1
|
Wang W, Kumegawa K, Chapman OS, Shiraishi R, Xiao Z, Okonechnikov K, Sun Y, Pfister SM, Feng W, Uesaka N, Hoshino M, Takahashi S, Korshunov A, Chavez L, Maruyama R, Kawauchi D. Chromatin modification abnormalities by CHD7 and KMT2C loss promote medulloblastoma progression. Cell Rep 2025:115673. [PMID: 40393452 DOI: 10.1016/j.celrep.2025.115673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 03/02/2025] [Accepted: 04/16/2025] [Indexed: 05/22/2025] Open
Abstract
Medulloblastoma (MB), a common malignant pediatric brain tumor arising in the cerebellum, is characterized by mutations in chromatin modifiers, highlighting the significance of chromatin modification abnormalities in its progression. While animal models have effectively demonstrated this, a comprehensive evaluation of the oncogenic potential of these mutations remains incomplete. In this study, we use CRISPR-mediated gene editing to knock out chromatin modifier genes mutated in human SHH MB, along with the Ptch1 gene, in cerebellar granule neuron progenitors of neonatal mice. This reveals that depletion of Chd7 and Kmt2c accelerates tumor growth. Multi-layered omics analysis uncovers that inhibition of the neuronal differentiation program by chromatin dysregulation is a key signaling pathway in tumor progression. Additionally, forced expression of Neurod1, a common target of these chromatin modifiers, inhibits proliferation and promotes differentiation. These findings highlight converging chromatin modification abnormalities from distinct mutations in Sonic Hedgehog MB and suggest that epigenetic drugs activating neuronal genes have significant potential as novel treatments.
Collapse
Affiliation(s)
- Wanchen Wang
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8052, Japan; Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo 113-8510, Japan; Department of Neuro-oncology, Institute of Brain Science, Graduate School of Medical Sciences, Nagoya City University, Aichi 467-8601, Japan
| | - Kohei Kumegawa
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo 135-8550, Japan
| | - Owen S Chapman
- Department of Medicine, University of California San Diego, La Jolla CA 92037, USA; Department of Neuro-oncology, Institute of Brain Science, Graduate School of Medical Sciences, Nagoya City University, Aichi 467-8601, Japan
| | - Ryo Shiraishi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8052, Japan
| | - Zhize Xiao
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8052, Japan; Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo 113-8510, Japan; Department of Neuro-oncology, Institute of Brain Science, Graduate School of Medical Sciences, Nagoya City University, Aichi 467-8601, Japan
| | - Konstantin Okonechnikov
- Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Yang Sun
- Department of Neuro-oncology, Institute of Brain Science, Graduate School of Medical Sciences, Nagoya City University, Aichi 467-8601, Japan
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Weijun Feng
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Naofumi Uesaka
- Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo 113-8510, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8052, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya City University, Aichi 467-8601, Japan
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Lukas Chavez
- Department of Medicine, University of California San Diego, La Jolla CA 92037, USA; Rady Children's Hospital San Diego, San Diego, CA 92123, USA; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Reo Maruyama
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo 135-8550, Japan; Division of Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), 135-8550 Tokyo, Japan.
| | - Daisuke Kawauchi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8052, Japan; Department of Neuro-oncology, Institute of Brain Science, Graduate School of Medical Sciences, Nagoya City University, Aichi 467-8601, Japan.
| |
Collapse
|
2
|
Shiraishi R, Cancila G, Kumegawa K, Torrejon J, Basili I, Bernardi F, Silva PBGD, Wang W, Chapman O, Yang L, Jami M, Nishitani K, Arai Y, Xiao Z, Yu H, Lo Re V, Marsaud V, Talbot J, Lombard B, Loew D, Jingu M, Okonechnikov K, Sone M, Motohashi N, Aoki Y, Pfister SM, Chavez L, Hoshino M, Maruyama R, Ayrault O, Kawauchi D. Cancer-specific epigenome identifies oncogenic hijacking by nuclear factor I family proteins for medulloblastoma progression. Dev Cell 2024; 59:2302-2319.e12. [PMID: 38834071 DOI: 10.1016/j.devcel.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/01/2024] [Accepted: 05/10/2024] [Indexed: 06/06/2024]
Abstract
Normal cells coordinate proliferation and differentiation by precise tuning of gene expression based on the dynamic shifts of the epigenome throughout the developmental timeline. Although non-mutational epigenetic reprogramming is an emerging hallmark of cancer, the epigenomic shifts that occur during the transition from normal to malignant cells remain elusive. Here, we capture the epigenomic changes that occur during tumorigenesis in a prototypic embryonal brain tumor, medulloblastoma. By comparing the epigenomes of the different stages of transforming cells in mice, we identify nuclear factor I family of transcription factors, known to be cell fate determinants in development, as oncogenic regulators in the epigenomes of precancerous and cancerous cells. Furthermore, genetic and pharmacological inhibition of NFIB validated a crucial role of this transcription factor by disrupting the cancer epigenome in medulloblastoma. Thus, this study exemplifies how epigenomic changes contribute to tumorigenesis via non-mutational mechanisms involving developmental transcription factors.
Collapse
Affiliation(s)
- Ryo Shiraishi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Gabriele Cancila
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France
| | - Kohei Kumegawa
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Jacob Torrejon
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France
| | - Irene Basili
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France
| | - Flavia Bernardi
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France
| | - Patricia Benites Goncalves da Silva
- Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Wanchen Wang
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Owen Chapman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Liying Yang
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Maki Jami
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Kayo Nishitani
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Yukimi Arai
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Zhize Xiao
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Hua Yu
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France
| | - Valentina Lo Re
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France
| | - Véronique Marsaud
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France
| | - Julie Talbot
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France
| | - Bérangère Lombard
- Institut Curie, PSL Research University, CurieCoreTech Mass Spectrometry Proteomics, Paris 75005, France
| | - Damarys Loew
- Institut Curie, PSL Research University, CurieCoreTech Mass Spectrometry Proteomics, Paris 75005, France
| | - Maho Jingu
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan; Department of Biomolecular Science, Graduate School of Science, Toho University, Chiba 274-8510, Japan
| | - Konstantin Okonechnikov
- Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Masaki Sone
- Department of Biomolecular Science, Graduate School of Science, Toho University, Chiba 274-8510, Japan
| | - Norio Motohashi
- Department of Molecular Therapy, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Lukas Chavez
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Reo Maruyama
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan.
| | - Olivier Ayrault
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France.
| | - Daisuke Kawauchi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan.
| |
Collapse
|
3
|
Tsiami F, Lago C, Pozza N, Piccioni F, Zhao X, Lülsberg F, Root DE, Tiberi L, Kool M, Schittenhelm J, Bandopadhayay P, Segal RA, Tabatabai G, Merk DJ. Genome-wide CRISPR-Cas9 knockout screens identify DNMT1 as a druggable dependency in sonic hedgehog medulloblastoma. Acta Neuropathol Commun 2024; 12:125. [PMID: 39107797 PMCID: PMC11304869 DOI: 10.1186/s40478-024-01831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Sonic hedgehog subgroup of medulloblastoma (SHH-MB) is characterized by aberrant activation of the SHH signaling pathway. An inhibition of the positive SHH regulator Smoothened (SMO) has demonstrated promising clinical efficacy. Yet, primary and acquired resistance to SMO inhibitors limit their efficacy. An understanding of underlying molecular mechanisms of resistance to therapy is warranted to bridge this unmet need. Here, we make use of genome-wide CRISPR-Cas9 knockout screens in murine SMB21 and human DAOY cells, in order to unravel genetic dependencies and drug-related genetic interactors that could serve as alternative therapeutic targets for SHH-MB. Our screens reinforce SMB21 cells as a faithful model system for SHH-MB, as opposed to DAOY cells, and identify members of the epigenetic machinery including DNA methyltransferase 1 (DNMT1) as druggable targets in SHH-dependent tumors. We show that Dnmt1 plays a crucial role in normal murine cerebellar development and is required for SHH-MB growth in vivo. Additionally, DNMT1 pharmacological inhibition alone and in combination with SMO inhibition effectively inhibits tumor growth in murine and human SHH-MB cell models and prolongs survival of SHH-MB mouse models by inhibiting SHH signaling output downstream of SMO. In conclusion, our data highlight the potential of inhibiting epigenetic regulators as a novel therapeutic avenue in SMO-inhibitor sensitive as well as resistant SHH-MBs.
