Marseille University, Marseille, France
| | - Varvara Trachana
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, 41500, Greece.
| | - Ioanna Papathanasiou
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, 41500, Greece.
| |
Collapse
|
4
|
Liu JY, Wang Y, Guo Y, Zheng RQ, Wang YY, Shen YY, Liu YH, Cao AP, Wang RB, Xie BY, Jiang S, Han QY, Chen J, Dong FT, He K, Wang N, Pan X, Li T, Zhou T, Li AL, Xia Q, Zhang WN. Tauroursodeoxycholic acid targets HSP90 to promote protein homeostasis and extends healthy lifespan. SCIENCE CHINA. LIFE SCIENCES 2025; 68:416-430. [PMID: 39327392 DOI: 10.1007/s11427-024-2717-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024]
Abstract
As the elderly population expands, the pursuit of therapeutics to reduce morbidity and extend lifespan has become increasingly crucial. As an FDA-approved drug for chronic cholestatic liver diseases, tauroursodeoxycholic acid (TUDCA), a natural bile acid, offers additional health benefits beyond liver protection. Here, we show that TUDCA extends the lifespan and healthspan of C. elegans. Importantly, oral supplementation of TUDCA improves fitness in old mice, including clinically relevant phenotypes, exercise capacity and cognitive function. Consistently, TUDCA treatment drives broad transcriptional changes correlated with anti-aging characteristics. Mechanistically, we discover that TUDCA targets the chaperone HSP90 to promote its protein refolding activity. This collaboration further alleviates aging-induced endoplasmic reticulum (ER) stress and facilitates protein homeostasis, thus offering resistance to aging. In summary, our findings uncover new molecular links between an endogenous metabolite and protein homeostasis, and propose a novel anti-aging strategy that could improve both lifespan and healthspan.
Collapse
Affiliation(s)
- Jia-Yu Liu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yao Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yue Guo
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Run-Qi Zheng
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yun-Ying Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yan-Yan Shen
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yan-Hong Liu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Ai-Ping Cao
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Rui-Bo Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Bo-Yang Xie
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Shuai Jiang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Qiu-Ying Han
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Jing Chen
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Fang-Ting Dong
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Kun He
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Na Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Xin Pan
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Tao Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Tao Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Ai-Ling Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China.
| | - Qing Xia
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China.
| | - Wei-Na Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China.
| |
Collapse
|
5
|
Liu X, Chang Z, Sun P, Cao B, Wang Y, Fang J, Pei Y, Chen B, Zou W. MONITTR allows real-time imaging of transcription and endogenous proteins in C. elegans. J Cell Biol 2025; 224:e202403198. [PMID: 39400293 PMCID: PMC11473600 DOI: 10.1083/jcb.202403198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/26/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
Maximizing cell survival under stress requires rapid and transient adjustments of RNA and protein synthesis. However, capturing these dynamic changes at both single-cell level and across an organism has been challenging. Here, we developed a system named MONITTR (MS2-embedded mCherry-based monitoring of transcription) for real-time simultaneous measurement of nascent transcripts and endogenous protein levels in C. elegans. Utilizing this system, we monitored the transcriptional bursting of fasting-induced genes and found that the epidermis responds to fasting by modulating the proportion of actively transcribing nuclei and transcriptional kinetics of individual alleles. Additionally, our findings revealed the essential roles of the transcription factors NHR-49 and HLH-30 in governing the transcriptional kinetics of fasting-induced genes under fasting. Furthermore, we tracked transcriptional dynamics during heat-shock response and ER unfolded protein response and observed rapid changes in the level of nascent transcripts under stress conditions. Collectively, our study provides a foundation for quantitatively investigating how animals spatiotemporally modulate transcription in various physiological and pathological conditions.
Collapse
Affiliation(s)
- Xiaofan Liu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Zhi Chang
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Pingping Sun
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Beibei Cao
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Yuzhi Wang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Jie Fang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yechun Pei
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Baohui Chen
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Dutta N, Gerke JA, Odron SF, Morris JD, Hruby A, Kim J, Torres TC, Shemtov SJ, Clarke JG, Chang MC, Shaghasi H, Ray MN, Averbukh M, Hoang S, Oorloff M, Alcala A, Vega M, Mehta HH, Thorwald MA, Crews P, Vermulst M, Garcia G, Johnson TA, Higuchi-Sanabria R. Investigating impacts of the mycothiazole chemotype as a chemical probe for the study of mitochondrial function and aging. GeroScience 2024; 46:6009-6028. [PMID: 38570396 PMCID: PMC11493899 DOI: 10.1007/s11357-024-01144-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/16/2024] [Indexed: 04/05/2024] Open
Abstract
Small molecule inhibitors of the mitochondrial electron transport chain (ETC) hold significant promise to provide valuable insights to the field of mitochondrial research and aging biology. In this study, we investigated two molecules: mycothiazole (MTZ) - from the marine sponge C. mycofijiensis and its more stable semisynthetic analog 8-O-acetylmycothiazole (8-OAc) as potent and selective chemical probes based on their high efficiency to inhibit ETC complex I function. Similar to rotenone (Rote), MTZ, a newly employed ETC complex I inhibitor, exhibited higher cytotoxicity against cancer cell lines compared to certain non-cancer cell lines. Interestingly, 8-OAc demonstrated greater selectivity for cancer cells when compared to both MTZ and Rote, which has promising potential for anticancer therapeutic development. Furthermore, in vivo experiments with these small molecules utilizing a C. elegans model demonstrate their unexplored potential to investigate aging studies. We observed that both molecules have the ability to induce a mitochondria-specific unfolded protein response (UPRMT) pathway, that extends lifespan of worms when applied in their adult stage. We also found that these two molecules employ different pathways to extend lifespan in worms. Whereas MTZ utilizes the transcription factors ATFS-1 and HSF1, which are involved in the UPRMT and heat shock response (HSR) pathways respectively, 8-OAc only required HSF1 and not ATFS-1 to mediate its effects. This observation underscores the value of applying stable, potent, and selective next generation chemical probes to elucidate an important insight into the functional roles of various protein subunits of ETC complexes and their regulatory mechanisms associated with aging.
Collapse
Affiliation(s)
- Naibedya Dutta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Joe A Gerke
- Department of Natural Sciences & Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | - Sofia F Odron
- Department of Natural Sciences & Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | - Joseph D Morris
- Department of Natural Sciences & Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | - Adam Hruby
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Juri Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Toni Castro Torres
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sarah J Shemtov
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jacqueline G Clarke
- Department of Natural Sciences & Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | - Michelle C Chang
- Department of Natural Sciences & Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | - Hooriya Shaghasi
- Department of Natural Sciences & Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | - Marissa N Ray
- Department of Natural Sciences & Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | - Maxim Averbukh
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sally Hoang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Maria Oorloff
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Athena Alcala
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Matthew Vega
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Max A Thorwald
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Phillip Crews
- Department of Chemistry & Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Marc Vermulst
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Gilberto Garcia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Tyler A Johnson
- Department of Natural Sciences & Mathematics, Dominican University of California, San Rafael, CA, 94901, USA.
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
7
|
Kovács D, Biró JB, Ahmed S, Kovács M, Sigmond T, Hotzi B, Varga M, Vincze VV, Mohammad U, Vellai T, Barna J. Age-dependent heat shock hormesis to HSF-1 deficiency suggests a compensatory mechanism mediated by the unfolded protein response and innate immunity in young Caenorhabditis elegans. Aging Cell 2024; 23:e14246. [PMID: 38895933 PMCID: PMC11464127 DOI: 10.1111/acel.14246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
The transcription factor HSF-1 (heat shock factor 1) acts as a master regulator of heat shock response in eukaryotic cells to maintain cellular proteostasis. The protein has a protective role in preventing cells from undergoing ageing, and neurodegeneration, and also mediates tumorigenesis. Thus, modulating HSF-1 activity in humans has a promising therapeutic potential for treating these pathologies. Loss of HSF-1 function is usually associated with impaired stress tolerance. Contrary to this conventional knowledge, we show here that inactivation of HSF-1 in the nematode Caenorhabditis elegans results in increased thermotolerance at young adult stages, whereas HSF-1 deficiency in animals passing early adult stages indeed leads to decreased thermotolerance, as compared to wild-type. Furthermore, a gene expression analysis supports that in young adults, distinct cellular stress response and immunity-related signaling pathways become induced upon HSF-1 deficiency. We also demonstrate that increased tolerance to proteotoxic stress in HSF-1-depleted young worms requires the activity of the unfolded protein response of the endoplasmic reticulum and the SKN-1/Nrf2-mediated oxidative stress response pathway, as well as an innate immunity-related pathway, suggesting a mutual compensatory interaction between HSF-1 and these conserved stress response systems. A similar compensatory molecular network is likely to also operate in higher animal taxa, raising the possibility of an unexpected outcome when HSF-1 activity is manipulated in humans.
Collapse
Affiliation(s)
- Dániel Kovács
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
| | | | - Saqib Ahmed
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
| | - Márton Kovács
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
| | - Tímea Sigmond
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
| | - Bernadette Hotzi
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
| | - Máté Varga
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
| | | | - Umar Mohammad
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
| | - Tibor Vellai
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
- HUN‐REN‐ELTE Genetics Research GroupEötvös Loránd UniversityBudapestHungary
| | - János Barna
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
- HUN‐REN‐ELTE Genetics Research GroupEötvös Loránd UniversityBudapestHungary
| |
Collapse
|
8
|
Xiao L, Pi X, Goss AC, El-Baba T, Ehrmann JF, Grinkevich E, Bazua-Valenti S, Padovano V, Alper SL, Carey D, Udeshi ND, Carr SA, Pablo JL, Robinson CV, Greka A, Wu H. Molecular basis of TMED9 oligomerization and entrapment of misfolded protein cargo in the early secretory pathway. SCIENCE ADVANCES 2024; 10:eadp2221. [PMID: 39303030 PMCID: PMC11414720 DOI: 10.1126/sciadv.adp2221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Intracellular accumulation of misfolded proteins causes serious human proteinopathies. The transmembrane emp24 domain 9 (TMED9) cargo receptor promotes a general mechanism of cytotoxicity by entrapping misfolded protein cargos in the early secretory pathway. However, the molecular basis for this TMED9-mediated cargo retention remains elusive. Here, we report cryo-electron microscopy structures of TMED9, which reveal its unexpected self-oligomerization into octamers, dodecamers, and, by extension, even higher-order oligomers. The TMED9 oligomerization is driven by an intrinsic symmetry mismatch between the trimeric coiled coil domain and the tetrameric transmembrane domain. Using frameshifted Mucin 1 as an example of aggregated disease-related protein cargo, we implicate a mode of direct interaction with the TMED9 luminal Golgi-dynamics domain. The structures suggest and we confirm that TMED9 oligomerization favors the recruitment of coat protein I (COPI), but not COPII coatomers, facilitating retrograde transport and explaining the observed cargo entrapment. Our work thus reveals a molecular basis for TMED9-mediated misfolded protein retention in the early secretory pathway.
