1
|
Tondi F, Cirsmaru RA, Conti C, Follenzi A, Gresele P, Olgasi C, Bury L. Hermansky-Pudlak Syndrome: From Molecular Pathogenesis to Targeted Therapies. IUBMB Life 2025; 77:e70025. [PMID: 40387003 PMCID: PMC12086961 DOI: 10.1002/iub.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/21/2025] [Accepted: 04/29/2025] [Indexed: 05/20/2025]
Abstract
Hermansky-Pudlak syndrome (HPS) is a rare inherited disorder caused by defects in lysosome-related organelles (LROs) in various tissues, including platelets, melanocytes, and endothelial cells. Key features of HPS include oculocutaneous albinism, bleeding tendency, and, in some cases, pulmonary fibrosis, granulomatous colitis, and immunodeficiency. The condition is linked to mutations in 11 genes involved in the formation of LROs. Currently, treatment options for HPS are limited and often ineffective. Though cell and gene therapies have been explored for melanosomes and epithelial cells, there is limited knowledge about their application to platelets and endothelial cells. Understanding the detailed mechanisms of HPS pathogenesis is crucial, and using induced pluripotent stem cell (iPSC) models may provide valuable insights into the disease's molecular processes, aiding the development of new treatments. In this review, we will focus on the genetics and molecular mechanisms of HPS, on its clinical manifestations and current therapeutic approaches, highlighting the need for further research into the disease mechanisms and potential innovative therapies.
Collapse
Affiliation(s)
- Francesca Tondi
- Department of Medicine and Surgery, Section of Internal and Cardiovascular MedicineUniversity of PerugiaPerugiaItaly
| | | | - Chiara Conti
- Department of Medicine and Surgery, Section of Internal and Cardiovascular MedicineUniversity of PerugiaPerugiaItaly
| | - Antonia Follenzi
- Department of Health Sciences, School of MedicineUniversity of Piemonte OrientaleNovaraItaly
- Dipartimento Attività Integrate Ricerca InnovazioneAzienda Ospedaliero‐Universitaria SS. Antonio e Biagio e C. ArrigoAlessandriaItaly
| | - Paolo Gresele
- Department of Medicine and Surgery, Section of Internal and Cardiovascular MedicineUniversity of PerugiaPerugiaItaly
| | - Cristina Olgasi
- Department of Translational Medicine, School of MedicineUniversity of Piemonte OrientaleNovaraItaly
| | - Loredana Bury
- Department of Medicine and Surgery, Section of Internal and Cardiovascular MedicineUniversity of PerugiaPerugiaItaly
| |
Collapse
|
2
|
Freemantle JB, Towler MC, Hudson ER, Macartney T, Zwirek M, Liu DJK, Pan DA, Ponnambalam S, Hardie DG. AMPK associates with and causes fragmentation of the Golgi by phosphorylating the guanine nucleotide exchange factor GBF1. J Cell Sci 2024; 137:jcs262182. [PMID: 39575556 PMCID: PMC11827860 DOI: 10.1242/jcs.262182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 11/01/2024] [Indexed: 12/24/2024] Open
Abstract
AMP-activated protein kinase (AMPK) is an energy sensor that regulates cellular functions in response to changes in energy availability. However, whether AMPK activity is spatially regulated, and the implications for cell function, have been unclear. We now report that AMPK associates with the Golgi, and that its activation by two specific pharmacological activators leads to Golgi fragmentation similar to that caused by the antibiotic Golgicide A, an inhibitor of Golgi-specific Brefeldin A resistance factor-1 (GBF1), a guanine nucleotide exchange factor that targets ADP-ribosylation factor 1 (ARF1). Golgi fragmentation in response to AMPK activators is lost in cells carrying gene knockouts of AMPK-α subunits. AMPK has been previously reported to phosphorylate GBF1 at residue Thr1337, and its activation causes phosphorylation at that residue. Importantly, Golgi disassembly upon AMPK activation is blocked in cells expressing a non-phosphorylatable GBF1-T1337A mutant generated by gene editing. Furthermore, the trafficking of a plasma membrane-targeted protein through the Golgi complex is delayed by AMPK activation. Our findings provide a mechanism to link AMPK activation during cellular energy stress to downregulation of protein trafficking involving the Golgi.
Collapse
Affiliation(s)
- Jordana B. Freemantle
- Division of Cell Signalling & Immunology and School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Mhairi C. Towler
- Division of Cell Signalling & Immunology and School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Emma R. Hudson
- Division of Cell Signalling & Immunology and School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Monika Zwirek
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - David J. K. Liu
- Division of Cell Signalling & Immunology and School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - David A. Pan
- Division of Cell Signalling & Immunology and School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Sreenivasan Ponnambalam
- Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - D. Grahame Hardie
- Division of Cell Signalling & Immunology and School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
3
|
Jia W, Zhang C, Luo Y, Gao J, Yuan C, Zhang D, Zhou X, Tan Y, Wang S, Chen Z, Li G, Zhang X. GBF1 deficiency causes cataracts in human and mouse. Hum Genet 2024; 143:1281-1291. [PMID: 39110251 DOI: 10.1007/s00439-024-02697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/29/2024] [Indexed: 10/30/2024]
Abstract
Any opacification of the lens can be defined as cataracts, and lens epithelium cells play a crucial role in guaranteeing lens transparency by maintaining its homeostasis. Although several causative genes of congenital cataracts have been reported, the mechanisms underlying lens opacity remain unclear. In this study, a large family with congenital cataracts was collected and genetic analysis revealed a pathological mutation (c.3857 C > T, p.T1287I) in the GBF1 gene; all affected individuals in the family carried this heterozygous mutation, while unaffected family members did not. Functional studies in human lens epithelium cell line revealed that this mutation led to a reduction in GBF1 protein levels. Knockdown of endogenous GBF1 activated XBP1s in the unfolded protein response signal pathway, and enhances autophagy in an mTOR-independent manner. Heterozygous Gbf1 knockout mice also displayed typic cataract phenotype. Together, our study identified GBF1 as a novel causative gene for congenital cataracts. Additionally, we found that GBF1 deficiency activates the unfolded protein response and leads to enhanced autophagy, which may contribute to lens opacity.
Collapse
Affiliation(s)
- Weimin Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | | | - Yalin Luo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Gao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Yuan
- Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, China
| | - Dazhi Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaopei Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yongyao Tan
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Chen
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guigang Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianqin Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Hirano J, Hayashi T, Kitamura K, Nishimura Y, Shimizu H, Okamoto T, Okada K, Uemura K, Yeh MT, Ono C, Taguwa S, Muramatsu M, Matsuura Y. Enterovirus 3A protein disrupts endoplasmic reticulum homeostasis through interaction with GBF1. J Virol 2024; 98:e0081324. [PMID: 38904364 PMCID: PMC11265424 DOI: 10.1128/jvi.00813-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 06/22/2024] Open
Abstract
Enteroviruses are single-stranded, positive-sense RNA viruses causing endoplasmic reticulum (ER) stress to induce or modulate downstream signaling pathways known as the unfolded protein responses (UPR). However, viral and host factors involved in the UPR related to viral pathogenesis remain unclear. In the present study, we aimed to identify the major regulator of enterovirus-induced UPR and elucidate the underlying molecular mechanisms. We showed that host Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF1), which supports enteroviruses replication, was a major regulator of the UPR caused by infection with enteroviruses. In addition, we found that severe UPR was induced by the expression of 3A proteins encoded in human pathogenic enteroviruses, such as enterovirus A71, coxsackievirus B3, poliovirus, and enterovirus D68. The N-terminal-conserved residues of 3A protein interact with the GBF1 and induce UPR through inhibition of ADP-ribosylation factor 1 (ARF1) activation via GBF1 sequestration. Remodeling and expansion of ER and accumulation of ER-resident proteins were observed in cells infected with enteroviruses. Finally, 3A induced apoptosis in cells infected with enteroviruses via activation of the protein kinase RNA-like endoplasmic reticulum kinase (PERK)/C/EBP homologous protein (CHOP) pathway of UPR. Pharmaceutical inhibition of PERK suppressed the cell death caused by infection with enteroviruses, suggesting the UPR pathway is a therapeutic target for treating diseases caused by infection with enteroviruses.IMPORTANCEInfection caused by several plus-stranded RNA viruses leads to dysregulated ER homeostasis in the host cells. The mechanisms underlying the disruption and impairment of ER homeostasis and its significance in pathogenesis upon enteroviral infection remain unclear. Our findings suggested that the 3A protein encoded in human pathogenic enteroviruses disrupts ER homeostasis by interacting with GBF1, a major regulator of UPR. Enterovirus-mediated infections drive ER into pathogenic conditions, where ER-resident proteins are accumulated. Furthermore, in such scenarios, the PERK/CHOP signaling pathway induced by an unresolved imbalance of ER homeostasis essentially drives apoptosis. Therefore, elucidating the mechanisms underlying the virus-induced disruption of ER homeostasis might be a potential target to mitigate the pathogenesis of enteroviruses.