Collapse
Affiliation(s)
- Foteini Tsiami
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Chiara Lago
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, Trento, Italy
| | - Noemi Pozza
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, Trento, Italy
| | - Federica Piccioni
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Merck Research Laboratories, Cambridge, MA, USA
| | - Xuesong Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Fabienne Lülsberg
- Institute for Anatomy, Anatomy and Cell Biology, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - David E Root
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Luca Tiberi
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, Trento, Italy
| | - Marcel Kool
- Hopp Children's Cancer Center (KITZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Research Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jens Schittenhelm
- Department of Pathology and Neuropathology, Institute of Neuropathology, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
- Comprehensive Cancer Center Tübingen Stuttgart, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Pratiti Bandopadhayay
- Dana-Farber/Boston Children´S Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Rosalind A Segal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Ghazaleh Tabatabai
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
- Comprehensive Cancer Center Tübingen Stuttgart, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
- German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Partner Site Tübingen, Heidelberg, Germany
| | - Daniel J Merk
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|
4
|
Sheng H, Li H, Zeng H, Zhang B, Lu Y, Liu X, Xu Z, Zhang J, Zhang L. Heterogeneity and tumoral origin of medulloblastoma in the single-cell era. Oncogene 2024; 43:839-850. [PMID: 38355808 PMCID: PMC10942862 DOI: 10.1038/s41388-024-02967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Medulloblastoma is one of the most common malignant pediatric brain tumors derived from posterior fossa. The current treatment includes maximal safe surgical resection, radiotherapy, whole cranio-spinal radiation and adjuvant with chemotherapy. However, it can only limitedly prolong the survival time with severe side effects and relapse. Defining the intratumoral heterogeneity, cellular origin and identifying the interaction network within tumor microenvironment are helpful for understanding the mechanisms of medulloblastoma tumorigenesis and relapse. Due to technological limitations, the mechanisms of cellular heterogeneity and tumor origin have not been fully understood. Recently, the emergence of single-cell technology has provided a powerful tool for achieving the goal of understanding the mechanisms of tumorigenesis. Several studies have demonstrated the intratumoral heterogeneity and tumor origin for each subtype of medulloblastoma utilizing the single-cell RNA-seq, which has not been uncovered before using conventional technologies. In this review, we present an overview of the current progress in understanding of cellular heterogeneity and tumor origin of medulloblastoma and discuss novel findings in the age of single-cell technologies.
Collapse
Affiliation(s)
- Hui Sheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haotai Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Han Zeng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Lu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xixi Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwen Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liguo Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Göbel C, Godbole S, Schoof M, Holdhof D, Kresbach C, Loose C, Neumann J, Schüller U. MYC overexpression and SMARCA4 loss cooperate to drive medulloblastoma formation in mice. Acta Neuropathol Commun 2023; 11:174. [PMID: 37919824 PMCID: PMC10621315 DOI: 10.1186/s40478-023-01654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/17/2023] [Indexed: 11/04/2023] Open
Abstract
Group 3 medulloblastoma is one of the most aggressive types of childhood brain tumors. Roughly 30% of cases carry genetic alterations in MYC, SMARCA4, or both genes combined. While overexpression of MYC has previously been shown to drive medulloblastoma formation in mice, the functional significance of SMARCA4 mutations and their suitability as a therapeutic target remain largely unclear. To address this issue, we combined overexpression of MYC with a loss of SMARCA4 in granule cell precursors. Both alterations did not increase proliferation of granule cell precursors in vitro. However, combined MYC overexpression and SMARCA4 loss successfully induced tumor formation in vivo after orthotopic transplantation in recipient mice. Resulting tumors displayed anaplastic histology and exclusively consisted of SMARCA4-negative cells although a mixture of recombined and non-recombined cells was injected. These observations provide first evidence for a tumor-promoting role of a SMARCA4 deficiency in the development of medulloblastoma. In comparing the transcriptome of tumors to the cells of origin and an established Sonic Hedgehog medulloblastoma model, we gathered first hints on deregulated gene expression that could be specifically involved in SMARCA4/MYC driven tumorigenesis. Finally, an integration of RNA sequencing and DNA methylation data of murine tumors with human samples revealed a high resemblance to human Group 3 medulloblastoma on the molecular level. Altogether, the development of SMARCA4-deficient medulloblastomas in mice paves the way to deciphering the role of frequently occurring SMARCA4 alterations in Group 3 medulloblastoma with the perspective to explore targeted therapeutic options.
Collapse
Affiliation(s)
- Carolin Göbel
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20251, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, Building N63 (LIV), Hamburg, D-20251, Germany
| | - Shweta Godbole
- Center for Molecular Neurobiology, Falkenried 94, Hamburg, 20251, Germany
| | - Melanie Schoof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20251, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, Building N63 (LIV), Hamburg, D-20251, Germany
| | - Dörthe Holdhof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20251, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, Building N63 (LIV), Hamburg, D-20251, Germany
| | - Catena Kresbach
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20251, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, Building N63 (LIV), Hamburg, D-20251, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20251, Germany
| | - Carolin Loose
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20251, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, Building N63 (LIV), Hamburg, D-20251, Germany
| | - Julia Neumann
- Center for Molecular Neurobiology, Falkenried 94, Hamburg, 20251, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20251, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20251, Germany.
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, Building N63 (LIV), Hamburg, D-20251, Germany.
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20251, Germany.
| |
Collapse
|
6
|
Niesen J, Hermans-Borgmeyer I, Krüger C, Schoof M, Modemann F, Schüller U. hGFAP-mediated GLI2 overexpression leads to early death and severe cerebellar malformations with rare tumor formation. iScience 2023; 26:107501. [PMID: 37608807 PMCID: PMC10440564 DOI: 10.1016/j.isci.2023.107501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/16/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023] Open
Abstract
The zinc-finger transcription factor GLI2 is frequently amplified in childhood medulloblastoma of the Sonic-hedgehog type (SHH-MB), with or without amplification of NMYC or deletion of TP53. Despite the aggressive tumor behavior, tumorigenesis is not well understood, and adequate mouse models are lacking. Therefore, we generated mice with a GLI2 overexpression under control of the hGFAP-promoter. These mice died within 150 days. The majority only survived until postnatal day 40. They displayed severe cerebellar hypoplasia, cortical malformations, but no brain tumors, except for one out of 23 animals with an undifferentiated hindbrain lesion. Additional loss of p53 did not result in cerebellar tumors, but partially rescued the cerebellar phenotype induced by GLI2 overexpression. Similarly, the combination of GLI2 and NMYC was neither sufficient for the development of SHH-MB. We therefore assume that the development of childhood SHH-MB in mice is either occurring in cellular origins outside the hGFAP-positive lineage or needs additional genetic drivers.
Collapse
Affiliation(s)
- Judith Niesen
- Mildred Scheel Cancer Career Centre HaTriCS4, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
- Research Institute Children’s Cancer Centre, 20251 Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Scientific Service Group for Transgenic Animals, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Christina Krüger
- Research Institute Children’s Cancer Centre, 20251 Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Melanie Schoof
- Research Institute Children’s Cancer Centre, 20251 Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Franziska Modemann
- Mildred Scheel Cancer Career Centre HaTriCS4, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, II. Department of Internal Medicine, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ulrich Schüller
- Research Institute Children’s Cancer Centre, 20251 Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
- Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
7
|
Schoof M, Epplen GD, Walter C, Ballast A, Holdhof D, Göbel C, Neyazi S, Varghese J, Albert TK, Kerl K, Schüller U. The tumor suppressor CREBBP and the oncogene MYCN cooperate to induce malignant brain tumors in mice. Oncogenesis 2023; 12:36. [PMID: 37407554 DOI: 10.1038/s41389-023-00481-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/26/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
The tumor suppressor and chromatin modifier cAMP response element-binding protein binding protein (CREBBP) and v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (MYCN), a member of the MYC oncogene family, are critically involved in brain development. Both genes are frequently mutated in the same tumor entities, including high-grade glioma and medulloblastoma. Therefore, we hypothesized that alterations in both genes cooperate to induce brain tumor formation. For further investigation, hGFAP-cre::CrebbpFl/Fl::lsl-MYCN mice were generated, which combine Crebbp deletion with overexpression of MYCN in neural stem cells (NSCs). Within eight months, these animals developed aggressive forebrain tumors. The first tumors were detectable in the olfactory bulbs of seven-day-old mice. This location raises the possibility that presumptive founder cells are derived from the ventricular-subventricular zone (V-SVZ). To examine the cellular biology of these tumors, single-cell RNA sequencing was performed, which revealed high intratumoral heterogeneity. Data comparison with reference CNS cell types indicated the highest similarity of tumor cells with transit-amplifying NSCs or activated NSCs of the V-SVZ. Consequently, we analyzed V-SVZ NSCs of our mouse model aiming to confirm that the tumors originate from this stem cell niche. Mutant V-SVZ NSCs showed significantly increased cell viability and proliferation as well as reduced glial and neural differentiation in vitro compared to control cells. In summary, we demonstrate the oncogenic potential of a combined loss of function of CREBBP and overexpression of MYCN in this cell population. hGFAP-cre::CrebbpFl/Fl::lsl-MYCN mice thus provide a valuable tool to study tumor-driving mechanisms in a key neural stem/ progenitor cell niche.
Collapse
Affiliation(s)
- Melanie Schoof
- Research Institute Children`s Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Carolin Walter
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Annika Ballast
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Dörthe Holdhof
- Research Institute Children`s Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carolin Göbel
- Research Institute Children`s Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sina Neyazi
- Research Institute Children`s Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Thomas Karl Albert
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Ulrich Schüller
- Research Institute Children`s Cancer Center, Hamburg, Germany.
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
8
|
Zhou Z, Zhu B, Meng Q, Zhang T, Wu Y, Yu R, Gao S. Research progress in molecular pathology markers in medulloblastoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:139-156. [PMID: 36937322 PMCID: PMC10017192 DOI: 10.37349/etat.2023.00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/22/2022] [Indexed: 03/06/2023] Open
Abstract
Medulloblastoma (MB) is the commonest primary malignant brain cancer. The current treatment of MB is usually surgical resection combined with radiotherapy or chemotherapy. Although great progress has been made in the clinical management of MB, tumor metastasis and recurrence are still the main cause of death. Therefore, definitive and timely diagnosis is of great importance for improving therapeutic effects on MB. In 2016, the World Health Organization (WHO) divided MB into four subtypes: wingless-type mouse mammary tumor virus integration site (WNT), sonic hedgehog (SHH), non-WNT/non-SHH group 3, and group 4. Each subtype of MB has a unique profile in copy number variation, DNA alteration, gene transcription, or post-transcriptional/translational modification, all of which are associated with different biological manifestations, clinical features, and prognosis. This article reviewed the research progress of different molecular pathology markers in MB and summarized some targeted drugs against these molecular markers, hoping to stimulate the clinical application of these molecular markers in the classification, diagnosis, and treatment of MB.