Collapse
Affiliation(s)
- Le Xiao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Xiong Pi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Alissa C. Goss
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tarick El-Baba
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Julian F. Ehrmann
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Elizabeth Grinkevich
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Silvana Bazua-Valenti
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Seth L. Alper
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Nephrology, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Dominique Carey
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Steven A. Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Juan Lorenzo Pablo
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Carol V. Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Anna Greka
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
9
|
Mallick A, Haynes CM. Methods to analyze the mitochondrial unfolded protein response (UPR mt). Methods Enzymol 2024; 707:543-564. [PMID: 39488390 DOI: 10.1016/bs.mie.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
The mitochondrial unfolded protein response (UPRmt) is a mitochondria-to-nuclear signaling pathway that mediates the transcription of genes required to maintain mitochondrial function during development as well as during aging. In this chapter, we describe the approaches and techniques that we and others have used to elucidate the mechanism(s) by which cells detect mitochondrial stress or dysfunction and communicate with the nucleus to induce transcription of a protective stress response. We also describe approaches to evaluate the impact of UPRmt activation on mitochondrial function and mitochondrial biogenesis including imaging-based approaches as well as approaches to evaluate mitochondrial genome (mtDNA) copy number.
Collapse
Affiliation(s)
- Avijit Mallick
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Cole M Haynes
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States.
| |
Collapse
|
10
|
Li W, Dong M, Gao K, Guan J, Liu Y. Genome-wide CRISPR screens identify PTPN21 and WDR26 as modulators of the mitochondrial stress-induced ISR. LIFE METABOLISM 2024; 3:loae020. [PMID: 39872503 PMCID: PMC11749115 DOI: 10.1093/lifemeta/loae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 01/30/2025]
Affiliation(s)
- Wen Li
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Mingyue Dong
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Kaiyu Gao
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Jialiang Guan
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ying Liu
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics, Beijing 100871, China
| |
Collapse
|
11
|
Lee E, Park H, Kim S. Transcellular transmission and molecular heterogeneity of aggregation-prone proteins in neurodegenerative diseases. Mol Cells 2024; 47:100089. [PMID: 38971320 PMCID: PMC11286998 DOI: 10.1016/j.mocell.2024.100089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024] Open
Abstract
The accumulation of aggregation-prone proteins in a specific neuronal population is a common feature of neurodegenerative diseases, which is correlated with the development of pathological lesions in diseased brains. The formation and progression of pathological protein aggregates in susceptible neurons induce cellular dysfunction, resulting in progressive degeneration. Moreover, recent evidence supports the notion that the cell-to-cell transmission of pathological protein aggregates may be involved in the onset and progression of many neurodegenerative diseases. Indeed, several studies have identified different pathological aggregate strains. Although how these different aggregate strains form remains unclear, a variety of biomolecular compositions or cross-seeding events promoted by the presence of other protein aggregates in the cellular environment may affect the formation of different strains of pathological aggregates, which in turn can influence complex pathologies in diseased brains. In this review, we summarize the recent results regarding cell-to-cell transmission and the molecular heterogeneity of pathological aggregate strains, raising key questions for future research directions.
Collapse
Affiliation(s)
- Eunmin Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
| | - Hyeonwoo Park
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
| | - Sangjune Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| |
Collapse
|
12
|
Chen YR, Harel I, Singh PP, Ziv I, Moses E, Goshtchevsky U, Machado BE, Brunet A, Jarosz DF. Tissue-specific landscape of protein aggregation and quality control in an aging vertebrate. Dev Cell 2024; 59:1892-1911.e13. [PMID: 38810654 PMCID: PMC11265985 DOI: 10.1016/j.devcel.2024.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/13/2024] [Accepted: 04/15/2024] [Indexed: 05/31/2024]
Abstract
Protein aggregation is a hallmark of age-related neurodegeneration. Yet, aggregation during normal aging and in tissues other than the brain is poorly understood. Here, we leverage the African turquoise killifish to systematically profile protein aggregates in seven tissues of an aging vertebrate. Age-dependent aggregation is strikingly tissue specific and not simply driven by protein expression differences. Experimental interrogation in killifish and yeast, combined with machine learning, indicates that this specificity is linked to protein-autonomous biophysical features and tissue-selective alterations in protein quality control. Co-aggregation of protein quality control machinery during aging may further reduce proteostasis capacity, exacerbating aggregate burden. A segmental progeria model with accelerated aging in specific tissues exhibits selectively increased aggregation in these same tissues. Intriguingly, many age-related protein aggregates arise in wild-type proteins that, when mutated, drive human diseases. Our data chart a comprehensive landscape of protein aggregation during vertebrate aging and identify strong, tissue-specific associations with dysfunction and disease.
Collapse
Affiliation(s)
- Yiwen R Chen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Itamar Harel
- The Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Param Priya Singh
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Inbal Ziv
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Eitan Moses
- The Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Uri Goshtchevsky
- The Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Ben E Machado
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Glenn Center for the Biology of Aging, Stanford University, Stanford, CA 94305, USA.
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
13
|
Charmpilas N, Sotiriou A, Axarlis K, Tavernarakis N, Hoppe T. Reproductive regulation of the mitochondrial stress response in Caenorhabditis elegans. Cell Rep 2024; 43:114336. [PMID: 38852157 DOI: 10.1016/j.celrep.2024.114336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024] Open
Abstract
Proteome integrity is fundamental for cellular and organismal homeostasis. The mitochondrial unfolded protein response (UPRmt), a key component of the proteostasis network, is activated in a non-cell-autonomous manner in response to mitochondrial stress in distal tissues. However, the importance of inter-tissue communication for UPRmt inducibility under physiological conditions remains elusive. Here, we show that an intact germline is essential for robust UPRmt induction in the Caenorhabditis elegans somatic tissues. A series of nematode mutants with germline defects are unable to respond to genetic or chemical UPRmt inducers. Our genetic analysis suggests that reproductive signals, rather than germline stem cells, are responsible for somatic UPRmt induction. Consistent with this observation, we show that UPRmt is sexually dimorphic, as male nematodes are inherently unresponsive to mitochondrial stress. Our findings highlight a paradigm of germline-somatic communication and suggest that reproductive cessation is a primary cause of age-related UPRmt decline.
Collapse
Affiliation(s)
- Nikolaos Charmpilas
- Institute for Genetics, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Aggeliki Sotiriou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece
| | - Konstantinos Axarlis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece.
| | - Thorsten Hoppe
- Institute for Genetics, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.
| |
Collapse
|
14
|
Jha MP, Kumar V, Ghosh A, Mapa K. Sse1, Hsp110 chaperone of yeast, controls the cellular fate during endoplasmic reticulum stress. G3 (BETHESDA, MD.) 2024; 14:jkae075. [PMID: 38577891 PMCID: PMC11152076 DOI: 10.1093/g3journal/jkae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 02/20/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
Sse1 is a cytosolic Hsp110 molecular chaperone of yeast, Saccharomyces cerevisiae. Its multifaceted roles in cellular protein homeostasis as a nucleotide exchange factor (NEF), as a protein-disaggregase and as a chaperone linked to protein synthesis (CLIPS) are well documented. In the current study, we show that SSE1 genetically interacts with IRE1 and HAC1, the endoplasmic reticulum-unfolded protein response (ER-UPR) sensors implicating its role in ER protein homeostasis. Interestingly, the absence of this chaperone imparts unusual resistance to tunicamycin-induced ER stress which depends on the intact Ire1-Hac1 mediated ER-UPR signaling. Furthermore, cells lacking SSE1 show inefficient ER-stress-responsive reorganization of translating ribosomes from polysomes to monosomes that drive uninterrupted protein translation during tunicamycin stress. In consequence, the sse1Δ strain shows prominently faster reversal from ER-UPR activated state indicating quicker restoration of homeostasis, in comparison to the wild-type (WT) cells. Importantly, Sse1 plays a critical role in controlling the ER-stress-mediated cell division arrest, which is escaped in sse1Δ strain during chronic tunicamycin stress. Accordingly, sse1Δ strain shows significantly higher cell viability in comparison to WT yeast imparting the stark fitness following short-term as well as long-term tunicamycin stress. These data, all together, suggest that cytosolic chaperone Sse1 is an important modulator of ER stress response in yeast and it controls stress-induced cell division arrest and cell death during overwhelming ER stress induced by tunicamycin.
Collapse
Affiliation(s)
- Mainak Pratim Jha
- Protein Homeostasis Laboratory, Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201314, India
| | - Vignesh Kumar
- Chemical and Systems Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Asmita Ghosh
- Chemical and Systems Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Koyeli Mapa
- Protein Homeostasis Laboratory, Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
15
|
Gilkerson R, Kaur H, Carrillo O, Ramos I. OMA1-Mediated Mitochondrial Dynamics Balance Organellar Homeostasis Upstream of Cellular Stress Responses. Int J Mol Sci 2024; 25:4566. [PMID: 38674151 PMCID: PMC11049825 DOI: 10.3390/ijms25084566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
In response to cellular metabolic and signaling cues, the mitochondrial network employs distinct sets of membrane-shaping factors to dynamically modulate organellar structures through a balance of fission and fusion. While these organellar dynamics mediate mitochondrial structure/function homeostasis, they also directly impact critical cell-wide signaling pathways such as apoptosis, autophagy, and the integrated stress response (ISR). Mitochondrial fission is driven by the recruitment of the cytosolic dynamin-related protein-1 (DRP1), while fusion is carried out by mitofusins 1 and 2 (in the outer membrane) and optic atrophy-1 (OPA1) in the inner membrane. This dynamic balance is highly sensitive to cellular stress; when the transmembrane potential across the inner membrane (Δψm) is lost, fusion-active OPA1 is cleaved by the overlapping activity with m-AAA protease-1 (OMA1 metalloprotease, disrupting mitochondrial fusion and leaving dynamin-related protein-1 (DRP1)-mediated fission unopposed, thus causing the collapse of the mitochondrial network to a fragmented state. OMA1 is a unique regulator of stress-sensitive homeostatic mitochondrial balance, acting as a key upstream sensor capable of priming the cell for apoptosis, autophagy, or ISR signaling cascades. Recent evidence indicates that higher-order macromolecular associations within the mitochondrial inner membrane allow these specialized domains to mediate crucial organellar functionalities.
