1
|
Chen J, Chen J, Yu C, Xia K, Yang B, Wang R, Li Y, Shi K, Zhang Y, Xu H, Zhang X, Wang J, Chen Q, Liang C. Metabolic reprogramming: a new option for the treatment of spinal cord injury. Neural Regen Res 2025; 20:1042-1057. [PMID: 38989936 PMCID: PMC11438339 DOI: 10.4103/nrr.nrr-d-23-01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/27/2024] [Indexed: 07/12/2024] Open
Abstract
Spinal cord injuries impose a notably economic burden on society, mainly because of the severe after-effects they cause. Despite the ongoing development of various therapies for spinal cord injuries, their effectiveness remains unsatisfactory. However, a deeper understanding of metabolism has opened up a new therapeutic opportunity in the form of metabolic reprogramming. In this review, we explore the metabolic changes that occur during spinal cord injuries, their consequences, and the therapeutic tools available for metabolic reprogramming. Normal spinal cord metabolism is characterized by independent cellular metabolism and intercellular metabolic coupling. However, spinal cord injury results in metabolic disorders that include disturbances in glucose metabolism, lipid metabolism, and mitochondrial dysfunction. These metabolic disturbances lead to corresponding pathological changes, including the failure of axonal regeneration, the accumulation of scarring, and the activation of microglia. To rescue spinal cord injury at the metabolic level, potential metabolic reprogramming approaches have emerged, including replenishing metabolic substrates, reconstituting metabolic couplings, and targeting mitochondrial therapies to alter cell fate. The available evidence suggests that metabolic reprogramming holds great promise as a next-generation approach for the treatment of spinal cord injury. To further advance the metabolic treatment of the spinal cord injury, future efforts should focus on a deeper understanding of neurometabolism, the development of more advanced metabolomics technologies, and the design of highly effective metabolic interventions.
Collapse
Affiliation(s)
- Jiangjie Chen
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Jinyang Chen
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Chao Yu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Kaishun Xia
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Biao Yang
- Qiandongnan Prefecture People's Hospital, Kaili, Guizhou Province, China
| | - Ronghao Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Yi Li
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Kesi Shi
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Yuang Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Haibin Xu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Xuesong Zhang
- Department of Orthopedics, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jingkai Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Qixin Chen
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Chengzhen Liang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Verma R, Sharma P, Sharma V, Singh TG. Modulating lipid droplet dynamics in neurodegeneration: an emerging area of molecular pharmacology. Mol Biol Rep 2025; 52:277. [PMID: 40029470 DOI: 10.1007/s11033-025-10381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
Neurodegenerative diseases (NDDs) are characterised by the progressive loss of neurons in the central nervous system (CNS), resulting in memory impairment, cognition abnormalities, and motor dysfunctions. The common pathological features include altered energy metabolism, neuroinflammation, loss of neurons, aberrant protein aggregation, and synaptic dysfunction. Lipids, fundamental components of cell membranes play a critical role in energy storage and cell signaling. The brain, comprising approximately 60% lipid content by dry weight, underscores the significance of lipid dynamics in maintaining CNS integrity. Variations in lipid distribution across brain regions further highlight their specialised functions. Dysregulation of lipid metabolism, encompassing synthesis, transport, and utilization, has been implicated in the pathogenesis of neurodegenerative diseases. Lipid droplets (LDs), key intermediates of lipid metabolism, accumulate in neurons, microglia, and astrocytes, particularly in aging brains. The deposition of these LDs disrupts cellular homeostasis and links the dynamics of LDs to pathology of disease. Therefore, this review explores the pivotal role of lipid metabolism and LDs in NDDs, providing insights into their contributions to neuronal dysfunction and potential therapeutic implications.
Collapse
Affiliation(s)
- Reet Verma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Prateek Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
3
|
Bokshi B, Chen H, Ung AT. Antidiabetic property of fractions and pure compounds from Andrographis paniculata. Nat Prod Res 2025; 39:1101-1110. [PMID: 38099351 DOI: 10.1080/14786419.2023.2294115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 03/04/2025]
Abstract
Chlorophyll-free fractions of Andrographis paniculata were investigated for glucose uptake and lipid reduction in 3T3-L1 adipocytes. At 25 µg/ml, the acid fraction concentration enhanced glucose uptake by 82%. Basic and neutral fractions at 100 µg/ml enhanced glucose uptake by 82% and 78%, respectively. The three fractions showed improved glucose uptake compared to the crude extract (25% uptake at 50 μg/ml). GC-MS analysis of the fractions revealed the presence of chemicals with antidiabetic activities. The neutral fraction was prioritised for pure compound isolation to provide known andrographolide (1), 14-deoxyandrographolide (2), and a novel compound, 3-epi-11,12-didehydro-14-deoxyandrographolide (5). At a concentration of 1 µM, compounds 2 and 5 are as effective as 10 mM metformin in glucose uptake. They also reduce lipid accumulations in 3T3-L1 adipocytes by decreasing the size and number of lipid droplets. The activities of fractions and compounds support the use of A. paniculata in treating type 2 diabetes.
Collapse
Affiliation(s)
- Bishwajit Bokshi
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Hui Chen
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Alison T Ung
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| |
Collapse
|
4
|
Zhang Y, Chen Y, Zhuang C, Qi J, Zhao RC, Wang J. Lipid droplets in the nervous system: involvement in cell metabolic homeostasis. Neural Regen Res 2025; 20:740-750. [PMID: 38886939 PMCID: PMC11433920 DOI: 10.4103/nrr.nrr-d-23-01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/05/2023] [Accepted: 01/20/2024] [Indexed: 06/20/2024] Open
Abstract
Lipid droplets serve as primary storage organelles for neutral lipids in neurons, glial cells, and other cells in the nervous system. Lipid droplet formation begins with the synthesis of neutral lipids in the endoplasmic reticulum. Previously, lipid droplets were recognized for their role in maintaining lipid metabolism and energy homeostasis; however, recent research has shown that lipid droplets are highly adaptive organelles with diverse functions in the nervous system. In addition to their role in regulating cell metabolism, lipid droplets play a protective role in various cellular stress responses. Furthermore, lipid droplets exhibit specific functions in neurons and glial cells. Dysregulation of lipid droplet formation leads to cellular dysfunction, metabolic abnormalities, and nervous system diseases. This review aims to provide an overview of the role of lipid droplets in the nervous system, covering topics such as biogenesis, cellular specificity, and functions. Additionally, it will explore the association between lipid droplets and neurodegenerative disorders. Understanding the involvement of lipid droplets in cell metabolic homeostasis related to the nervous system is crucial to determine the underlying causes and in exploring potential therapeutic approaches for these diseases.
Collapse
Affiliation(s)
- Yuchen Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Yiqing Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Cheng Zhuang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jingxuan Qi
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Robert Chunhua Zhao
- School of Life Sciences, Shanghai University, Shanghai, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, China
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
5
|
Sheng L, Gao J, Wei Q, Gong Y, Xu ZX. The glial UDP-glycosyltransferase Ugt35b regulates longevity by maintaining lipid homeostasis in Drosophila. Cell Rep 2025; 44:115099. [PMID: 39723892 DOI: 10.1016/j.celrep.2024.115099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Lipid droplets (LDs) are dynamic organelles essential for lipid storage and organismal survival. Studies have highlighted the importance of glial function in brain LD formation during aging; however, the genes and mechanisms involved remain elusive. Here, we found that Ugt35b, a member of the uridine diphosphate (UDP)-glycosyltransferases that catalyze the transfer of glycosyl groups to acceptors, is highly expressed in glia and crucial for Drosophila lifespan. By integrating multiomics data, we demonstrated that glial Ugt35b plays key roles in regulating glycerolipid and glycerophospholipid metabolism in the brain. Notably, we found that Ugt35b and Lsd-2 are co-expressed in glia and confirmed their protein interaction in vivo. Knockdown of Ugt35b significantly reduced LD formation by downregulating Lsd-2 expression, while overexpression of Lsd-2 partially rescued the shortened lifespan in glial Ugt35b RNAi flies. Our findings reveal the crucial role of glial Ugt35b in regulating LD formation to maintain brain lipid homeostasis and support Drosophila lifespan.
Collapse
Affiliation(s)
- Lihong Sheng
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Jianpeng Gao
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Qingyuan Wei
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ye Gong
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Zhi-Xiang Xu
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
6
|
Zhang Z, Li Z, Peng Y, Li Z, Xv N, Jin L, Cao Y, Jiang C, Chen Z. TRIM21-mediated ubiquitination of PLIN2 regulates neuronal lipid droplet accumulation after acute spinal cord injury. Exp Neurol 2024; 381:114916. [PMID: 39122166 DOI: 10.1016/j.expneurol.2024.114916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
To investigate the changes in neuronal lipid droplet (LD) accumulation and lipid metabolism after acute spinal cord injury (SCI), we established a rat model of compressive SCI. Oil Red O staining, BODIPY 493/503 staining, and 4-hydroxynonenal immunofluorescence staining were performed to determine overall LD accumulation, neuronal LD accumulation, and lipid peroxidation. Lipidomics was conducted to identify the lipid components in the local SCI microenvironment. We focused on the expression and regulation of perilipin 2 (PLIN2) and knocked down PLIN2 in vivo by intrathecal injection of adeno-associated virus 9-synapsin-short-hairpin RNA-PLIN2 (AAV9-SYN-shPlin2). Motor function was assessed using the Basso-Beattie-Bresnahan score. Proteins that interacted with PLIN2 were screened by immunoprecipitation (IP) and qualitative shotgun proteomics, and confirmed by co-IP. A ubiquitination assay was performed to validate whether ubiquitination was involved in PLIN2 degradation. Oil Red O staining indicated that LDs steadily accumulated after SCI. Fluorescent staining indicated the accumulation of LDs in neurons with increased lipid peroxidation. Lipidomics revealed significant changes in lipid components after SCI. PLIN2 expression significantly increased following SCI, and knockdown of PLIN2 using AAV9-SYN-Plin2 reduced neuronal LD accumulation. This intervention improved the neuronal survival and motor function of injured rats. IP and qualitative shotgun proteomics identified tripartite motif-containing protein 21 (TRIM21) as a direct binding protein of PLIN2, and this interaction was confirmed by co-IP in vitro and immunofluorescence staining in vivo. By manipulating TRIM21 expression, we found it was negatively correlated with PLIN2 expression. In conclusion, PLIN2 is involved in neuronal LD accumulation following SCI. TRIM21 mediated the ubiquitination and degradation of PLIN2 in neurons. Inhibition of PLIN2 enhanced the recovery of motor function after SCI.