Collapse
Affiliation(s)
- Junki Hirano
- Laboratory of Virus Control, Center for Infectious Disease Education and Research (CiDER), Osaka, Japan
- Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsuyoshi Hayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kouichi Kitamura
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yorihiro Nishimura
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuma Okada
- Laboratory of Virus Control, Center for Infectious Disease Education and Research (CiDER), Osaka, Japan
- Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
| | - Kentaro Uemura
- Laboratory of Virus Control, Center for Infectious Disease Education and Research (CiDER), Osaka, Japan
- Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
| | - Ming Te Yeh
- Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka, Japan
| | - Chikako Ono
- Laboratory of Virus Control, Center for Infectious Disease Education and Research (CiDER), Osaka, Japan
- Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
| | - Shuhei Taguwa
- Laboratory of Virus Control, Center for Infectious Disease Education and Research (CiDER), Osaka, Japan
- Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Infectious Disease Research, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Center for Infectious Disease Education and Research (CiDER), Osaka, Japan
- Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka, Japan
| |
Collapse
|
5
|
Culley S, Caballero AC, Burden JJ, Uhlmann V. Made to measure: An introduction to quantifying microscopy data in the life sciences. J Microsc 2024; 295:61-82. [PMID: 37269048 DOI: 10.1111/jmi.13208] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023]
Abstract
Images are at the core of most modern biological experiments and are used as a major source of quantitative information. Numerous algorithms are available to process images and make them more amenable to be measured. Yet the nature of the quantitative output that is useful for a given biological experiment is uniquely dependent upon the question being investigated. Here, we discuss the 3 main types of information that can be extracted from microscopy data: intensity, morphology, and object counts or categorical labels. For each, we describe where they come from, how they can be measured, and what may affect the relevance of these measurements in downstream data analysis. Acknowledging that what makes a measurement 'good' is ultimately down to the biological question being investigated, this review aims at providing readers with a toolkit to challenge how they quantify their own data and be critical of conclusions drawn from quantitative bioimage analysis experiments.
Collapse
Affiliation(s)
- Siân Culley
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | | | | | - Virginie Uhlmann
- European Bioinformatics Institute (EMBL-EBI), EMBL, Cambridge, UK
| |
Collapse
|
6
|
Hordijk S, Carter T, Bierings R. A new look at an old body: molecular determinants of Weibel-Palade body composition and von Willebrand factor exocytosis. J Thromb Haemost 2024; 22:1290-1303. [PMID: 38307391 DOI: 10.1016/j.jtha.2024.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/04/2024]
Abstract
Endothelial cells, forming a monolayer along blood vessels, intricately regulate vascular hemostasis, inflammatory responses, and angiogenesis. A key determinant of these functions is the controlled secretion of Weibel-Palade bodies (WPBs), which are specialized endothelial storage organelles housing a presynthesized pool of the hemostatic protein von Willebrand factor and various other hemostatic, inflammatory, angiogenic, and vasoactive mediators. This review delves into recent mechanistic insights into WPB biology, including the biogenesis that results in their unique morphology, the acquisition of intraluminal vesicles and other cargo, and the contribution of proton pumps to organelle acidification. Additionally, in light of a number of proteomic approaches to unravel the regulatory networks that control WPB formation and secretion, we provide a comprehensive overview of the WPB exocytotic machinery, including their molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Sophie Hordijk
- Hematology, Erasmus MC University Medical Center, Rotterdam, The Netherlands. https://twitter.com/SophieHordijk
| | - Tom Carter
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Ruben Bierings
- Hematology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Tu Y, Yang Q, Tang M, Gao L, Wang Y, Wang J, Liu Z, Li X, Mao L, Jia RZ, Wang Y, Tang TS, Xu P, Liu Y, Dai L, Jia D. TBC1D23 mediates Golgi-specific LKB1 signaling. Nat Commun 2024; 15:1785. [PMID: 38413626 PMCID: PMC10899256 DOI: 10.1038/s41467-024-46166-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
Liver kinase B1 (LKB1), an evolutionarily conserved serine/threonine kinase, is a master regulator of the AMPK subfamily and controls cellular events such as polarity, proliferation, and energy homeostasis. Functions and mechanisms of the LKB1-AMPK axis at specific subcellular compartments, such as lysosome and mitochondria, have been established. AMPK is known to be activated at the Golgi; however, functions and regulatory mechanisms of the LKB1-AMPK axis at the Golgi apparatus remain elusive. Here, we show that TBC1D23, a Golgi-localized protein that is frequently mutated in the neurodevelopment disorder pontocerebellar hypoplasia (PCH), is specifically required for the LKB1 signaling at the Golgi. TBC1D23 directly interacts with LKB1 and recruits LKB1 to Golgi, promoting Golgi-specific activation of AMPK upon energy stress. Notably, Golgi-targeted expression of LKB1 rescues TBC1D23 deficiency in zebrafish models. Furthermore, the loss of LKB1 causes neurodevelopmental abnormalities in zebrafish, which partially recapitulates defects in TBC1D23-deficient zebrafish, and LKB1 sustains normal neuronal development via TBC1D23 interaction. Our study uncovers a regulatory mechanism of the LKB1 signaling, and reveals that a disrupted Golgi-LKB1 signaling underlies the pathogenesis of PCH.
Collapse
Affiliation(s)
- Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Qin Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Min Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Li Gao
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanhao Wang
- State Key Laboratory of Reproductive Medicine, Interdisciplinary InnoCenter for Organoids, Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Jiuqiang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Binzhou Medical University, Yantai, 264003, China
| | - Zhe Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Xiaoyu Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Lejiao Mao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Rui Zhen Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Yuan Wang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pinglong Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yan Liu
- State Key Laboratory of Reproductive Medicine, Interdisciplinary InnoCenter for Organoids, Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Lunzhi Dai
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Meli A, McCormack A, Conte I, Chen Q, Streetley J, Rose ML, Bierings R, Hannah MJ, Molloy JE, Rosenthal PB, Carter T. Altered Storage and Function of von Willebrand Factor in Human Cardiac Microvascular Endothelial Cells Isolated from Recipient Transplant Hearts. Int J Mol Sci 2023; 24:ijms24054553. [PMID: 36901985 PMCID: PMC10003102 DOI: 10.3390/ijms24054553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The assembly of von Willebrand factor (VWF) into ordered helical tubules within endothelial Weibel-Palade bodies (WPBs) is required for the efficient deployment of the protein at sites of vascular injury. VWF trafficking and storage are sensitive to cellular and environmental stresses that are associated with heart disease and heart failure. Altered storage of VWF manifests as a change in WPB morphology from a rod shape to a rounded shape and is associated with impaired VWF deployment during secretion. In this study, we examined the morphology, ultrastructure, molecular composition and kinetics of exocytosis of WPBs in cardiac microvascular endothelial cells isolated from explanted hearts of patients with a common form of heart failure, dilated cardiomyopathy (DCM; HCMECD), or from nominally healthy donors (controls; HCMECC). Using fluorescence microscopy, WPBs in HCMECC (n = 3 donors) showed the typical rod-shaped morphology containing VWF, P-selectin and tPA. In contrast, WPBs in primary cultures of HCMECD (n = 6 donors) were predominantly rounded in shape and lacked tissue plasminogen activator (t-PA). Ultrastructural analysis of HCMECD revealed a disordered arrangement of VWF tubules in nascent WPBs emerging from the trans-Golgi network. HCMECD WPBs still recruited Rab27A, Rab3B, Myosin-Rab Interacting Protein (MyRIP) and Synaptotagmin-like protein 4a (Slp4-a) and underwent regulated exocytosis with kinetics similar to that seen in HCMECc. However, secreted extracellular VWF strings from HCMECD were significantly shorter than for endothelial cells with rod-shaped WPBs, although VWF platelet binding was similar. Our observations suggest that VWF trafficking, storage and haemostatic potential are perturbed in HCMEC from DCM hearts.