Collapse
Affiliation(s)
- Robert Gilkerson
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (H.K.); (O.C.)
- Department of Health & Biomedical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Harpreet Kaur
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (H.K.); (O.C.)
| | - Omar Carrillo
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (H.K.); (O.C.)
| | - Isaiah Ramos
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (H.K.); (O.C.)
| |
Collapse
|
16
|
Cao H, Zhou X, Xu B, Hu H, Guo J, Wang M, Li N, Jun Z. Advances in the study of mitophagy in osteoarthritis. J Zhejiang Univ Sci B 2024; 25:197-211. [PMID: 38453635 PMCID: PMC10918408 DOI: 10.1631/jzus.b2300402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/21/2023] [Indexed: 03/09/2024]
Abstract
Osteoarthritis (OA), characterized by cartilage degeneration, synovial inflammation, and subchondral bone remodeling, is among the most common musculoskeletal disorders globally in people over 60 years of age. The initiation and progression of OA involves the abnormal metabolism of chondrocytes as an important pathogenic process. Cartilage degeneration features mitochondrial dysfunction as one of the important causative factors of abnormal chondrocyte metabolism. Therefore, maintaining mitochondrial homeostasis is an important strategy to mitigate OA. Mitophagy is a vital process for autophagosomes to target, engulf, and remove damaged and dysfunctional mitochondria, thereby maintaining mitochondrial homeostasis. Cumulative studies have revealed a strong association between mitophagy and OA, suggesting that the regulation of mitophagy may be a novel therapeutic direction for OA. By reviewing the literature on mitophagy and OA published in recent years, this paper elaborates the potential mechanism of mitophagy regulating OA, thus providing a theoretical basis for studies related to mitophagy to develop new treatment options for OA.
Collapse
Affiliation(s)
- Hong Cao
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Xuchang Zhou
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Bowen Xu
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Han Hu
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Jianming Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Miao Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Nan Li
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China.
| | - Zou Jun
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
17
|
Abou-Shaara HF. The response of heat shock proteins in honey bees to abiotic and biotic stressors. J Therm Biol 2024; 119:103784. [PMID: 38232472 DOI: 10.1016/j.jtherbio.2024.103784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Honey bees, Apis mellifera, are the most important managed pollinators worldwide. They are highly impacted by various abiotic and biotic stressors, especially temperature extremes, which can lead to cellular damage and death. The induction of heat shock proteins (HSPs) has been recorded in honey bees as a response to various types of stressors. HSPs are classified into different gene families according to their molecular weights. HSPs play an important role in maintaining cellular protein homeostasis due to their contribution as molecular chaperones or co-chaperones. HSPs in honey bees have complex functions with induction even under normal colony conditions. Previous studies have suggested various functions of HSPs to protect cells from damage under exposure to environmental stressors, pollutants, and pathogens. Surprisingly, HSPs have also been found to play roles in larval development and age-related tasks. The expression of HSPs varies depending on tissue type, developmental stage, age, and stress period. This article reviews studies on HSPs (sHSPs, HSP40, HSP60, HSP70, and HSP90) in honey bees and highlights gaps in the available knowledge. This review is crucial for honey bee research, particularly in the face of climate change challenges.
Collapse
Affiliation(s)
- Hossam F Abou-Shaara
- Department of Plant Protection, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Egypt.
| |
Collapse
|
18
|
Dutta N, Gerke JA, Odron SF, Morris JD, Hruby A, Castro Torres T, Shemtov SJ, Clarke JG, Chang MC, Shaghasi H, Ray MN, Averbukh M, Hoang S, Oorloff M, Alcala A, Vega M, Mehta HH, Thorwald MA, Crews P, Vermulst M, Garcia G, Johnson TA, Higuchi-Sanabria R. Investigating impacts of marine sponge derived mycothiazole and its acetylated derivative on mitochondrial function and aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.568896. [PMID: 38077060 PMCID: PMC10705228 DOI: 10.1101/2023.11.27.568896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Small molecule inhibitors of the mitochondrial electron transport chain (ETC) hold significant promise to provide valuable insights to the field of mitochondrial research and aging biology. In this study, we investigated two molecules: mycothiazole (MTZ) - from the marine sponge C. mycofijiensis and its more stable semisynthetic analog 8-O-acetylmycothiazole (8-OAc) as potent and selective chemical probes based on their high efficiency to inhibit ETC complex I function. Similar to rotenone (Rote), a widely used ETC complex I inhibitor, these two molecules showed cytotoxicity to cancer cells but strikingly demonstrate a lack of toxicity to non-cancer cells, a highly beneficial feature in the development of anti-cancer therapeutics. Furthermore, in vivo experiments with these small molecules utilizing C.elegans model demonstrate their unexplored potential to investigate aging studies. We observed that both molecules have the ability to induce a mitochondria-specific unfolded protein response (UPRMT) pathway, that extends lifespan of worms when applied in their adult stage. Interestingly, we also found that these two molecules employ different pathways to extend lifespan in worms. Whereas MTZ utilize the transcription factors ATFS-1 and HSF-1, which are involved in the UPRMT and heat shock response (HSR) pathways respectively, 8-OAc only required HSF-1 and not ATFS-1 to mediate its effects. This observation underscores the value of applying stable, potent, and selective next generation chemical probes to elucidate an important insight into the functional roles of various protein subunits of ETC complexes and their regulatory mechanisms associated with aging.
Collapse
Affiliation(s)
- Naibedya Dutta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Joe A Gerke
- Department of Natural Sciences & Mathematics, Dominican University of California, San Rafael, CA 94901, United States
| | - Sofia F Odron
- Department of Natural Sciences & Mathematics, Dominican University of California, San Rafael, CA 94901, United States
| | - Joseph D Morris
- Department of Natural Sciences & Mathematics, Dominican University of California, San Rafael, CA 94901, United States
| | - Adam Hruby
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Toni Castro Torres
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Sarah J Shemtov
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Jacqueline G Clarke
- Department of Natural Sciences & Mathematics, Dominican University of California, San Rafael, CA 94901, United States
| | - Michelle C Chang
- Department of Natural Sciences & Mathematics, Dominican University of California, San Rafael, CA 94901, United States
| | - Hooriya Shaghasi
- Department of Natural Sciences & Mathematics, Dominican University of California, San Rafael, CA 94901, United States
| | - Marissa N. Ray
- Department of Natural Sciences & Mathematics, Dominican University of California, San Rafael, CA 94901, United States
| | - Maxim Averbukh
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Sally Hoang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Maria Oorloff
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Athena Alcala
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Matthew Vega
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Max A Thorwald
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Phillip Crews
- Department of Chemistry & Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, 95064, United States
| | - Marc Vermulst
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Gilberto Garcia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Tyler A Johnson
- Department of Natural Sciences & Mathematics, Dominican University of California, San Rafael, CA 94901, United States
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| |
Collapse
|
19
|
Wang Z, Zou L, Zhang Y, Zhu M, Zhang S, Wu D, Lan J, Zang X, Wang Q, Zhang H, Wu Z, Zhu H, Chen D. ACS-20/FATP4 mediates the anti-ageing effect of dietary restriction in C. elegans. Nat Commun 2023; 14:7683. [PMID: 38001113 PMCID: PMC10673863 DOI: 10.1038/s41467-023-43613-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Dietary restriction is an effective anti-ageing intervention across species. However, the molecular mechanisms from the metabolic aspects of view are still underexplored. Here we show ACS-20 as a key mediator of dietary restriction on healthy ageing from a genetic screen of the C. elegans acyl-CoA synthetase family. ACS-20 functions in the epidermis during development to regulate dietary restriction-induced longevity. Functional transcriptomics studies reveal that elevated expression of PTR-8/Patched is responsible for the proteostasis and lifespan defects of acs-20. Furthermore, the conserved NHR-23 nuclear receptor serves as a transcriptional repressor of ptr-8 and a key regulator of dietary restriction-induced longevity. Mechanistically, a specific region in the ptr-8 promoter plays a key role in mediating the transcription regulation and lifespan extension under dietary restriction. Altogether, these findings identify a highly conserved lipid metabolism enzyme as a key mediator of dietary restriction-induced lifespan and healthspan extension and reveal the downstream transcriptional regulation mechanisms.
Collapse
Affiliation(s)
- Zi Wang
- Model Animal Research Center of Medical School, MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, Jiangsu, 210061, China
| | - Lina Zou
- Model Animal Research Center of Medical School, MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, Jiangsu, 210061, China
| | - Yiyan Zhang
- Model Animal Research Center of Medical School, MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, Jiangsu, 210061, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, 314400, China
| | - Mengnan Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shuxian Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Di Wu
- Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jianfeng Lan
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, China
| | - Xiao Zang
- Model Animal Research Center of Medical School, MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, Jiangsu, 210061, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, 314400, China
| | - Qi Wang
- Model Animal Research Center of Medical School, MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, Jiangsu, 210061, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, 314400, China
| | - Hanxin Zhang
- Model Animal Research Center of Medical School, MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, Jiangsu, 210061, China
| | - Zixing Wu
- Model Animal Research Center of Medical School, MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, Jiangsu, 210061, China
| | - Huanhu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Di Chen
- Model Animal Research Center of Medical School, MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, Jiangsu, 210061, China.
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, 314400, China.