Collapse
Affiliation(s)
- Zixuan Zhou
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Bingxin Zhu
- Department of Neurosurgery, Xuzhou Children’s Hospital, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Qingming Meng
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Tong Zhang
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Yihao Wu
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Rutong Yu
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Department of Neurosurgery, Xuzhou Children’s Hospital, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Correspondence: Rutong Yu, Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China; Department of Neurosurgery, Xuzhou Children’s Hospital, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China.
| | - Shangfeng Gao
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Shangfeng Gao, Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China.
| |
Collapse
|
9
|
Potential role of Marine Bioactive Compounds targeting signaling pathways in cancer: A review. Eur J Pharmacol 2022; 936:175330. [DOI: 10.1016/j.ejphar.2022.175330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022]
|
10
|
Liu J, Zhang Z, Zhu W, Shen Y, Gu Y, Zhang X, He L, Du J. CircFBXW4 regulates human trophoblast cell proliferation and invasion via targeting miR-324–3p/TJP1 axis in recurrent spontaneous abortion. Placenta 2022; 126:1-11. [DOI: 10.1016/j.placenta.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/14/2022] [Accepted: 05/26/2022] [Indexed: 12/01/2022]
|
11
|
Karagiannakos A, Adamaki M, Tsintarakis A, Vojtesek B, Fåhraeus R, Zoumpourlis V, Karakostis K. Targeting Oncogenic Pathways in the Era of Personalized Oncology: A Systemic Analysis Reveals Highly Mutated Signaling Pathways in Cancer Patients and Potential Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14030664. [PMID: 35158934 PMCID: PMC8833388 DOI: 10.3390/cancers14030664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is the second leading cause of death globally. One of the main hallmarks in cancer is the functional deregulation of crucial molecular pathways via driver genetic events that lead to abnormal gene expression, giving cells a selective growth advantage. Driver events are defined as mutations, fusions and copy number alterations that are causally implicated in oncogenesis. Molecular analysis on tissues that have originated from a wide range of anatomical areas has shown that mutations in different members of several pathways are implicated in different cancer types. In recent decades, significant efforts have been made to incorporate this knowledge into daily medical practice, providing substantial insight towards clinical diagnosis and personalized therapies. However, since there is still a strong need for more effective drug development, a deep understanding of the involved signaling mechanisms and the interconnections between these pathways is highly anticipated. Here, we perform a systemic analysis on cancer patients included in the Pan-Cancer Atlas project, with the aim to select the ten most highly mutated signaling pathways (p53, RTK-RAS, lipids metabolism, PI-3-Kinase/Akt, ubiquitination, b-catenin/Wnt, Notch, cell cycle, homology directed repair (HDR) and splicing) and to provide a detailed description of each pathway, along with the corresponding therapeutic applications currently being developed or applied. The ultimate scope is to review the current knowledge on highly mutated pathways and to address the attractive perspectives arising from ongoing experimental studies for the clinical implementation of personalized medicine.
Collapse
Affiliation(s)
- Alexandros Karagiannakos
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
| | - Antonis Tsintarakis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
| | - Borek Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic; (B.V.); (R.F.)
| | - Robin Fåhraeus
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic; (B.V.); (R.F.)
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
- Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden
- International Centre for Cancer Vaccine Science, University of Gdansk, 80-822 Gdansk, Poland
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
- Correspondence: (V.Z.); (K.K.)
| | - Konstantinos Karakostis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: (V.Z.); (K.K.)
| |
Collapse
|
12
|
Tran J, Gaulin C, Tallman MS. Advances in the Treatment of Hairy Cell Leukemia Variant. Curr Treat Options Oncol 2022; 23:99-116. [PMID: 35178674 DOI: 10.1007/s11864-021-00927-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/19/2022]
Abstract
OPINION STATEMENT Hairy cell leukemia variant (HCL-V) is a rare B cell lymphoproliferative disorder with a clinical-pathological distinction from the classic form of hairy cell leukemia (HCL-C). HCL-V is more aggressive in nature, has a higher tendency to be refractory to conventional purine analog pharmacotherapies, and leads to a poorer prognosis. Hence, these differing features bring paramount importance to the diagnosis and management of HCL-V. While there is no genetic mutation diagnostic of HCL-V, genetic profiling efforts have identified potential therapeutic targets (i.e., MAP2K1, KDM6A, CREBBP, ARID1A, CCND3, U2AF1, KMT2C) and yielded prognostic markers (i.e., IGHV4-34 rearrangements). To date, combination chemoimmunotherapies, such as cladribine and rituximab, have shown the best results in HCL-V. Future directions include targeted therapies such as moxetumomab pasudotox, ibrutinib, trametinib, and binimetinib and potentially anti-CD22 chimeric antigen receptor T cell therapy. The purpose of this review is to provide an outline of the diagnostic approach and an update on the therapeutic advancements in HCL-V.
Collapse
Affiliation(s)
- Julie Tran
- University of Arizona College of Medicine, 475 N 5th St, HSEB C536, Phoenix, AZ, 85004, USA.
| | - Charles Gaulin
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Martin S Tallman
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
13
|
Hwang EI, Sayour EJ, Flores CT, Grant G, Wechsler-Reya R, Hoang-Minh LB, Kieran MW, Salcido J, Prins RM, Figg JW, Platten M, Candelario KM, Hale PG, Blatt JE, Governale LS, Okada H, Mitchell DA, Pollack IF. The current landscape of immunotherapy for pediatric brain tumors. NATURE CANCER 2022; 3:11-24. [PMID: 35121998 DOI: 10.1038/s43018-021-00319-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/24/2021] [Indexed: 02/06/2023]
Abstract
Pediatric central nervous system tumors are the most common solid malignancies in childhood, and aggressive therapy often leads to long-term sequelae in survivors, making these tumors challenging to treat. Immunotherapy has revolutionized prospects for many cancer types in adults, but the intrinsic complexity of treating pediatric patients and the scarcity of clinical studies of children to inform effective approaches have hampered the development of effective immunotherapies in pediatric settings. Here, we review recent advances and ongoing challenges in pediatric brain cancer immunotherapy, as well as considerations for efficient clinical translation of efficacious immunotherapies into pediatric settings.
Collapse
Affiliation(s)
- Eugene I Hwang
- Division of Oncology, Brain Tumor Institute, Children's National Hospital, Washington, DC, USA.
| | - Elias J Sayour
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Catherine T Flores
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Gerald Grant
- Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA, USA
| | - Robert Wechsler-Reya
- Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Lan B Hoang-Minh
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | | | | | - Robert M Prins
- Departments of Neurosurgery and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John W Figg
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University and CCU Brain Tumor Immunology, DKFZ, Heidelberg, Germany
| | - Kate M Candelario
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Paul G Hale
- Children's Brain Trust, Coral Springs, FL, USA
| | - Jason E Blatt
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Lance S Governale
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Hideho Okada
- Department of Neurosurgery, University of California, San Francisco, CA, USA
| | - Duane A Mitchell
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Ian F Pollack
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Wang L, Zhang L, Gong X, Fu J, Gan Y, Hou M, Nie Q, Xiang J, Xiao Y, Wang Y, Zheng S, Yang L, Chen H, Xiang M, Liu Y, Li DW. PP-1β and PP-2Aα modulate cAMP response element-binding protein (CREB) functions in aging control and stress response through de-regulation of αB-crystallin gene and p300-p53 signaling axis. Aging Cell 2021; 20:e13458. [PMID: 34425033 PMCID: PMC8441381 DOI: 10.1111/acel.13458] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 07/04/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
The function of the transcription factor, cAMP response element‐binding protein (CREB), is activated through S133 phosphorylation by PKA and others. Regarding its inactivation, it is not well defined. cAMP response element‐binding protein plays an essential role in promoting cell proliferation, neuronal survival and the synaptic plasticity associated with long‐term memory. Our recent studies have shown that CREB is an important player in mediating stress response. Here, we have demonstrated that CREB regulates aging process through suppression of αB‐crystallin and activation of the p300‐p53‐Bak/Bax signaling axis. First, we determined that two specific protein phosphatases, PP‐1β and PP‐2Aα, can inactivate CREB through S133 dephosphorylation. Subsequently, we demonstrated that cells expressing the S133A‐CREB, a mutant mimicking constant dephosphorylation at S133, suppress CREB functions in aging control and stress response. Mechanistically, S133A‐CREB not only significantly suppresses CREB control of αB‐crystallin gene, but also represses CREB‐mediated activation of p53 acetylation and downstream Bak/Bax genes. cAMP response element‐binding protein suppression of αB‐crystallin and its activation of p53 acetylation are major molecular events observed in human cataractous lenses of different age groups. Together, our results demonstrate that PP‐1β and PP‐2Aα modulate CREB functions in aging control and stress response through de‐regulation of αB‐crystallin gene and p300‐p53‐Bax/Bak signaling axis, which regulates human cataractogenesis in the aging lens.
