1
|
Zhang J, Gao P, Chang WR, Song JY, An FY, Wang YJ, Xiao ZP, Jin H, Zhang XH, Yan CL. The role of HIF-1α in hypoxic metabolic reprogramming in osteoarthritis. Pharmacol Res 2025; 213:107649. [PMID: 39947451 DOI: 10.1016/j.phrs.2025.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/08/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
The joint dysfunction caused by osteoarthritis (OA) is increasingly becoming a major challenge in global healthcare, and there is currently no effective strategy to prevent the progression of OA. Therefore, better elucidating the relevant mechanisms of OA occurrence and development will provide theoretical basis for formulating new prevention and control strategies. Due to long-term exposure of cartilage tissue to the hypoxic microenvironment of joints, metabolic reprogramming changes occur. Hypoxia-inducible factor-1alpha (HIF-1α), as a core gene regulating hypoxia response in vivo, plays an important regulatory role in the hypoxic metabolism of chondrocytes. HIF-1α adapts to the hypoxic microenvironment by regulating metabolic reprogramming changes such as glycolysis, oxidative phosphorylation (OXPHOS), amino acid metabolism, and lipid metabolism in OA chondrocytes. In addition, HIF-1α also regulates macrophage polarization and synovial inflammation, chondrocytes degeneration and extracellular matrix (ECM) degradation, subchondral bone remodeling and angiogenesis in the hypoxic microenvironment of OA, and affects the pathophysiological progression of OA. Consequently, the regulation of chondrocytes metabolic reprogramming by HIF-1α has become an important therapeutic target for OA. Therefore, this article reviews the mechanism of hypoxia affecting chondrocyte metabolic reprogramming, focusing on the regulatory mechanism of HIF-1α on chondrocyte metabolic reprogramming, and summarizes potential effective ingredients or targets targeting chondrocyte metabolic reprogramming, in order to provide more beneficial basis for the prevention and treatment of clinical OA and the development of effective drugs.
Collapse
Affiliation(s)
- Jie Zhang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Wei-Rong Chang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Jia-Yi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Fang-Yu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China.
| | - Yu-Jie Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Zhi-Pan Xiao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Hua Jin
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China.
| | - Xu-Hui Zhang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Chun-Lu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China; Research Center of Traditional Chinese Medicine of Gansu, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China.
| |
Collapse
|
2
|
Chen J, He D, Yuan C, Li N, Shi B, Niu C, Yang J, Zheng L, Che L, Xu R. Fibroblast growth factor receptor 3 mutation promotes HSPB6-mediated cuproptosis in hypochondroplasia by impairing chondrocyte autophagy. J Orthop Translat 2025; 51:68-81. [PMID: 39991457 PMCID: PMC11847030 DOI: 10.1016/j.jot.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/15/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
Background Hypochondroplasia (HCH) is a prevalent form of dwarfism linked to mutations in the fibroblast growth factor receptor 3 (FGFR3) gene, causing missense alterations. We previous report was the first to identify FGFR3(G382D) gain-of-function variants with a positive family history as a novel cause of HCH. However, the precise contribution of FGFR3 to the pathogenesis of HCH remains elusive. Methods We generated an Fgfr3 (V376D) mutation mouse model using CRISPR/Cas9 technology and performed proteomic analyses to investigate the molecular mechanisms and potential therapeutic targets of HCH. Radiography and micro-computed tomography were employed to assess the bone-specific phenotype in Fgfr3 (V376D)mutant mice. Immunofluorescence, western blotting, and flow cytometry were used to systematically investigate the underlying mechanisms and therapeutic targets. Results We observed that Fgfr3 (V376D) mutant mice exhibit a bone-specific phenotype, with symmetrically short limb bones, partially resembling the dwarfism phenotype of patients with HCH. We demonstrated that the mutant-activated FGFR3 promotes heat shock protein B 6 (HSPB6)-mediated cuproptosis by inhibiting chondrocyte autophagy both in vivo and in vitro. Additionally, we revealed that FGFR3 (G382D) mutation leads to enhanced ERK signaling, increased Drp1-mediated mitochondrial fission, and upregulated cuproptosis-related protein ferredoxin 1 (FDX1). Furthermore, genetic and pharmacological inhibition of the HSPB6-ERK-Drp1-FDX1 pathway partially alleviate the phenotypes of FGFR3 mutants. Conclusions Our study provides the first evidence for the pathogenicity of a gain-of-function mutation in FGFR3 (G382D) using mouse and cell models, and it underscores the potential of targeting the HSPB6-ERK-Drp1-FDX1 axis as a novel therapeutic approach for HCH. Translational potential of this article We first demonstrate that impaired autophagy and enhanced cuproptosis are pivotal in the pathogenesis of HCH. This study not only enlarged the therapeutic potential of targeting cuproptosis for treating FGFR3 mutation-related HCH but also provided a novel perspective on the role of the HSPB6-ERK-Drp1-FDX1 signaling pathway in the development of HCH. Consequently, this article provides valuable insights into the mechanisms and treatment strategies for FGFR3 mutation-related chondrodysplasia.