- Department of Colorectal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
20
|
Gressler AE, Leng H, Zinecker H, Simon AK. Proteostasis in T cell aging. Semin Immunol 2023; 70:101838. [PMID: 37708826 PMCID: PMC10804938 DOI: 10.1016/j.smim.2023.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023]
Abstract
Aging leads to a decline in immune cell function, which leaves the organism vulnerable to infections and age-related multimorbidities. One major player of the adaptive immune response are T cells, and recent studies argue for a major role of disturbed proteostasis contributing to reduced function of these cells upon aging. Proteostasis refers to the state of a healthy, balanced proteome in the cell and is influenced by synthesis (translation), maintenance and quality control of proteins, as well as degradation of damaged or unwanted proteins by the proteasome, autophagy, lysosome and cytoplasmic enzymes. This review focuses on molecular processes impacting on proteostasis in T cells, and specifically functional or quantitative changes of each of these upon aging. Importantly, we describe the biological consequences of compromised proteostasis in T cells, which range from impaired T cell activation and function to enhancement of inflamm-aging by aged T cells. Finally, approaches to improve proteostasis and thus rejuvenate aged T cells through pharmacological or physical interventions are discussed.
Collapse
Affiliation(s)
- A Elisabeth Gressler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Houfu Leng
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Heidi Zinecker
- Ascenion GmbH, Am Zirkus 1, Bertold-Brecht-Platz 3, 10117 Berlin, Germany
| | - Anna Katharina Simon
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom.
| |
Collapse
|
21
|
Taylor SKB, Minhas MH, Gupta BP. Effect of starvation on electrotaxis response. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000962. [PMID: 37799206 PMCID: PMC10550372 DOI: 10.17912/micropub.biology.000962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
Caenorhabditis elegans is an ideal model for investigating the effects of extrinsic and intrinsic conditions on the behavioral changes of animals. Our group previously showed how different conditions influence the behavior of worms following an electric stimulus in a microfluidic channel, known as electrotaxis. In this study we describe the effect of starvation on the electrotaxis movement of animals. We show that acute starvation did not affect the electrotaxis response or dopaminergic neurons but extended the lifespan of animals.
Collapse
|
22
|
Cheng F, Ji Q, Wang L, Wang C, Liu G, Wang L. Reducing oxidative protein folding alleviates senescence by minimizing ER-to-nucleus H 2 O 2 release. EMBO Rep 2023; 24:e56439. [PMID: 37306027 PMCID: PMC10398651 DOI: 10.15252/embr.202256439] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023] Open
Abstract
Oxidative protein folding occurs in the endoplasmic reticulum (ER) to generate disulfide bonds, and the by-product is hydrogen peroxide (H2 O2 ). However, the relationship between oxidative protein folding and senescence remains uncharacterized. Here, we find that the protein disulfide isomerase (PDI), a key oxidoreductase that catalyzes oxidative protein folding, accumulated in aged human mesenchymal stem cells (hMSCs) and deletion of PDI alleviated hMSCs senescence. Mechanistically, knocking out PDI slows the rate of oxidative protein folding and decreases the leakage of ER-derived H2 O2 into the nucleus, thereby decreasing the expression of SERPINE1, which was identified as a key driver of cell senescence. Furthermore, we show that depletion of PDI alleviated senescence in various cell models of aging. Our findings reveal a previously unrecognized role of oxidative protein folding in promoting cell aging, providing a potential target for aging and aging-related disease intervention.
Collapse
Affiliation(s)
- Fang Cheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Qianzhao Ji
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Membrane Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Lu Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Chih‐chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Guang‐Hui Liu
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Membrane Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
23
|
Gao Y, Chi Y, Chen Y, Wang W, Li H, Zheng W, Zhu P, An J, Duan Y, Sun T, Liu X, Xue F, Liu W, Fu R, Han Z, Zhang Y, Yang R, Cheng T, Wei J, Zhang L, Zhang X. Multi-omics analysis of human mesenchymal stem cells shows cell aging that alters immunomodulatory activity through the downregulation of PD-L1. Nat Commun 2023; 14:4373. [PMID: 37474525 PMCID: PMC10359415 DOI: 10.1038/s41467-023-39958-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
Mesenchymal stem cells (MSCs) possess potent immunomodulatory activity and have been extensively investigated for their therapeutic potential in treating inflammatory disorders. However, the mechanisms underlying the immunosuppressive function of MSCs are not fully understood, hindering the development of standardized MSC-based therapies for clinical use. In this study, we profile the single-cell transcriptomes of MSCs isolated from adipose tissue (AD), bone marrow (BM), placental chorionic membrane (PM), and umbilical cord (UC). Our results demonstrate that MSCs undergo a progressive aging process and that the cellular senescence state influences their immunosuppressive activity by downregulating PD-L1 expression. Through integrated analysis of single-cell transcriptomic and proteomic data, we identify GATA2 as a regulator of MSC senescence and PD-L1 expression. Overall, our findings highlight the roles of cell aging and PD-L1 expression in modulating the immunosuppressive efficacy of MSCs and implicating perinatal MSC therapy for clinical applications in inflammatory disorders.
Collapse
Affiliation(s)
- Yuchen Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Ying Chi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Yunfei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Wentian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Huiyuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Wenting Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Jinying An
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Yanan Duan
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Ting Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Xiaofan Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Feng Xue
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Wei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Rongfeng Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Zhibo Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Jun Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China.
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| |
Collapse
|
24
|
Zhang L, Wu J, Zhu Z, He Y, Fang R. Mitochondrion: A bridge linking aging and degenerative diseases. Life Sci 2023; 322:121666. [PMID: 37030614 DOI: 10.1016/j.lfs.2023.121666] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/10/2023]
Abstract
Aging is a natural process, characterized by progressive loss of physiological integrity, impaired function, and increased vulnerability to death. For centuries, people have been trying hard to understand the process of aging and find effective ways to delay it. However, limited breakthroughs have been made in anti-aging area. Since the hallmarks of aging were summarized in 2013, increasing studies focus on the role of mitochondrial dysfunction in aging and aging-related degenerative diseases, such as neurodegenerative diseases, osteoarthritis, metabolic diseases, and cardiovascular diseases. Accumulating evidence indicates that restoring mitochondrial function and biogenesis exerts beneficial effects in extending lifespan and promoting healthy aging. In this paper, we provide an overview of mitochondrial changes during aging and summarize the advanced studies in mitochondrial therapies for the treatment of degenerative diseases. Current challenges and future perspectives are proposed to provide novel and promising directions for future research.
Collapse
Affiliation(s)
- Lanlan Zhang
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianlong Wu
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ziguan Zhu
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuchen He
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Orthopaedics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Renpeng Fang
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
25
|
Uzay B, Houcek A, Ma ZZ, Konradi C, Monteggia LM, Kavalali ET. Neurotransmitter release progressively desynchronizes in induced human neurons during synapse maturation and aging. Cell Rep 2023; 42:112042. [PMID: 36701235 PMCID: PMC10366341 DOI: 10.1016/j.celrep.2023.112042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/04/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Rapid release of neurotransmitters in synchrony with action potentials is considered a key hardwired property of synapses. Here, in glutamatergic synapses formed between induced human neurons, we show that action potential-dependent neurotransmitter release becomes progressively desynchronized as synapses mature and age. In this solely excitatory network, the emergence of NMDAR-mediated transmission elicits endoplasmic reticulum (ER) stress leading to downregulation of key presynaptic molecules, synaptotagmin-1 and cysteine string protein α, that synchronize neurotransmitter release. The emergence of asynchronous release with neuronal maturity and subsequent aging is maintained by the high-affinity Ca2+ sensor synaptotagmin-7 and suppressed by the introduction of GABAergic transmission into the network, inhibition of NMDARs, and ER stress. These results suggest that long-term disruption of excitation-inhibition balance affects the synchrony of excitatory neurotransmission in human synapses.
Collapse
Affiliation(s)
- Burak Uzay
- Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA
| | - Aiden Houcek
- Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA
| | - Z Zack Ma
- Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA
| | - Christine Konradi
- Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA
| | - Lisa M Monteggia
- Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA
| | - Ege T Kavalali
- Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA.
| |
Collapse
|
26
|
Shaw JL, Pablo JL, Greka A. Mechanisms of Protein Trafficking and Quality Control in the Kidney and Beyond. Annu Rev Physiol 2023; 85:407-423. [PMID: 36763970 DOI: 10.1146/annurev-physiol-031522-100639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Numerous trafficking and quality control pathways evolved to handle the diversity of proteins made by eukaryotic cells. However, at every step along the biosynthetic pathway, there is the potential for quality control system failure. This review focuses on the mechanisms of disrupted proteostasis. Inspired by diseases caused by misfolded proteins in the kidney (mucin 1 and uromodulin), we outline the general principles of protein biosynthesis, delineate the recognition and degradation pathways targeting misfolded proteins, and discuss the role of cargo receptors in protein trafficking and lipid homeostasis. We also discuss technical approaches including live-cell fluorescent microscopy, chemical screens to elucidate trafficking mechanisms, multiplexed single-cell CRISPR screening platforms to systematically delineate mechanisms of proteostasis, and the advancement of novel tools to degrade secretory and membrane-associated proteins. By focusing on components of trafficking that go awry, we highlight ongoing efforts to understand fundamental mechanisms of disrupted proteostasis and implications for the treatment of human proteinopathies.
Collapse
Affiliation(s)
- Jillian L Shaw
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; .,Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Juan Lorenzo Pablo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; .,Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Anna Greka
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; .,Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Li TY, Gao AW, Li X, Li H, Liu YJ, Lalou A, Neelagandan N, Naef F, Schoonjans K, Auwerx J. V-ATPase/TORC1-mediated ATFS-1 translation directs mitochondrial UPR activation in C. elegans. J Cell Biol 2023; 222:e202205045. [PMID: 36314986 PMCID: PMC9623136 DOI: 10.1083/jcb.202205045] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/22/2022] [Accepted: 10/12/2022] [Indexed: 11/18/2022] Open
Abstract
To adapt mitochondrial function to the ever-changing intra- and extracellular environment, multiple mitochondrial stress response (MSR) pathways, including the mitochondrial unfolded protein response (UPRmt), have evolved. However, how the mitochondrial stress signal is sensed and relayed to UPRmt transcription factors, such as ATFS-1 in Caenorhabditis elegans, remains largely unknown. Here, we show that a panel of vacuolar H+-ATPase (v-ATPase) subunits and the target of rapamycin complex 1 (TORC1) activity are essential for the cytosolic relay of mitochondrial stress to ATFS-1 and for the induction of the UPRmt. Mechanistically, mitochondrial stress stimulates v-ATPase/Rheb-dependent TORC1 activation, subsequently promoting ATFS-1 translation. Increased translation of ATFS-1 upon mitochondrial stress furthermore relies on a set of ribosomal components but is independent of GCN-2/PEK-1 signaling. Finally, the v-ATPase and ribosomal subunits are required for mitochondrial surveillance and mitochondrial stress-induced longevity. These results reveal a v-ATPase-TORC1-ATFS-1 signaling pathway that links mitochondrial stress to the UPRmt through intimate crosstalks between multiple organelles.