Collapse
Affiliation(s)
- Athinoula Meli
- Transplant Immunology, Heart Science Centre, Harefield Hospital, Hill End Road, Harefield UB9 6JH, UK
| | - Ann McCormack
- Transplant Immunology, Heart Science Centre, Harefield Hospital, Hill End Road, Harefield UB9 6JH, UK
| | - Ianina Conte
- Molecular and Clinical Sciences Research Institute, St Georges University of London, London SW17 0RE, UK
| | - Qu Chen
- Structural Biology Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - James Streetley
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Marlene L. Rose
- Transplant Immunology, Heart Science Centre, Harefield Hospital, Hill End Road, Harefield UB9 6JH, UK
| | - Ruben Bierings
- Hematology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Matthew J. Hannah
- High Containment Microbiology, UK Health Security Agency, London NW9 5EQ, UK
| | - Justin E. Molloy
- Single Molecule Enzymology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Peter B. Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Tom Carter
- Molecular and Clinical Sciences Research Institute, St Georges University of London, London SW17 0RE, UK
- Correspondence: ; Tel.: +44-(208)-7255961
| |
Collapse
|
9
|
Santorelli L, Caterino M, Costanzo M. Dynamic Interactomics by Cross-Linking Mass Spectrometry: Mapping the Daily Cell Life in Postgenomic Era. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:633-649. [PMID: 36445175 DOI: 10.1089/omi.2022.0137] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The majority of processes that occur in daily cell life are modulated by hundreds to thousands of dynamic protein-protein interactions (PPI). The resulting protein complexes constitute a tangled network that, with its continuous remodeling, builds up highly organized functional units. Thus, defining the dynamic interactome of one or more proteins allows determining the full range of biological activities these proteins are capable of. This conceptual approach is poised to gain further traction and significance in the current postgenomic era wherein the treatment of severe diseases needs to be tackled at both genomic and PPI levels. This also holds true for COVID-19, a multisystemic disease affecting biological networks across the biological hierarchy from genome to proteome to metabolome. In this overarching context and the current historical moment of the COVID-19 pandemic where systems biology increasingly comes to the fore, cross-linking mass spectrometry (XL-MS) has become highly relevant, emerging as a powerful tool for PPI discovery and characterization. This expert review highlights the advanced XL-MS approaches that provide in vivo insights into the three-dimensional protein complexes, overcoming the static nature of common interactomics data and embracing the dynamics of the cell proteome landscape. Many XL-MS applications based on the use of diverse cross-linkers, MS detection methods, and predictive bioinformatic tools for single proteins or proteome-wide interactions were shown. We conclude with a future outlook on XL-MS applications in the field of structural proteomics and ways to sustain the remarkable flexibility of XL-MS for dynamic interactomics and structural studies in systems biology and planetary health.
Collapse
Affiliation(s)
- Lucia Santorelli
- Department of Oncology and Hematology-Oncology, University of Milano, Milan, Italy.,IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| |
Collapse
|
10
|
Kat M, Margadant C, Voorberg J, Bierings R. Dispatch and delivery at the ER-Golgi interface: how endothelial cells tune their hemostatic response. FEBS J 2022; 289:6863-6870. [PMID: 35246944 PMCID: PMC9790534 DOI: 10.1111/febs.16421] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 01/13/2023]
Abstract
Von Willebrand factor (VWF) is a glycoprotein that is secreted into the circulation and controls bleeding by promoting adhesion and aggregation of blood platelets at sites of vascular injury. Substantial inter-individual variation in VWF plasma levels exists among the healthy population. Prior to secretion, VWF polymers are assembled and condensed into helical tubules, which are packaged into Weibel-Palade bodies (WPBs), a highly specialized post-Golgi storage compartment in vascular endothelial cells. In the inherited bleeding disorder Von Willebrand disease (VWD), mutations in the VWF gene can cause qualitative or quantitative defects, limiting protein function, secretion, or plasma survival. However, pathogenic VWF mutations cannot be found in all VWD cases. Although an increasing number of genetic modifiers have been identified, even more rare genetic variants that impact VWF plasma levels likely remain to be discovered. Here, we summarize recent evidence that modulation of the early secretory pathway has great impact on the biogenesis and release of WPBs. Based on these findings, we propose that rare, as yet unidentified quantitative trait loci influencing intracellular VWF transport contribute to highly variable VWF levels in the population. These may underlie the thrombotic complications linked to high VWF levels, as well as the bleeding tendency in individuals with low VWF levels.
Collapse
Affiliation(s)
- Marije Kat
- Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdam University Medical CenterUniversity of AmsterdamThe Netherlands
| | - Coert Margadant
- Angiogenesis laboratoryCancer Center AmsterdamAmsterdam University Medical Center location VUmcThe Netherlands
| | - Jan Voorberg
- Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdam University Medical CenterUniversity of AmsterdamThe Netherlands,Experimental Vascular MedicineAmsterdam University Medical CenterUniversity of AmsterdamThe Netherlands
| | - Ruben Bierings
- Hematology, Erasmus University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
11
|
Page KM, McCormack JJ, Lopes-da-Silva M, Patella F, Harrison-Lavoie K, Burden JJ, Quah YYB, Scaglioni D, Ferraro F, Cutler DF. Structure modeling hints at a granular organization of the Golgi ribbon. BMC Biol 2022; 20:111. [PMID: 35549945 PMCID: PMC9102599 DOI: 10.1186/s12915-022-01305-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/21/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND In vertebrate cells, the Golgi functional subunits, mini-stacks, are linked into a tri-dimensional network. How this "ribbon" architecture relates to Golgi functions remains unclear. Are all connections between mini-stacks equal? Is the local structure of the ribbon of functional importance? These are difficult questions to address, without a quantifiable readout of the output of ribbon-embedded mini-stacks. Endothelial cells produce secretory granules, the Weibel-Palade bodies (WPB), whose von Willebrand Factor (VWF) cargo is central to hemostasis. The Golgi apparatus controls WPB size at both mini-stack and ribbon levels. Mini-stack dimensions delimit the size of VWF "boluses" whilst the ribbon architecture allows their linear co-packaging, thereby generating WPBs of different lengths. This Golgi/WPB size relationship suits mathematical analysis. RESULTS WPB lengths were quantized as multiples of the bolus size and mathematical modeling simulated the effects of different Golgi ribbon organizations on WPB size, to be compared with the ground truth of experimental data. An initial simple model, with the Golgi as a single long ribbon composed of linearly interlinked mini-stacks, was refined to a collection of mini-ribbons and then to a mixture of mini-stack dimers plus long ribbon segments. Complementing these models with cell culture experiments led to novel findings. Firstly, one-bolus sized WPBs are secreted faster than larger secretory granules. Secondly, microtubule depolymerization unlinks the Golgi into equal proportions of mini-stack monomers and dimers. Kinetics of binding/unbinding of mini-stack monomers underpinning the presence of stable dimers was then simulated. Assuming that stable mini-stack dimers and monomers persist within the ribbon resulted in a final model that predicts a "breathing" arrangement of the Golgi, where monomer and dimer mini-stacks within longer structures undergo continuous linking/unlinking, consistent with experimentally observed WPB size distributions. CONCLUSIONS Hypothetical Golgi organizations were validated against a quantifiable secretory output. The best-fitting Golgi model, accounting for stable mini-stack dimers, is consistent with a highly dynamic ribbon structure, capable of rapid rearrangement. Our modeling exercise therefore predicts that at the fine-grained level the Golgi ribbon is more complex than generally thought. Future experiments will confirm whether such a ribbon organization is endothelial-specific or a general feature of vertebrate cells.
Collapse
Affiliation(s)
- Karen M. Page
- Department of Mathematics, University College London, Gower Street, London, WC1E 6BT UK
| | - Jessica J. McCormack
- MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - Mafalda Lopes-da-Silva
- MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT UK
- Current address: iNOVA4Health, CEDOC-Chronic Diseases Research Center, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Francesca Patella
- MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT UK
- Current address: Kinomica, Alderley Park, Alderley Edge, Macclesfield, SK10 4TG UK
| | - Kimberly Harrison-Lavoie
- MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - Jemima J. Burden
- MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - Ying-Yi Bernadette Quah
- MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - Dominic Scaglioni
- MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - Francesco Ferraro
- Department of Biology and Evolution of Marine Organisms, BEOM, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Daniel F. Cutler
- MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
12
|
Francis CR, Kushner EJ. Trafficking in blood vessel development. Angiogenesis 2022; 25:291-305. [PMID: 35449244 PMCID: PMC9249721 DOI: 10.1007/s10456-022-09838-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/03/2022] [Indexed: 02/17/2023]
Abstract
Blood vessels demonstrate a multitude of complex signaling programs that work in concert to produce functional vasculature networks during development. A known, but less widely studied, area of endothelial cell regulation is vesicular trafficking, also termed sorting. After moving through the Golgi apparatus, proteins are shuttled to organelles, plugged into membranes, recycled, or degraded depending on the internal and extrinsic cues. A snapshot of these protein-sorting systems can be viewed as a trafficking signature that is not only unique to endothelial tissue, but critically important for blood vessel form and function. In this review, we will cover how vesicular trafficking impacts various aspects of angiogenesis, such as sprouting, lumen formation, vessel stabilization, and secretion, emphasizing the role of Rab GTPase family members and their various effectors.