Collapse
Affiliation(s)
- Jing Chen
- Department of Child Health, Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Dan He
- Department of Child Health, Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chengrun Yuan
- Department of Child Health, Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Na Li
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Baohong Shi
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Conway Niu
- Department of General Paediatrics, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Jiangfei Yang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Liangkai Zheng
- Department of Pathology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lin Che
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Ren Xu
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| |
Collapse
|
3
|
Mizushina Y, Sun L, Nishio M, Nagata S, Kamakura T, Fukuda M, Tanaka K, Toguchida J, Jin Y. Hydroxycitric acid reconstructs damaged articular cartilages by modifying the metabolic cascade in chondrogenic cells. OSTEOARTHRITIS AND CARTILAGE OPEN 2025; 7:100564. [PMID: 39835169 PMCID: PMC11743121 DOI: 10.1016/j.ocarto.2024.100564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
Objective Osteoarthritis, a degenerative joint disease, requires innovative therapies due to the limited ability of cartilage to regenerate. Since mesenchymal stem cells (MSCs) provide a cell source for chondrogenic cells, we hypothesize that chemicals capable of enhancing the chondrogenic potential of MSCs with transforming growth factor-beta (TGFβ) in vitro may similarly promote chondrogenesis in articular cartilage in vivo. Design Chemical compounds that enhance the TGFβ signaling for chondrogenesis were investigated utilizing mesenchymal stem cells derived from human induced pluripotent stem cells. The mechanisms of action underlying the identified compound were explored in vitro, and its therapeutic effects were validated in vivo using a mouse model of exercise-induced osteoarthritis. Results Hydroxycitric acid (HCA) emerged as the lead compound. In vitro, HCA effectively enhanced chondrogenesis by inhibiting ATP citrate lyase, inducing citrate and alpha-ketoglutarate (α-KG), while reducing cytosolic acetyl coenzyme A (Ac-CoA). This induction of α-KG promoted collagen prolyl-4-hydroxylase activity, boosting hydroxyproline production and matrix formation. The reduction of Ac-CoA attenuated the inhibitory effect of β-catenin on mitochondrial activity by diminishing its acetylation. In vivo, orally administered HCA accumulated in joint tissues of mice and histological examination demonstrated newly synthesized cartilage tissues in damaged area. Analysis of joint tissue extracts revealed a downregulation of Ac-CoA and an upregulation of citrate and α-KG, accompanied by a systemic increase in an anabolic biomarker. Conclusions HCA demonstrates promise as an osteoarthritis therapy by enhancing chondrogenic differentiation. Its ability to modulate crucial metabolic pathways and facilitate cartilage repair suggests potential for clinical translation, addressing a critical need in the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Yoshiyuki Mizushina
- Department of Regeneration Sciences and Engineering, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan
- Central R & D Laboratory, Kobayashi Pharmaceutical Co., Ltd., 1-30-3 Toyokawa, Ibaraki, 567-0057, Japan
| | - Liping Sun
- Department of Regeneration Sciences and Engineering, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Megumi Nishio
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Sanae Nagata
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Takeshi Kamakura
- Department of Regeneration Sciences and Engineering, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Masayuki Fukuda
- Department of Regeneration Sciences and Engineering, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Kousuke Tanaka
- Central R & D Laboratory, Kobayashi Pharmaceutical Co., Ltd., 1-30-3 Toyokawa, Ibaraki, 567-0057, Japan
| | - Junya Toguchida
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yonghui Jin
- Department of Regeneration Sciences and Engineering, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| |
Collapse
|
4
|
Han J, Kim YH, Han S. Increased oxidative phosphorylation through pyruvate dehydrogenase kinase 2 deficiency ameliorates cartilage degradation in mice with surgically induced osteoarthritis. Exp Mol Med 2025; 57:390-401. [PMID: 39894827 PMCID: PMC11873213 DOI: 10.1038/s12276-025-01400-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 11/12/2024] [Accepted: 11/17/2024] [Indexed: 02/04/2025] Open
Abstract
Chondrocytes can shift their metabolism to oxidative phosphorylation (OxPhos) in the early stages of osteoarthritis (OA), but as the disease progresses, this metabolic adaptation becomes limited and eventually fails, leading to mitochondrial dysfunction and oxidative stress. Here we investigated whether enhancing OxPhos through the inhibition of pyruvate dehydrogenase kinase (PDK) 2 affects the metabolic flexibility of chondrocytes and cartilage degeneration in a surgical model of OA. Among the PDK isoforms, PDK2 expression was increased by IL-1β in vitro and in the articular cartilage of the DMM model in vivo, accompanied by an increase in phosphorylated PDH. Mice lacking PDK2 showed significant resistance to cartilage damage and reduced pain behaviors in the DMM model. PDK2 deficiency partially restored OxPhos in IL-1β-treated chondrocytes, leading to increases in APT and the NAD+/NADH ratio. These metabolic changes were accompanied by a decrease in reactive oxygen species and senescence in chondrocytes, as well as an increase in the expression of antioxidant proteins such as NRF2 and HO-1 after IL-1β treatment. At the signaling level, PDK2 deficiency reduced p38 signaling and maintained AMPK activation without affecting the JNK, mTOR, AKT and NF-κB pathways. p38 MAPK signaling was critically involved in reactive oxygen species production under glycolysis-dominant conditions in chondrocytes. Our study provides a proof of concept for PDK2-mediated metabolic reprogramming toward OxPhos as a new therapeutic strategy for OA.
Collapse
Affiliation(s)
- Jin Han
- Laboratory for Arthritis and Cartilage Biology, Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yoon Hee Kim
- Laboratory for Arthritis and Cartilage Biology, Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Seungwoo Han
- Laboratory for Arthritis and Cartilage Biology, Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea.