Collapse
Affiliation(s)
- Terytty Yang Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Arwen W. Gao
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hao Li
- Laboratory of Metabolic Signaling, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Yasmine J. Liu
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Amelia Lalou
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nagammal Neelagandan
- Laboratory of Computational and Systems Biology, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Felix Naef
- Laboratory of Computational and Systems Biology, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
28
|
Gildea HK, Frankino PA, Tronnes SU, Pender CL, Durieux J, Dishart JG, Choi HO, Hunter TD, Cheung SS, Frakes AE, Sukarto E, Wickham K, Dillin A. Glia of C. elegans coordinate a protective organismal heat shock response independent of the neuronal thermosensory circuit. SCIENCE ADVANCES 2022; 8:eabq3970. [PMID: 36490338 PMCID: PMC9733925 DOI: 10.1126/sciadv.abq3970] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 11/03/2022] [Indexed: 06/01/2023]
Abstract
Aging organisms lose the ability to induce stress responses, becoming vulnerable to protein toxicity and tissue damage. Neurons can signal to peripheral tissues to induce protective organelle-specific stress responses. Recent work shows that glia can independently induce such responses. Here, we show that overexpression of heat shock factor 1 (hsf-1) in the four astrocyte-like cephalic sheath cells of Caenorhabditis elegans induces a non-cell-autonomous cytosolic unfolded protein response, also known as the heat shock response (HSR). These animals have increased lifespan and heat stress resistance and decreased protein aggregation. Glial HSR regulation is independent of canonical thermosensory circuitry and known neurotransmitters but requires the small clear vesicle release protein UNC-13. HSF-1 and the FOXO transcription factor DAF-16 are partially required in peripheral tissues for non-cell-autonomous HSR, longevity, and thermotolerance. Cephalic sheath glial hsf-1 overexpression also leads to pathogen resistance, suggesting a role for this signaling pathway in immune function.
Collapse
Affiliation(s)
- Holly K. Gildea
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Phillip A. Frankino
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Sarah U. Tronnes
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Corinne L. Pender
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Jenni Durieux
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Julian G. Dishart
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Hyun Ok Choi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Tayla D. Hunter
- Department of Biology, Howard University, Washington, DC, USA
| | - Shannon S. Cheung
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ashley E. Frakes
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Edward Sukarto
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Kevin Wickham
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Andrew Dillin
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
29
|
Wang H, Jiang C, Cai J, Lu Q, Qiu Y, Wang Y, Huang Y, Xiao Y, Wang B, Wei X, Shi J, Lai X, Wang T, Wang J, Xiang AP. Nestin prevents mesenchymal stromal cells from apoptosis in LPS-induced lung injury via inhibition of unfolded protein response sensor IRE1α. LIFE MEDICINE 2022; 1:359-371. [PMID: 39872742 PMCID: PMC11749126 DOI: 10.1093/lifemedi/lnac049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/01/2022] [Indexed: 01/30/2025]
Abstract
The clinical applications of MSC therapy have been intensely investigated in acute respiratory distress syndrome. However, clinical studies have fallen short of expectations despite encouraging preclinical results. One of the key problems is that transplanted stem cells can hardly survive in the harsh inflammatory environment. Prolonging the survival of transplanted MSCs might be a promising strategy to enhance the therapeutic efficacy of MSC therapy. Here, we identified Nestin, a class VI intermediate filament, as a positive regulator of MSC survival in the inflammatory microenvironment. We showed that Nestin knockout led to a significant increase of MSC apoptosis, which hampered the therapeutic effects in an LPS-induced lung injury model. Mechanistically, Nestin knockout induced a significant elevation of endoplasmic reticulum (ER) stress level. Further investigations showed that Nestin could bind to IRE1α and inhibit ER stress-induced apoptosis under stress. Furthermore, pretreatment with IRE1α inhibitor 4μ8C improved MSC survival and improved therapeutic effect. Our data suggests that Nestin enhances stem cell survival after transplantation by inhibiting ER stress-induced apoptosis, improving protection, and repair of the lung inflammatory injury.
Collapse
Affiliation(s)
- Hongmiao Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Chenhao Jiang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Jianye Cai
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Qiying Lu
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuan Qiu
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Yi Wang
- Guangdong Institute for Drug Control, NMPA Key Laboratory for Quality Control of Blood Products, Guangdong Drug Administration Key Laboratory of Quality Control and Research of Blood Products, Guangzhou 510663, China
| | - Yinong Huang
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yong Xiao
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Boyan Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoyue Wei
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiahao Shi
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Xingqiang Lai
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Tao Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiancheng Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Andy Peng Xiang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
30
|
Current Understanding of Systemic Amyloidosis and Underlying Disease Mechanisms. Am J Cardiol 2022; 185 Suppl 1:S2-S10. [PMID: 36549788 DOI: 10.1016/j.amjcard.2022.10.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 12/24/2022]
Abstract
Amyloidosis is a group of diverse disorders caused by misfolded proteins that aggregate into insoluble fibrils and ultimately cause organ damage. In medical practice, amyloidosis classification is based on the amyloid precursor protein type, of which amyloid immunoglobulin light chain, amyloid transthyretin, amyloid leukocyte chemotactic factor 2, and amyloid derived from serum amyloid A protein are the most common. Distinct mechanisms appear to be predominantly operational in the pathogenesis of particular types of amyloidosis, including increased protein precursor synthesis, somatic or germ line mutations, and inherent instability in the precursor protein in its wild form. An increased supply of misfolded proteins and/or a decreased capacity of the protein quality control systems can result in an imbalance that leads to increased circulation of misfolded proteins. Although the detection of mature fibrils is the basis for diagnosis of amyloidosis, a growing body of evidence has implicated the prefibrillar species as proteotoxic and key contributors to the development of the disease.
Collapse
|
31
|
The Thermal Stress Coping Network of the Nematode Caenorhabditis elegans. Int J Mol Sci 2022; 23:ijms232314907. [PMID: 36499234 PMCID: PMC9737000 DOI: 10.3390/ijms232314907] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Response to hyperthermia, highly conserved from bacteria to humans, involves transcriptional upregulation of genes involved in battling the cytotoxicity caused by misfolded and denatured proteins, with the aim of proteostasis restoration. C. elegans senses and responds to changes in growth temperature or noxious thermal stress by well-defined signaling pathways. Under adverse conditions, regulation of the heat shock response (HSR) in C. elegans is controlled by a single transcription factor, heat-shock factor 1 (HSF-1). HSR and HSF-1 in particular are proven to be central to survival under proteotoxic stress, with additional roles in normal physiological processes. For years, it was a common belief that upregulation of heat shock proteins (HSPs) by HSF-1 was the main and most important step toward thermotolerance. However, an ever-growing number of studies have shown that targets of HSF-1 involved in cytoskeletal and exoskeletal integrity preservation as well as other HSF-1 dependent and independent pathways are equally important. In this review, we follow the thermal stimulus from reception by the nematode nerve endings till the activation of cellular response programs. We analyze the different HSF-1 functions in HSR as well as all the recently discovered mechanisms that add to the knowledge of the heat stress coping network of C. elegans.
Collapse
|
32
|
Loose JA, Amrit FRG, Patil T, Yanowitz JL, Ghazi A. Meiotic dysfunction accelerates somatic aging in Caenorhabditis elegans. Aging Cell 2022; 21:e13716. [PMID: 36176234 PMCID: PMC9649607 DOI: 10.1111/acel.13716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 08/07/2022] [Accepted: 08/31/2022] [Indexed: 01/25/2023] Open
Abstract
An expanding body of evidence, from studies in model organisms to human clinical data, reveals that reproductive health influences organismal aging. However, the impact of germline integrity on somatic aging is poorly understood. Moreover, assessing the causal relationship of such an impact is challenging to address in human and vertebrate models. Here, we demonstrate that disruption of meiosis, a germline restricted process, shortened lifespan, impaired individual aspects of healthspan, and accelerated somatic aging in Caenorhabditis elegans. Young meiotic mutants exhibited transcriptional profiles that showed remarkable overlap with the transcriptomes of old worms and shared similarities with transcriptomes of aging human tissues as well. We found that meiosis dysfunction caused increased expression of functionally relevant longevity determinants whose inactivation enhanced the lifespan of normal animals. Further, meiotic mutants manifested destabilized protein homeostasis and enhanced proteasomal activity partially rescued the associated lifespan defects. Our study demonstrates a role for meiotic integrity in controlling somatic aging and reveals proteostasis control as a potential mechanism through which germline status impacts overall organismal health.
Collapse
Affiliation(s)
- Julia A. Loose
- Department of Pediatrics, John G. Rangos Sr. Research CenterUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Francis R. G. Amrit
- Department of Pediatrics, John G. Rangos Sr. Research CenterUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Thayjas Patil
- Department of Pediatrics, John G. Rangos Sr. Research CenterUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Judith L. Yanowitz
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee‐Womens Research InstituteUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Arjumand Ghazi
- Department of Pediatrics, John G. Rangos Sr. Research CenterUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA,Department of Developmental Biology, John G. Rangos Sr. Research CenterUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA,Department of Cell Biology & PhysiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
33
|
Beaudoin-Chabot C, Wang L, Celik C, Abdul Khalid ATF, Thalappilly S, Xu S, Koh JH, Lim VWX, Low AD, Thibault G. The unfolded protein response reverses the effects of glucose on lifespan in chemically-sterilized C. elegans. Nat Commun 2022; 13:5889. [PMID: 36261415 PMCID: PMC9582010 DOI: 10.1038/s41467-022-33630-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
Metabolic diseases often share common traits, including accumulation of unfolded proteins in the endoplasmic reticulum (ER). Upon ER stress, the unfolded protein response (UPR) is activated to limit cellular damage which weakens with age. Here, we show that Caenorhabditis elegans fed a bacterial diet supplemented high glucose at day 5 of adulthood (HGD-5) extends their lifespan, whereas exposed at day 1 (HGD-1) experience shortened longevity. We observed a metabolic shift only in HGD-1, while glucose and infertility synergistically prolonged the lifespan of HGD-5, independently of DAF-16. Notably, we identified that UPR stress sensors ATF-6 and PEK-1 contributed to the longevity of HGD-5 worms, while ire-1 ablation drastically increased HGD-1 lifespan. Together, we postulate that HGD activates the otherwise quiescent UPR in aged worms to overcome ageing-related stress and restore ER homeostasis. In contrast, young animals subjected to HGD provokes unresolved ER stress, conversely leading to a detrimental stress response.