Collapse
Affiliation(s)
- Zhiyang Zhang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zheng Li
- Department of Orthopaedics, the First Affiliated Hospital of University of Science and Technology of China, Hefei 230002, China
| | - Ying Peng
- Trauma center, Shanghai General Hospital, Shanghai 200080, China
| | - Zhuoxuan Li
- Trauma center, Shanghai General Hospital, Shanghai 200080, China
| | - Nixi Xv
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lixia Jin
- Department of Rehabilitation, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuanwu Cao
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chang Jiang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zixian Chen
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
7
|
Kang Y, Yeap YJ, Yang J, Ma S, Lim KL, Zhang Q, Lu L, Zhang C. Role of lipid droplets in neurodegenerative diseases: From pathogenesis to therapeutics. Neurosci Biobehav Rev 2024; 165:105867. [PMID: 39208878 DOI: 10.1016/j.neubiorev.2024.105867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Neurodegenerative diseases (NDDs) are a series of disorders characterized by the progressive loss of specific neurons, leading to cognitive and locomotor impairment. NDDs affect millions of patients worldwide but lack effective treatments. Dysregulation of lipids, particularly the accumulation of lipid droplets (LDs), is strongly implicated in the pathogenesis of NDDs. How LDs contribute to the occurrence and development of NDDs, and their potential as therapeutic targets remain to be addressed. In present review, we first introduce the processes of LDs formation, transportation and degradation. We then highlight how the accumulation of LDs contributes to the pathogenesis of NDDs in a cell type-specific manner. Moreover, we discuss currently available methods for detecting LDs and elaborate on LDs-based therapeutic strategies for NDDs. Lastly, we identify gaps that need to be filled to better leverage LD-based theranostics in NDDs and other diseases. We hope this review could shed light on the role of LDs in NDDs and facilitate the development of novel therapeutic strategies for NDDs.
Collapse
Affiliation(s)
- Yubing Kang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Yee Jie Yeap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Jing Yang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Sufang Ma
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Kah Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Qin Zhang
- Yuncheng Central Hospital, Yuncheng 044020, China.
| | - Li Lu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China; Shanxi Engineering Research Center for Precisive Diagnosis and Treatment of Neurodegenerative Diseases, Jinzhong 030600, China.
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China; Shanxi Engineering Research Center for Precisive Diagnosis and Treatment of Neurodegenerative Diseases, Jinzhong 030600, China.
| |
Collapse
|
8
|
Li YC, Fu JT, Tzeng SF. Exposure to lipid mixture induces intracellular lipid droplet formation and impairs mitochondrial functions in astrocytes. Neurochem Int 2024; 178:105792. [PMID: 38880230 DOI: 10.1016/j.neuint.2024.105792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Astrocytes, the predominant glial cells in the central nervous system (CNS), play diverse roles including metabolic support for neurons, provision of neurotrophic factors, facilitation of synaptic neurotransmitter uptake, regulation of ion balance, and involvement in synaptic formation. The accumulation of lipids has been noted in various neurological conditions, yet the response of astrocytes to lipid-rich environments remains unclear. In this study, primary astrocytes isolated from the neonatal rat cortex were exposed to a lipid mixture (LM) comprising cholesterol and various fatty acids to explore their reaction. Our results showed that astrocyte viability remained unchanged following 24 h of 5% or 10% LM treatment. However, exposure to LM for 96 h resulted in reduced cell viability. In addition, LM treatment led to the accumulation of lipid droplets (LDs) in astrocytes, with LD size increasing over prolonged exposure periods. Following 24 h of LM treatment and then 48 h in fresh medium, a significant reduction in intracellular LD size was observed in cultures treated with 5% LM, while no change occurred in cultures exposed to 10% LM. Yet, exposure to 10% LM for 24 h significantly increased the expression of the cholesterol efflux regulatory protein/ATP-binding cassette transporter (ABCA1) gene, responsible for intracellular cholesterol efflux, resulting in reduced cholesterol content within astrocytes. Moreover, LM exposure led to decreased mitochondrial membrane potential (MMP) and increased levels of mature apoptosis-inducing factor (AIF). The smaller LDs were observed to co-localize with microtubule-associated protein 1A/1 B light chain 3 B (LC3) and lysosomal-associated membrane protein-1 (LAMP-1) in LM-treated astrocytes, coinciding with lysosomal acidification. These results indicate that the continuous buildup of LDs in astrocytes residing in lipid-enriched environments may be attributed to disruptions caused by LM in mitochondrial and lysosomal functions. Such disruptions could potentially impede the supportive role of astrocytes in neuronal function.
Collapse
Affiliation(s)
- Yi-Chen Li
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Jing-Ting Fu
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Shun-Fen Tzeng
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
9
|
Monteiro-Cardoso VF, Giordano F. Emerging functions of the mitochondria-ER-lipid droplet three-way junction in coordinating lipid transfer, metabolism, and storage in cells. FEBS Lett 2024; 598:1252-1273. [PMID: 38774950 DOI: 10.1002/1873-3468.14893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 04/05/2024] [Indexed: 05/25/2024]
Abstract
Over the past two decades, we have witnessed a growing appreciation for the importance of membrane contact sites (CS) in facilitating direct communication between organelles. CS are tiny regions where the membranes of two organelles meet but do not fuse and allow the transfer of metabolites between organelles, playing crucial roles in the coordination of cellular metabolic activities. The significant advancements in imaging techniques and molecular and cell biology research have revealed that CS are more complex than what originally thought, and as they are extremely dynamic, they can remodel their shape, composition, and functions in accordance with metabolic and environmental changes and can occur between more than two organelles. Here, we describe how recent studies led to the identification of a three-way mitochondria-ER-lipid droplet CS and discuss the emerging functions of these contacts in maintaining lipid storage, homeostasis, and balance. We also summarize the properties and functions of key protein components localized at the mitochondria-ER-lipid droplet interface, with a special focus on lipid transfer proteins. Understanding tripartite CS is essential for unraveling the complexities of inter-organelle communication and cooperation within cells.
Collapse
Affiliation(s)
- Vera Filipa Monteiro-Cardoso
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette cedex, France
- Inserm U1280, Gif-sur-Yvette cedex, France
| | - Francesca Giordano
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette cedex, France
- Inserm U1280, Gif-sur-Yvette cedex, France
| |
Collapse
|
10
|
Wang W, Pan D, Liu Q, Chen X, Wang S. L-Carnitine in the Treatment of Psychiatric and Neurological Manifestations: A Systematic Review. Nutrients 2024; 16:1232. [PMID: 38674921 PMCID: PMC11055039 DOI: 10.3390/nu16081232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVE L-carnitine (LC), a vital nutritional supplement, plays a crucial role in myocardial health and exhibits significant cardioprotective effects. LC, being the principal constituent of clinical-grade supplements, finds extensive application in the recovery and treatment of diverse cardiovascular and cerebrovascular disorders. However, controversies persist regarding the utilization of LC in nervous system diseases, with varying effects observed across numerous mental and neurological disorders. This article primarily aims to gather and analyze database information to comprehensively summarize the therapeutic potential of LC in patients suffering from nervous system diseases while providing valuable references for further research. METHODS A comprehensive search was conducted in PubMed, Web Of Science, Embase, Ovid Medline, Cochrane Library and Clinicaltrials.gov databases. The literature pertaining to the impact of LC supplementation on neurological or psychiatric disorders in patients was reviewed up until November 2023. No language or temporal restrictions were imposed on the search. RESULTS A total of 1479 articles were retrieved, and after the removal of duplicates through both automated and manual exclusion processes, 962 articles remained. Subsequently, a meticulous re-screening led to the identification of 60 relevant articles. Among these, there were 12 publications focusing on hepatic encephalopathy (HE), while neurodegenerative diseases (NDs) and peripheral nervous system diseases (PNSDs) were represented by 9 and 6 articles, respectively. Additionally, stroke was addressed in five publications, whereas Raynaud's syndrome (RS) and cognitive disorder (CD) each had three dedicated studies. Furthermore, migraine, depression, and amyotrophic lateral sclerosis (ALS) each accounted for two publications. Lastly, one article was found for other symptoms under investigation. CONCLUSION In summary, LC has demonstrated favorable therapeutic effects in the management of HE, Alzheimer's disease (AD), carpal tunnel syndrome (CTS), CD, migraine, neurofibromatosis (NF), PNSDs, RS, and stroke. However, its efficacy appears to be relatively limited in conditions such as ALS, ataxia, attention deficit hyperactivity disorder (ADHD), depression, chronic fatigue syndrome (CFS), Down syndrome (DS), and sciatica.
Collapse
Affiliation(s)
- Wenbo Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (W.W.); (D.P.); (X.C.)
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (W.W.); (D.P.); (X.C.)
| | - Qi Liu
- Department of Public Health, School of Medicine, Xizang Minzu University, Xianyang 712082, China;
| | - Xiangjun Chen
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (W.W.); (D.P.); (X.C.)
- Department of Public Health, School of Medicine, Xizang Minzu University, Xianyang 712082, China;
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (W.W.); (D.P.); (X.C.)
- Department of Public Health, School of Medicine, Xizang Minzu University, Xianyang 712082, China;
| |
Collapse
|
11
|
Zhou Y, Sanchez VB, Xu P, Roule T, Flores-Mendez M, Ciesielski B, Yoo D, Teshome H, Jimenez T, Liu S, Henne M, O’Brien T, He Y, Mesaros C, Akizu N. Altered lipid homeostasis is associated with cerebellar neurodegeneration in SNX14 deficiency. JCI Insight 2024; 9:e168594. [PMID: 38625743 PMCID: PMC11141923 DOI: 10.1172/jci.insight.168594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
Dysregulated lipid homeostasis is emerging as a potential cause of neurodegenerative disorders. However, evidence of errors in lipid homeostasis as a pathogenic mechanism of neurodegeneration remains limited. Here, we show that cerebellar neurodegeneration caused by Sorting Nexin 14 (SNX14) deficiency is associated with lipid homeostasis defects. Recent studies indicate that SNX14 is an interorganelle lipid transfer protein that regulates lipid transport, lipid droplet (LD) biogenesis, and fatty acid desaturation, suggesting that human SNX14 deficiency belongs to an expanding class of cerebellar neurodegenerative disorders caused by altered cellular lipid homeostasis. To test this hypothesis, we generated a mouse model that recapitulates human SNX14 deficiency at a genetic and phenotypic level. We demonstrate that cerebellar Purkinje cells (PCs) are selectively vulnerable to SNX14 deficiency while forebrain regions preserve their neuronal content. Ultrastructure and lipidomic studies reveal widespread lipid storage and metabolism defects in SNX14-deficient mice. However, predegenerating SNX14-deficient cerebella show a unique accumulation of acylcarnitines and depletion of triglycerides. Furthermore, defects in LD content and telolysosome enlargement in predegenerating PCs suggest lipotoxicity as a pathogenic mechanism of SNX14 deficiency. Our work shows a selective cerebellar vulnerability to altered lipid homeostasis and provides a mouse model for future therapeutic studies.