Collapse
Affiliation(s)
- Ling Wang
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Lan Zhang
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Xiao‐Dong Gong
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Jia‐Ling Fu
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Yu‐Wen Gan
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Min Hou
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Qian Nie
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Jia‐Wen Xiang
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Yuan Xiao
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Yan Wang
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Shu‐Yu Zheng
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Lan Yang
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Huimin Chen
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Meng‐Qing Xiang
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Yizhi Liu
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - David Wan‐Cheng Li
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| |
Collapse
|
15
|
CREB signaling activity correlates with differentiation and survival in medulloblastoma. Sci Rep 2021; 11:16077. [PMID: 34373489 PMCID: PMC8352923 DOI: 10.1038/s41598-021-95381-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 07/19/2021] [Indexed: 11/18/2022] Open
Abstract
While there has been significant progress in the molecular characterization of the childhood brain cancer medulloblastoma, the tumor proteome remains less explored. However, it is important to obtain a complete understanding of medulloblastoma protein biology, since interactions between proteins represent potential new drug targets. Using previously generated phosphoprotein signaling-profiles of a large cohort of primary medulloblastoma, we discovered that phosphorylation of transcription factor CREB strongly correlates with medulloblastoma survival and associates with a differentiation phenotype. We further found that during normal cerebellar development, phosphorylated CREB was selectively expressed in differentiating cerebellar granule neuron progenitor (CGNP) cells. In line, we observed increased differentiation in CGNPs treated with Forskolin, Bmp6 and Bmp12 (Gdf7), which induce CREB phosphorylation. Lastly, we demonstrated that inducing CREB activation via PKA-mediated CREB signaling, but not Bmp/MEK/ERK mediated signalling, enhances medulloblastoma cell sensitivity to chemotherapy.
Collapse
|
16
|
Shiraishi R, Kawauchi D. Epigenetic regulation in medulloblastoma pathogenesis revealed by genetically engineered mouse models. Cancer Sci 2021; 112:2948-2957. [PMID: 34050694 PMCID: PMC8353939 DOI: 10.1111/cas.14990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Medulloblastoma is the most common malignant cerebellar tumor in children. Recent technological advances in multilayered ’omics data analysis have revealed 4 molecular subgroups of medulloblastoma (Wingless/int, Sonic hedgehog, Group3, and Group4). (Epi)genomic and transcriptomic profiling on human primary medulloblastomas has shown distinct oncogenic drivers and cellular origin(s) across the subgroups. Despite tremendous efforts to identify the molecular signals driving tumorigenesis, few of the identified targets were druggable; therefore, a further understanding of the etiology of tumors is required to establish effective molecular‐targeted therapies. Chromatin regulators are frequently mutated in medulloblastoma, prompting us to investigate epigenetic changes and the accompanying activation of oncogenic signaling during tumorigenesis. For this purpose, we have used germline and non‐germline genetically engineered mice to model human medulloblastoma and to conduct useful, molecularly targeted, preclinical studies. This review discusses the biological implications of chromatin regulator mutations during medulloblastoma pathogenesis, based on recent in vivo animal studies.
Collapse
Affiliation(s)
- Ryo Shiraishi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan.,Department of NCNP Brain Physiology and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Kawauchi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| |
Collapse
|
17
|
Holdhof D, On JH, Schoof M, Göbel C, Schüller U. Simultaneous Brg1 Knockout and MYCN Overexpression in Cerebellar Granule Neuron Precursors Is Insufficient to Drive Tumor Formation but Temporarily Enhances their Proliferation and Delays their Migration. CEREBELLUM (LONDON, ENGLAND) 2021; 20:410-419. [PMID: 33387268 PMCID: PMC8213679 DOI: 10.1007/s12311-020-01219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/12/2020] [Indexed: 11/29/2022]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in childhood. According to the World Health Organization (WHO) classification of central nervous system (CNS) tumors, this embryonal tumor is divided into a wingless (WNT)-activated, Sonic hedgehog (SHH)-activated, and non-WNT/non-SHH entity. The latter is poorly defined but frequently carries mutations in Brahma-related gene 1 (BRG1) or amplifications of MYCN. Here, we investigated whether a combination of a Brg1 knockout and an overexpression of MYCN in cerebellar granule neuron precursors or multipotent neural stem cells is sufficient to drive brain tumor formation in mice. To this end, we generated Math1-creERT2::Brg1fl/fl::lslMYCN and hGFAP-cre::Brg1fl/fl::lslMYCN mice, respectively. We did not observe brain tumor formation in any of these models. hGFAP-cre::Brg1fl/fl::lslMYCN mice revealed severe CNS abnormalities with short survival, similar to the situation with a sole loss of Brg1, as we previously described. Investigation of Math1-creERT2::Brg1fl/fl::lslMYCN mice with a tamoxifen induction at postnatal day 3 revealed a regular survival but significant increase in cerebellar granule neuron precursor proliferation, followed by a delayed inward migration of these cells. This is in stark contrast to the hypoplastic cerebellum that we previously observed after embryonic deletion of Brg1 in Math1 positive cerebellar granule neurons. Our results indicate a time-specific function of Brg1 in cerebellar granule neuron precursors. Yet, the exact temporal and spatial origin of non-WNT/non-SHH MB remains unclear.
Collapse
Affiliation(s)
- Dörthe Holdhof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), D-20251, Hamburg, Germany
| | - Ji Hoon On
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), D-20251, Hamburg, Germany
| | - Melanie Schoof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), D-20251, Hamburg, Germany
| | - Carolin Göbel
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), D-20251, Hamburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), D-20251, Hamburg, Germany.
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
18
|
Skowron P, Farooq H, Cavalli FMG, Morrissy AS, Ly M, Hendrikse LD, Wang EY, Djambazian H, Zhu H, Mungall KL, Trinh QM, Zheng T, Dai S, Stucklin ASG, Vladoiu MC, Fong V, Holgado BL, Nor C, Wu X, Abd-Rabbo D, Bérubé P, Wang YC, Luu B, Suarez RA, Rastan A, Gillmor AH, Lee JJY, Zhang XY, Daniels C, Dirks P, Malkin D, Bouffet E, Tabori U, Loukides J, Doz FP, Bourdeaut F, Delattre OO, Masliah-Planchon J, Ayrault O, Kim SK, Meyronet D, Grajkowska WA, Carlotti CG, de Torres C, Mora J, Eberhart CG, Van Meir EG, Kumabe T, French PJ, Kros JM, Jabado N, Lach B, Pollack IF, Hamilton RL, Rao AAN, Giannini C, Olson JM, Bognár L, Klekner A, Zitterbart K, Phillips JJ, Thompson RC, Cooper MK, Rubin JB, Liau LM, Garami M, Hauser P, Li KKW, Ng HK, Poon WS, Yancey Gillespie G, Chan JA, Jung S, McLendon RE, Thompson EM, Zagzag D, Vibhakar R, Ra YS, Garre ML, Schüller U, Shofuda T, Faria CC, López-Aguilar E, Zadeh G, Hui CC, Ramaswamy V, Bailey SD, Jones SJ, Mungall AJ, Moore RA, Calarco JA, Stein LD, Bader GD, Reimand J, Ragoussis J, Weiss WA, Marra MA, Suzuki H, Taylor MD. The transcriptional landscape of Shh medulloblastoma. Nat Commun 2021; 12:1749. [PMID: 33741928 PMCID: PMC7979819 DOI: 10.1038/s41467-021-21883-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 01/26/2021] [Indexed: 01/31/2023] Open
Abstract
Sonic hedgehog medulloblastoma encompasses a clinically and molecularly diverse group of cancers of the developing central nervous system. Here, we use unbiased sequencing of the transcriptome across a large cohort of 250 tumors to reveal differences among molecular subtypes of the disease, and demonstrate the previously unappreciated importance of non-coding RNA transcripts. We identify alterations within the cAMP dependent pathway (GNAS, PRKAR1A) which converge on GLI2 activity and show that 18% of tumors have a genetic event that directly targets the abundance and/or stability of MYCN. Furthermore, we discover an extensive network of fusions in focally amplified regions encompassing GLI2, and several loss-of-function fusions in tumor suppressor genes PTCH1, SUFU and NCOR1. Molecular convergence on a subset of genes by nucleotide variants, copy number aberrations, and gene fusions highlight the key roles of specific pathways in the pathogenesis of Sonic hedgehog medulloblastoma and open up opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Patryk Skowron
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hamza Farooq
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Florence M G Cavalli
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - A Sorana Morrissy
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Michelle Ly
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Liam D Hendrikse
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Evan Y Wang
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Haig Djambazian
- McGill University Genome Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Helen Zhu
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Quang M Trinh
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Tina Zheng
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Shizhong Dai
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, United States
| | - Ana S Guerreiro Stucklin
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Maria C Vladoiu
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Vernon Fong
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Borja L Holgado
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Carolina Nor
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xiaochong Wu
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Diala Abd-Rabbo
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Pierre Bérubé
- McGill University Genome Centre, McGill University, Montreal, QC, Canada
| | - Yu Chang Wang
- McGill University Genome Centre, McGill University, Montreal, QC, Canada
| | - Betty Luu
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Raul A Suarez
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Avesta Rastan
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Aaron H Gillmor
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - John J Y Lee
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xiao Yun Zhang
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Craig Daniels
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Peter Dirks
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - David Malkin
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Division of Haematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Eric Bouffet
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Haematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Uri Tabori
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Haematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - James Loukides
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - François P Doz
- SIREDO Center (pediatric, adolescent and young adults oncology), Institut Curie, University of Paris, Paris, France
| | - Franck Bourdeaut
- SIREDO Center (pediatric, adolescent and young adults oncology), Institut Curie, University of Paris, Paris, France
| | | | | | - Olivier Ayrault
- PSL Research University, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Institut Curie, Paris, France
| | - Seung-Ki Kim
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul, South Korea
| | - David Meyronet
- Hospices Civils de Lyon, Institute of Pathology, University Lyon 1, Department of Cancer Cell Plasticity-INSERM U1052 Cancer Research Center of Lyon, Lyon, France
| | | | - Carlos G Carlotti
- Department of Surgery and Anatomy, Faculty of Medicine of Ribeirão Preto, University of Sao Paulo, São Paulo, Brazil
| | - Carmen de Torres
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Charles G Eberhart