Collapse
Affiliation(s)
| | - Lei Wang
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Cenk Celik
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | | | - Subhash Thalappilly
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Shiyi Xu
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Jhee Hong Koh
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Venus Wen Xuan Lim
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Ann Don Low
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Guillaume Thibault
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore.
- Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673, Singapore.
| |
Collapse
|
34
|
Sotiriou A, Ploumi C, Charmpilas N, Tavernarakis N. Assessing polyglutamine tract aggregation in the nematode Caenorhabditis elegans. Methods Cell Biol 2022; 181:1-15. [PMID: 38302233 DOI: 10.1016/bs.mcb.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Proteome integrity is a prerequisite for cellular functionality and organismal viability. Its compromise is considered an inherent part of the aging process and has been associated with the onset of age-related, neurodegenerative pathologies. Although the molecular underpinnings of protein homeostasis (proteostasis) have been extensively studied, several aspects of its regulation remain elusive. The nematode Caenorhabditis elegans has emerged as a versatile, heterologous model organism to study the dynamics of aggregation-prone human proteins in vivo. Here, we describe an experimental pipeline for the analysis of polyglutamine (polyQ) tract aggregation, as a measure of the state of proteostasis, during aging.
Collapse
Affiliation(s)
- Aggeliki Sotiriou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece; Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Christina Ploumi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece; Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Nikolaos Charmpilas
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece; Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece.
| |
Collapse
|
35
|
Lee HY, Hwang OJ, Back K. Phytomelatonin as a signaling molecule for protein quality control via chaperone, autophagy, and ubiquitin-proteasome systems in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5863-5873. [PMID: 35246975 DOI: 10.1093/jxb/erac002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Physiological effects mediated by melatonin are attributable to its potent antioxidant activity as well as its role as a signaling molecule in inducing a vast array of melatonin-mediated genes. Here, we propose melatonin as a signaling molecule essential for protein quality control (PQC) in plants. PQC occurs by the coordinated activities of three systems: the chaperone network, autophagy, and the ubiquitin-proteasome system. With regard to the melatonin-mediated chaperone pathway, melatonin increases thermotolerance by induction of heat shock proteins and confers endoplasmic reticulum stress tolerance by increasing endoplasmic reticulum chaperone proteins. In chloroplasts, melatonin-induced chaperones, including Clps and CpHSP70s, play key roles in the PQC of chloroplast-localized proteins, such as Lhcb1, Lhcb4, and RBCL, during growth. Melatonin regulates PQC by autophagy processes, in which melatonin induces many autophagy (ATG) genes and autophagosome formation under stress conditions. Finally, melatonin-mediated plant stress tolerance is associated with up-regulation of stress-induced transcription factors, which are regulated by the ubiquitin-proteasome system. In this review, we propose that melatonin plays a pivotal role in PQC and consequently functions as a pleiotropic molecule under non-stress and adverse conditions in plants.
Collapse
Affiliation(s)
- Hyoung Yool Lee
- Department of Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| | - Ok Jin Hwang
- Department of Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| | - Kyoungwhan Back
- Department of Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
36
|
Kim MJ, Kim HJ, Jang B, Kim HJ, Mostafa MN, Park SJ, Kim YS, Choi EK. Impairment of Neuronal Mitochondrial Quality Control in Prion-Induced Neurodegeneration. Cells 2022; 11:cells11172744. [PMID: 36078152 PMCID: PMC9454542 DOI: 10.3390/cells11172744] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 12/06/2022] Open
Abstract
Mitochondrial dynamics continually maintain cell survival and bioenergetics through mitochondrial quality control processes (fission, fusion, and mitophagy). Aberrant mitochondrial quality control has been implicated in the pathogenic mechanism of various human diseases, including cancer, cardiac dysfunction, and neurological disorders, such as Alzheimer’s disease, Parkinson’s disease, and prion disease. However, the mitochondrial dysfunction-mediated neuropathological mechanisms in prion disease are still uncertain. Here, we used both in vitro and in vivo scrapie-infected models to investigate the involvement of mitochondrial quality control in prion pathogenesis. We found that scrapie infection led to the induction of mitochondrial reactive oxygen species (mtROS) and the loss of mitochondrial membrane potential (ΔΨm), resulting in enhanced phosphorylation of dynamin-related protein 1 (Drp1) at Ser616 and its subsequent translocation to the mitochondria, which was followed by excessive mitophagy. We also confirmed decreased expression levels of mitochondrial oxidative phosphorylation (OXPHOS) complexes and reduced ATP production by scrapie infection. In addition, scrapie-infection-induced aberrant mitochondrial fission and mitophagy led to increased apoptotic signaling, as evidenced by caspase 3 activation and poly (ADP-ribose) polymerase cleavage. These results suggest that scrapie infection induced mitochondrial dysfunction via impaired mitochondrial quality control processes followed by neuronal cell death, which may have an important role in the neuropathogenesis of prion diseases.
Collapse
Affiliation(s)
- Mo-Jong Kim
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon 24252, Korea
- Ilsong Institute of Life Science, Hallym University, Seoul 07247, Korea
| | - Hee-Jun Kim
- Hongcheon Institute of Medicinal Herb, Hongcheon 25142, Korea
| | - Byungki Jang
- Ilsong Institute of Life Science, Hallym University, Seoul 07247, Korea
| | - Hyun-Ji Kim
- Ilsong Institute of Life Science, Hallym University, Seoul 07247, Korea
| | - Mohd Najib Mostafa
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon 24252, Korea
- Ilsong Institute of Life Science, Hallym University, Seoul 07247, Korea
| | - Seok-Joo Park
- Ilsong Institute of Life Science, Hallym University, Seoul 07247, Korea
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Seoul 07247, Korea
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Eun-Kyoung Choi
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon 24252, Korea
- Ilsong Institute of Life Science, Hallym University, Seoul 07247, Korea
- Correspondence:
| |
Collapse
|
37
|
Dong J, Jin S, Guo J, Yang R, Tian D, Xue H, Xiao L, Guo Q, Wang R, Xu M, Teng X, Wu Y. Pharmacological inhibition of eIF2alpha phosphorylation by integrated stress response inhibitor (ISRIB) ameliorates vascular calcification in rats. Physiol Res 2022; 71:379-388. [PMID: 35616039 DOI: 10.33549/physiolres.934797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Vascular calcification (VC) is an independent risk factor for cardiovascular events and all-cause mortality with the absence of current treatment. This study aimed to investigate whether eIF2alpha phosphorylation inhibition could ameliorate VC. VC in rats was induced by administration of vitamin D3 (3×10(5) IU/kg, intramuscularly) plus nicotine (25 mg/kg, intragastrically). ISRIB (0.25 mg/kg·week), an inhibitor of eIF2alpha phosphorylation, ameliorated the elevation of calcium deposition and ALP activity in calcified rat aortas, accompanied by amelioration of increased SBP, PP, and PWV. The decreased protein levels of calponin and SM22alpha, and the increased levels of RUNX2 and BMP2 in calcified aorta were all rescued by ISRIB, while the increased levels of the GRP78, GRP94, and C/EBP homologous proteins in rats with VC were also attenuated. Moreover, ISRIB could prevent the elevation of eIF2alpha phosphorylation and ATF4, and partially inhibit PERK phosphorylation in the calcified aorta. These results suggested that an eIF2alpha phosphorylation inhibitor could ameliorate VC pathogenesis by blocking eIF2alpha/ATF4 signaling, which may provide a new target for VC prevention and treatment.
Collapse
Affiliation(s)
- J Dong
- Department of Physiology, Hebei Medical University, Shijiazhuang, China. and
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lambert-Smith IA, Saunders DN, Yerbury JJ. Progress in biophysics and molecular biology proteostasis impairment and ALS. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 174:3-27. [PMID: 35716729 DOI: 10.1016/j.pbiomolbio.2022.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disease that results from the loss of both upper and lower motor neurons. It is the most common motor neuron disease and currently has no effective treatment. There is mounting evidence to suggest that disturbances in proteostasis play a significant role in ALS pathogenesis. Proteostasis is the maintenance of the proteome at the right level, conformation and location to allow a cell to perform its intended function. In this review, we present a thorough synthesis of the literature that provides evidence that genetic mutations associated with ALS cause imbalance to a proteome that is vulnerable to such pressure due to its metastable nature. We propose that the mechanism underlying motor neuron death caused by defects in mRNA metabolism and protein degradation pathways converges on proteostasis dysfunction. We propose that the proteostasis network may provide an effective target for therapeutic development in ALS.
Collapse
Affiliation(s)
- Isabella A Lambert-Smith
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Darren N Saunders
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
39
|
Meyer BJ. The X chromosome in C. elegans sex determination and dosage compensation. Curr Opin Genet Dev 2022; 74:101912. [PMID: 35490475 DOI: 10.1016/j.gde.2022.101912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022]
Abstract
Abnormalities in chromosome dose can reduce organismal fitness and viability by disrupting the balance of gene expression. Unlike imbalances in chromosome dose that cause pathologies, differences in X-chromosome dose that determine sex are well tolerated. Dosage compensation mechanisms have evolved in diverse species to balance X-chromosome gene expression between sexes. Mechanisms underlying nematode X-chromosome counting to determine sex revealed how small quantitative differences in molecular signals are translated into dramatically different developmental fates. Mechanisms underlying X-chromosome dosage compensation revealed the interplay between chromatin modification and three-dimensional chromosome structure imposed by an X-specific condensin complex to regulate gene expression over vast chromosomal territories. In a surprising twist of evolution, this dosage-compensation condensin complex also regulates lifespan and tolerance to proteotoxic stress.