Collapse
Affiliation(s)
- Yijing Zhou
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine and
| | - Vanessa B. Sanchez
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine and
| | - Peining Xu
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas Roule
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine and
| | - Marco Flores-Mendez
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine and
| | - Brianna Ciesielski
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Donna Yoo
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine and
| | - Hiab Teshome
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine and
| | - Teresa Jimenez
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine and
| | - Shibo Liu
- The Graduate Center of the City University of New York, Advanced Science Research Center, New York, New York, USA
| | - Mike Henne
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Tim O’Brien
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ye He
- The Graduate Center of the City University of New York, Advanced Science Research Center, New York, New York, USA
- Ph.D. Program in Biology, The Graduate Center of the City University of New York, New York, New York, USA
| | - Clementina Mesaros
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Naiara Akizu
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine and
| |
Collapse
|
12
|
Matveeva A, Watters O, Rukhadze A, Khemka N, Gentile D, Perez IF, Llorente-Folch I, Farrell C, Lo Cacciato E, Jackson J, Piazzesi A, Wischhof L, Woods I, Halang L, Hogg M, Muñoz AG, Dillon ET, Matallanas D, Arijs I, Lambrechts D, Bano D, Connolly NMC, Prehn JHM. Integrated analysis of transcriptomic and proteomic alterations in mouse models of ALS/FTD identify early metabolic adaptions with similarities to mitochondrial dysfunction disorders. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:135-149. [PMID: 37779364 DOI: 10.1080/21678421.2023.2261979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/10/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE Sporadic and familial amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disease that results in loss of motor neurons and, in some patients, associates with frontotemporal dementia (FTD). Apart from the accumulation of proteinaceous deposits, emerging literature indicates that aberrant mitochondrial bioenergetics may contribute to the onset and progression of ALS/FTD. Here we sought to investigate the pathophysiological signatures of mitochondrial dysfunction associated with ALS/FTD. METHODS By means of label-free mass spectrometry (MS) and mRNA sequencing (mRNA-seq), we report pre-symptomatic changes in the cortices of TDP-43 and FUS mutant mouse models. Using tissues from transgenic mouse models of mitochondrial diseases as a reference, we performed comparative analyses and extracted unique and common mitochondrial signatures that revealed neuroprotective compensatory mechanisms in response to early damage. RESULTS In this regard, upregulation of both Acyl-CoA Synthetase Long-Chain Family Member 3 (ACSL3) and mitochondrial tyrosyl-tRNA synthetase 2 (YARS2) were the most representative change in pre-symptomatic ALS/FTD tissues, suggesting that fatty acid beta-oxidation and mitochondrial protein translation are mechanisms of adaptation in response to ALS/FTD pathology. CONCLUSIONS Together, our unbiased integrative analyses unveil novel molecular components that may influence mitochondrial homeostasis in the earliest phase of ALS.
Collapse
Affiliation(s)
- Anna Matveeva
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Orla Watters
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- SFI FutureNeuro Research Centre, Dublin 2, Ireland
| | - Ani Rukhadze
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Niraj Khemka
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Debora Gentile
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ivan Fernandez Perez
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Irene Llorente-Folch
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Cliona Farrell
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | | | - Joshua Jackson
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Antonia Piazzesi
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ina Woods
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Luise Halang
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Marion Hogg
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- SFI FutureNeuro Research Centre, Dublin 2, Ireland
- Department of Biosciences, Nottingham Trent University, Clifton Campus, Nottingham, UK
| | - Amaya Garcia Muñoz
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Belfield, Ireland
| | - Eugène T Dillon
- Mass Spectrometry Resource, Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Belfield, Ireland
| | - Ingrid Arijs
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium, and
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium, and
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Niamh M C Connolly
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Jochen H M Prehn
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- SFI FutureNeuro Research Centre, Dublin 2, Ireland
| |
Collapse
|
13
|
Bai YT, Wang X, He MJ, Xie JR, Chen XJ, Zhou G. The Potential of Lipid Droplet-associated Genes as Diagnostic and Prognostic Biomarkers in Head and Neck Squamous Cell Carcinoma. Comb Chem High Throughput Screen 2024; 27:136-147. [PMID: 36998140 DOI: 10.2174/1386207326666230328123223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 04/01/2023]
Abstract
OBJECTIVE The role of lipid droplets (LDs) and lipid droplet-associated genes (LD-AGs) remains unclear in head and neck squamous cell carcinoma (HNSCC). This study aimed to investigate LDs in HNSCC and identify LD-AGs essential for the diagnosis and prognosis of HNSCC patients. METHODS The LDs in the HNSCC and normal cell lines were stained with oil red O. Bioinformatic analysis was used to find LD-AGs in HNSCC that had diagnostic and prognostic significance. RESULTS LDs accumulation was increased in HNSCC cell lines compared with normal cell lines (P<0.05). Fifty-three differentially expressed genes, including 34 upregulated and 19 downregulated, were found in HNSCC based on the TCGA platform (P<0.05). Then, 53 genes were proved to be functionally enriched in lipid metabolism and LDs. Among them, with an AUC value > 0.7, 34 genes demonstrated a high predictive power. Six genes (AUP1, CAV1, CAV2, CAVIN1, HILPDA, and SQLE) out of 34 diagnostic genes were linked to overall survival in patients with HNSCC (P<0.05). The significant prognostic factors AUP1, CAV1, CAV2, and SQLE were further identified using the univariate and multivariate cox proportional hazard models (P<0.05). The protein expression of CAV2 and SQLE was significantly increased in the HNSCC tissue compared to normal tissues (P<0.05). Finally, the knockdown of the four LD-AGs decreased LDs accumulation, respectively. CONCLUSIONS Increased LDs accumulation was a hallmark of HNSCC, and AUP1, CAV1, CAV2, and SQLE were discovered as differentially expressed LD-AGs with diagnostic and prognostic potential in HNSCC.
Collapse
Affiliation(s)
- Yu-Ting Bai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Xin Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Ming-Jing He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Ji-Rong Xie
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Xiao-Jie Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
14
|
Dey B, Kumar A, Patel AB. Pathomechanistic Networks of Motor System Injury in Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2024; 22:1778-1806. [PMID: 37622689 PMCID: PMC11284732 DOI: 10.2174/1570159x21666230824091601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 08/26/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common, adult-onset, progressive motor neurodegenerative disorder that results in death within 3 years of the clinical diagnosis. Due to the clinicopathological heterogeneity, any reliable biomarkers for diagnosis or prognosis of ALS have not been identified till date. Moreover, the only three clinically approved treatments are not uniformly effective in slowing the disease progression. Over the last 15 years, there has been a rapid advancement in research on the complex pathomechanistic landscape of ALS that has opened up new avenues for successful clinical translation of targeted therapeutics. Multiple studies suggest that the age-dependent interaction of risk-associated genes with environmental factors and endogenous modifiers is critical to the multi-step process of ALS pathogenesis. In this review, we provide an updated discussion on the dysregulated cross-talk between intracellular homeostasis processes, the unique molecular networks across selectively vulnerable cell types, and the multisystemic nature of ALS pathomechanisms. Importantly, this work highlights the alteration in epigenetic and epitranscriptomic landscape due to gene-environment interactions, which have been largely overlooked in the context of ALS pathology. Finally, we suggest that precision medicine research in ALS will be largely benefitted from the stratification of patient groups based on the clinical phenotype, onset and progression, genome, exposome, and metabolic identities.
Collapse
Affiliation(s)
- Bedaballi Dey
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Arvind Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Anant Bahadur Patel
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
15
|
Yu L. Cooperation of acylglycerol hydrolases in neuronal lipolysis. J Lipid Res 2023; 64:100462. [PMID: 37871852 PMCID: PMC10689277 DOI: 10.1016/j.jlr.2023.100462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/25/2023] Open
Abstract
Genetic and biochemical evidence has established DDHD-domain containing 2 (DDHD2) as the principal triacylglycerol (TAG) hydrolase in neuronal lipolysis of cytosolic lipid droplets. In this issue of Journal of Lipid Research, Hofer et al. report that DDHD2 cooperates with adipose triglyceride lipase, the principal TAG hydrolase in adipose lipolysis, contributing to cytosolic hydrolysis of both TAG and diacylglycerols in murine neuroblastoma cells and primary cortical neurons via different configurations of the lipases. This finding highlights the complexity of cytosolic acylglycerol hydrolysis and raises many new questions in the field of lipid metabolism.
Collapse
Affiliation(s)
- Liqing Yu
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
16
|
Seki S, Kitaoka Y, Kawata S, Nishiura A, Uchihashi T, Hiraoka SI, Yokota Y, Isomura ET, Kogo M, Tanaka S. Characteristics of Sensory Neuron Dysfunction in Amyotrophic Lateral Sclerosis (ALS): Potential for ALS Therapy. Biomedicines 2023; 11:2967. [PMID: 38001967 PMCID: PMC10669304 DOI: 10.3390/biomedicines11112967] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder characterised by the progressive degeneration of motor neurons, resulting in muscle weakness, paralysis, and, ultimately, death. Presently, no effective treatment for ALS has been established. Although motor neuron dysfunction is a hallmark of ALS, emerging evidence suggests that sensory neurons are also involved in the disease. In clinical research, 30% of patients with ALS had sensory symptoms and abnormal sensory nerve conduction studies in the lower extremities. Peroneal nerve biopsies show histological abnormalities in 90% of the patients. Preclinical research has reported several genetic abnormalities in the sensory neurons of animal models of ALS, as well as in motor neurons. Furthermore, the aggregation of misfolded proteins like TAR DNA-binding protein 43 has been reported in sensory neurons. This review aims to provide a comprehensive description of ALS-related sensory neuron dysfunction, focusing on its clinical changes and underlying mechanisms. Sensory neuron abnormalities in ALS are not limited to somatosensory issues; proprioceptive sensory neurons, such as MesV and DRG neurons, have been reported to form networks with motor neurons and may be involved in motor control. Despite receiving limited attention, sensory neuron abnormalities in ALS hold potential for new therapies targeting proprioceptive sensory neurons.
Collapse
Affiliation(s)
- Soju Seki
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita 565-0871, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Smith G, Sweeney ST, O’Kane CJ, Prokop A. How neurons maintain their axons long-term: an integrated view of axon biology and pathology. Front Neurosci 2023; 17:1236815. [PMID: 37564364 PMCID: PMC10410161 DOI: 10.3389/fnins.2023.1236815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Axons are processes of neurons, up to a metre long, that form the essential biological cables wiring nervous systems. They must survive, often far away from their cell bodies and up to a century in humans. This requires self-sufficient cell biology including structural proteins, organelles, and membrane trafficking, metabolic, signalling, translational, chaperone, and degradation machinery-all maintaining the homeostasis of energy, lipids, proteins, and signalling networks including reactive oxygen species and calcium. Axon maintenance also involves specialised cytoskeleton including the cortical actin-spectrin corset, and bundles of microtubules that provide the highways for motor-driven transport of components and organelles for virtually all the above-mentioned processes. Here, we aim to provide a conceptual overview of key aspects of axon biology and physiology, and the homeostatic networks they form. This homeostasis can be derailed, causing axonopathies through processes of ageing, trauma, poisoning, inflammation or genetic mutations. To illustrate which malfunctions of organelles or cell biological processes can lead to axonopathies, we focus on axonopathy-linked subcellular defects caused by genetic mutations. Based on these descriptions and backed up by our comprehensive data mining of genes linked to neural disorders, we describe the 'dependency cycle of local axon homeostasis' as an integrative model to explain why very different causes can trigger very similar axonopathies, providing new ideas that can drive the quest for strategies able to battle these devastating diseases.
Collapse
Affiliation(s)
- Gaynor Smith
- Cardiff University, School of Medicine, College of Biomedical and Life Sciences, Cardiff, United Kingdom
| | - Sean T. Sweeney
- Department of Biology, University of York and York Biomedical Research Institute, York, United Kingdom
| | - Cahir J. O’Kane
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Andreas Prokop
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
18
|
Lan ZQ, Ge ZY, Lv SK, Zhao B, Li CX. The regulatory role of lipophagy in central nervous system diseases. Cell Death Discov 2023; 9:229. [PMID: 37414782 DOI: 10.1038/s41420-023-01504-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/04/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023] Open
Abstract
Lipid droplets (LDs) are the organelles for storing neutral lipids, which are broken down when energy is insufficient. It has been suggested that excessive accumulation of LDs can affect cellular function, which is important to coordinate homeostasis of lipids in vivo. Lysosomes play an important role in the degradation of lipids, and the process of selective autophagy of LDs through lysosomes is known as lipophagy. Dysregulation of lipid metabolism has recently been associated with a variety of central nervous system (CNS) diseases, but the specific regulatory mechanisms of lipophagy in these diseases remain to be elucidated. This review summarizes various forms of lipophagy and discusses the role that lipophagy plays in the development of CNS diseases in order to reveal the related mechanisms and potential therapeutic targets for these diseases.