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
5
|
Zhang Z, Li H, Qian M, Zheng Y, Bao L, Cui W, Wang D. Up IGF-I via high-toughness adaptive hydrogels for remodeling growth plate of children. Regen Biomater 2025; 12:rbaf004. [PMID: 40078882 PMCID: PMC11897792 DOI: 10.1093/rb/rbaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/15/2024] [Accepted: 01/02/2025] [Indexed: 03/14/2025] Open
Abstract
The growth plate is crucial for skeletal growth in children, but research on repairing growth plate damage and restoring growth is limited. Here, a high-toughness adaptive dual-crosslinked hydrogel is designed to mimic the growth plate's structure, supporting regeneration and bone growth. Composed of aldehyde-modified bacterial cellulose (DBNC), methacrylated gelatin (GelMA) and sodium alginate (Alg), the hydrogel is engineered through ionic bonding and Schiff base reactions, creating a macroporous structure. This structure can transform into a denser form by binding with calcium ions. In vitro, the loose macroporous structure of the hydrogels can promote chondrogenic differentiation, and when it forms a dense structure by binding with calcium ions, it also can activate relevant chondrogenic signaling pathways under the influence of insulin-like growth factor I (IGF-1), further inhibiting osteogenesis. In vivo experiments in a rat model of growth plate injury demonstrated that the hydrogel promoted growth plate cartilage regeneration and minimized bone bridge formation by creating a hypoxic microenvironment that activates IGF-1-related pathways. This environment encourages chondrogenic differentiation while preventing the undesired formation of bone tissue within the growth plate area. Overall, the dual-crosslinked hydrogel not only mimics the growth plate's structure but also facilitates localized IGF-1 expression, effectively reshaping the growth plate's function. This approach represents a promising therapeutic strategy for treating growth plate injuries, potentially addressing challenges associated with skeletal growth restoration in pediatric patients.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Department of Orthopedics, National Children’s Medical Center & Children’s Hospital of Fudan University, Shanghai 201102, P. R. China
| | - Haodong Li
- Department of Orthopedics, National Children’s Medical Center & Children’s Hospital of Fudan University, Shanghai 201102, P. R. China
| | - Manning Qian
- Department of Orthopedics, National Children’s Medical Center & Children’s Hospital of Fudan University, Shanghai 201102, P. R. China
| | - Yiming Zheng
- Department of Orthopedics, National Children’s Medical Center & Children’s Hospital of Fudan University, Shanghai 201102, P. R. China
| | - Luhan Bao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Dahui Wang
- Department of Orthopedics, National Children’s Medical Center & Children’s Hospital of Fudan University, Shanghai 201102, P. R. China
| |
Collapse
|
6
|
Loopmans S, Rohlenova K, van Brussel T, Stockmans I, Moermans K, Peredo N, Carmeliet P, Lambrechts D, Stegen S, Carmeliet G. The pentose phosphate pathway controls oxidative protein folding and prevents ferroptosis in chondrocytes. Nat Metab 2025; 7:182-195. [PMID: 39794539 PMCID: PMC11774761 DOI: 10.1038/s42255-024-01187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/15/2024] [Indexed: 01/13/2025]
Abstract
Bone lengthening and fracture repair depend on the anabolic properties of chondrocytes that function in an avascular milieu. The limited supply of oxygen and nutrients calls into question how biosynthesis and redox homeostasis are guaranteed. Here we show that glucose metabolism by the pentose phosphate pathway (PPP) is essential for endochondral ossification. Loss of glucose-6-phosphate dehydrogenase in chondrocytes does not affect cell proliferation because reversal of the non-oxidative PPP produces ribose-5-phosphate. However, the decreased NADPH production reduces glutathione recycling, resulting in decreased protection against the reactive oxygen species (ROS) produced during oxidative protein folding. The disturbed proteostasis activates the unfolded protein response and protein degradation. Moreover, the oxidative stress induces ferroptosis, which, together with altered matrix properties, results in a chondrodysplasia phenotype. Collectively, these data show that in hypoxia, the PPP is crucial to produce reducing power that confines ROS generated by oxidative protein folding and thereby controls proteostasis and prevents ferroptosis.