Collapse
Affiliation(s)
- Barbara J Meyer
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, 16 Barker Hall, Berkeley, CA 94720-3204, USA.
| |
Collapse
|
40
|
Torres TC, Moaddeli D, Averbukh M, Coakley A, Dutta N, Garcia G, Higuchi-Sanabria R. Surveying Low-Cost Methods to Measure Lifespan and Healthspan in Caenorhabditis elegans. JOURNAL OF VISUALIZED EXPERIMENTS : JOVE 2022:10.3791/64091. [PMID: 35665741 PMCID: PMC9881476 DOI: 10.3791/64091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The discovery and development of Caenorhabditis elegans as a model organism was influential in biology, particularly in the field of aging. Many historical and contemporary studies have identified thousands of lifespan-altering paradigms, including genetic mutations, transgenic gene expression, and hormesis, a beneficial, low-grade exposure to stress. With its many advantages, including a short lifespan, easy and low-cost maintenance, and fully sequenced genome with homology to almost two-thirds of all human genes, C. elegans has quickly been adopted as an outstanding model for stress and aging biology. Here, several standardized methods are surveyed for measuring lifespan and healthspan that can be easily adapted into almost any research environment, especially those with limited equipment and funds. The incredible utility of C. elegans is featured, highlighting the capacity to perform powerful genetic analyses in aging biology without the necessity of extensive infrastructure. Finally, the limitations of each analysis and alternative approaches are discussed for consideration.
Collapse
Affiliation(s)
- Toni Castro Torres
- Leonard Davis School of Gerontology, University of Southern California. 3715 McClintock Ave, University Park Campus, Los Angeles, CA 90089
| | - Darius Moaddeli
- Leonard Davis School of Gerontology, University of Southern California. 3715 McClintock Ave, University Park Campus, Los Angeles, CA 90089
| | - Maxim Averbukh
- Leonard Davis School of Gerontology, University of Southern California. 3715 McClintock Ave, University Park Campus, Los Angeles, CA 90089
| | - Aeowynn Coakley
- Leonard Davis School of Gerontology, University of Southern California. 3715 McClintock Ave, University Park Campus, Los Angeles, CA 90089
| | - Naibedya Dutta
- Leonard Davis School of Gerontology, University of Southern California. 3715 McClintock Ave, University Park Campus, Los Angeles, CA 90089
| | - Gilberto Garcia
- Leonard Davis School of Gerontology, University of Southern California. 3715 McClintock Ave, University Park Campus, Los Angeles, CA 90089.,correspondence: ;
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California. 3715 McClintock Ave, University Park Campus, Los Angeles, CA 90089.,correspondence: ;
| |
Collapse
|
41
|
Criado-Marrero M, Blazier DM, Gould LA, Gebru NT, Rodriguez Ospina S, Armendariz DS, Darling AL, Beaulieu-Abdelahad D, Blair LJ. Evidence against a contribution of the CCAAT-enhancer binding protein homologous protein (CHOP) in mediating neurotoxicity in rTg4510 mice. Sci Rep 2022; 12:7372. [PMID: 35513476 PMCID: PMC9072347 DOI: 10.1038/s41598-022-11025-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/18/2022] [Indexed: 12/20/2022] Open
Abstract
Tau accumulation and progressive loss of neurons are associated with Alzheimer’s disease (AD). Aggregation of tau has been associated with endoplasmic reticulum (ER) stress and the activation of the unfolded protein response (UPR). While ER stress and the UPR have been linked to AD, the contribution of these pathways to tau-mediated neuronal death is still unknown. We tested the hypothesis that reducing C/EBP Homologous Protein (CHOP), a UPR induced transcription factor associated with cell death, would mitigate tau-mediated neurotoxicity through the ER stress pathway. To evaluate this, 8.5-month-old male rTg4510 tau transgenic mice were injected with a CHOP-targeting or scramble shRNA AAV9 that also expressed EGFP. Following behavioral assessment, brain tissue was collected at 12 months, when ER stress and neuronal loss is ongoing. No behavioral differences in locomotion, anxiety-like behavior, or learning and memory were found in shCHOP mice. Unexpectedly, mice expressing shCHOP had higher levels of CHOP, which did not affect neuronal count, UPR effector (ATF4), or tau tangles. Overall, this suggests that CHOP is a not a main contributor to neuronal death in rTg4510 mice. Taken together with previous studies, we conclude that ER stress, including CHOP upregulation, does not worsen outcomes in the tauopathic brain.
Collapse
Affiliation(s)
- Marangelie Criado-Marrero
- Department of Molecular Medicine, Morsani College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
| | - Danielle M Blazier
- Department of Molecular Medicine, Morsani College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
| | - Lauren A Gould
- Department of Molecular Medicine, Morsani College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
| | - Niat T Gebru
- Department of Molecular Medicine, Morsani College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
| | - Santiago Rodriguez Ospina
- Department of Molecular Medicine, Morsani College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
| | - Debra S Armendariz
- Department of Molecular Medicine, Morsani College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
| | - April L Darling
- Department of Molecular Medicine, Morsani College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
| | - David Beaulieu-Abdelahad
- Department of Molecular Medicine, Morsani College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
| | - Laura J Blair
- Department of Molecular Medicine, Morsani College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA. .,Research Service, James A Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa, FL, 33612, USA.
| |
Collapse
|
42
|
Gerdes Gyuricza I, Chick JM, Keele GR, Deighan AG, Munger SC, Korstanje R, Gygi SP, Churchill GA. Genome-wide transcript and protein analysis highlights the role of protein homeostasis in the aging mouse heart. Genome Res 2022; 32:838-852. [PMID: 35277432 PMCID: PMC9104701 DOI: 10.1101/gr.275672.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 03/09/2022] [Indexed: 11/25/2022]
Abstract
Investigation of the molecular mechanisms of aging in the human heart is challenging because of confounding factors, such as diet and medications, as well as limited access to tissues from healthy aging individuals. The laboratory mouse provides an ideal model to study aging in healthy individuals in a controlled environment. However, previous mouse studies have examined only a narrow range of the genetic variation that shapes individual differences during aging. Here, we analyze transcriptome and proteome data from 185 genetically diverse male and female mice at ages 6, 12, and 18 mo to characterize molecular changes that occur in the aging heart. Transcripts and proteins reveal activation of pathways related to exocytosis and cellular transport with age, whereas processes involved in protein folding decrease with age. Additional changes are apparent only in the protein data including reduced fatty acid oxidation and increased autophagy. For proteins that form complexes, we see a decline in correlation between their component subunits with age, suggesting age-related loss of stoichiometry. The most affected complexes are themselves involved in protein homeostasis, which potentially contributes to a cycle of progressive breakdown in protein quality control with age. Our findings highlight the important role of post-transcriptional regulation in aging. In addition, we identify genetic loci that modulate age-related changes in protein homeostasis, suggesting that genetic variation can alter the molecular aging process.
Collapse
Affiliation(s)
| | - Joel M Chick
- Vividion Therapeutics, San Diego, California 92121, USA
| | | | | | | | - Ron Korstanje
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | - Steven P Gygi
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
43
|
Peng H, Ramadurgum P, Woodard DR, Daniel S, Nakahara E, Renwick M, Aredo B, Datta S, Chen B, Ufret-Vincenty R, Hulleman JD. Utility of the DHFR-based destabilizing domain across mouse models of retinal degeneration and aging. iScience 2022; 25:104206. [PMID: 35521529 PMCID: PMC9062244 DOI: 10.1016/j.isci.2022.104206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 02/16/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
The Escherichia coli dihydrofolate reductase (DHFR) destabilizing domain (DD) serves as a promising approach to conditionally regulate protein abundance in a variety of tissues. To test whether this approach could be effectively applied to a wide variety of aged and disease-related ocular mouse models, we evaluated the DHFR DD system in the eyes of aged mice (up to 24 months), a light-induced retinal degeneration (LIRD) model, and two genetic models of retinal degeneration (rd2 and Abca4−/− mice). The DHFR DD was effectively degraded in all model systems, including rd2 mice, which showed significant defects in chymotrypsin proteasomal activity. Moreover, trimethoprim (TMP) administration stabilized the DHFR DD in all mouse models. Thus, the DHFR DD-based approach allows for control of protein abundance in a variety of mouse models, laying the foundation to use this strategy for the conditional control of gene therapies to potentially treat multiple eye diseases. Destabilizing domains (DDs) confer conditional control of ocular protein abundance The DHFR DD is effectively turned over and stabilized in aged mouse’s retina DHFR DDs perform well in environmental and genetic retinal degenerative models
Collapse
|
44
|
Fessler E, Krumwiede L, Jae LT. DELE1 tracks perturbed protein import and processing in human mitochondria. Nat Commun 2022; 13:1853. [PMID: 35388015 PMCID: PMC8986780 DOI: 10.1038/s41467-022-29479-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/11/2022] [Indexed: 12/15/2022] Open
Abstract
Protein homeostatic control of mitochondria is key to age-related diseases and organismal decline. However, it is unknown how the diverse types of stress experienced by mitochondria can be integrated and appropriately responded to in human cells. Here we identify perturbations in the ancient conserved processes of mitochondrial protein import and processing as sources of DELE1 activation: DELE1 is continuously sorted across both mitochondrial membranes into the matrix and detects different types of perturbations along the way. DELE1 molecules in transit can become licensed for mitochondrial release and stress signaling through proteolytic removal of N-terminal sorting signals. Import defects that occur at the mitochondrial surface allow DELE1 precursors to bind and activate downstream factor HRI without the need for cleavage. Genome-wide genetics reveal that DELE1 additionally responds to compromised presequence processing by the matrix proteases PITRM1 and MPP, which are mutated in neurodegenerative diseases. These mechanisms rationalize DELE1-dependent mitochondrial stress integration in the human system and may inform future therapies of neuropathies.
Collapse
Affiliation(s)
- Evelyn Fessler
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377, Munich, Germany.
| | - Luisa Krumwiede
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377, Munich, Germany
| | - Lucas T Jae
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377, Munich, Germany.
| |
Collapse
|
45
|
Mahatme S, K V, Kumar N, Rao V, Kovela RK, Sinha MK. Impact of high-intensity interval training on cardio-metabolic health outcomes and mitochondrial function in older adults: a review. Med Pharm Rep 2022; 95:115-130. [PMID: 35721039 PMCID: PMC9176307 DOI: 10.15386/mpr-2201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/17/2021] [Accepted: 07/05/2021] [Indexed: 11/27/2022] Open
Abstract
Exercise being a potent stimulator of mitochondrial biogenesis, there is a need to investigate the effects of high-intensity interval training (HIIT) among older adults. This review explores and summarizes the impact of HIIT on mitochondria and various cardio-metabolic health outcomes among older adults, healthy and with comorbid conditions. Electronic databases were scrutinized for literature using permutations of keywords related to (i) Elderly population (ii) HIIT (iii) Mitochondria, cell organelles, and (iv) cardio-metabolic health outcomes. Twenty-one studies that met the inclusion criteria are included in this review. HIIT is an innovative therapeutic modality in preserving mitochondrial quality with age and serves to be a viable, safe, and beneficial exercise alternative in both ill and healthy older adults.