Collapse
Affiliation(s)
- Zhuo-Qing Lan
- Department of General practice medicine, the Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, P.R. China
| | - Zi-Yi Ge
- Department of Anesthesiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Shu-Kai Lv
- Department of General practice medicine, the Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, P.R. China
| | - Bing Zhao
- Department of Anesthesiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China.
| | - Cai-Xia Li
- Department of General practice medicine, the Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, P.R. China.
- Department of Anesthesiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China.
| |
Collapse
|
19
|
Rudge JD. The Lipid Invasion Model: Growing Evidence for This New Explanation of Alzheimer's Disease. J Alzheimers Dis 2023:JAD221175. [PMID: 37302030 PMCID: PMC10357195 DOI: 10.3233/jad-221175] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Lipid Invasion Model (LIM) is a new hypothesis for Alzheimer's disease (AD) which argues that AD is a result of external lipid invasion to the brain, following damage to the blood-brain barrier (BBB). The LIM provides a comprehensive explanation of the observed neuropathologies associated with the disease, including the lipid irregularities first described by Alois Alzheimer himself, and accounts for the wide range of risk factors now identified with AD, all of which are also associated with damage to the BBB. This article summarizes the main arguments of the LIM, and new evidence and arguments in support of it. The LIM incorporates and extends the amyloid hypothesis, the current main explanation of the disease, but argues that the greatest cause of late-onset AD is not amyloid-β (Aβ) but bad cholesterol and free fatty acids, let into the brain by a damaged BBB. It suggests that the focus on Aβ is the reason why we have made so little progress in treating the disease in the last 30 years. As well as offering new perspectives for further research into the diagnosis, prevention, and treatment of AD, based on protecting and repairing the BBB, the LIM provides potential new insights into other neurodegenerative diseases such as Parkinson's disease and amyotrophic lateral sclerosis/motor neuron disease.
Collapse
|
20
|
Zadoorian A, Du X, Yang H. Lipid droplet biogenesis and functions in health and disease. Nat Rev Endocrinol 2023:10.1038/s41574-023-00845-0. [PMID: 37221402 DOI: 10.1038/s41574-023-00845-0] [Citation(s) in RCA: 220] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/25/2023]
Abstract
Ubiquitous yet unique, lipid droplets are intracellular organelles that are increasingly being recognized for their versatility beyond energy storage. Advances uncovering the intricacies of their biogenesis and the diversity of their physiological and pathological roles have yielded new insights into lipid droplet biology. Despite these insights, the mechanisms governing the biogenesis and functions of lipid droplets remain incompletely understood. Moreover, the causal relationship between the biogenesis and function of lipid droplets and human diseases is poorly resolved. Here, we provide an update on the current understanding of the biogenesis and functions of lipid droplets in health and disease, highlighting a key role for lipid droplet biogenesis in alleviating cellular stresses. We also discuss therapeutic strategies of targeting lipid droplet biogenesis, growth or degradation that could be applied in the future to common diseases, such as cancer, hepatic steatosis and viral infection.
Collapse
Affiliation(s)
- Armella Zadoorian
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
21
|
Fluorescent Probes as a Tool in Diagnostic and Drug Delivery Systems. Pharmaceuticals (Basel) 2023; 16:ph16030381. [PMID: 36986481 PMCID: PMC10056067 DOI: 10.3390/ph16030381] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Over the last few years, the development of fluorescent probes has received considerable attention. Fluorescence signaling allows noninvasive and harmless real-time imaging with great spectral resolution in living objects, which is extremely useful for modern biomedical applications. This review presents the basic photophysical principles and strategies for the rational design of fluorescent probes as visualization agents in medical diagnosis and drug delivery systems. Common photophysical phenomena, such as Intramolecular Charge Transfer (ICT), Twisted Intramolecular Charge Transfer (TICT), Photoinduced Electron Transfer (PET), Excited-State Intramolecular Proton Transfer (ESIPT), Fluorescent Resonance Energy Transfer (FRET), and Aggregation-Induced Emission (AIE), are described as platforms for fluorescence sensing and imaging in vivo and in vitro. The presented examples are focused on the visualization of pH, biologically important cations and anions, reactive oxygen species (ROS), viscosity, biomolecules, and enzymes that find application for diagnostic purposes. The general strategies regarding fluorescence probes as molecular logic devices and fluorescence–drug conjugates for theranostic and drug delivery systems are discussed. This work could be of help for researchers working in the field of fluorescence sensing compounds, molecular logic gates, and drug delivery.
Collapse
|
22
|
Zhang Y, Zhuang W, Chen J, Li C, Li S, Chen M. Aggregation-induced emission fluorescent probes for lipid droplets-specific bioimaging of cells and atherosclerosis plaques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122017. [PMID: 36323086 DOI: 10.1016/j.saa.2022.122017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Visualizing lipid droplets (LDs) using fluorescence imaging is highly desirable for the diagnosis and treatment of atherosclerotic heart diseases. However, the imaging performance of the current commercial lipid probes is unsatisfactory. In this study, we prepared two probes (TTM and MeO-TTM) with aggregation-induced emission (AIE) properties for LD imaging with efficiency. Interestingly, TTM and MeO-TTM showed low emissions in H2O but their emissions were significantly increased in oil. Moreover, TTM and MeO-TTM showed great biocompatibility and intracellular LDs would be specifically illuminated by these probes with good resistance to photobleaching. In addition, TTM and MeO-TTM also exhibited great imaging performance in studying the spatial distribution of LDs in mouse atherosclerotic plaques. This work not only provides a simple tool for studying atherosclerosis but also hopes to enhance the development of fluorescent probes for LDs-specific imaging applications.
Collapse
Affiliation(s)
- Ying Zhang
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, China; Department of Cardiology, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, China
| | - Weihua Zhuang
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, China
| | - Jingruo Chen
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, China
| | - Chengming Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, China
| | - Shufen Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, China.
| | - Mao Chen
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, China; Department of Cardiology, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, China; Regenerative Medicine Research Center, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, China.
| |
Collapse
|
23
|
Danielli M, Perne L, Jarc Jovičić E, Petan T. Lipid droplets and polyunsaturated fatty acid trafficking: Balancing life and death. Front Cell Dev Biol 2023; 11:1104725. [PMID: 36776554 PMCID: PMC9911892 DOI: 10.3389/fcell.2023.1104725] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Lipid droplets are fat storage organelles ubiquitously distributed across the eukaryotic kingdom. They have a central role in regulating lipid metabolism and undergo a dynamic turnover of biogenesis and breakdown to meet cellular requirements for fatty acids, including polyunsaturated fatty acids. Polyunsaturated fatty acids esterified in membrane phospholipids define membrane fluidity and can be released by the activity of phospholipases A2 to act as ligands for nuclear receptors or to be metabolized into a wide spectrum of lipid signaling mediators. Polyunsaturated fatty acids in membrane phospholipids are also highly susceptible to lipid peroxidation, which if left uncontrolled leads to ferroptotic cell death. On the one hand, lipid droplets act as antioxidant organelles that control polyunsaturated fatty acid storage in triglycerides in order to reduce membrane lipid peroxidation, preserve organelle function and prevent cell death, including ferroptosis. On the other hand, lipid droplet breakdown fine-tunes the delivery of polyunsaturated fatty acids into metabolic and signaling pathways, but unrestricted lipid droplet breakdown may also lead to the release of lethal levels of polyunsaturated fatty acids. Precise regulation of lipid droplet turnover is thus essential for polyunsaturated fatty acid distribution and cellular homeostasis. In this review, we focus on emerging aspects of lipid droplet-mediated regulation of polyunsaturated fatty acid trafficking, including the management of membrane lipid peroxidation, ferroptosis and lipid mediator signaling.
Collapse
Affiliation(s)
| | | | | | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
24
|
Natarajaseenivasan K, Garcia A, Velusamy P, Shanmughapriya S, Langford D. Citrate shuttling in astrocytes is required for processing cocaine-induced neuron-derived excess peroxidated fatty acids. iScience 2022; 25:105407. [PMID: 36389000 PMCID: PMC9646946 DOI: 10.1016/j.isci.2022.105407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/25/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Disturbances in lipid metabolism in the CNS contribute to neurodegeneration and cognitive impairments. Through tight metabolic coupling, astrocytes provide energy to neurons by delivering lactate and cholesterol and by taking up and processing neuron-derived peroxidated fatty acids (pFA). Disruption of CNS lipid homeostasis is observed in people who use cocaine and in several neurodegenerative disorders, including HIV. The brain's main source of energy is aerobic glycolysis, but numerous studies report a switch to β-oxidation of FAs in response to cocaine. Unlike astrocytes, in response to cocaine, neurons cannot efficiently consume excess pFAs for energy. Accumulation of pFA in neurons induces autophagy and release of pFA. Astrocytes endocytose the pFA for oxidation as an energy source. Our data show that blocking mitochondrial/cytosolic citrate transport reduces the neurotrophic capacity of astrocytes, leading to decreased neuronal fitness.
Collapse
Affiliation(s)
- Kalimuthusamy Natarajaseenivasan
- Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Department of Microbiology, Bharathidasan University, Tiruchirapalli, India
| | - Alvaro Garcia
- Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Prema Velusamy
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Santhanam Shanmughapriya
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Dianne Langford
- Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
25
|
Activating cannabinoid receptor 2 preserves axonal health through GSK-3β/NRF2 axis in adrenoleukodystrophy. Acta Neuropathol 2022; 144:241-258. [PMID: 35778568 DOI: 10.1007/s00401-022-02451-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 11/01/2022]
Abstract
Aberrant endocannabinoid signaling accompanies several neurodegenerative disorders, including multiple sclerosis. Here, we report altered endocannabinoid signaling in X-linked adrenoleukodystrophy (X-ALD), a rare neurometabolic demyelinating syndrome caused by malfunction of the peroxisomal ABCD1 transporter, resulting in the accumulation of very long-chain fatty acids (VLCFAs). We found abnormal levels of cannabinoid receptor 2 (CB2r) and related endocannabinoid enzymes in the brain and peripheral blood mononuclear cells (PBMCs) of X-ALD patients and in the spinal cord of a murine model of X-ALD. Preclinical treatment with a selective agonist of CB2r (JWH133) halted axonal degeneration and associated locomotor deficits, along with normalization of microgliosis. Moreover, the drug improved the main metabolic disturbances underlying this model, particularly in redox and lipid homeostatic pathways, including increased lipid droplets in motor neurons, through the modulation of the GSK-3β/NRF2 axis. JWH133 inhibited Reactive Oxygen Species elicited by excess VLCFAs in primary microglial cultures of Abcd1-null mice. Furthermore, we uncovered intertwined redox and CB2r signaling in the murine spinal cords and in patient PBMC samples obtained from a phase II clinical trial with antioxidants (NCT01495260). These findings highlight CB2r signaling as a potential therapeutic target for X-ALD and perhaps other neurodegenerative disorders that present with dysregulated redox and lipid homeostasis.