Collapse
Affiliation(s)
- Caitlin R Francis
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Erich J Kushner
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA.
| |
Collapse
|
13
|
Naß J, Terglane J, Gerke V. Weibel Palade Bodies: Unique Secretory Organelles of Endothelial Cells that Control Blood Vessel Homeostasis. Front Cell Dev Biol 2022; 9:813995. [PMID: 34977047 PMCID: PMC8717947 DOI: 10.3389/fcell.2021.813995] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
Vascular endothelial cells produce and release compounds regulating vascular tone, blood vessel growth and differentiation, plasma composition, coagulation and fibrinolysis, and also engage in interactions with blood cells thereby controlling hemostasis and acute inflammatory reactions. These interactions have to be tightly regulated to guarantee smooth blood flow in normal physiology, but also allow specific and often local responses to blood vessel injury and infectious or inflammatory insults. To cope with these challenges, endothelial cells have the remarkable capability of rapidly changing their surface properties from non-adhesive (supporting unrestricted blood flow) to adhesive (capturing circulating blood cells). This is brought about by the evoked secretion of major adhesion receptors for platelets (von-Willebrand factor, VWF) and leukocytes (P-selectin) which are stored in a ready-to-be-used form in specialized secretory granules, the Weibel-Palade bodies (WPB). WPB are unique, lysosome related organelles that form at the trans-Golgi network and further mature by receiving material from the endolysosomal system. Failure to produce correctly matured VWF and release it through regulated WPB exocytosis results in pathologies, most importantly von-Willebrand disease, the most common inherited blood clotting disorder. The biogenesis of WPB, their intracellular motility and their fusion with the plasma membrane are regulated by a complex interplay of proteins and lipids, involving Rab proteins and their effectors, cytoskeletal components as well as membrane tethering and fusion machineries. This review will discuss aspects of WPB biogenesis, trafficking and exocytosis focussing on recent findings describing factors contributing to WPB maturation, WPB-actin interactions and WPB-plasma membrane tethering and fusion.
Collapse
Affiliation(s)
- Johannes Naß
- Centre for Molecular Biology of Inflammation, Institute of Medical Biochemistry, University of Muenster, Muenster, Germany
| | - Julian Terglane
- Centre for Molecular Biology of Inflammation, Institute of Medical Biochemistry, University of Muenster, Muenster, Germany
| | - Volker Gerke
- Centre for Molecular Biology of Inflammation, Institute of Medical Biochemistry, University of Muenster, Muenster, Germany
| |
Collapse
|
14
|
Patella F, Vendramin C, Charles O, Scully MA, Cutler DF. Shrinking Weibel-Palade bodies prevents high platelet recruitment in assays using thrombotic thrombocytopenic purpura plasma. Res Pract Thromb Haemost 2021; 5:e12626. [PMID: 34934893 PMCID: PMC8652131 DOI: 10.1002/rth2.12626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/02/2021] [Accepted: 09/15/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Thrombotic thrombocytopenic purpura (TTP), caused by a genetic or autoimmune-driven lack of ADAMTS-13 activity, leads to high levels of the ultra-large von Willebrand factor (VWF) multimers produced by endothelial cells, causing excess platelet recruitment into forming thrombi, often with mortal consequences. Treatments include plasma infusion or replacement to restore ADAMTS-13 activity, or prevention of platelet recruitment to VWF. OBJECTIVES We tested a different approach, exploiting the unique cell biology of the endothelium. Upon activation, the VWF released by exocytosis of Weibel-Palade bodies (WPBs), transiently anchored to the cell surface, unfurls as strings into flowing plasma, recruiting platelets. Using plasma from patients with TTP increases platelet recruitment to the surface of cultured endothelial cells under flow. WPBs are uniquely plastic, and shortening WPBs dramatically reduces VWF string lengths and the recruitment of platelets. We wished to test whether the TTP plasma-driven increase in platelet recruitment would be countered by reducing formation of the longest WPBs that release longer strings. METHODS Endothelial cells grown in flow chambers were treated with fluvastatin, one of 37 drugs shown to shorten WPBs, then activated under flow in the presence of platelets and plasma of either controls or patients with TTP. RESULT We found that the dramatic increase in platelet recruitment caused by TTP plasma is entirely countered by treatment with fluvastatin, shortening the WPBs. CONCLUSIONS This potential approach of ameliorating the endothelial contribution to thrombotic risk by intervening far upstream of hemostasis might prove a useful adjunct to more conventional and direct therapies.
Collapse
Affiliation(s)
- Francesca Patella
- MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
- KinomicaAlderley ParkAlderley EdgeMacclesfieldUK
| | | | - Oscar Charles
- MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
| | | | - Daniel F. Cutler
- MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
| |
Collapse
|
15
|
Wang G, Yin W, Shin H, Tian Q, Lu W, Hou SX. Neuronal accumulation of peroxidated lipids promotes demyelination and neurodegeneration through the activation of the microglial NLRP3 inflammasome. NATURE AGING 2021; 1:1024-1037. [PMID: 37118341 DOI: 10.1038/s43587-021-00130-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 09/27/2021] [Indexed: 04/30/2023]
Abstract
Peroxidated lipids accumulate in the presence of reactive oxygen species and are linked to neurodegenerative diseases. Here we find that neuronal ablation of ARF1, a small GTPase important for lipid homeostasis, promoted accumulation of peroxidated lipids, lipid droplets and ATP in the mouse brain and led to neuroinflammation, demyelination and neurodegeneration, mainly in the spinal cord and hindbrain. Ablation of ARF1 in cultured primary neurons led to an increase in peroxidated lipids in co-cultured microglia, activation of the microglial NLRP3 inflammasome and release of inflammatory cytokines in an Apolipoprotein E-dependent manner. Deleting the Nlrp3 gene rescued the neurodegenerative phenotypes in the neuronal Arf1-ablated mice. We also observed a reduction in ARF1 in human brain tissue from patients with amyotrophic lateral sclerosis and multiple sclerosis. Together, our results uncover a previously unrecognized role of peroxidated lipids released from damaged neurons in activation of a neurotoxic microglial NLRP3 pathway that may play a role in human neurodegeneration.
Collapse
Affiliation(s)
- Guohao Wang
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA.
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Weiqin Yin
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hyunhee Shin
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA
| | - Qingjun Tian
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Steven X Hou
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA.
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Watanabe A, Hataida H, Inoue N, Kamon K, Baba K, Sasaki K, Kimura R, Sasaki H, Eura Y, Ni WF, Shibasaki Y, Waguri S, Kokame K, Shiba Y. Arf GTPase-activating proteins SMAP1 and AGFG2 regulate the size of Weibel-Palade bodies and exocytosis of von Willebrand factor. Biol Open 2021; 10:271213. [PMID: 34369554 PMCID: PMC8430232 DOI: 10.1242/bio.058789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/28/2021] [Indexed: 01/22/2023] Open
Abstract
Arf GTPase-Activating proteins (ArfGAPs) mediate the hydrolysis of GTP bound to ADP-ribosylation factors (Arfs), which are critical to form transport intermediates. ArfGAPs have been thought to be negative regulators of Arfs; however, accumulating evidence indicates that ArfGAPs are important for cargo sorting and promote membrane traffic. Weibel-Palade bodies (WPBs) are cigar-shaped secretory granules in endothelial cells that contain von Willebrand factor (vWF) as their main cargo. WPB biogenesis at the Golgi was reported to be regulated by Arf and their regulators, but the role of ArfGAPs has been unknown. In this study, we performed siRNA screening of ArfGAPs to investigate the role of ArfGAPs in the biogenesis of WPBs. We found two ArfGAPs, SMAP1 and AGFG2, to be involved in WPB size and vWF exocytosis, respectively. SMAP1 depletion resulted in small-sized WPBs, and the lysosomal inhibitor leupeptin recovered the size of WPBs. The results indicate that SMAP1 functions in preventing the degradation of cigar-shaped WPBs. On the other hand, AGFG2 downregulation resulted in the inhibition of vWF secretion upon Phorbol 12-myristate 13-acetate (PMA) or histamine stimulation, suggesting that AGFG2 plays a role in vWF exocytosis. Our study revealed unexpected roles of ArfGAPs in vWF transport. Summary: The Arf GTPase-activating proteins SMAP1 and AGFG2 regulate the size of Weibel-Palade bodies and exocytosis of von Willebrand factor.