Collapse
Affiliation(s)
- Shauni Loopmans
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Katerina Rohlenova
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Thomas van Brussel
- Laboratory of Translational Genetics, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Translational Genetics, Department of Human Genetics and Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Ingrid Stockmans
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Karen Moermans
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Nicolas Peredo
- VIB Bioimaging Core Leuven, Center for Brain and Disease Research, Leuven, Belgium
- VIB Bioimaging Core Leuven, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Diether Lambrechts
- Laboratory of Translational Genetics, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Translational Genetics, Department of Human Genetics and Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Steve Stegen
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Zhang Z, He T, Gu H, Zhao Y, Tang S, Han K, Hu Y, Wang H, Yu H. Single-cell RNA sequencing identifies the expression of hemoglobin in chondrocyte cell subpopulations in osteoarthritis. BMC Mol Cell Biol 2024; 25:28. [PMID: 39736555 DOI: 10.1186/s12860-024-00519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/02/2024] [Indexed: 01/01/2025] Open
Abstract
In recent years, chondrocytes have been found to contain hemoglobin, which might be an alternative strategy for adapting to the hypoxic environment, while the potential mechanisms of that is still unclear. Here, we report the expression characteristics and potential associated pathways of hemoglobin in chondrocytes using single-cell RNA sequencing (scRNA-seq). We downloaded data of normal people and patients with osteoarthritis (OA) from the Gene Expression Omnibus (GEO) database and cells are unbiased clustered based on gene expression pattern. We determined the expression levels of hemoglobin in various chondrocyte subpopulations. Meanwhile, we further explored the difference in the enriched signaling pathways and the cell-cell interaction in chondrocytes of the hemoglobin high-expression and low-expression groups. Specifically, we found that SPP1 was closely associated with the expression of hemoglobin in OA progression. Our findings provide new insights into the distribution characteristics of hemoglobin in chondrocytes and provide potential clues to the underlying role of hemoglobin in OA and the mechanisms related to that, providing potential new ideas for the treatment of OA.
Collapse
Affiliation(s)
- Zhihao Zhang
- General Hospital of Northern Theater Command, Shenyang, Liaoning Province, 110000, China
| | - Ting He
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hongwen Gu
- General Hospital of Northern Theater Command, Shenyang, Liaoning Province, 110000, China
| | - Yuanhang Zhao
- General Hospital of Northern Theater Command, Shenyang, Liaoning Province, 110000, China
| | - Shilei Tang
- General Hospital of Northern Theater Command, Shenyang, Liaoning Province, 110000, China
| | - Kangen Han
- General Hospital of Northern Theater Command, Shenyang, Liaoning Province, 110000, China
| | - Yin Hu
- General Hospital of Northern Theater Command, Shenyang, Liaoning Province, 110000, China
| | - Hongwei Wang
- General Hospital of Northern Theater Command, Shenyang, Liaoning Province, 110000, China.
| | - Hailong Yu
- General Hospital of Northern Theater Command, Shenyang, Liaoning Province, 110000, China.
| |
Collapse
|
8
|
Du C, Liu J, Liu S, Xiao P, Chen Z, Chen H, Huang W, Lei Y. Bone and Joint-on-Chip Platforms: Construction Strategies and Applications. SMALL METHODS 2024; 8:e2400436. [PMID: 38763918 DOI: 10.1002/smtd.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/28/2024] [Indexed: 05/21/2024]
Abstract
Organ-on-a-chip, also known as "tissue chip," is an advanced platform based on microfluidic systems for constructing miniature organ models in vitro. They can replicate the complex physiological and pathological responses of human organs. In recent years, the development of bone and joint-on-chip platforms aims to simulate the complex physiological and pathological processes occurring in human bones and joints, including cell-cell interactions, the interplay of various biochemical factors, the effects of mechanical stimuli, and the intricate connections between multiple organs. In the future, bone and joint-on-chip platforms will integrate the advantages of multiple disciplines, bringing more possibilities for exploring disease mechanisms, drug screening, and personalized medicine. This review explores the construction and application of Organ-on-a-chip technology in bone and joint disease research, proposes a modular construction concept, and discusses the new opportunities and future challenges in the construction and application of bone and joint-on-chip platforms.