Collapse
|
26
|
The Catalytic Domain of Neuropathy Target Esterase Influences Lipid Droplet Biogenesis and Lipid Metabolism in Human Neuroblastoma Cells. Metabolites 2022; 12:metabo12070637. [PMID: 35888761 PMCID: PMC9319352 DOI: 10.3390/metabo12070637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/23/2022] [Accepted: 07/07/2022] [Indexed: 02/06/2023] Open
Abstract
As an endoplasmic reticulum (ER)-anchored phospholipase, neuropathy target esterase (NTE) catalyzes the deacylation of lysophosphatidylcholine (LPC) and phosphatidylcholine (PC). The catalytic domain of NTE (NEST) exhibits comparable activity to NTE and binds to lipid droplets (LD). In the current study, the nucleotide monophosphate (cNMP)-binding domains (CBDs) were firstly demonstrated not to be essential for the ER-targeting of NTE, but to be involved in the normal ER distribution and localization to LD. NEST was associated with LD surface and influenced LD formation in human neuroblastoma cells. Overexpression of NEST enhances triacylglycerol (TG) accumulation upon oleic acid loading. Quantitative targeted lipidomic analysis shows that overexpression of NEST does not alter diacylglycerol levels but reduces free fatty acids content. NEST not only lowered levels of LPC and acyl-LPC, but not PC or alkyl-PC, but also widely altered levels of other lipid metabolites. Qualitative PCR indicates that the increase in levels of TG is due to the expression of diacylglycerol acyltransferase 1 gene by NEST overexpression. Thus, NTE may broadly regulate lipid metabolism to play roles in LD biogenesis in cells.
Collapse
|
27
|
Metabolic Dysfunction in Motor Neuron Disease: Shedding Light through the Lens of Autophagy. Metabolites 2022; 12:metabo12070574. [PMID: 35888698 PMCID: PMC9317837 DOI: 10.3390/metabo12070574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) patients show a myriad of energetic abnormalities, such as weight loss, hypermetabolism, and dyslipidaemia. Evidence suggests that these indices correlate with and ultimately affect the duration of survival. This review aims to discuss ALS metabolic abnormalities in the context of autophagy, the primordial system acting at the cellular level for energy production during nutrient deficiency. As the primary pathway of protein degradation in eukaryotic cells, the fundamental role of cellular autophagy is the adaptation to metabolic demands. Therefore, autophagy is tightly coupled to cellular metabolism. We review evidence that the delicate balance between autophagy and metabolism is aberrant in ALS, giving rise to intracellular and systemic pathophysiology observations. Understanding the metabolism autophagy crosstalk can lead to the identification of novel therapeutic targets for ALS.
Collapse
|
28
|
Sadler GL, Lewis KN, Narayana VK, De Souza DP, Mason J, McLean C, Gonsalvez DG, Turner BJ, Barton SK. Lipid Metabolism Is Dysregulated in the Motor Cortex White Matter in Amyotrophic Lateral Sclerosis. Metabolites 2022; 12:metabo12060554. [PMID: 35736487 PMCID: PMC9230865 DOI: 10.3390/metabo12060554] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Lipid metabolism is profoundly dysregulated in amyotrophic lateral sclerosis (ALS), yet the lipid composition of the white matter, where the myelinated axons of motor neurons are located, remains uncharacterised. We aimed to comprehensively characterise how myelin is altered in ALS by assessing its lipid and protein composition. We isolated white matter from the motor cortex from post-mortem tissue of ALS patients (n = 8 sporadic ALS cases and n = 6 familial ALS cases) and age- and sex-matched controls (n = 8) and conducted targeted lipidomic analyses, qPCR for gene expression of relevant lipid metabolising enzymes and Western blotting for myelin proteins. We also quantified myelin density by using spectral confocal reflectance microscopy (SCoRe). Whilst myelin protein composition was similar in ALS and control tissue, both the lipid levels and the expression of their corresponding enzymes were dysregulated, highlighting altered lipid metabolism in the white matter as well as a likely change in myelin composition. Altered myelin composition could contribute to motor neuron dysfunction, and this highlights how oligodendrocytes may play a critical role in ALS pathogenesis.
Collapse
Affiliation(s)
- Gemma L. Sadler
- Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia; (G.L.S.); (K.N.L.); (J.M.); (B.J.T.)
| | - Katherine N. Lewis
- Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia; (G.L.S.); (K.N.L.); (J.M.); (B.J.T.)
| | - Vinod K. Narayana
- Metabolomics Australia, Bio21 Institute, University of Melbourne, Melbourne 3052, Australia; (V.K.N.); (D.P.D.S.)
| | - David P. De Souza
- Metabolomics Australia, Bio21 Institute, University of Melbourne, Melbourne 3052, Australia; (V.K.N.); (D.P.D.S.)
| | - Joel Mason
- Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia; (G.L.S.); (K.N.L.); (J.M.); (B.J.T.)
| | - Catriona McLean
- Victorian Brain Bank, Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia;
| | - David G. Gonsalvez
- Department of Anatomy and Developmental Biology, Monash University, Melbourne 3168, Australia;
| | - Bradley J. Turner
- Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia; (G.L.S.); (K.N.L.); (J.M.); (B.J.T.)
| | - Samantha K. Barton
- Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia; (G.L.S.); (K.N.L.); (J.M.); (B.J.T.)
- Correspondence:
| |
Collapse
|
29
|
Zhao J, Zhang H, Fan X, Yu X, Huai J. Lipid Dyshomeostasis and Inherited Cerebellar Ataxia. Mol Neurobiol 2022; 59:3800-3828. [PMID: 35420383 PMCID: PMC9148275 DOI: 10.1007/s12035-022-02826-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/01/2022] [Indexed: 12/04/2022]
Abstract
Cerebellar ataxia is a form of ataxia that originates from dysfunction of the cerebellum, but may involve additional neurological tissues. Its clinical symptoms are mainly characterized by the absence of voluntary muscle coordination and loss of control of movement with varying manifestations due to differences in severity, in the site of cerebellar damage and in the involvement of extracerebellar tissues. Cerebellar ataxia may be sporadic, acquired, and hereditary. Hereditary ataxia accounts for the majority of cases. Hereditary ataxia has been tentatively divided into several subtypes by scientists in the field, and nearly all of them remain incurable. This is mainly because the detailed mechanisms of these cerebellar disorders are incompletely understood. To precisely diagnose and treat these diseases, studies on their molecular mechanisms have been conducted extensively in the past. Accumulating evidence has demonstrated that some common pathogenic mechanisms exist within each subtype of inherited ataxia. However, no reports have indicated whether there is a common mechanism among the different subtypes of inherited cerebellar ataxia. In this review, we summarize the available references and databases on neurological disorders characterized by cerebellar ataxia and show that a subset of genes involved in lipid homeostasis form a new group that may cause ataxic disorders through a common mechanism. This common signaling pathway can provide a valuable reference for future diagnosis and treatment of ataxic disorders.
Collapse
Affiliation(s)
- Jin Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Huan Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xueyu Fan
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xue Yu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jisen Huai
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China.
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
30
|
Li S, Chen J, Ma D, Li L, Zhuang W, Chen M. An intelligent probe with dual-emission in water and oil for lipid droplet specific imaging in human fibrocalcific aortic valvular leaflet. SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120895. [PMID: 35065518 DOI: 10.1016/j.saa.2022.120895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 02/08/2023]
Abstract
Lipid droplets (LDs) have been regarded as potential marker for study the pathologic processes and diagnosis of valvular heart disease. While conventional imaging strategy fail to precisely locate LDs in pathological tissues. Herein, a LDs specific probe ECPID with special feature of single-excitation but dual-emission in oil (520 nm) and water (628 nm) was prepared for LDs imaging. ECPID exhibited good biocompatibility, great performance in intracellular and tissular LDs imaging, which would help to reveal the pathologic process of human fibrocalcific aortic valvular leaflet. Our work offers a novel approach for accurate imaging LDs in situ and paves a way to study the pathologic processes of valvular disease.
Collapse
Affiliation(s)
- Shufen Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, PR China
| | - Jingruo Chen
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, PR China
| | - Di Ma
- Regenerative Medicine Research center, West China hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, PR China
| | - Lilan Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, PR China
| | - Weihua Zhuang
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, PR China.
| | - Mao Chen
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, PR China; Regenerative Medicine Research center, West China hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, PR China; Department of Cardiology, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, PR China.
| |
Collapse
|
31
|
Islimye E, Girard V, Gould AP. Functions of Stress-Induced Lipid Droplets in the Nervous System. Front Cell Dev Biol 2022; 10:863907. [PMID: 35493070 PMCID: PMC9047859 DOI: 10.3389/fcell.2022.863907] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Lipid droplets are highly dynamic intracellular organelles that store neutral lipids such as cholesteryl esters and triacylglycerols. They have recently emerged as key stress response components in many different cell types. Lipid droplets in the nervous system are mostly observed in vivo in glia, ependymal cells and microglia. They tend to become more numerous in these cell types and can also form in neurons as a consequence of ageing or stresses involving redox imbalance and lipotoxicity. Abundant lipid droplets are also a characteristic feature of several neurodegenerative diseases. In this minireview, we take a cell-type perspective on recent advances in our understanding of lipid droplet metabolism in glia, neurons and neural stem cells during health and disease. We highlight that a given lipid droplet subfunction, such as triacylglycerol lipolysis, can be physiologically beneficial or harmful to the functions of the nervous system depending upon cellular context. The mechanistic understanding of context-dependent lipid droplet functions in the nervous system is progressing apace, aided by new technologies for probing the lipid droplet proteome and lipidome with single-cell type precision.
Collapse
|
32
|
Rudge JD. A New Hypothesis for Alzheimer's Disease: The Lipid Invasion Model. J Alzheimers Dis Rep 2022; 6:129-161. [PMID: 35530118 PMCID: PMC9028744 DOI: 10.3233/adr-210299] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
This paper proposes a new hypothesis for Alzheimer's disease (AD)-the lipid invasion model. It argues that AD results from external influx of free fatty acids (FFAs) and lipid-rich lipoproteins into the brain, following disruption of the blood-brain barrier (BBB). The lipid invasion model explains how the influx of albumin-bound FFAs via a disrupted BBB induces bioenergetic changes and oxidative stress, stimulates microglia-driven neuroinflammation, and causes anterograde amnesia. It also explains how the influx of external lipoproteins, which are much larger and more lipid-rich, especially more cholesterol-rich, than those normally present in the brain, causes endosomal-lysosomal abnormalities and overproduction of the peptide amyloid-β (Aβ). This leads to the formation of amyloid plaques and neurofibrillary tangles, the most well-known hallmarks of AD. The lipid invasion model argues that a key role of the BBB is protecting the brain from external lipid access. It shows how the BBB can be damaged by excess Aβ, as well as by most other known risk factors for AD, including aging, apolipoprotein E4 (APOE4), and lifestyle factors such as hypertension, smoking, obesity, diabetes, chronic sleep deprivation, stress, and head injury. The lipid invasion model gives a new rationale for what we already know about AD, explaining its many associated risk factors and neuropathologies, including some that are less well-accounted for in other explanations of AD. It offers new insights and suggests new ways to prevent, detect, and treat this destructive disease and potentially other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jonathan D’Arcy Rudge
- School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| |
Collapse
|
33
|
Zaman M, Shutt TE. The Role of Impaired Mitochondrial Dynamics in MFN2-Mediated Pathology. Front Cell Dev Biol 2022; 10:858286. [PMID: 35399520 PMCID: PMC8989266 DOI: 10.3389/fcell.2022.858286] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/07/2022] [Indexed: 12/17/2022] Open
Abstract
The Mitofusin 2 protein (MFN2), encoded by the MFN2 gene, was first described for its role in mediating mitochondrial fusion. However, MFN2 is now recognized to play additional roles in mitochondrial autophagy (mitophagy), mitochondrial motility, lipid transfer, and as a tether to other organelles including the endoplasmic reticulum (ER) and lipid droplets. The tethering role of MFN2 is an important mediator of mitochondrial-ER contact sites (MERCs), which themselves have many important functions that regulate mitochondria, including calcium homeostasis and lipid metabolism. Exemplifying the importance of MFN2, pathogenic variants in MFN2 are established to cause the peripheral neuropathy Charcot-Marie-Tooth Disease Subtype 2A (CMT2A). However, the mechanistic basis for disease is not clear. Moreover, additional pathogenic phenotypes such as lipomatosis, distal myopathy, optic atrophy, and hearing loss, can also sometimes be present in patients with CMT2A. Given these variable patient phenotypes, and the many cellular roles played by MFN2, the mechanistic underpinnings of the cellular impairments by which MFN2 dysfunction leads to disease are likely to be complex. Here, we will review what is known about the various functions of MFN2 that are impaired by pathogenic variants causing CMT2A, with a specific emphasis on the ties between MFN2 variants and MERCs.