- Departments of Pathology, Ophthalmology and Oncology, John Hopkins University School of Medicine, Baltimore, MD, United States
| | - Erwin G Van Meir
- Department of Hematology & Medical Oncology, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Toshihiro Kumabe
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Pim J French
- Department of Neurology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Johan M Kros
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Nada Jabado
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Boleslaw Lach
- Department of Pathology and Molecular Medicine, Division of Anatomical Pathology, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Laboratory Medicine, Hamilton General Hospital, Hamilton, ON, Canada
| | - Ian F Pollack
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ronald L Hamilton
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - James M Olson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - László Bognár
- Department of Neurosurgery, University of Debrecen, Medical and Health Science Centre, Debrecen, Hungary
| | - Almos Klekner
- Department of Neurosurgery, University of Debrecen, Medical and Health Science Centre, Debrecen, Hungary
| | - Karel Zitterbart
- Department of Pediatric Oncology, Masaryk University School of Medicine, Brno, Czech Republic
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
| | - Reid C Thompson
- Department of Neurological Surgery, Vanderbilt Medical Center, Nashville, TN, United States
| | - Michael K Cooper
- Department of Neurology, Vanderbilt Medical Center, Nashville, TN, United States
| | - Joshua B Rubin
- Departments of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Linda M Liau
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Miklós Garami
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Peter Hauser
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Kay Ka Wai Li
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Ho-Keung Ng
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Wai Sang Poon
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - G Yancey Gillespie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jennifer A Chan
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Shin Jung
- Department of Neurosurgery, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Hwasun Hospital and Medical School, Hwasun-gun, Jeollanam-do, South Korea
| | - Roger E McLendon
- Department of Pathology, Duke University, Durham, NC, United States
- Department of Neurosurgery, Duke University, Durham, NC, United States
| | - Eric M Thompson
- Department of Neurosurgery, Duke University, Durham, NC, United States
| | - David Zagzag
- Department of Pathology and Neurosurgery, NYU Grossman School of Medicine and NYU Langone Health, New York, NY, United States
| | - Rajeev Vibhakar
- Department of Pediatrics, University of Colorado Denver, Aurora, CO, United States
| | - Young Shin Ra
- Department of Neurosurgery, University of Ulsan, Asan Medical Center, Seoul, South Korea
| | | | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf, Germany
- Research Institute Children's Cancer Center, Hamburg, Germany
- Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Germany
| | - Tomoko Shofuda
- Division of Stem Cell Research, Institute for Clinical Research, Osaka National Hospital, Osaka, Japan
| | - Claudia C Faria
- Division of Neurosurgery, Centro Hospitalar Lisboa Norte (CHULN), Hospital de Santa Maria, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Enrique López-Aguilar
- Division of Pediatric Hematology/Oncology, Hospital Pediatría Centro Médico Nacional century XXI, Mexico City, Mexico
| | - Gelareh Zadeh
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- MacFeeters-Hamilton Center for Neuro-Oncology Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Chi-Chung Hui
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Vijay Ramaswamy
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Division of Haematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Swneke D Bailey
- Department of Surgery, Division of Thoracic and Upper Gastrointestinal Surgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Steven J Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - John A Calarco
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Lincoln D Stein
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Adaptive Oncology, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Jüri Reimand
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jiannis Ragoussis
- McGill University Genome Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - William A Weiss
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Hiromichi Suzuki
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Michael D Taylor
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
19
|
Mossink B, Negwer M, Schubert D, Nadif Kasri N. The emerging role of chromatin remodelers in neurodevelopmental disorders: a developmental perspective. Cell Mol Life Sci 2021; 78:2517-2563. [PMID: 33263776 PMCID: PMC8004494 DOI: 10.1007/s00018-020-03714-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Neurodevelopmental disorders (NDDs), including intellectual disability (ID) and autism spectrum disorders (ASD), are a large group of disorders in which early insults during brain development result in a wide and heterogeneous spectrum of clinical diagnoses. Mutations in genes coding for chromatin remodelers are overrepresented in NDD cohorts, pointing towards epigenetics as a convergent pathogenic pathway between these disorders. In this review we detail the role of NDD-associated chromatin remodelers during the developmental continuum of progenitor expansion, differentiation, cell-type specification, migration and maturation. We discuss how defects in chromatin remodelling during these early developmental time points compound over time and result in impaired brain circuit establishment. In particular, we focus on their role in the three largest cell populations: glutamatergic neurons, GABAergic neurons, and glia cells. An in-depth understanding of the spatiotemporal role of chromatin remodelers during neurodevelopment can contribute to the identification of molecular targets for treatment strategies.
Collapse
Affiliation(s)
- Britt Mossink
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Moritz Negwer
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
20
|
Garcia-Lopez J, Kumar R, Smith KS, Northcott PA. Deconstructing Sonic Hedgehog Medulloblastoma: Molecular Subtypes, Drivers, and Beyond. Trends Genet 2020; 37:235-250. [PMID: 33272592 DOI: 10.1016/j.tig.2020.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Medulloblastoma (MB) is a highly malignant cerebellar tumor predominantly diagnosed during childhood. Driven by pathogenic activation of sonic hedgehog (SHH) signaling, SHH subgroup MB (SHH-MB) accounts for nearly one-third of diagnoses. Extensive molecular analyses have identified biologically and clinically relevant intertumoral heterogeneity among SHH-MB tumors, prompting the recognition of novel subtypes. Beyond germline and somatic mutations promoting constitutive SHH signaling, driver alterations affect a multitude of pathways and molecular processes, including TP53 signaling, chromatin modulation, and post-transcriptional gene regulation. Here, we review recent advances in the underpinnings of SHH-MB in the context of molecular subtypes, clarify novel somatic and germline drivers, highlight cellular origins and developmental hierarchies, and describe the composition of the tumor microenvironment and its putative role in tumorigenesis.
Collapse
Affiliation(s)
- Jesus Garcia-Lopez
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rahul Kumar
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kyle S Smith
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
21
|
Aiello G, Ballabio C, Ruggeri R, Fagnocchi L, Anderle M, Morassut I, Caron D, Garilli F, Gianno F, Giangaspero F, Piazza S, Romanel A, Zippo A, Tiberi L. Truncated BRPF1 Cooperates with Smoothened to Promote Adult Shh Medulloblastoma. Cell Rep 2020; 29:4036-4052.e10. [PMID: 31851932 DOI: 10.1016/j.celrep.2019.11.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 05/14/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
The transition of neural progenitors to differentiated postmitotic neurons is mainly considered irreversible in physiological conditions. In the present work, we show that Shh pathway activation through SmoM2 expression promotes postmitotic neurons dedifferentiation, re-entering in the cell cycle and originating medulloblastoma in vivo. Notably, human adult patients present inactivating mutations of the chromatin reader BRPF1 that are associated with SMO mutations and absent in pediatric and adolescent patients. Here, we found that truncated BRPF1 protein, as found in human adult patients, is able to induce medulloblastoma in adult mice upon SmoM2 activation. Indeed, postmitotic neurons re-entered the cell cycle and proliferated as a result of chromatin remodeling of neurons by BRPF1. Our model of brain cancer explains the onset of a subset of human medulloblastoma in adult individuals where granule neuron progenitors are no longer present.
Collapse
Affiliation(s)
- Giuseppe Aiello
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Claudio Ballabio
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Riccardo Ruggeri
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Luca Fagnocchi
- Laboratory of Chromatin Biology & Epigenetics, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Marica Anderle
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Ilaria Morassut
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Davide Caron
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Francesca Garilli
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Francesca Gianno
- Department of Radiologic, Oncologic and Anatomo Pathological Sciences, University Sapienza of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Felice Giangaspero
- Department of Radiologic, Oncologic and Anatomo Pathological Sciences, University Sapienza of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Silvano Piazza
- Bioinformatics Core Facility, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Alessandro Romanel
- Laboratory of Bioinformatics and Computational Genomics, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Alessio Zippo
- Laboratory of Chromatin Biology & Epigenetics, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Luca Tiberi
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy.
| |
Collapse
|
22
|
Wang L, Nie Q, Gao M, Yang L, Xiang JW, Xiao Y, Liu FY, Gong XD, Fu JL, Wang Y, Nguyen QD, Liu Y, Liu M, Li DWC. The transcription factor CREB acts as an important regulator mediating oxidative stress-induced apoptosis by suppressing αB-crystallin expression. Aging (Albany NY) 2020; 12:13594-13617. [PMID: 32554860 PMCID: PMC7377838 DOI: 10.18632/aging.103474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/03/2020] [Indexed: 12/17/2022]
Abstract
The general transcription factor, CREB has been shown to play an essential role in promoting cell proliferation, neuronal survival and synaptic plasticity in the nervous system. However, its function in stress response remains to be elusive. In the present study, we demonstrated that CREB plays a major role in mediating stress response. In both rat lens organ culture and mouse lens epithelial cells (MLECs), CREB promotes oxidative stress-induced apoptosis. To confirm that CREB is a major player mediating the above stress response, we established stable lines of MLECs stably expressing CREB and found that they are also very sensitive to oxidative stress-induced apoptosis. To define the underlying mechanism, RNAseq analysis was conducted. It was found that CREB significantly suppressed expression of the αB-crystallin gene to sensitize CREB-expressing cells undergoing oxidative stress-induced apoptosis. CREB knockdown via CRISPR/CAS9 technology led to upregulation of αB-crystallin and enhanced resistance against oxidative stress-induced apoptosis. Moreover, overexpression of exogenous human αB-crystallin can restore the resistance against oxidative stress-induced apoptosis. Finally, we provided first evidence that CREB directly regulates αB-crystallin gene. Together, our results demonstrate that CREB is an important transcription factor mediating stress response, and it promotes oxidative stress-induced apoptosis by suppressing αB-crystallin expression.