Collapse
Affiliation(s)
- Chengcheng Du
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Senrui Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Pengcheng Xiao
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhuolin Chen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hong Chen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiting Lei
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
9
|
Raabe J, Wittig I, Laurette P, Stathopoulou K, Brand T, Schulze T, Klampe B, Orthey E, Cabrera-Orefice A, Meisterknecht J, Thiemann E, Laufer SD, Shibamiya A, Reinsch M, Fuchs S, Kaiser J, Yang J, Zehr S, Wrona KM, Lorenz K, Lukowski R, Hansen A, Gilsbach R, Brandes RP, Ulmer BM, Eschenhagen T, Cuello F. Physioxia rewires mitochondrial complex composition to protect stem cell viability. Redox Biol 2024; 77:103352. [PMID: 39341035 PMCID: PMC11466565 DOI: 10.1016/j.redox.2024.103352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are an invaluable tool to study molecular mechanisms on a human background. Culturing stem cells at an oxygen level different from their microenvironmental niche impacts their viability. To understand this mechanistically, dermal skin fibroblasts of 52 probands were reprogrammed into hiPSCs, followed by either hyperoxic (20 % O2) or physioxic (5 % O2) culture and proteomic profiling. Analysis of chromosomal stability by Giemsa-banding revealed that physioxic -cultured hiPSC clones exhibited less pathological karyotypes than hyperoxic (e.g. 6 % vs. 32 % mosaicism), higher pluripotency as evidenced by higher Stage-Specific Embryonic Antigen 3 positivity, higher glucose consumption and lactate production. Global proteomic analysis demonstrated lower abundance of several subunits of NADH:ubiquinone oxidoreductase (complex I) and an underrepresentation of pathways linked to oxidative phosphorylation and cellular senescence. Accordingly, release of the pro-senescent factor IGFBP3 and β-galactosidase staining were lower in physioxic hiPSCs. RNA- and ATAC-seq profiling revealed a distinct hypoxic transcription factor-binding footprint, amongst others higher expression of the HIF1α-regulated target NDUFA4L2 along with increased chromatin accessibility of the NDUFA4L2 gene locus. While mitochondrial DNA content did not differ between groups, physioxic hiPSCs revealed lower polarized mitochondrial membrane potential, altered mitochondrial network appearance and reduced basal respiration and electron transfer capacity. Blue-native polyacrylamide gel electrophoresis coupled to mass spectrometry of the mitochondrial complexes detected higher abundance of NDUFA4L2 and ATP5IF1 and loss of incorporation into complex IV or V, respectively. Taken together, physioxic culture of hiPSCs improved chromosomal stability, which was associated with downregulation of oxidative phosphorylation and senescence and extensive re-wiring of mitochondrial complex composition.
Collapse
Affiliation(s)
- Janice Raabe
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Ilka Wittig
- Functional Proteomics Center, Institute for Cardiovascular Physiology, Goethe-University, 60590 Frankfurt am Main, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Rhein-Main, Frankfurt, Germany
| | - Patrick Laurette
- Institute of Experimental Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Konstantina Stathopoulou
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Theresa Brand
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Thomas Schulze
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Birgit Klampe
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Ellen Orthey
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Alfredo Cabrera-Orefice
- Functional Proteomics Center, Institute for Cardiovascular Physiology, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Jana Meisterknecht
- Functional Proteomics Center, Institute for Cardiovascular Physiology, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Ellen Thiemann
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Sandra D Laufer
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Aya Shibamiya
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Marina Reinsch
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Sigrid Fuchs
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Jennifer Kaiser
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Jiaqi Yang
- Institute of Pharmacy, Experimental Pharmacology, University Tübingen, 72076 Tübingen, Germany
| | - Simonida Zehr
- DZHK (German Center for Cardiovascular Research), Partner Site Rhein-Main, Frankfurt, Germany; Institute for Cardiovascular Physiology, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Kinga M Wrona
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany; Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Robert Lukowski
- Institute of Pharmacy, Experimental Pharmacology, University Tübingen, 72076 Tübingen, Germany
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Ralf Gilsbach
- Institute of Experimental Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Ralf P Brandes
- DZHK (German Center for Cardiovascular Research), Partner Site Rhein-Main, Frankfurt, Germany; Institute for Cardiovascular Physiology, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Bärbel M Ulmer
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Friederike Cuello
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
10
|
Bertels JC, He G, Long F. Metabolic reprogramming in skeletal cell differentiation. Bone Res 2024; 12:57. [PMID: 39394187 PMCID: PMC11470040 DOI: 10.1038/s41413-024-00374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/13/2024] Open
Abstract
The human skeleton is a multifunctional organ made up of multiple cell types working in concert to maintain bone and mineral homeostasis and to perform critical mechanical and endocrine functions. From the beginning steps of chondrogenesis that prefigures most of the skeleton, to the rapid bone accrual during skeletal growth, followed by bone remodeling of the mature skeleton, cell differentiation is integral to skeletal health. While growth factors and nuclear proteins that influence skeletal cell differentiation have been extensively studied, the role of cellular metabolism is just beginning to be uncovered. Besides energy production, metabolic pathways have been shown to exert epigenetic regulation via key metabolites to influence cell fate in both cancerous and normal tissues. In this review, we will assess the role of growth factors and transcription factors in reprogramming cellular metabolism to meet the energetic and biosynthetic needs of chondrocytes, osteoblasts, or osteoclasts. We will also summarize the emerging evidence linking metabolic changes to epigenetic modifications during skeletal cell differentiation.