Collapse
Affiliation(s)
- Mashiat Zaman
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Timothy E Shutt
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
34
|
Girard V, Jollivet F, Knittelfelder O, Celle M, Arsac JN, Chatelain G, Van den Brink DM, Baron T, Shevchenko A, Kühnlein RP, Davoust N, Mollereau B. Abnormal accumulation of lipid droplets in neurons induces the conversion of alpha-Synuclein to proteolytic resistant forms in a Drosophila model of Parkinson's disease. PLoS Genet 2021; 17:e1009921. [PMID: 34788284 PMCID: PMC8635402 DOI: 10.1371/journal.pgen.1009921] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 12/01/2021] [Accepted: 11/02/2021] [Indexed: 11/18/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by alpha-synuclein (αSyn) aggregation and associated with abnormalities in lipid metabolism. The accumulation of lipids in cytoplasmic organelles called lipid droplets (LDs) was observed in cellular models of PD. To investigate the pathophysiological consequences of interactions between αSyn and proteins that regulate the homeostasis of LDs, we used a transgenic Drosophila model of PD, in which human αSyn is specifically expressed in photoreceptor neurons. We first found that overexpression of the LD-coating proteins Perilipin 1 or 2 (dPlin1/2), which limit the access of lipases to LDs, markedly increased triacylglyclerol (TG) loaded LDs in neurons. However, dPlin-induced-LDs in neurons are independent of lipid anabolic (diacylglycerol acyltransferase 1/midway, fatty acid transport protein/dFatp) and catabolic (brummer TG lipase) enzymes, indicating that alternative mechanisms regulate neuronal LD homeostasis. Interestingly, the accumulation of LDs induced by various LD proteins (dPlin1, dPlin2, CG7900 or KlarsichtLD-BD) was synergistically amplified by the co-expression of αSyn, which localized to LDs in both Drosophila photoreceptor neurons and in human neuroblastoma cells. Finally, the accumulation of LDs increased the resistance of αSyn to proteolytic digestion, a characteristic of αSyn aggregation in human neurons. We propose that αSyn cooperates with LD proteins to inhibit lipolysis and that binding of αSyn to LDs contributes to the pathogenic misfolding and aggregation of αSyn in neurons. Parkinson’s disease (PD) is a neurodegenerative disease characterized by the neurotoxic aggregation of the alpha-synuclein (αSyn) protein. Cellular models of the disease are also associated with an abnormal fat storage in the form of lipid droplets (LDs). However, in which cells, neuron or glial cells, LDs accumulate in the organism remains unknown. To understand the relationship between αSyn and the accumulation of LDs, we used a Drosophila (fruit fly) model of PD. We found that, in the presence of a protein that coats LDs, perilipin, LDs accumulate in photoreceptor neurons of the fly. Interestingly, the accumulation of LDs induced by perilipin or other LD-coating proteins was enhanced in the presence of αSyn. Using human neuronal cell lines and the fly, we could show that LD-coating and αSyn proteins localize at the surface of LDs. Finally, we observed that the process of αSyn aggregation was enhanced in the presence of LDs by using a biochemical approach. We thus propose that the association of αSyn with LDs could contribute to αSyn aggregation and progression of the pathology.
Collapse
Affiliation(s)
- Victor Girard
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/ENS de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, University of Lyon, Lyon, France
| | - Florence Jollivet
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/ENS de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, University of Lyon, Lyon, France
| | - Oskar Knittelfelder
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marion Celle
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/ENS de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, University of Lyon, Lyon, France
| | - Jean-Noel Arsac
- Neurodegenerative Disease Unit; French Agency for Food, Environmental and Occupational Health & Safety Laboratory (Anses) of Lyon, University of Lyon, Lyon, France
| | - Gilles Chatelain
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/ENS de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, University of Lyon, Lyon, France
| | - Daan M. Van den Brink
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/ENS de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, University of Lyon, Lyon, France
- Plant Systems Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Thierry Baron
- Neurodegenerative Disease Unit; French Agency for Food, Environmental and Occupational Health & Safety Laboratory (Anses) of Lyon, University of Lyon, Lyon, France
| | - Andrej Shevchenko
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ronald P. Kühnlein
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Nathalie Davoust
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/ENS de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, University of Lyon, Lyon, France
- * E-mail: (ND); (BM)
| | - Bertrand Mollereau
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/ENS de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, University of Lyon, Lyon, France
- * E-mail: (ND); (BM)
| |
Collapse
|
35
|
Elahi A, Emerson J, Rudlong J, Keillor JW, Salois G, Visca A, Girardi P, Johnson GV, Pröschel C. Deletion or Inhibition of Astrocytic Transglutaminase 2 Promotes Functional Recovery after Spinal Cord Injury. Cells 2021; 10:2942. [PMID: 34831164 PMCID: PMC8616117 DOI: 10.3390/cells10112942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/23/2023] Open
Abstract
Following CNS injury, astrocytes become "reactive" and exhibit pro-regenerative or harmful properties. However, the molecular mechanisms that cause astrocytes to adopt either phenotype are not well understood. Transglutaminase 2 (TG2) plays a key role in regulating the response of astrocytes to insults. Here, we used mice in which TG2 was specifically deleted in astrocytes (Gfap-Cre+/- TG2fl/fl, referred to here as TG2-A-cKO) in a spinal cord contusion injury (SCI) model. Deletion of TG2 from astrocytes resulted in a significant improvement in motor function following SCI. GFAP and NG2 immunoreactivity, as well as number of SOX9 positive cells, were significantly reduced in TG2-A-cKO mice. RNA-seq analysis of spinal cords from TG2-A-cKO and control mice 3 days post-injury identified thirty-seven differentially expressed genes, all of which were increased in TG2-A-cKO mice. Pathway analysis revealed a prevalence for fatty acid metabolism, lipid storage and energy pathways, which play essential roles in neuron-astrocyte metabolic coupling. Excitingly, treatment of wild type mice with the selective TG2 inhibitor VA4 significantly improved functional recovery after SCI, similar to what was observed using the genetic model. These findings indicate the use of TG2 inhibitors as a novel strategy for the treatment of SCI and other CNS injuries.
Collapse
Affiliation(s)
- Anissa Elahi
- Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; (A.E.); (G.S.); (A.V.); (C.P.)
| | - Jacen Emerson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY 14620, USA; (J.E.); (J.R.); (P.G.)
| | - Jacob Rudlong
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY 14620, USA; (J.E.); (J.R.); (P.G.)
| | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Garrick Salois
- Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; (A.E.); (G.S.); (A.V.); (C.P.)
| | - Adam Visca
- Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; (A.E.); (G.S.); (A.V.); (C.P.)
| | - Peter Girardi
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY 14620, USA; (J.E.); (J.R.); (P.G.)
| | - Gail V.W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY 14620, USA; (J.E.); (J.R.); (P.G.)
| | - Christoph Pröschel
- Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; (A.E.); (G.S.); (A.V.); (C.P.)
| |
Collapse
|
36
|
St Jean SC, Jortner BS, Doan RN, Dindot SV, Johnson GS, Bullock G, Whitley DB, Levine JM, Hancock SK, Ambrus A, Porter BF. Pathologic characterization of canine multiple system degeneration in the Ibizan hound. Vet Pathol 2021; 59:132-137. [PMID: 34490804 DOI: 10.1177/03009858211043088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Canine multiple system degeneration (CMSD) is a progressive hereditary neurodegenerative disorder commonly characterized by neuronal degeneration and loss in the cerebellum, olivary nuclei, substantia nigra, and caudate nuclei. In this article, we describe 3 cases of CMSD in Ibizan hounds. All patients exhibited marked cerebellar ataxia and had cerebellar atrophy on magnetic resonance imaging. At necropsy, all cases showed varying degrees of cerebellar atrophy, and 2 cases had gross cavitation of the caudate nuclei. Histologic findings included severe degeneration and loss of all layers of the cerebellum and neuronal loss and degeneration within the olivary nuclei, substantia nigra, and caudate nuclei. Pedigree analysis indicated an autosomal recessive mode of inheritance, but the causative gene in this breed is yet to be identified. CMSD resembles human multiple system atrophy and warrants further investigation.
Collapse
Affiliation(s)
| | | | - Ryan N Doan
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | - Sandra K Hancock
- Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Andy Ambrus
- Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
37
|
Stephenson RA, Thomalla JM, Chen L, Kolkhof P, White RP, Beller M, Welte MA. Sequestration to lipid droplets promotes histone availability by preventing turnover of excess histones. Development 2021; 148:271212. [PMID: 34355743 DOI: 10.1242/dev.199381] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 07/05/2021] [Indexed: 12/15/2022]
Abstract
Because both dearth and overabundance of histones result in cellular defects, histone synthesis and demand are typically tightly coupled. In Drosophila embryos, histones H2B, H2A and H2Av accumulate on lipid droplets (LDs), which are cytoplasmic fat storage organelles. Without LD binding, maternally provided H2B, H2A and H2Av are absent; however, how LDs ensure histone storage is unclear. Using quantitative imaging, we uncover when during oogenesis these histones accumulate, and which step of accumulation is LD dependent. LDs originate in nurse cells (NCs) and are transported to the oocyte. Although H2Av accumulates on LDs in NCs, the majority of the final H2Av pool is synthesized in oocytes. LDs promote intercellular transport of the histone anchor Jabba and thus its presence in the ooplasm. Ooplasmic Jabba then prevents H2Av degradation, safeguarding the H2Av stockpile. Our findings provide insight into the mechanism for establishing histone stores during Drosophila oogenesis and shed light on the function of LDs as protein-sequestration sites.