Collapse
Affiliation(s)
- Ling Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Qian Nie
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Meng Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
- Medical College, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Lan Yang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Jia-Wen Xiang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94303, USA
| | - Yuan Xiao
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Fang-Yuan Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Xiao-Dong Gong
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Jia-Ling Fu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Yan Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Quan Dong Nguyen
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94303, USA
| | - Yizhi Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - David Wan-Cheng Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| |
Collapse
|
23
|
Lipinski M, Muñoz-Viana R, Del Blanco B, Marquez-Galera A, Medrano-Relinque J, Caramés JM, Szczepankiewicz AA, Fernandez-Albert J, Navarrón CM, Olivares R, Wilczyński GM, Canals S, Lopez-Atalaya JP, Barco A. KAT3-dependent acetylation of cell type-specific genes maintains neuronal identity in the adult mouse brain. Nat Commun 2020; 11:2588. [PMID: 32444594 PMCID: PMC7244750 DOI: 10.1038/s41467-020-16246-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
The lysine acetyltransferases type 3 (KAT3) family members CBP and p300 are important transcriptional co-activators, but their specific functions in adult post-mitotic neurons remain unclear. Here, we show that the combined elimination of both proteins in forebrain excitatory neurons of adult mice resulted in a rapidly progressing neurological phenotype associated with severe ataxia, dendritic retraction and reduced electrical activity. At the molecular level, we observed the downregulation of neuronal genes, as well as decreased H3K27 acetylation and pro-neural transcription factor binding at the promoters and enhancers of canonical neuronal genes. The combined deletion of CBP and p300 in hippocampal neurons resulted in the rapid loss of neuronal molecular identity without de- or transdifferentiation. Restoring CBP expression or lysine acetylation rescued neuronal-specific transcription in cultured neurons. Together, these experiments show that KAT3 proteins maintain the excitatory neuron identity through the regulation of histone acetylation at cell type-specific promoter and enhancer regions. Neuronal identity maintenance is highly regulated. Here, the authors showed that CBP and p300 safeguard neuronal identity through histone acetylation at promoters and enhancers of neuronal specific genes. The loss of both CBP and p300 impairs gene expression, circuit activity, and behavior in mice.
Collapse
Affiliation(s)
- Michal Lipinski
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Rafael Muñoz-Viana
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Beatriz Del Blanco
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Angel Marquez-Galera
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Juan Medrano-Relinque
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - José M Caramés
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Andrzej A Szczepankiewicz
- Nencki Institute of Experimental Biology, Polish Academy of Science, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Jordi Fernandez-Albert
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Carmen M Navarrón
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Roman Olivares
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Grzegorz M Wilczyński
- Nencki Institute of Experimental Biology, Polish Academy of Science, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Santiago Canals
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Jose P Lopez-Atalaya
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain.
| |
Collapse
|
24
|
Alharbi M, Mobark N, Bashawri Y, Abu Safieh L, Alowayn A, Aljelaify R, AlSaeed M, Almutairi A, Alqubaishi F, AlSolme E, Ahmad M, Al-Banyan A, Alotabi FE, Serrano J, Snuderl M, Al-Rashed M, Abedalthagafi M. Methylation Profiling of Medulloblastoma in a Clinical Setting Permits Sub-classification and Reveals New Outcome Predictions. Front Neurol 2020; 11:167. [PMID: 32265819 PMCID: PMC7100767 DOI: 10.3389/fneur.2020.00167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Medulloblastoma (MB) is the most common childhood malignant brain tumor and is a leading cause of cancer-related death in children. DNA methylation profiling has rapidly advanced our understanding of MB pathogenesis at the molecular level, but assessments in Saudi Arabian (SA)-MB cases are sparse. MBs can be sub-grouped according to methylation patterns from FPPE samples into Wingless (WNT-MB), Sonic Hedgehog (SHH-MB), Group 3 (G3), and Group 4 (G4) tumors. The WNT-MB and SHH-MB subgroups are characterized by gain-of function mutations that activate oncogenic cell signaling, whilst G3/G4 tumors show recurrent chromosomal alterations. Given that each subgroup has distinct clinical outcomes, the ability to subgroup SA-FPPE samples holds significant prognostic and therapeutic value. Here, we performed the first assessment of MB-DNA methylation patterns in an SA cohort using archival biopsy material (FPPE n = 49). Of the 41 materials available for methylation assessments, 39 could be classified into the major DNA methylation subgroups (SHH, WNT, G3, and G4). Furthermore, methylation analysis was able to reclassify tumors that could not be sub-grouped through next-generation sequencing, highlighting its superior accuracy for MB molecular classifications. Independent assessments demonstrated known clinical relationships of the subgroups, exemplified by the high survival rates observed for WNT tumors. Surprisingly, the G4 subgroup did not conform to previously identified phenotypes, with a high prevalence in females, high metastatic rates, and a large number of tumor-associated deaths. Taking our results together, we demonstrate that DNA methylation profiling enables the robust sub-classification of four disease sub-groups in archival FFPE biopsy material from SA-MB patients. Moreover, we show that the incorporation of DNA methylation biomarkers can significantly improve current disease-risk stratification schemes, particularly concerning the identification of aggressive G4 tumors. These findings have important implications for future clinical disease management in MB cases across the Arab world.
Collapse
Affiliation(s)
- Musa Alharbi
- Department of Paediatric Oncology Comprehensive Cancer Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Nahla Mobark
- Department of Paediatric Oncology Comprehensive Cancer Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Yara Bashawri
- Department of Biostatistics, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Leen Abu Safieh
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Albandary Alowayn
- Department of Biostatistics, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Rasha Aljelaify
- Department of Biostatistics, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mariam AlSaeed
- Department of Biostatistics, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Amal Almutairi
- Department of Biostatistics, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fatimah Alqubaishi
- Department of Biostatistics, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ebtehal AlSolme
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Maqsood Ahmad
- Department of Neuroscience, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ayman Al-Banyan
- Department of Neuroscience, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fahad E Alotabi
- Department of Neuroscience, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Jonathan Serrano
- Department of Pathology, NYU Langone Medical Center, New York, NY, United States
| | - Matija Snuderl
- Department of Pathology, NYU Langone Medical Center, New York, NY, United States
| | - May Al-Rashed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Malak Abedalthagafi
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| |
Collapse
|
25
|
Schoof M, Launspach M, Holdhof D, Nguyen L, Engel V, Filser S, Peters F, Immenschuh J, Hellwig M, Niesen J, Mall V, Ertl-Wagner B, Hagel C, Spohn M, Lutz B, Sedlacik J, Indenbirken D, Merk DJ, Schüller U. The transcriptional coactivator and histone acetyltransferase CBP regulates neural precursor cell development and migration. Acta Neuropathol Commun 2019; 7:199. [PMID: 31806049 PMCID: PMC6896766 DOI: 10.1186/s40478-019-0849-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 11/20/2022] Open
Abstract
CREB (cyclic AMP response element binding protein) binding protein (CBP, CREBBP) is a ubiquitously expressed transcription coactivator with intrinsic histone acetyltransferase (KAT) activity. Germline mutations within the CBP gene are known to cause Rubinstein-Taybi syndrome (RSTS), a developmental disorder characterized by intellectual disability, specific facial features and physical anomalies. Here, we investigate mechanisms of CBP function during brain development in order to elucidate morphological and functional mechanisms underlying the development of RSTS. Due to the embryonic lethality of conventional CBP knockout mice, we employed a tissue specific knockout mouse model (hGFAP-cre::CBPFl/Fl, mutant mouse) to achieve a homozygous deletion of CBP in neural precursor cells of the central nervous system. Our findings suggest that CBP plays a central role in brain size regulation, correct neural cell differentiation and neural precursor cell migration. We provide evidence that CBP is both important for stem cell viability within the ventricular germinal zone during embryonic development and for unhindered establishment of adult neurogenesis. Prominent histological findings in adult animals include a significantly smaller hippocampus with fewer neural stem cells. In the subventricular zone, we observe large cell aggregations at the beginning of the rostral migratory stream due to a migration deficit caused by impaired attraction from the CBP-deficient olfactory bulb. The cerebral cortex of mutant mice is characterized by a shorter dendrite length, a diminished spine number, and a relatively decreased number of mature spines as well as a reduced number of synapses. In conclusion, we provide evidence that CBP is important for neurogenesis, shaping neuronal morphology, neural connectivity and that it is involved in neuronal cell migration. These findings may help to understand the molecular basis of intellectual disability in RSTS patients and may be employed to establish treatment options to improve patients’ quality of life.