Collapse
Affiliation(s)
- Joshua C Bertels
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Guangxu He
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Orthopedics, The Second Xiangya Hospital, Changsha, Hunan, China
| | - Fanxin Long
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Khan MP, Sabini E, Beigel K, Lanzolla G, Laslow B, Wang D, Merceron C, Giaccia A, Long F, Taylor D, Schipani E. HIF1 activation safeguards cortical bone formation against impaired oxidative phosphorylation. JCI Insight 2024; 9:e182330. [PMID: 39088272 PMCID: PMC11457864 DOI: 10.1172/jci.insight.182330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024] Open
Abstract
Energy metabolism, through pathways such as oxidative phosphorylation (OxPhos) and glycolysis, plays a pivotal role in cellular differentiation and function. Our study investigates the impact of OxPhos disruption in cortical bone development by deleting mitochondrial transcription factor A (TFAM). TFAM controls OxPhos by regulating the transcription of mitochondrial genes. The cortical bone, constituting the long bones' rigid shell, is sheathed by the periosteum, a connective tissue layer populated with skeletal progenitors that spawn osteoblasts, the bone-forming cells. TFAM-deficient mice presented with thinner cortical bone, spontaneous midshaft fractures, and compromised periosteal cell bioenergetics, characterized by reduced ATP levels. Additionally, they exhibited an enlarged periosteal progenitor cell pool with impaired osteoblast differentiation. Increasing hypoxia-inducible factor 1a (HIF1) activity within periosteal cells substantially mitigated the detrimental effects induced by TFAM deletion. HIF1 is known to promote glycolysis in all cell types. Our findings underscore the indispensability of OxPhos for the proper accrual of cortical bone mass and indicate a compensatory mechanism between OxPhos and glycolysis in periosteal cells. The study opens new avenues for understanding the relationship between energy metabolism and skeletal health and suggests that modulating bioenergetic pathways may provide a therapeutic avenue for conditions characterized by bone fragility.
Collapse
Affiliation(s)
- Mohd P. Khan
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Orthopaedic Surgery, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Elena Sabini
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Katherine Beigel
- Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Giulia Lanzolla
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Brittany Laslow
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dian Wang
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Christophe Merceron
- Department of Orthopaedic Surgery, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Amato Giaccia
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Fanxin Long
- Department of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Deanne Taylor
- Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ernestina Schipani
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Orthopaedic Surgery, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Hu H, Labapuchi, Huang K, Long Y, Chen L. Hedy: a groundbreaking revelation of cartilage oxygen homeostasis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1410-1413. [PMID: 39044709 PMCID: PMC11532211 DOI: 10.3724/abbs.2024116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/17/2024] [Indexed: 07/25/2024] Open
Affiliation(s)
- Haoliang Hu
- College of MedicineHunan University of Arts and ScienceChangdeChina
- Institute of Pharmacy and PharmacologyCollege of Basic Medical ScienceHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Labapuchi
- Institute of Pharmacy and PharmacologyCollege of Basic Medical ScienceHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Kerui Huang
- College of MedicineHunan University of Arts and ScienceChangdeChina
| | - Yanling Long
- The Second Affiliated HospitalDepartment of Pain and rehabilitationHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Linxi Chen
- Institute of Pharmacy and PharmacologyCollege of Basic Medical ScienceHengyang Medical SchoolUniversity of South ChinaHengyangChina
| |
Collapse
|
13
|
Stegen S, Carmeliet G. Metabolic regulation of skeletal cell fate and function. Nat Rev Endocrinol 2024; 20:399-413. [PMID: 38499689 DOI: 10.1038/s41574-024-00969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/20/2024]