Collapse
Affiliation(s)
- Roxan A Stephenson
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | - Lili Chen
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Petra Kolkhof
- Institute for Mathematical Modeling of Biological Systems, Systems Biology of Lipid Metabolism, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Roger P White
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Mathias Beller
- Institute for Mathematical Modeling of Biological Systems, Systems Biology of Lipid Metabolism, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Michael A Welte
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
38
|
Conte M, Medici V, Malagoli D, Chiariello A, Cirrincione A, Davin A, Chikhladze M, Vasuri F, Legname G, Ferrer I, Vanni S, Marcon G, Poloni TE, Guaita A, Franceschi C, Salvioli S. Expression pattern of perilipins in human brain during aging and in Alzheimer's disease. Neuropathol Appl Neurobiol 2021; 48:e12756. [PMID: 34312912 PMCID: PMC9291275 DOI: 10.1111/nan.12756] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022]
Abstract
AIMS Perilipins are conserved proteins that decorate intracellular lipid droplets and are essential for lipid metabolism. To date, there is limited knowledge on their expression in human brain or their involvement in brain aging and neurodegeneration. The aim of this study was to characterise the expression levels of perilipins (Plin1-Plin5) in different cerebral areas from subjects of different age, with or without signs of neurodegeneration. METHODS We performed real-time RT-PCR, western blotting, immunohistochemistry and confocal microscopy analyses in autoptic brain samples of frontal and temporal cortex, cerebellum and hippocampus from subjects ranging from 33 to 104 years of age, with or without histological signs of neurodegeneration. To test the possible relationship between Plins and inflammation, correlation analysis with IL-6 expression was also performed. RESULTS Plin2, Plin3 and Plin5, but not Plin1 and Plin4, are expressed in the considered brain areas with different intensities. Plin2 appears to be expressed more in grey matter, particularly in neurons in all the areas analysed, whereas Plin3 and Plin5 appear to be expressed more in white matter. Plin3 seems to be expressed more in astrocytes. Only Plin2 expression is higher in old subjects and patients with early tauopathy or Alzheimer's disease and is associated with IL-6 expression. CONCLUSIONS Perilipins are expressed in human brain but only Plin2 appears to be modulated with age and neurodegeneration and linked to an inflammatory state. We propose that the accumulation of lipid droplets decorated with Plin2 occurs during brain aging and that this accumulation may be an early marker and initial step of inflammation and neurodegeneration.
Collapse
Affiliation(s)
- Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Centre "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy
| | - Valentina Medici
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Milan, Italy
| | - Davide Malagoli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonio Chiariello
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Alice Cirrincione
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Milan, Italy
| | - Annalisa Davin
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Milan, Italy
| | - Maia Chikhladze
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Francesco Vasuri
- Pathology Unit, S. Orsola-Malpighi Bologna Authority Hospital, Bologna, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Bellvitge Biomedical Research Institute-IDIBELL, Department of Pathologic Anatomy, Bellvitge University Hospital, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, L'Hospilatet del Llobregat, Barcelona, Spain
| | - Silvia Vanni
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Gabriella Marcon
- DAME, University of Udine, Udine, Italy.,Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Milan, Italy
| | - Antonio Guaita
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Milan, Italy
| | - Claudio Franceschi
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhniy Novgorod, Russia
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Centre "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy
| |
Collapse
|
39
|
Oikawa N, Fabiano M, Müller UC, Walter J. Carboxy-terminal fragment of amyloid precursor protein mediates lipid droplet accumulation upon γ-secretase inhibition. Biochem Biophys Res Commun 2021; 570:137-142. [PMID: 34280617 DOI: 10.1016/j.bbrc.2021.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/07/2021] [Indexed: 11/20/2022]
Abstract
γ-Secretase is a protease catalysing the proteolysis of type-I membrane proteins usually after precedent ectodomain shedding of the respective protein substrates. Since proteolysis of membrane proteins is involved in fundamental cellular signaling pathways, dysfunction of γ-secretase can have significant impact on cellular metabolism and differentiation. Here, we examined the role of γ-secretase in cellular lipid metabolism using neuronally differentiated human SH-SY5Y cells. The pharmacological inhibition of γ-secretase induced lipid droplet (LD) accumulation. The LD accumulation was significantly attenuated by preventing the accumulation of C-terminal fragment of the amyloid precursor protein (APP-CTF), which is a direct substrate of γ-secretase. Additionally, LD accumulation upon γ-secretase inhibition was not induced in APP-knock out (APP-KO) mouse embryonic fibroblasts (MEFs), suggesting significant involvement of APP-CTF accumulation in LD accumulation upon γ-secretase inhibition. On the other hand, γ-secretase inhibition-dependent cholesterol accumulation was not attenuated by inhibition of APP-CTF accumulation in the differentiated SH-SY5Y cells nor in APP-KO MEFs. These results suggest that γ-secretase inhibition can induce accumulation of LD and cholesterol differentially via APP-CTF accumulation.
Collapse
Affiliation(s)
- Naoto Oikawa
- Department of Neurology, University Hospital Bonn, 53127, Bonn, Germany.
| | - Marietta Fabiano
- Department of Neurology, University Hospital Bonn, 53127, Bonn, Germany
| | - Ulrike C Müller
- Institute for Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Jochen Walter
- Department of Neurology, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
40
|
Ralhan I, Chang CL, Lippincott-Schwartz J, Ioannou MS. Lipid droplets in the nervous system. J Cell Biol 2021; 220:e202102136. [PMID: 34152362 PMCID: PMC8222944 DOI: 10.1083/jcb.202102136] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 01/20/2023] Open
Abstract
Lipid droplets are dynamic intracellular lipid storage organelles that respond to the physiological state of cells. In addition to controlling cell metabolism, they play a protective role for many cellular stressors, including oxidative stress. Despite prior descriptions of lipid droplets appearing in the brain as early as a century ago, only recently has the role of lipid droplets in cells found in the brain begun to be understood. Lipid droplet functions have now been described for cells of the nervous system in the context of development, aging, and an increasing number of neuropathologies. Here, we review the basic mechanisms of lipid droplet formation, turnover, and function and discuss how these mechanisms enable lipid droplets to function in different cell types of the nervous system under healthy and pathological conditions.
Collapse
Affiliation(s)
- Isha Ralhan
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Chi-Lun Chang
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA
| | | | - Maria S. Ioannou
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
41
|
Sol J, Jové M, Povedano M, Sproviero W, Domínguez R, Piñol-Ripoll G, Romero-Guevara R, Hye A, Al-Chalabi A, Torres P, Andres-Benito P, Area-Gómez E, Pamplona R, Ferrer I, Ayala V, Portero-Otín M. Lipidomic traits of plasma and cerebrospinal fluid in amyotrophic lateral sclerosis correlate with disease progression. Brain Commun 2021; 3:fcab143. [PMID: 34396104 PMCID: PMC8361390 DOI: 10.1093/braincomms/fcab143] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 01/01/2023] Open
Abstract
Since amyotrophic lateral sclerosis cases exhibit significant heterogeneity, we aim to investigate the association of lipid composition of plasma and CSF with amyotrophic lateral sclerosis diagnosis, its progression and clinical characteristics. Lipidome analyses would help to stratify patients on a molecular basis. For this reason, we have analysed the lipid composition of paired plasma and CSF samples from amyotrophic lateral sclerosis cases and age-matched non-amyotrophic lateral sclerosis individuals (controls) by comprehensive liquid chromatography coupled to mass spectrometry. The concentrations of neurofilament light chain-an index of neuronal damage-were also quantified in CSF samples and plasma. Amyotrophic lateral sclerosis versus control comparison, in a moderate stringency mode, showed that plasma from cases contains more differential lipids (n = 122 for raw P < 0.05; n = 27 for P < 0.01) than CSF (n = 17 for raw P < 0.05; n = 4 for P < 0.01), with almost no overlapping differential species, mainly characterized by an increased content of triacylglyceride species in plasma and decreased in CSF. Of note, false discovery rate correction indicated that one of the CSF lipids (monoacylglycerol 18:0) had high statistic robustness (false discovery rate-P < 0.01). Plasma lipidomes also varied significantly with the main involvement at onset (bulbar, spinal or respiratory). Notably, faster progression cases showed particular lipidome fingerprints, featured by decreased triacylclycerides and specific phospholipids in plasma, with 11 lipids with false discovery rate-P < 0.1 (n = 56 lipids in plasma for raw P < 0.01). Lipid species associated with progression rate clustered in a relatively low number of metabolic pathways, mainly triacylglyceride metabolism and glycerophospholipid and sphingolipid biosynthesis. A specific triacylglyceride (68:12), correlated with neurofilament content (r = 0.8, P < 0.008). Thus, the present findings suggest that systemic hypermetabolism-potentially sustained by increased triacylglyceride content-and CNS alterations of specific lipid pathways could be associated as modifiers of disease progression. Furthermore, these results confirm biochemical lipid heterogeneity in amyotrophic lateral sclerosis with different presentations and progression, suggesting the use of specific lipid species as potential disease classifiers.
Collapse
Affiliation(s)
- Joaquim Sol
- Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), Lleida, Spain
- Institut Català de la Salut, Atenció Primària, Lleida, Spain
- Research Support Unit Lleida, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Lleida, Spain
| | - Mariona Jové
- Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Monica Povedano
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - William Sproviero
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Raul Domínguez
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Gerard Piñol-Ripoll
- Cognitive Disorders Unit, Clinical Neuroscience Research, IRBLleida-Hospital Universitari Santa Maria Lleida, Lleida, Spain
| | - Ricardo Romero-Guevara
- Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Abdul Hye
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Pascual Torres
- Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Pol Andres-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Estela Area-Gómez
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Reinald Pamplona
- Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Senior Consultant, Bellvitge University Hospital, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Victòria Ayala
- Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Manuel Portero-Otín
- Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), Lleida, Spain
| |
Collapse
|
42
|
Inhibition of Ceramide Synthesis Reduces α-Synuclein Proteinopathy in a Cellular Model of Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22126469. [PMID: 34208778 PMCID: PMC8234676 DOI: 10.3390/ijms22126469] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson’s disease (PD) is a proteinopathy associated with the aggregation of α-synuclein and the formation of lipid–protein cellular inclusions, named Lewy bodies (LBs). LB formation results in impaired neurotransmitter release and uptake, which involve membrane traffic and require lipid synthesis and metabolism. Lipids, particularly ceramides, are accumulated in postmortem PD brains and altered in the plasma of PD patients. Autophagy is impaired in PD, reducing the ability of neurons to clear protein aggregates, thus worsening stress conditions and inducing neuronal death. The inhibition of ceramide synthesis by myriocin (Myr) in SH-SY5Y neuronal cells treated with preformed α-synuclein fibrils reduced intracellular aggregates, favoring their sequestration into lysosomes. This was associated with TFEB activation, increased expression of TFEB and LAMP2, and the cytosolic accumulation of LC3II, indicating that Myr promotes autophagy. Myr significantly reduces the fibril-related production of inflammatory mediators and lipid peroxidation and activates NRF2, which is downregulated in PD. Finally, Myr enhances the expression of genes that control neurotransmitter transport (SNARE complex, VMAT2, and DAT), whose progressive deficiency occurs in PD neurodegeneration. The present study suggests that counteracting the accumulation of inflammatory lipids could represent a possible therapeutic strategy for PD.
Collapse
|
43
|
Amen T, Kaganovich D. Stress granules inhibit fatty acid oxidation by modulating mitochondrial permeability. Cell Rep 2021; 35:109237. [PMID: 34133922 PMCID: PMC8220302 DOI: 10.1016/j.celrep.2021.109237] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/29/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022] Open
Abstract
The formation of stress granules (SGs) is an essential aspect of the cellular response to many kinds of stress, but its adaptive role is far from clear. SG dysfunction is implicated in aging-onset neurodegenerative diseases, prompting interest in their physiological function. Here, we report that during starvation stress, SGs interact with mitochondria and regulate metabolic remodeling. We show that SG formation leads to a downregulation of fatty acid β-oxidation (FAO) through the modulation of mitochondrial voltage-dependent anion channels (VDACs), which import fatty acids (FAs) into mitochondria. The subsequent decrease in FAO during long-term starvation reduces oxidative damage and rations FAs for longer use. Failure to form SGs, whether caused by the genetic deletion of SG components or an amyotrophic lateral sclerosis (ALS)-associated mutation, translates into an inability to downregulate FAO. Because metabolic dysfunction is a common pathological element of neurodegenerative diseases, including ALS, our findings provide a direction for studying the clinical relevance of SGs.