Collapse
|
26
|
Resolving medulloblastoma cellular architecture by single-cell genomics. Nature 2019; 572:74-79. [PMID: 31341285 PMCID: PMC6754173 DOI: 10.1038/s41586-019-1434-6] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 06/21/2019] [Indexed: 12/11/2022]
Abstract
Medulloblastoma is a malignant childhood cerebellar tumour type that comprises distinct molecular subgroups. Whereas genomic characteristics of these subgroups are well defined, the extent to which cellular diversity underlies their divergent biology and clinical behaviour remains largely unexplored. Here we used single-cell transcriptomics to investigate intra- and intertumoral heterogeneity in 25 medulloblastomas spanning all molecular subgroups. WNT, SHH and Group 3 tumours comprised subgroup-specific undifferentiated and differentiated neuronal-like malignant populations, whereas Group 4 tumours consisted exclusively of differentiated neuronal-like neoplastic cells. SHH tumours closely resembled granule neurons of varying differentiation states that correlated with patient age. Group 3 and Group 4 tumours exhibited a developmental trajectory from primitive progenitor-like to more mature neuronal-like cells, the relative proportions of which distinguished these subgroups. Cross-species transcriptomics defined distinct glutamatergic populations as putative cells-of-origin for SHH and Group 4 subtypes. Collectively, these data provide insights into the cellular and developmental states underlying subtype-specific medulloblastoma biology.
Collapse
|
27
|
Sullivan JM, De Rubeis S, Schaefer A. Convergence of spectrums: neuronal gene network states in autism spectrum disorder. Curr Opin Neurobiol 2019; 59:102-111. [PMID: 31220745 DOI: 10.1016/j.conb.2019.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder characterized by social deficits and restrictive and/or repetitive behaviors. The breadth of ASD symptoms is paralleled by the multiplicity of genes that have been implicated in its etiology. Initial findings revealed numerous ASD risk genes that contribute to synaptic function. More recently, genomic and gene expression studies point to altered chromatin function and impaired transcriptional control as additional risk factors for ASD. The consequences of impaired transcriptional alterations in ASD involve consistent changes in synaptic gene expression and cortical neuron specification during brain development. The multiplicity of genetic and environmental factors associated with ASD risk and their convergence onto common molecular pathways in neurons point to ASD as a disorder of gene regulatory networks.
Collapse
Affiliation(s)
- Josefa M Sullivan
- Nash Family Department of Neuroscience, New York, NY, USA; Department of Psychiatry, New York, NY, USA; Friedman Brain Institute, New York, NY, USA; Seaver Autism Center for Research and Treatment, New York, NY, USA
| | - Silvia De Rubeis
- Department of Psychiatry, New York, NY, USA; Seaver Autism Center for Research and Treatment, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anne Schaefer
- Nash Family Department of Neuroscience, New York, NY, USA; Department of Psychiatry, New York, NY, USA; Friedman Brain Institute, New York, NY, USA; Seaver Autism Center for Research and Treatment, New York, NY, USA.
| |
Collapse
|
28
|
Hellwig M, Merk DJ, Lutz B, Schüller U. Preferential sensitivity to HDAC inhibitors in tumors with CREBBP mutation. Cancer Gene Ther 2019; 27:294-300. [PMID: 31068675 DOI: 10.1038/s41417-019-0099-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/27/2019] [Indexed: 11/09/2022]
Abstract
Mutations in the gene encoding for the histone acetyltransferase (HAT) CREBBP are common driver events in multiple types of human cancer, such as small cell lung cancer (SCLC) or Sonic Hedgehog medulloblastoma (SHH MB). Therefore, therapeutic options targeting such alterations are highly desired. We used human cell lines from SCLC as well as primary mouse tumor cells and genetically engineered mouse models for SHH MB to test treatment options with histone deacetylase inhibitors (HDACi) in CREBBP wild-type and mutated tumors. In contrast to CREBBP wild-type SCLC cells, CREBBP-mutated SCLC cells showed significantly lower IC50 values after treatment with HDACi. In addition, both in vitro and in vivo, HDACi had significant effects on cell proliferation of SHH-driven tumor MB cells harboring a CREBBP-mutation as compared to CREBBP wild-type controls. These data suggest that HDACi may serve as an additional therapeutic option for patients suffering from tumors driven by CREBBP mutations.
Collapse
Affiliation(s)
- Malte Hellwig
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute, Children's Cancer Center Hamburg, Hamburg, Germany
| | - Daniel J Merk
- Center for Neuropathology, Ludwig-Maximilians-University of Munich, Munich, Germany.,Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Research Institute, Children's Cancer Center Hamburg, Hamburg, Germany. .,Center for Neuropathology, Ludwig-Maximilians-University of Munich, Munich, Germany. .,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
29
|
Hellwig M, Lauffer MC, Bockmayr M, Spohn M, Merk DJ, Harrison L, Ahlfeld J, Kitowski A, Neumann JE, Ohli J, Holdhof D, Niesen J, Schoof M, Kool M, Kraus C, Zweier C, Holmberg D, Schüller U. TCF4 (E2-2) harbors tumor suppressive functions in SHH medulloblastoma. Acta Neuropathol 2019; 137:657-673. [PMID: 30830316 DOI: 10.1007/s00401-019-01982-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/31/2022]
Abstract
The TCF4 gene encodes for the basic helix-loop-helix transcription factor 4 (TCF4), which plays an important role in the development of the central nervous system (CNS). Haploinsufficiency of TCF4 was found to cause Pitt-Hopkins syndrome (PTHS), a severe neurodevelopmental disorder. Recently, the screening of a large cohort of medulloblastoma (MB), a highly aggressive embryonal brain tumor, revealed almost 20% of adult patients with MB of the Sonic hedgehog (SHH) subtype carrying somatic TCF4 mutations. Interestingly, many of these mutations have previously been detected as germline mutations in patients with PTHS. We show here that overexpression of wild-type TCF4 in vitro significantly suppresses cell proliferation in MB cells, whereas mutant TCF4 proteins do not to the same extent. Furthermore, RNA sequencing revealed significant upregulation of multiple well-known tumor suppressors upon expression of wild-type TCF4. In vivo, a prenatal knockout of Tcf4 in mice caused a significant increase in apoptosis accompanied by a decreased proliferation and failed migration of cerebellar granule neuron precursor cells (CGNP), which are thought to be the cells of origin for SHH MB. In contrast, postnatal in vitro and in vivo knockouts of Tcf4 with and without an additional constitutive activation of the SHH pathway led to significantly increased proliferation of CGNP or MB cells. Finally, publicly available data from human MB show that relatively low expression levels of TCF4 significantly correlate with a worse clinical outcome. These results not only point to time-specific roles of Tcf4 during cerebellar development but also suggest a functional linkage between TCF4 mutations and the formation of SHH MB, proposing that TCF4 acts as a tumor suppressor during postnatal stages of cerebellar development.
Collapse
Affiliation(s)
- Malte Hellwig
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
| | - Marlen C Lauffer
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Michael Bockmayr
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michael Spohn
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel J Merk
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany
- Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Tübingen, Germany
| | - Luke Harrison
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany
- Research Unit Neurobiology of Diabetes, Helmholtz Center Munich, Neuherberg, Germany
| | - Julia Ahlfeld
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Annabel Kitowski
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Julia E Neumann
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Ohli
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Dörthe Holdhof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
| | - Judith Niesen
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
| | - Melanie Schoof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cornelia Kraus
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Dan Holmberg
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany.
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany.