Collapse
Affiliation(s)
- Asano Watanabe
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Hikari Hataida
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Naoya Inoue
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Kosuke Kamon
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Keigo Baba
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Kuniaki Sasaki
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Rika Kimura
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Honoka Sasaki
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Yuka Eura
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Wei-Fen Ni
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, 80201, Taiwan
| | - Yuji Shibasaki
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Satoshi Waguri
- Department of Anatomy and Histology, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Koichi Kokame
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Yoko Shiba
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| |
Collapse
|
17
|
Pavišić V, Mahmutefendić Lučin H, Blagojević Zagorac G, Lučin P. Arf GTPases Are Required for the Establishment of the Pre-Assembly Compartment in the Early Phase of Cytomegalovirus Infection. Life (Basel) 2021; 11:867. [PMID: 34440611 PMCID: PMC8399710 DOI: 10.3390/life11080867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/31/2022] Open
Abstract
Shortly after entering the cells, cytomegaloviruses (CMVs) initiate massive reorganization of cellular endocytic and secretory pathways, which results in the forming of the cytoplasmic virion assembly compartment (AC). We have previously shown that the formation of AC in murine CMV- (MCMV) infected cells begins in the early phase of infection (at 4-6 hpi) with the pre-AC establishment. Pre-AC comprises membranes derived from the endosomal recycling compartment, early endosomes, and the trans-Golgi network, which is surrounded by fragmented Golgi cisterns. To explore the importance of Arf GTPases in the biogenesis of the pre-AC, we infected Balb 3T3 cells with MCMV and analyzed the expression and intracellular localization of Arf proteins in the early phases (up to 16 hpi) of infection and the development of pre-AC in cells with a knockdown of Arf protein expression by small interfering RNAs (siRNAs). Herein, we show that even in the early phase, MCMVs cause massive reorganization of the Arf system of the host cells and induce the over-recruitment of Arf proteins onto the membranes of pre-AC. Knockdown of Arf1, Arf3, Arf4, or Arf6 impaired the establishment of pre-AC. However, the knockdown of Arf1 and Arf6 also abolished the establishment of infection. Our study demonstrates that Arf GTPases are required for different steps of early cytomegalovirus infection, including the establishment of the pre-AC.
Collapse
Affiliation(s)
- Valentino Pavišić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.P.); (H.M.L.); (P.L.)
| | - Hana Mahmutefendić Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.P.); (H.M.L.); (P.L.)
- Nursing Department, University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Gordana Blagojević Zagorac
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.P.); (H.M.L.); (P.L.)
- Nursing Department, University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Pero Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.P.); (H.M.L.); (P.L.)
- Nursing Department, University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| |
Collapse
|
18
|
The PKD-Dependent Biogenesis of TGN-to-Plasma Membrane Transport Carriers. Cells 2021; 10:cells10071618. [PMID: 34203456 PMCID: PMC8303525 DOI: 10.3390/cells10071618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/14/2021] [Accepted: 06/24/2021] [Indexed: 01/30/2023] Open
Abstract
Membrane trafficking is essential for processing and transport of proteins and lipids and to establish cell compartmentation and tissue organization. Cells respond to their needs and control the quantity and quality of protein secretion accordingly. In this review, we focus on a particular membrane trafficking route from the trans-Golgi network (TGN) to the cell surface: protein kinase D (PKD)-dependent pathway for constitutive secretion mediated by carriers of the TGN to the cell surface (CARTS). Recent findings highlight the importance of lipid signaling by organelle membrane contact sites (MCSs) in this pathway. Finally, we discuss our current understanding of multiple signaling pathways for membrane trafficking regulation mediated by PKD, G protein-coupled receptors (GPCRs), growth factors, metabolites, and mechanosensors.
Collapse
|
19
|
Bäck N, Mains RE, Eipper BA. PAM: diverse roles in neuroendocrine cells, cardiomyocytes, and green algae. FEBS J 2021; 289:4470-4496. [PMID: 34089560 DOI: 10.1111/febs.16049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/28/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022]
Abstract
Our understanding of the ways in which peptides are used for communication in the nervous and endocrine systems began with the identification of oxytocin, vasopressin, and insulin, each of which is stored in electron-dense granules, ready for release in response to an appropriate stimulus. For each of these peptides, entry of its newly synthesized precursor into the ER lumen is followed by transport through the secretory pathway, exposing the precursor to a sequence of environments and enzymes that produce the bioactive products stored in mature granules. A final step in the biosynthesis of many peptides is C-terminal amidation by peptidylglycine α-amidating monooxygenase (PAM), an ascorbate- and copper-dependent membrane enzyme that enters secretory granules along with its soluble substrates. Biochemical and cell biological studies elucidated the highly conserved mechanism for amidated peptide production and raised many questions about PAM trafficking and the effects of PAM on cytoskeletal organization and gene expression. Phylogenetic studies and the discovery of active PAM in the ciliary membranes of Chlamydomonas reinhardtii, a green alga lacking secretory granules, suggested that a PAM-like enzyme was present in the last eukaryotic common ancestor. While the catalytic features of human and C. reinhardtii PAM are strikingly similar, the trafficking of PAM in C. reinhardtii and neuroendocrine cells and secretion of its amidated products differ. A comparison of PAM function in neuroendocrine cells, atrial myocytes, and C. reinhardtii reveals multiple ways in which altered trafficking allows PAM to accomplish different tasks in different species and cell types.
Collapse
Affiliation(s)
- Nils Bäck
- Department of Anatomy, University of Helsinki, Finland
| | - Richard E Mains
- Department of Neuroscience, UConn Health, Farmington, CT, USA
| | - Betty A Eipper
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| |
Collapse
|
20
|
Koscielny A, Liszewska E, Machnicka K, Wezyk M, Kotulska K, Jaworski J. mTOR controls endoplasmic reticulum-Golgi apparatus trafficking of VSVg in specific cell types. Cell Mol Biol Lett 2021; 26:18. [PMID: 34006213 PMCID: PMC8130434 DOI: 10.1186/s11658-021-00262-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Mammalian/mechanistic target of rapamycin (mTOR) complexes are essential for cell proliferation, growth, differentiation, and survival. mTORC1 hyperactivation occurs in the tuberous sclerosis complex (TSC). mTORC1 localizes to the surface of lysosomes, where Rheb activates it. However, mTOR was also found on the endoplasmic reticulum (ER) and Golgi apparatus (GA). Recent studies showed that the same inputs regulate ER-to-GA cargo transport and mTORC1 (e.g., the level of amino acids or energy status of the cell). Nonetheless, it remains unknown whether mTOR contributes to the regulation of cargo passage through the secretory pathway. METHODS The retention using selective hooks (RUSH) approach was used to image movement of model cargo (VSVg) between the ER and GA in various cell lines in which mTOR complexes were inhibited. We also investigated VSVg trafficking in TSC patient fibroblasts. RESULTS We found that mTOR inhibition led to the overall enhancement of VSVg transport through the secretory pathway in PC12 cells and primary human fibroblasts. Also, in TSC1-deficient cells, VSVg transport was enhanced. CONCLUSIONS Altogether, these data indicate the involvement of mTOR in the regulation of ER-to-GA cargo transport and suggest that impairments in exocytosis may be an additional cellular process that is disturbed in TSC.
Collapse
Affiliation(s)
- Alicja Koscielny
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena St., 04-421, Warsaw, Poland
| | - Ewa Liszewska
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena St., 04-421, Warsaw, Poland
| | - Katarzyna Machnicka
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena St., 04-421, Warsaw, Poland
| | - Michalina Wezyk
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena St., 04-421, Warsaw, Poland.,Laboratory of Neurogenetics, Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre of the Polish Academy of Sciences, 5 Pawinskiego St., 02-106, Warsaw, Poland
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730, Warsaw, Poland
| | - Jacek Jaworski
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena St., 04-421, Warsaw, Poland.
| |
Collapse
|
21
|
Datta R, Lizama CO, Soltani AK, Mckleroy W, Podolsky MJ, Yang CD, Huynh TL, Cautivo KM, Wang B, Koliwad SK, Abumrad NA, Atabai K. Autoregulation of insulin receptor signaling through MFGE8 and the αvβ5 integrin. Proc Natl Acad Sci U S A 2021; 118:e2102171118. [PMID: 33903257 PMCID: PMC8106306 DOI: 10.1073/pnas.2102171118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The role of integrins, in particular αv integrins, in regulating insulin resistance is incompletely understood. We have previously shown that the αvβ5 integrin ligand milk fat globule epidermal growth factor like 8 (MFGE8) regulates cellular uptake of fatty acids. In this work, we evaluated the impact of MFGE8 on glucose homeostasis. We show that acute blockade of the MFGE8/β5 pathway enhances while acute augmentation dampens insulin-stimulated glucose uptake. Moreover, we find that insulin itself induces cell-surface enrichment of MFGE8 in skeletal muscle, which then promotes interaction between the αvβ5 integrin and the insulin receptor leading to dampening of skeletal-muscle insulin receptor signaling. Blockade of the MFGE8/β5 pathway also enhances hepatic insulin sensitivity. Our work identifies an autoregulatory mechanism by which insulin-stimulated signaling through its cognate receptor is terminated through up-regulation of MFGE8 and its consequent interaction with the αvβ5 integrin, thereby establishing a pathway that can potentially be targeted to improve insulin sensitivity.