Collapse
Affiliation(s)
- Triana Amen
- Department of Experimental Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
| | - Daniel Kaganovich
- 1Base Pharmaceuticals, Boston, MA 02129, USA; Department of Experimental Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany.
| |
Collapse
|
44
|
Tadepalle N, Rugarli EI. Lipid Droplets in the Pathogenesis of Hereditary Spastic Paraplegia. Front Mol Biosci 2021; 8:673977. [PMID: 34041268 PMCID: PMC8141572 DOI: 10.3389/fmolb.2021.673977] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Hereditary spastic paraplegias (HSPs) are genetically heterogeneous conditions caused by the progressive dying back of the longest axons in the central nervous system, the corticospinal axons. A wealth of data in the last decade has unraveled disturbances of lipid droplet (LD) biogenesis, maturation, turnover and contact sites in cellular and animal models with perturbed expression and function of HSP proteins. As ubiquitous organelles that segregate neutral lipid into a phospholipid monolayer, LDs are at the cross-road of several processes including lipid metabolism and trafficking, energy homeostasis, and stress signaling cascades. However, their role in brain cells, especially in neurons remains enigmatic. Here, we review experimental findings linking LD abnormalities to defective function of proteins encoded by HSP genes, and discuss arising questions in the context of the pathogenesis of HSP.
Collapse
Affiliation(s)
- Nimesha Tadepalle
- Molecular and Cell Biology Laboratory, Salk Institute of Biological Sciences, La Jolla, CA, United States
| | - Elena I Rugarli
- Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,Center for Molecular Medicine (CMMC),Cologne, Germany
| |
Collapse
|
45
|
Amen T, Kaganovich D. Small Molecule Screen Reveals Joint Regulation of Stress Granule Formation and Lipid Droplet Biogenesis. Front Cell Dev Biol 2021; 8:606111. [PMID: 33972926 PMCID: PMC8105174 DOI: 10.3389/fcell.2020.606111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/21/2020] [Indexed: 01/22/2023] Open
Abstract
Metabolic regulation is a necessary component of all stress response pathways, because all different mechanisms of stress-adaptation place high-energy demands on the cell. Mechanisms that integrate diverse stress response pathways with their metabolic components are therefore of great interest, but few are known. We show that stress granule (SG) formation, a common adaptive response to a variety of stresses, is reciprocally regulated by the pathways inducing lipid droplet accumulation. Inability to upregulate lipid droplets reduces stress granule formation. Stress granule formation in turn drives lipid droplet clustering and fatty acid accumulation. Our findings reveal a novel connection between stress response pathways and new modifiers of stress granule formation.
Collapse
Affiliation(s)
- Triana Amen
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Daniel Kaganovich
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,1Base Pharmaceuticals, Boston, MA, United States
| |
Collapse
|
46
|
Parakh S, Atkin JD. The Mitochondrial-associated ER membrane (MAM) compartment and its dysregulation in Amyotrophic Lateral Sclerosis (ALS). Semin Cell Dev Biol 2021; 112:105-113. [PMID: 33707063 DOI: 10.1016/j.semcdb.2021.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) and mitochondria connect at multiple contact sites to form a unique cellular compartment, termed the 'mitochondria-associated ER membranes' (MAMs). MAMs are hubs for signalling pathways that regulate cellular homeostasis and survival, metabolism, and sensitivity to apoptosis. MAMs are therefore involved in vital cellular functions, but they are dysregulated in several human diseases. Whilst MAM dysfunction is increasingly implicated in the pathogenesis of neurodegenerative diseases, its role in amyotrophic lateral sclerosis (ALS) is poorly understood. However, in ALS both ER and mitochondrial dysfunction are well documented pathophysiological events. Moreover, alterations to lipid metabolism in neurons regulate processes linked to neurodegenerative diseases, and a link between dysfunction of lipid metabolism and ALS has also been proposed. In this review we discuss the structural and functional relevance of MAMs in ALS and how targeting MAM could be therapeutically beneficial in this disorder.
Collapse
Affiliation(s)
- Sonam Parakh
- Macquarie University Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Julie D Atkin
- Macquarie University Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3065, Australia.
| |
Collapse
|
47
|
Smolič T, Tavčar P, Horvat A, Černe U, Halužan Vasle A, Tratnjek L, Kreft ME, Scholz N, Matis M, Petan T, Zorec R, Vardjan N. Astrocytes in stress accumulate lipid droplets. Glia 2021; 69:1540-1562. [PMID: 33609060 PMCID: PMC8248329 DOI: 10.1002/glia.23978] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/14/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
When the brain is in a pathological state, the content of lipid droplets (LDs), the lipid storage organelles, is increased, particularly in glial cells, but rarely in neurons. The biology and mechanisms leading to LD accumulation in astrocytes, glial cells with key homeostatic functions, are poorly understood. We imaged fluorescently labeled LDs by microscopy in isolated and brain tissue rat astrocytes and in glia-like cells in Drosophila brain to determine the (sub)cellular localization, mobility, and content of LDs under various stress conditions characteristic for brain pathologies. LDs exhibited confined mobility proximal to mitochondria and endoplasmic reticulum that was attenuated by metabolic stress and by increased intracellular Ca2+ , likely to enhance the LD-organelle interaction imaged by electron microscopy. When de novo biogenesis of LDs was attenuated by inhibition of DGAT1 and DGAT2 enzymes, the astrocyte cell number was reduced by ~40%, suggesting that in astrocytes LD turnover is important for cell survival and/or proliferative cycle. Exposure to noradrenaline, a brain stress response system neuromodulator, and metabolic and hypoxic stress strongly facilitated LD accumulation in astrocytes. The observed response of stressed astrocytes may be viewed as a support for energy provision, but also to be neuroprotective against the stress-induced lipotoxicity.
Collapse
Affiliation(s)
- Tina Smolič
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Tavčar
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Anemari Horvat
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Urška Černe
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Halužan Vasle
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Larisa Tratnjek
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Nicole Scholz
- Division of General Biochemistry, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | - Maja Matis
- Medical Faculty, Institute of Cell Biology, University of Münster, Münster, Germany.,Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
48
|
Tan P, Zhuang W, Li S, Zhang J, Xu H, Yang L, Liao Y, Chen M, Wei Q. A lipid droplet targeted fluorescent probe for high-efficiency image-guided photodynamic therapy of renal cell carcinoma. Chem Commun (Camb) 2021; 57:1046-1049. [DOI: 10.1039/d0cc07336a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A lipid droplets (LDs) specific fluorescent probe TTIE is prepared for LDs specific image-guided photodynamic therapy (PDT), which can light up the LDs in human clear cell renal cell carcinoma cells and tissues, and kill tumor cells via PDT process.
Collapse
Affiliation(s)
- Ping Tan
- Department of Urology
- Institute of Urology
- Huaxi MR Research Center (HMRRC)
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
| | - Weihua Zhuang
- Laboratory of Heart Valve Disease
- West China Hospital
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Shufen Li
- Laboratory of Heart Valve Disease
- West China Hospital
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Jiapeng Zhang
- Department of Urology
- Institute of Urology
- Huaxi MR Research Center (HMRRC)
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
| | - Hang Xu
- Department of Urology
- Institute of Urology
- Huaxi MR Research Center (HMRRC)
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
| | - Lu Yang
- Department of Urology
- Institute of Urology
- Huaxi MR Research Center (HMRRC)
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
| | - Yanbiao Liao
- Department of Cardiology
- West China Hospital
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Mao Chen
- Laboratory of Heart Valve Disease
- West China Hospital
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Qiang Wei
- Department of Urology
- Institute of Urology
- Huaxi MR Research Center (HMRRC)
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
| |
Collapse
|
49
|
Colas K, Holmberg KO, Chiang L, Doloczki S, Swartling FJ, Dyrager C. Indolylbenzothiadiazoles as highly tunable fluorophores for imaging lipid droplet accumulation in astrocytes and glioblastoma cells. RSC Adv 2021; 11:23960-23967. [PMID: 35479010 PMCID: PMC9036785 DOI: 10.1039/d1ra04419b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
We present an extensive photophysical study of a series of fluorescent indolylbenzothiadiazole derivatives and their ability to specifically image lipid droplets in astrocytes and glioblastoma cells. All compounds in the series displayed positive solvatochromism together with large Stokes shifts, and π-extended derivatives exhibited elevated brightness. It was shown that the fluorescence properties were highly tunable by varying the electronic character or size of the N-substituent on the indole motif. Three compounds proved capable as probes for detecting small quantities of lipid deposits in healthy and cancerous brain cells. In addition, all twelve compounds in the series were predicted to cross the blood–brain barrier, which raises the prospect for future in vivo studies for exploring the role of lipid droplets in the central nervous system. We present an extensive photophysical study of a series of fluorescent indolylbenzothiadiazole derivatives and their ability to specifically image lipid droplets in astrocytes and glioblastoma cells.![]()
Collapse
Affiliation(s)
- Kilian Colas
- Department of Chemistry – BMC
- Uppsala University
- 75123 Uppsala
- Sweden
| | - Karl O. Holmberg
- Department of Immunology, Genetics and Pathology
- Science for Life Laboratory
- Uppsala University
- 75185 Uppsala
- Sweden
| | - Linus Chiang
- Department of Chemistry
- University of the Fraser Valley
- Abbotsford
- Canada
| | - Susanne Doloczki
- Department of Chemistry – BMC
- Uppsala University
- 75123 Uppsala
- Sweden
| | - Fredrik J. Swartling
- Department of Immunology, Genetics and Pathology
- Science for Life Laboratory
- Uppsala University
- 75185 Uppsala
- Sweden
| | | |
Collapse
|
50
|
Gunay A, Shin HH, Gozutok O, Gautam M, Ozdinler PH. Importance of lipids for upper motor neuron health and disease. Semin Cell Dev Biol 2020; 112:92-104. [PMID: 33323321 DOI: 10.1016/j.semcdb.2020.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/12/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022]
Abstract
Building evidence reveals the importance of maintaining lipid homeostasis for the health and function of neurons, and upper motor neurons (UMNs) are no exception. UMNs are critically important for the initiation and modulation of voluntary movement as they are responsible for conveying cerebral cortex' input to spinal cord targets. To maintain their unique cytoarchitecture with a prominent apical dendrite and a very long axon, UMNs require a stable cell membrane, a lipid bilayer. Lipids can act as building blocks for many biomolecules, and they also contribute to the production of energy. Therefore, UMNs require sustained control over the production, utilization and homeostasis of lipids. Perturbations of lipid homeostasis lead to UMN vulnerability and progressive degeneration in diseases such as hereditary spastic paraplegia (HSP) and primary lateral sclerosis (PLS). Here, we discuss the importance of lipids, especially for UMNs.
Collapse
Affiliation(s)
- Aksu Gunay
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA, 60611
| | - Heather H Shin
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA, 60611
| | - Oge Gozutok
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA, 60611
| | - Mukesh Gautam
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA, 60611
| | - P Hande Ozdinler
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA, 60611.
| |
Collapse
|