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
30
|
Blanluet M, Masliah-Planchon J, Giurgea I, Bielle F, Girard E, Andrianteranagna M, Clemenceau S, Bourneix C, Burglen L, Doummar D, Rapinat A, Oumoussa BM, Ayrault O, Pouponnot C, Gentien D, Pierron G, Delattre O, Doz F, Bourdeaut F. SHH medulloblastoma in a young adult with a TCF4 germline pathogenic variation. Acta Neuropathol 2019; 137:675-678. [PMID: 30848346 DOI: 10.1007/s00401-019-01983-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Maud Blanluet
- Unité de Génétique Somatique, Institut Curie, Paris, France
| | - Julien Masliah-Planchon
- Unité de Génétique Somatique, Institut Curie, Paris, France
- Pediatric Oncology Department, SIREDO Oncology Centre (Care, Innovation, Research in Pediatric, Adolescent and Young Adults Oncology), Institut Curie, 26, rue d'Ulm, 75248, Paris Cedex 05, France
| | - Irina Giurgea
- UF de Génétique Moléculaire, Hôpital Armand Trousseau, APHP, Paris, France
- Sorbonne Université, INSERM, UMR S933, Paris, France
| | - Franck Bielle
- Departement de Neuropathologie, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| | | | - Mamy Andrianteranagna
- Pediatric Oncology Department, SIREDO Oncology Centre (Care, Innovation, Research in Pediatric, Adolescent and Young Adults Oncology), Institut Curie, 26, rue d'Ulm, 75248, Paris Cedex 05, France
| | | | | | - Lydie Burglen
- Centre de Référence Maladies Rares "Malformations et Maladies Congénitales du Cervelet", et Département de Génétique, Hôpital Armand Trousseau, GHUEP, APHP, Paris, France
| | - Diane Doummar
- Département de Neuropédiatrie, Hôpital Armand Trousseau, APHP, Paris, France
| | - Audrey Rapinat
- Translational Research Department, Genomics Platform, Institut Curie, PSL Research University, Paris, 75248, France
| | - Badreddine Mohand Oumoussa
- Sorbonne Université, Inserm, UMS Omique, Plateforme Post-Génomique de la Pitié-Salpêtrière, P3S, 75013, Paris, France
| | - Olivier Ayrault
- Université Paris Sud, Université Paris-Saclay, CNRS, UMR 3347, INSERM U1021, Orsay, France
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France
| | - Celio Pouponnot
- Université Paris Sud, Université Paris-Saclay, CNRS, UMR 3347, INSERM U1021, Orsay, France
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France
| | - David Gentien
- Translational Research Department, Genomics Platform, Institut Curie, PSL Research University, Paris, 75248, France
| | - Gaëlle Pierron
- Unité de Génétique Somatique, Institut Curie, Paris, France
- Pediatric Oncology Department, SIREDO Oncology Centre (Care, Innovation, Research in Pediatric, Adolescent and Young Adults Oncology), Institut Curie, 26, rue d'Ulm, 75248, Paris Cedex 05, France
| | - Olivier Delattre
- Unité de Génétique Somatique, Institut Curie, Paris, France
- Pediatric Oncology Department, SIREDO Oncology Centre (Care, Innovation, Research in Pediatric, Adolescent and Young Adults Oncology), Institut Curie, 26, rue d'Ulm, 75248, Paris Cedex 05, France
- Inserm U830, PSL Université, Institut Curie, Paris, France
| | - François Doz
- Pediatric Oncology Department, SIREDO Oncology Centre (Care, Innovation, Research in Pediatric, Adolescent and Young Adults Oncology), Institut Curie, 26, rue d'Ulm, 75248, Paris Cedex 05, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Franck Bourdeaut
- Pediatric Oncology Department, SIREDO Oncology Centre (Care, Innovation, Research in Pediatric, Adolescent and Young Adults Oncology), Institut Curie, 26, rue d'Ulm, 75248, Paris Cedex 05, France.
- Inserm U830, PSL Université, Institut Curie, Paris, France.
| |
Collapse
|
31
|
Lipinski M, Del Blanco B, Barco A. CBP/p300 in brain development and plasticity: disentangling the KAT's cradle. Curr Opin Neurobiol 2019; 59:1-8. [PMID: 30856481 DOI: 10.1016/j.conb.2019.01.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/30/2019] [Indexed: 12/14/2022]
Abstract
The paralogous transcriptional co-activators CBP and p300 (aka KAT3A and KAT3B, respectively) contain a characteristic and promiscuous lysine acetyltransferase (KAT) domain and multiple independent protein-binding domains that enable them to interact with hundreds of proteins, possibly promoting the acetylation of thousands of target lysine residues. Both proteins play critical roles during the development of the nervous system and may also regulate stimuli-driven transcription and plasticity in postmitotic neurons. The multiplicity of functions, substrates, and molecular partners, together with the redundancy and singularity of the two KAT3 paralogs, define a complex cat's cradle of relationships. In this review, we discuss the role of the KAT3 proteins in neurons and integrate recent information regarding their function and mode of action.
Collapse
Affiliation(s)
- Michal Lipinski
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Beatriz Del Blanco
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550, Alicante, Spain.
| |
Collapse
|
32
|
CBP and SRF co-regulate dendritic growth and synaptic maturation. Cell Death Differ 2019; 26:2208-2222. [PMID: 30850733 PMCID: PMC6889142 DOI: 10.1038/s41418-019-0285-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/17/2018] [Accepted: 01/10/2019] [Indexed: 12/03/2022] Open
Abstract
The CREB-binding protein (CBP) exerts tight control of developmental processes. Here, we investigated the consequences of its selective ablation in newborn neurons. Mice in which CBP was eliminated during neuronal differentiation showed perinatal death and defective diaphragm innervation. Adult-born neurons also showed impaired growth and maturation after inducible and restricted CBP loss in dentate gyrus neuroprogenitors. Consistent with these in vivo findings, cultured neurons displayed impaired outgrowth, immature spines, and deficient activity-dependent synaptic remodeling after CBP ablation. These deficits coincided with broad transcriptional changes affecting genes involved in neuronal growth and plasticity. The affected gene set included many predicted targets of both CBP and the serum response factor (SRF), an activity-regulated transcription factor involved in structural plasticity. Notably, increasing SRF activity in a CBP-independent manner ameliorated the transcriptional, synaptic, and growth defects. These results underscore the relevance of CBP–SRF interactions during neuronal outgrowth and synaptic maturation, and demonstrate that CBP plays an essential role in supporting the gene program underlying the last steps of neuronal differentiation, both during development and in the adult brain.
Collapse
|
33
|
Testa U, Castelli G, Pelosi E. Genetic Abnormalities, Clonal Evolution, and Cancer Stem Cells of Brain Tumors. Med Sci (Basel) 2018; 6:E85. [PMID: 30279357 PMCID: PMC6313628 DOI: 10.3390/medsci6040085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023] Open
Abstract
Brain tumors are highly heterogeneous and have been classified by the World Health Organization in various histological and molecular subtypes. Gliomas have been classified as ranging from low-grade astrocytomas and oligodendrogliomas to high-grade astrocytomas or glioblastomas. These tumors are characterized by a peculiar pattern of genetic alterations. Pediatric high-grade gliomas are histologically indistinguishable from adult glioblastomas, but they are considered distinct from adult glioblastomas because they possess a different spectrum of driver mutations (genes encoding histones H3.3 and H3.1). Medulloblastomas, the most frequent pediatric brain tumors, are considered to be of embryonic derivation and are currently subdivided into distinct subgroups depending on histological features and genetic profiling. There is emerging evidence that brain tumors are maintained by a special neural or glial stem cell-like population that self-renews and gives rise to differentiated progeny. In many instances, the prognosis of the majority of brain tumors remains negative and there is hope that the new acquisition of information on the molecular and cellular bases of these tumors will be translated in the development of new, more active treatments.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
34
|
Chung CG, Lee H, Lee SB. Mechanisms of protein toxicity in neurodegenerative diseases. Cell Mol Life Sci 2018; 75:3159-3180. [PMID: 29947927 PMCID: PMC6063327 DOI: 10.1007/s00018-018-2854-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/12/2022]
Abstract
Protein toxicity can be defined as all the pathological changes that ensue from accumulation, mis-localization, and/or multimerization of disease-specific proteins. Most neurodegenerative diseases manifest protein toxicity as one of their key pathogenic mechanisms, the details of which remain unclear. By systematically deconstructing the nature of toxic proteins, we aim to elucidate and illuminate some of the key mechanisms of protein toxicity from which therapeutic insights may be drawn. In this review, we focus specifically on protein toxicity from the point of view of various cellular compartments such as the nucleus and the mitochondria. We also discuss the cell-to-cell propagation of toxic disease proteins that complicates the mechanistic understanding of the disease progression as well as the spatiotemporal point at which to therapeutically intervene. Finally, we discuss selective neuronal vulnerability, which still remains largely enigmatic.
Collapse
Affiliation(s)
- Chang Geon Chung
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, Republic of Korea
| | - Hyosang Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, Republic of Korea.
| | - Sung Bae Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
35
|
Crux S, Herms J, Dorostkar MM. Tcf4 regulates dendritic spine density and morphology in the adult brain. PLoS One 2018; 13:e0199359. [PMID: 29933371 PMCID: PMC6014661 DOI: 10.1371/journal.pone.0199359] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/06/2018] [Indexed: 11/18/2022] Open
Abstract
Tcf4 is a transcription factor which regulates neurogenesis and neuronal migration in the brain. In humans, loss of function of Tcf4 leads to the rare neurodevelopmental disorder Pitt-Hopkins syndrome, which is characterized by intellectual disability, developmental delay and autistic behavior. We analyzed the consequences of functional loss of Tcf4 on dendritic spines in mature principal neurons. To this end, we crossed mice in which the DNA-binding domain of the Tcf4 gene is flanked by LoxP sites to mice expressing tamoxifen-inducible cre recombinase in a sparse subset of fluorescently labelled neurons (SlickV line). This resulted in a mouse model with an inducible functional knockout of Tcf4 in a subset of cortical and hippocampal neurons, in which we analyzed dendritic spines, which are the morphological correlate of excitatory postsynapses. Heterozygous as well as homozygous loss of Tcf4 led to a reduction in the number of dendritic spines in the cortex as well as in the hippocampus. This was accompanied by morphological changes of dendritic spines. These results suggest that Tcf4 is involved in synaptic plasticity in mature neurons, and functional loss of Tcf4 may contribute to the neurological symptoms in Pitt-Hopkins syndrome.
Collapse
Affiliation(s)
- Sophie Crux
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Ludwig–Maximilian–University, Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Ludwig–Maximilian–University, Munich, Germany
- Center for Neuropathology, Ludwig–Maximilian–University, Munich, Germany
| | - Mario M. Dorostkar
- Center for Neuropathology, Ludwig–Maximilian–University, Munich, Germany
- * E-mail:
| |
Collapse
|