Collapse
Affiliation(s)
- Ritwik Datta
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
| | - Carlos O Lizama
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
| | - Amin K Soltani
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Lung Biology Center, University of California, San Francisco, CA 94158
| | - William Mckleroy
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Lung Biology Center, University of California, San Francisco, CA 94158
- Divisions of Pulmonary and Critical Care and Endocrinology, Department of Medicine, University of California, San Francisco, CA 94143
| | - Michael J Podolsky
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Divisions of Pulmonary and Critical Care and Endocrinology, Department of Medicine, University of California, San Francisco, CA 94143
| | - Christopher D Yang
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
| | - Tony L Huynh
- Department of Radiology and Biomedical imaging, University of California, San Francisco, CA 94107
| | - Kelly M Cautivo
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143
| | - Biao Wang
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Department of Physiology, University of California, San Francisco, CA 94158
| | - Suneil K Koliwad
- Divisions of Pulmonary and Critical Care and Endocrinology, Department of Medicine, University of California, San Francisco, CA 94143
- Diabetes Center, University of California, San Francisco, CA 94143
| | - Nada A Abumrad
- Diabetes Research Center, Department of Medicine and Cell Biology, Washington University in St. Louis, St. Louis, MO 63110
| | - Kamran Atabai
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158;
- Lung Biology Center, University of California, San Francisco, CA 94158
- Divisions of Pulmonary and Critical Care and Endocrinology, Department of Medicine, University of California, San Francisco, CA 94143
- Department of Physiology, University of California, San Francisco, CA 94158
| |
Collapse
|
22
|
Yadegari H, Biswas A, Ahmed S, Naz A, Oldenburg J. von Willebrand factor propeptide missense variants affect anterograde transport to Golgi resulting in ER retention. Hum Mutat 2021; 42:731-744. [PMID: 33942438 DOI: 10.1002/humu.24204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/22/2021] [Accepted: 04/01/2021] [Indexed: 11/07/2022]
Abstract
von Willebrand disease (VWD), the most prevalent congenital bleeding disorder, arises from a deficiency in von Willebrand factor (VWF), which has crucial roles in hemostasis. The present study investigated functional consequences and underlying pathomolecular mechanisms of several VWF propeptide (VWFpp) missense variants detected in our cohort of VWD patients for the first time. Transient expression experiments in HEK293T cells demonstrated that four out of the six investigated missense variants (p.Gly55Glu, p.Val86Glu, p.Trp191Arg, and p.Cys608Trp) severely impaired secretion. Their cotransfections with the wild-type partly corrected VWF secretion, displaying loss of large/intermediate multimers. Immunostaining of the transfected HEK293 cells illustrated the endoplasmic reticulum (ER) retention of the VWF variants. Docking of the COP I and COP II cargo recruitment proteins, ADP-ribosylation factor 1 and Sec24, onto the N-terminal VWF model (D1D2D'D3) revealed that these variants occur at VWFpp putative interfaces, which can hinder VWF loading at the ER exit quality control. Furthermore, quantitative and automated morphometric exploration of the three-dimensional immunofluorescence images showed changes in the number/size of the VWF storage organelles, Weibel-Palade body (WPB)-like vesicles. The result of this study highlighted the significance of the VWFpp variants on anterograde ER-Golgi trafficking of VWF as well as the biogenesis of WPB-like vesicles.
Collapse
Affiliation(s)
- Hamideh Yadegari
- Institute of Experimental Haematology and Transfusion Medicine, University Clinics Bonn, Bonn, Germany
| | - Arijit Biswas
- Institute of Experimental Haematology and Transfusion Medicine, University Clinics Bonn, Bonn, Germany
| | - Shariq Ahmed
- National Institute of Blood Disease & Bone Marrow Transplantation, Karachi, Pakistan
| | - Arshi Naz
- National Institute of Blood Disease & Bone Marrow Transplantation, Karachi, Pakistan
| | - Johannes Oldenburg
- Institute of Experimental Haematology and Transfusion Medicine, University Clinics Bonn, Bonn, Germany
| |
Collapse
|
23
|
Karampini E, Bürgisser PE, Olins J, Mulder AA, Jost CR, Geerts D, Voorberg J, Bierings R. Sec22b determines Weibel-Palade body length by controlling anterograde ER-Golgi transport. Haematologica 2021; 106:1138-1147. [PMID: 32336681 PMCID: PMC8018124 DOI: 10.3324/haematol.2019.242727] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 01/07/2023] Open
Abstract
Von Willebrand factor (VWF) is a multimeric hemostatic protein that is synthesized in endothelial cells, where it is stored for secretion in elongated secretory organelles called Weibel-Palade bodies (WPB). The hemostatic activity of VWF is strongly related to the length of these bodies, but how endothelial cells control the dimensions of their WPB is unclear. In this study, using a targeted short hairpin RNA screen, we identified longin-SNARE Sec22b as a novel determinant of WPB size and VWF trafficking. We found that Sec22b depletion resulted in loss of the typically elongated WPB morphology together with disintegration of the Golgi and dilation of rough endoplasmic reticulum cisternae. This was accompanied by reduced proteolytic processing of VWF, accumulation of VWF in the dilated rough endoplasmic reticulum and reduced basal and stimulated VWF secretion. Our data demonstrate that the elongation of WPB, and thus adhesive activity of their cargo VWF, is determined by the rate of anterograde transport between endoplasmic reticulum and Golgi, which depends on Sec22b-containing SNARE complexes.
Collapse
Affiliation(s)
- Ellie Karampini
- Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, The Netherlands
| | - Petra E Bürgisser
- Dept. of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jenny Olins
- Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, The Netherlands
| | - Aat A Mulder
- Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Carolina R Jost
- Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dirk Geerts
- Medical Biology, Amsterdam University Medical Center, University of Amsterdam, The Netherlands
| | - Jan Voorberg
- Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, The Netherlands
| | - Ruben Bierings
- Dept. of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
24
|
Sharda AV, Barr AM, Harrison JA, Wilkie AR, Fang C, Mendez LM, Ghiran IC, Italiano JE, Flaumenhaft R. VWF maturation and release are controlled by 2 regulators of Weibel-Palade body biogenesis: exocyst and BLOC-2. Blood 2020; 136:2824-2837. [PMID: 32614949 PMCID: PMC7731791 DOI: 10.1182/blood.2020005300] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/22/2020] [Indexed: 01/10/2023] Open
Abstract
von Willebrand factor (VWF) is an essential hemostatic protein that is synthesized in endothelial cells and stored in Weibel-Palade bodies (WPBs). Understanding the mechanisms underlying WPB biogenesis and exocytosis could enable therapeutic modulation of endogenous VWF, yet optimal targets for modulating VWF release have not been established. Because biogenesis of lysosomal related organelle-2 (BLOC-2) functions in the biogenesis of platelet dense granules and melanosomes, which like WPBs are lysosome-related organelles, we hypothesized that BLOC-2-dependent endolysosomal trafficking is essential for WPB biogenesis and sought to identify BLOC-2-interacting proteins. Depletion of BLOC-2 caused misdirection of cargo-carrying transport tubules from endosomes, resulting in immature WPBs that lack endosomal input. Immunoprecipitation of BLOC-2 identified the exocyst complex as a binding partner. Depletion of the exocyst complex phenocopied BLOC-2 depletion, resulting in immature WPBs. Furthermore, releasates of immature WPBs from either BLOC-2 or exocyst-depleted endothelial cells lacked high-molecular weight (HMW) forms of VWF, demonstrating the importance of BLOC-2/exocyst-mediated endosomal input during VWF maturation. However, BLOC-2 and exocyst showed very different effects on VWF release. Although BLOC-2 depletion impaired exocytosis, exocyst depletion augmented WPB exocytosis, indicating that it acts as a clamp. Exposure of endothelial cells to a small molecule inhibitor of exocyst, Endosidin2, reversibly augmented secretion of mature WPBs containing HMW forms of VWF. These studies show that, although BLOC-2 and exocyst cooperate in WPB formation, only exocyst serves to clamp WPB release. Exocyst function in VWF maturation and release are separable, a feature that can be exploited to enhance VWF release.