Collapse
Affiliation(s)
- Simran Mahatme
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vaishali K
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of higher Education, Manipal, Karnataka, India
| | - Vanishree Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of higher Education, Manipal, Karnataka, India
| | - Rakesh Krishna Kovela
- Department of Neurophysiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Medical Sciences, Sawangi (Meghe), Wardha, Maharashtra India
| | - Mukesh Kumar Sinha
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
46
|
Dutta N, Garcia G, Higuchi-Sanabria R. Hijacking Cellular Stress Responses to Promote Lifespan. FRONTIERS IN AGING 2022; 3:860404. [PMID: 35821861 PMCID: PMC9261414 DOI: 10.3389/fragi.2022.860404] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/23/2022] [Indexed: 01/21/2023]
Abstract
Organisms are constantly exposed to stress both from the external environment and internally within the cell. To maintain cellular homeostasis under different environmental and physiological conditions, cell have adapted various stress response signaling pathways, such as the heat shock response (HSR), unfolded protein responses of the mitochondria (UPRMT), and the unfolded protein response of the endoplasmic reticulum (UPRER). As cells grow older, all cellular stress responses have been shown to deteriorate, which is a major cause for the physiological consequences of aging and the development of numerous age-associated diseases. In contrast, elevated stress responses are often associated with lifespan extension and amelioration of degenerative diseases in different model organisms, including C. elegans. Activating cellular stress response pathways could be considered as an effective intervention to alleviate the burden of aging by restoring function of essential damage-clearing machinery, including the ubiquitin-proteosome system, chaperones, and autophagy. Here, we provide an overview of newly emerging concepts of these stress response pathways in healthy aging and longevity with a focus on the model organism, C. elegans.
Collapse
|
47
|
Sayles NM, Southwell N, McAvoy K, Kim K, Pesini A, Anderson CJ, Quinzii C, Cloonan S, Kawamata H, Manfredi G. Mutant CHCHD10 causes an extensive metabolic rewiring that precedes OXPHOS dysfunction in a murine model of mitochondrial cardiomyopathy. Cell Rep 2022; 38:110475. [PMID: 35263592 PMCID: PMC9013208 DOI: 10.1016/j.celrep.2022.110475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/01/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial cardiomyopathies are fatal diseases, with no effective treatment. Alterations of heart mitochondrial function activate the mitochondrial integrated stress response (ISRmt), a transcriptional program affecting cell metabolism, mitochondrial biogenesis, and proteostasis. In humans, mutations in CHCHD10, a mitochondrial protein with unknown function, were recently associated with dominant multi-system mitochondrial diseases, whose pathogenic mechanisms remain to be elucidated. Here, in CHCHD10 knockin mutant mice, we identify an extensive cardiac metabolic rewiring triggered by proteotoxic ISRmt. The stress response arises early on, before the onset of bioenergetic impairments, triggering a switch from oxidative to glycolytic metabolism, enhancement of transsulfuration and one carbon (1C) metabolism, and widespread metabolic imbalance. In parallel, increased NADPH oxidases elicit antioxidant responses, leading to heme depletion. As the disease progresses, the adaptive metabolic stress response fails, resulting in fatal cardiomyopathy. Our findings suggest that early interventions to counteract metabolic imbalance could ameliorate mitochondrial cardiomyopathy associated with proteotoxic ISRmt. Sayles et al. report that mutant CHCHD10 proteotoxicity activates the mitochondrial integrated stress response (ISRmt) in a mouse model of mitochondrial cardiomyopathy. Chronic ISRmt causes profound metabolic imbalances, culminating in oxidative stress and iron dysregulation, ultimately resulting in mitochondrial dysfunction and contributing to disease pathogenesis.
Collapse
Affiliation(s)
- Nicole M Sayles
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA; Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10065, USA
| | - Nneka Southwell
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA; Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10065, USA
| | - Kevin McAvoy
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Kihwan Kim
- Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Alba Pesini
- Department of Neurology, Columbia University, 710 West 168th Street, New York, NY 10032, USA
| | - Corey J Anderson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Catarina Quinzii
- Department of Neurology, Columbia University, 710 West 168th Street, New York, NY 10032, USA
| | - Suzanne Cloonan
- Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; The School of Medicine, Trinity Biomedical Science Institute, Trinity College Dublin, Pearse St, Dublin 2 52-160, Ireland; Tallaght University Hospital, Tallaght, Dublin 24 D24 NR0A, Ireland
| | - Hibiki Kawamata
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA.
| |
Collapse
|
48
|
Zhou HL, Premont RT, Stamler JS. The manifold roles of protein S-nitrosylation in the life of insulin. Nat Rev Endocrinol 2022; 18:111-128. [PMID: 34789923 PMCID: PMC8889587 DOI: 10.1038/s41574-021-00583-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 02/04/2023]
Abstract
Insulin, which is released by pancreatic islet β-cells in response to elevated levels of glucose in the blood, is a critical regulator of metabolism. Insulin triggers the uptake of glucose and fatty acids into the liver, adipose tissue and muscle, and promotes the storage of these nutrients in the form of glycogen and lipids. Dysregulation of insulin synthesis, secretion, transport, degradation or signal transduction all cause failure to take up and store nutrients, resulting in type 1 diabetes mellitus, type 2 diabetes mellitus and metabolic dysfunction. In this Review, we make the case that insulin signalling is intimately coupled to protein S-nitrosylation, in which nitric oxide groups are conjugated to cysteine thiols to form S-nitrosothiols, within effectors of insulin action. We discuss the role of S-nitrosylation in the life cycle of insulin, from its synthesis and secretion in pancreatic β-cells, to its signalling and degradation in target tissues. Finally, we consider how aberrant S-nitrosylation contributes to metabolic diseases, including the roles of human genetic mutations and cellular events that alter S-nitrosylation of insulin-regulating proteins. Given the growing influence of S-nitrosylation in cellular metabolism, the field of metabolic signalling could benefit from renewed focus on S-nitrosylation in type 2 diabetes mellitus and insulin-related disorders.
Collapse
Affiliation(s)
- Hua-Lin Zhou
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Richard T Premont
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Jonathan S Stamler
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
49
|
Yang R, Li Y, Wang Y, Zhang J, Fan Q, Tan J, Li W, Zou X, Liang B. NHR-80 senses the mitochondrial UPR to rewire citrate metabolism for lipid accumulation in Caenorhabditis elegans. Cell Rep 2022; 38:110206. [PMID: 35021096 DOI: 10.1016/j.celrep.2021.110206] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/27/2021] [Accepted: 12/10/2021] [Indexed: 11/26/2022] Open
Abstract
Mitochondria are known as the powerhouse of the cell. Dysfunction of mitochondria homeostasis induces the mitochondrial unfolded protein response (UPRmt), altering cellular metabolism. How cells sense the UPRmt to rewire metabolism is largely unknown. Here, we show that inactivation of either the citric/tricarboxylic acid (TCA) cycle enzymes aco-2 or idha-1, which encode aconitase and isocitrate dehydrogenase respectively, leads to citrate accumulation. In Caenorhabditis elegans, both in vitro and in vivo, citrate accumulation consequently triggers the UPRmt and also promotes lipid accumulation. The transcription factor DVE-1 binds to the promoter of the nuclear hormone receptor nhr-80 to transactivate its expression. NHR-80 then upregulates lipogenesis and lipid accumulation, shifting excess citrate for use in lipogenesis and for storage as triacylglycerol in lipid droplets. Inactivation of DVE-1 or NHR-80 fully abolishes the citrate-induced lipid accumulation. Therefore, our work uncovers a DVE-1-NHR-80-lipogenesis axis linking the transmission of the mitochondrial stress signal to lipid metabolism.
Collapse
Affiliation(s)
- Rendan Yang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Yamei Li
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China
| | - Yanli Wang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jingjing Zhang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Qijing Fan
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Jianlin Tan
- Yunnan Institute of Product Quality Supervision and Inspection and National Agricultural and Sideline Products Quality Supervision and Inspection Center, Kunming 650223, China
| | - Weizhen Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China.
| | - Xiaoju Zou
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China.
| | - Bin Liang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China.
| |
Collapse
|
50
|
Borges AC, Broersen K, Leandro P, Fernandes TG. Engineering Organoids for in vitro Modeling of Phenylketonuria. Front Mol Neurosci 2022; 14:787242. [PMID: 35082602 PMCID: PMC8784555 DOI: 10.3389/fnmol.2021.787242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Phenylketonuria is a recessive genetic disorder of amino-acid metabolism, where impaired phenylalanine hydroxylase function leads to the accumulation of neurotoxic phenylalanine levels in the brain. Severe cognitive and neuronal impairment are observed in untreated/late-diagnosed patients, and even early treated ones are not safe from life-long sequelae. Despite the wealth of knowledge acquired from available disease models, the chronic effect of Phenylketonuria in the brain is still poorly understood and the consequences to the aging brain remain an open question. Thus, there is the need for better predictive models, able to recapitulate specific mechanisms of this disease. Human induced pluripotent stem cells (hiPSCs), with their ability to differentiate and self-organize in multiple tissues, might provide a new exciting in vitro platform to model specific PKU-derived neuronal impairment. In this review, we gather what is known about the impact of phenylalanine in the brain of patients and highlight where hiPSC-derived organoids could contribute to the understanding of this disease.
Collapse
Affiliation(s)
- Alice C. Borges
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Kerensa Broersen
- Department of Applied Stem Cell Technologies, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede, Netherlands
| | - Paula Leandro
- Faculty of Pharmacy, iMed.ULisboa - Research Institute for Medicines, Universidade de Lisboa, Lisbon, Portugal
| | - Tiago G. Fernandes
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- *Correspondence: Tiago G. Fernandes,
| |
Collapse
|