Collapse
Affiliation(s)
- Anish V Sharda
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center
| | - Alexandra M Barr
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center
| | - Joshua A Harrison
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center
| | | | - Chao Fang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center
| | | | - Ionita C Ghiran
- Division of Allergy and Inflammation, Beth Israel Deaconess Medical Center, and
| | - Joseph E Italiano
- Division of Hematology, Brigham and Women's Hospital
- Vascular Biology Program, Department of Surgery, Children's Hospital, Harvard Medical School, Boston, MA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center
| |
Collapse
|
25
|
Emerging mechanisms to modulate VWF release from endothelial cells. Int J Biochem Cell Biol 2020; 131:105900. [PMID: 33301925 DOI: 10.1016/j.biocel.2020.105900] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Abstract
Agonist-mediated exocytosis of Weibel-Palade bodies underpins the endothelium's ability to respond to injury or infection. Much of this important response is mediated by the major constituent of Weibel-Palade bodies: the ultra-large glycoprotein von Willebrand factor. Upon regulated WPB exocytosis, von Willebrand factor multimers unfurl into long, platelet-catching 'strings' which instigate the pro-haemostatic response. Accordingly, excessive levels of VWF are associated with thrombotic pathologies, including myocardial infarction and ischaemic stroke. Failure to appropriately cleave von Willebrand Factor strings results in thrombotic thrombocytopenic purpura, a life-threatening pathology characterised by tissue ischaemia and multiple microvascular occlusions. Historically, treatment of thrombotic thrombocytopenic purpura has relied heavily on plasma exchange therapy. However, the demonstrated efficacy of Rituximab and Caplacizumab in the treatment of acquired thrombotic thrombocytopenic purpura highlights how insights into pathophysiology can improve treatment options for von Willebrand factor-related disease. Directly limiting von Willebrand factor release from Weibel-Palade bodies has the potential as a therapeutic for cardiovascular disease. Cell biologists aim to map the WPB biogenesis and secretory pathways in order to find novel ways to control von Willebrand factor release. Emerging paradigms include the modulation of Weibel-Palade body size, trafficking and mechanism of fusion. This review focuses on the promise, progress and challenges of targeting Weibel-Palade bodies as a means to inhibit von Willebrand factor release from endothelial cells.
Collapse
|
26
|
Ferraro F, Patella F, Costa JR, Ketteler R, Kriston‐Vizi J, Cutler DF. Modulation of endothelial organelle size as an antithrombotic strategy. J Thromb Haemost 2020; 18:3296-3308. [PMID: 32881285 PMCID: PMC8436738 DOI: 10.1111/jth.15084] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/31/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND It is long established that von Willebrand factor (VWF) is central to hemostasis and thrombosis. Endothelial VWF is stored in cell-specific secretory granules, Weibel-Palade bodies (WPBs), organelles generated in a wide range of lengths (0.5-5.0 µm). WPB size responds to physiological cues and pharmacological treatment, and VWF secretion from shortened WPBs dramatically reduces platelet and plasma VWF adhesion to an endothelial surface. OBJECTIVE We hypothesized that WPB-shortening represented a novel target for antithrombotic therapy. Our objective was to determine whether compounds exhibiting this activity do exist. METHODS Using a microscopy approach coupled to automated image analysis, we measured the size of WPB bodies in primary human endothelial cells treated with licensed compounds for 24 hours. RESULTS AND CONCLUSIONS A novel approach to identification of antithrombotic compounds generated a significant number of candidates with the ability to shorten WPBs. In vitro assays of two selected compounds confirm that they inhibit the pro-hemostatic activity of secreted VWF. This set of compounds acting at a very early stage of the hemostatic process could well prove to be a useful adjunct to current antithrombotic therapeutics. Further, in the current SARS-CoV-2 pandemic, with a considerable fraction of critically ill COVID-19 patients affected by hypercoagulability, these WPB size-reducing drugs might also provide welcome therapeutic leads for frontline clinicians and researchers.
Collapse
Affiliation(s)
- Francesco Ferraro
- Endothelial Cell Biology Group, MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
- Present address:
Department of Biology and Evolution of Marine Organisms (BEOM)Stazione Zoologica Anton DohrnVilla ComunaleNaplesItaly
| | - Francesca Patella
- Endothelial Cell Biology Group, MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
| | - Joana R. Costa
- Cell Signalling and Autophagy GroupMRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
- Present address:
Leukaemia Biology Research GroupDepartment of Haematology, Cancer InstituteUniversity College LondonLondonUK
| | - Robin Ketteler
- Cell Signalling and Autophagy GroupMRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
| | - Janos Kriston‐Vizi
- Bioinformatics Image Core (BIONIC)MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
| | - Daniel F. Cutler
- Endothelial Cell Biology Group, MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
| |
Collapse
|
27
|
Patella F, Cutler DF. RGS4 controls secretion of von Willebrand factor to the subendothelial matrix. J Cell Sci 2020; 133:jcs247312. [PMID: 32576664 DOI: 10.1242/jcs.247312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/11/2020] [Indexed: 11/20/2022] Open
Abstract
The haemostatic protein von Willebrand factor (VWF) exists in plasma and subendothelial pools. The plasma pools are secreted from endothelial storage granules, Weibel-Palade bodies (WPBs), by basal secretion with a contribution from agonist-stimulated secretion, and the subendothelial pool is secreted into the subendothelial matrix by a constitutive pathway not involving WPBs. We set out to determine whether the constitutive release of subendothelial VWF is actually regulated and, if so, what functional consequences this might have. Constitutive VWF secretion can be increased by a range of factors, including changes in VWF expression, levels of TNF and other environmental cues. An RNA-seq analysis revealed that expression of regulator of G protein signalling 4 (RGS4) was reduced in endothelial cells (HUVECs) grown under these conditions. siRNA RGS4 treatment of HUVECs increased constitutive basolateral secretion of VWF, probably by affecting the anterograde secretory pathway. In a simple model of endothelial damage, we show that RGS4-silenced cells increased platelet recruitment onto the subendothelial matrix under flow. These results show that changes in RGS4 expression alter levels of subendothelial VWF, affecting platelet recruitment. This introduces a novel control over VWF function.
Collapse
Affiliation(s)
- Francesca Patella
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Daniel F Cutler
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
28
|
Zhao A, Li Y, Niu M, Li G, Luo N, Zhou L, Kang W, Liu J. SNPs in SNCA, MCCC1, DLG2, GBF1 and MBNL2 are associated with Parkinson's disease in southern Chinese population. J Cell Mol Med 2020; 24:8744-8752. [PMID: 32652860 PMCID: PMC7412680 DOI: 10.1111/jcmm.15508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/12/2020] [Accepted: 05/29/2020] [Indexed: 01/08/2023] Open
Abstract
Numerous single nucleotide polymorphisms (SNPs), which have been identified as susceptibility factors for Parkinson's disease (PD) as per genome-wide association studies, have not been fully characterized for PD patients in China. This study aimed to replicate the relationship between 12 novel SNPs of 12 genes and PD risk in southern Chinese population. Twelve SNPs of 12 genes were detected in 231 PD patients and 249 controls, using the SNaPshot technique. Meta-analysis was used to assess heterogeneity of effect sizes between this study and published data. The impact of SNPs on gene expression was investigated by analysing the SNP-gene association in the expression quantitative trait loci (eQTL) data sets. rs8180209 of SNCA (allele model: P = .047, OR = 0.77; additive model: P = .047, OR = 0.77), rs2270968 of MCCC1 (dominant model: P = .024, OR = 1.52), rs7479949 of DLG2 (recessive model; P = .019, OR = 1.52), rs10748818 of GBF1 (additive model: P < .001, OR = 0.37), and rs4771268 of MBNL2 (recessive model: P = .003, OR = 0.48) were replicated to be significantly associated with the increased risk of PD. Noteworthy, a meta-analysis of previous studies suggested rs8180209, rs2270968, rs7479949 and rs4771268 were in line with those of our cohort. Our study replicated five novel functional SNPs in SNCA, MCCC1, DLG2, GBF1 and MBNL2 could be associated with increased risk of PD in southern Chinese population.
Collapse
Affiliation(s)
- Aonan Zhao
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated with the Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuanyuan Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated with the Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mengyue Niu
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated with the Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guanglu Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated with the Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ningdi Luo
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated with the Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liche Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated with the Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenyan Kang
- Department of Neurology, Ruijin Hospital North Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated with the Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Neurology, Ruijin Hospital North Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Neurology, RuiJin Hospital/Lu Wan Branch, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
29
|
Karampini E, Bierings R, Voorberg J. Orchestration of Primary Hemostasis by Platelet and Endothelial Lysosome-Related Organelles. Arterioscler Thromb Vasc Biol 2020; 40:1441-1453. [PMID: 32375545 DOI: 10.1161/atvbaha.120.314245] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Megakaryocyte-derived platelets and endothelial cells store their hemostatic cargo in α- and δ-granules and Weibel-Palade bodies, respectively. These storage granules belong to the lysosome-related organelles (LROs), a heterogeneous group of organelles that are rapidly released following agonist-induced triggering of intracellular signaling pathways. Following vascular injury, endothelial Weibel-Palade bodies release their content into the vascular lumen and promote the formation of long VWF (von Willebrand factor) strings that form an adhesive platform for platelets. Binding to VWF strings as well as exposed subendothelial collagen activates platelets resulting in the release of α- and δ-granules, which are crucial events in formation of a primary hemostatic plug. Biogenesis and secretion of these LROs are pivotal for the maintenance of proper hemostasis. Several bleeding disorders have been linked to abnormal generation of LROs in megakaryocytes and endothelial cells. Recent reviews have emphasized common pathways in the biogenesis and biological properties of LROs, focusing mainly on melanosomes. Despite many similarities, LROs in platelet and endothelial cells clearly possess distinct properties that allow them to provide a highly coordinated and synergistic contribution to primary hemostasis by sequentially releasing hemostatic cargo. In this brief review, we discuss in depth the known regulators of α- and δ-granules in megakaryocytes/platelets and Weibel-Palade bodies in endothelial cells, starting from transcription factors that have been associated with granule formation to protein complexes that promote granule maturation. In addition, we provide a detailed view on the interplay between platelet and endothelial LROs in controlling hemostasis as well as their dysfunction in LRO related bleeding disorders.
Collapse
Affiliation(s)
- Ellie Karampini
- From the Department of Molecular and Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory (E.K., R.B., J.V.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands
| | - Ruben Bierings
- From the Department of Molecular and Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory (E.K., R.B., J.V.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands.,Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands (R.B.)
| | - Jan Voorberg
- From the Department of Molecular and Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory (E.K., R.B., J.V.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands.,Experimental Vascular Medicine (J.V.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands
| |
Collapse
|
30
|
Walton K, Leier A, Sztul E. Regulating the regulators: role of phosphorylation in modulating the function of the GBF1/BIG family of Sec7 ARF-GEFs. FEBS Lett 2020; 594:2213-2226. [PMID: 32333796 DOI: 10.1002/1873-3468.13798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022]
Abstract
Membrane traffic between secretory and endosomal compartments is vesicle-mediated and must be tightly balanced to maintain a physiological compartment size. Vesicle formation is initiated by guanine nucleotide exchange factors (GEFs) that activate the ARF family of small GTPases. Regulatory mechanisms, including reversible phosphorylation, allow ARF-GEFs to support vesicle formation only at the right time and place in response to cellular needs. Here, we review current knowledge of how the Golgi-specific brefeldin A-resistance factor 1 (GBF1)/brefeldin A-inhibited guanine nucleotide exchange protein (BIG) family of ARF-GEFs is influenced by phosphorylation and use predictive paradigms to propose new regulatory paradigms. We describe a conserved cluster of phosphorylation sites within the N-terminal domains of the GBF1/BIG ARF-GEFs and suggest that these sites may respond to homeostatic signals related to cell growth and division. In the C-terminal region, GBF1 shows phosphorylation sites clustered differently as compared with the similar configuration found in both BIG1 and BIG2. Despite this similarity, BIG1 and BIG2 phosphorylation patterns are divergent in other domains. The different clustering of phosphorylation sites suggests that the nonconserved sites may represent distinct regulatory nodes and specify the function of GBF1, BIG1, and BIG2.
Collapse
Affiliation(s)
- Kendall Walton
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, AL, USA
| | - Andre Leier
- Department of Genetics, University of Alabama at Birmingham, AL, USA
| | - Elizabeth Sztul
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
31
|
McCormack JJ, Harrison‐Lavoie KJ, Cutler DF. Human endothelial cells size-select their secretory granules for exocytosis to modulate their functional output. J Thromb Haemost 2020; 18:243-254. [PMID: 31519030 PMCID: PMC7155122 DOI: 10.1111/jth.14634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND The secretory granules of endothelial cells, Weibel-Palade bodies, are released in response to numerous extracellular signals. Their cargo is critical to many vascular functions including hemostasis and inflammation. This presents a fundamental problem: how can these cells initiate tailor-made responses from the release of a single type of organelle, each with similar cargo? Each cell contains Weibel-Palade bodies in a wide range of sizes, and we have shown that experimentally shortening these organelles disproportionately reduces their ability to initiate hemostasis in vitro, leaving leukocyte recruitment unaffected. Could the production of this range of sizes underpin differential responses? OBJECTIVES To determine whether different agonists drive the exocytosis of different sizes of Weibel-Palade bodies. METHODS We used a high-throughput automated unbiased imaging workflow to analyze the sizes of Weibel-Palade bodies within human umbilical vein endothelial cells (HUVECs) before and after agonist activation to determine changes in organelle size distributions. RESULTS We found that a subset of agonists differentially evoke the release of the longest, most pro-hemostatic organelles. Inhibiting the release of these longest organelles by just 15% gives a fall of 60% in an assay of secreted von Willebrand factor (vWF) function. CONCLUSIONS The size-selection of granules for exocytosis represents a novel layer of control, allowing endothelial cells to provide diverse responses to different signals via the release of a single type of organelle.
Collapse
Affiliation(s)
| | | | - Daniel F. Cutler
- MRC Laboratory of Molecular Cell BiologyUniversity College LondonLondonUK
| |
Collapse
|
32
|
Bassaganyas L, Popa SJ, Horlbeck M, Puri C, Stewart SE, Campelo F, Ashok A, Butnaru CM, Brouwers N, Heydari K, Ripoche J, Weissman J, Rubinsztein DC, Schekman R, Malhotra V, Moreau K, Villeneuve J. New factors for protein transport identified by a genome-wide CRISPRi screen in mammalian cells. J Cell Biol 2019; 218:3861-3879. [PMID: 31488582 PMCID: PMC6829651 DOI: 10.1083/jcb.201902028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/16/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022] Open
Abstract
Protein and membrane trafficking pathways are critical for cell and tissue homeostasis. Traditional genetic and biochemical approaches have shed light on basic principles underlying these processes. However, the list of factors required for secretory pathway function remains incomplete, and mechanisms involved in their adaptation poorly understood. Here, we present a powerful strategy based on a pooled genome-wide CRISPRi screen that allowed the identification of new factors involved in protein transport. Two newly identified factors, TTC17 and CCDC157, localized along the secretory pathway and were found to interact with resident proteins of ER-Golgi membranes. In addition, we uncovered that upon TTC17 knockdown, the polarized organization of Golgi cisternae was altered, creating glycosylation defects, and that CCDC157 is an important factor for the fusion of transport carriers to Golgi membranes. In conclusion, our work identified and characterized new actors in the mechanisms of protein transport and secretion and opens stimulating perspectives for the use of our platform in physiological and pathological contexts.
Collapse
Affiliation(s)
- Laia Bassaganyas
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, and Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Stephanie J Popa
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Max Horlbeck
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA
| | - Claudia Puri
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Sarah E Stewart
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Felix Campelo
- Institut de Ciencies Fotoniques, Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - Anupama Ashok
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Cristian M Butnaru
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Photonic Investigations, Center of Advanced Laser Technologies, National Institute for Laser, Plasma and Radiation Physics, Magurele, Romania
| | - Nathalie Brouwers
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Jean Ripoche
- Institut National de la Sante et de la Recherche Medicale U1026, Université de Bordeaux, Bordeaux, France
| | - Jonathan Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, Cambridge, UK
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA
| | - Vivek Malhotra
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Kevin Moreau
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Julien Villeneuve
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
33
|
Abstract
In this issue of Blood, Holthenrich et al used a proximity labeling approach to pull, from out of the crowded intracellular milieu, proteins that specifically interact with Weibel-Palade bodies (WPBs). From the resulting catalog of proteins, the authors identified Munc13-2 as a novel WPB-associated SNARE-interacting protein that positively regulates hormone-evoked WPB exocytosis.1
Collapse
|
34
|
Proximity proteomics of endothelial Weibel-Palade bodies identifies novel regulator of von Willebrand factor secretion. Blood 2019; 134:979-982. [PMID: 31262780 PMCID: PMC8270391 DOI: 10.1182/blood.2019000786] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/24/2019] [Indexed: 12/16/2022] Open
Abstract
Weibel-Palade bodies (WPB) are unique secretory organelles of endothelial cells that store factors regulating vascular hemostasis and local inflammation. Endothelial activation triggers rapid exocytosis of WPB, leading to the surface presentation of adhesion molecules relevant for leukocyte rolling (P-selectin) and platelet capture (von Willebrand factor [VWF]). Despite its role as an important secretory organelle, a comprehensive compilation of factors associated with WPB has not been carried out. We addressed this via a proximity proteomics approach employing the peroxidase APEX2 coupled with 2 known WPB-associated proteins: the Rab GTPases Rab3b and Rab27a. We show that APEX2-Rab3b/27a fusion constructs are correctly targeted to WPB of primary endothelial cells, and that proteins in their close proximity can be biotinylated through the WPB-recruited APEX2. Mass spectrometry analysis of the biotinylated proteins identified 183 WPB-associated proteins. Whereas these include factors reported before to localize to WPB, the majority comprises proteins not previously associated with WPB biology. Among them, the SNARE-interacting protein Munc13-2 was shown here to specifically localize to WPB and to serve as a novel factor promoting histamine-evoked WPB exocytosis and VWF secretion. Thus, APEX2-based proximity proteomics can be used to specifically identify novel organelle-associated factors in primary endothelial cells.
Collapse
|