Abstract
Bone development and bone remodelling during adult life are highly anabolic processes requiring an adequate supply of oxygen and nutrients. Bone-forming osteoblasts and bone-resorbing osteoclasts interact closely to preserve bone mass and architecture and are often located close to blood vessels. Chondrocytes within the developing growth plate ensure that bone lengthening occurs before puberty, but these cells function in an avascular environment. With ageing, numerous bone marrow adipocytes appear, often with negative effects on bone properties. Many studies have now indicated that skeletal cells have specific metabolic profiles that correspond to the nutritional microenvironment and their stage-specific functions. These metabolic networks provide not only skeletal cells with sufficient energy, but also biosynthetic intermediates that are necessary for proliferation and extracellular matrix synthesis. Moreover, these metabolic pathways control redox homeostasis to avoid oxidative stress and safeguard cell survival. Finally, several intracellular metabolites regulate the activity of epigenetic enzymes and thus control the fate and function of skeletal cells. The metabolic profile of skeletal cells therefore not only reflects their cellular state, but can also drive cellular activity. Insight into skeletal cell metabolism will thus not only advance our understanding of skeletal development and homeostasis, but also of skeletal disorders, such as osteoarthritis, diabetic bone disease and bone malignancies.
Collapse
Affiliation(s)
- Steve Stegen
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.
| |
Collapse
|
14
|
Adam MS, Zhuang H, Ren X, Zhang Y, Zhou P. The metabolic characteristics and changes of chondrocytes in vivo and in vitro in osteoarthritis. Front Endocrinol (Lausanne) 2024; 15:1393550. [PMID: 38854686 PMCID: PMC11162117 DOI: 10.3389/fendo.2024.1393550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
Osteoarthritis (OA) is an intricate pathological condition that primarily affects the entire synovial joint, especially the hip, hand, and knee joints. This results in inflammation in the synovium and osteochondral injuries, ultimately causing functional limitations and joint dysfunction. The key mechanism responsible for maintaining articular cartilage function is chondrocyte metabolism, which involves energy generation through glycolysis, oxidative phosphorylation, and other metabolic pathways. Some studies have shown that chondrocytes in OA exhibit increased glycolytic activity, leading to elevated lactate production and decreased cartilage matrix synthesis. In OA cartilage, chondrocytes display alterations in mitochondrial activity, such as decreased ATP generation and increased oxidative stress, which can contribute to cartilage deterioration. Chondrocyte metabolism also involves anabolic processes for extracellular matrix substrate production and energy generation. During OA, chondrocytes undergo considerable metabolic changes in different aspects, leading to articular cartilage homeostasis deterioration. Numerous studies have been carried out to provide tangible therapies for OA by using various models in vivo and in vitro targeting chondrocyte metabolism, although there are still certain limitations. With growing evidence indicating the essential role of chondrocyte metabolism in disease etiology, this literature review explores the metabolic characteristics and changes of chondrocytes in the presence of OA, both in vivo and in vitro. To provide insight into the complex metabolic reprogramming crucial in chondrocytes during OA progression, we investigate the dynamic interaction between metabolic pathways, such as glycolysis, lipid metabolism, and mitochondrial function. In addition, this review highlights prospective future research directions for novel approaches to diagnosis and treatment. Adopting a multifaceted strategy, our review aims to offer a comprehensive understanding of the metabolic intricacies within chondrocytes in OA, with the ultimate goal of identifying therapeutic targets capable of modulating chondrocyte metabolism for the treatment of OA.
Collapse
Affiliation(s)
| | | | | | | | - Panghu Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Sabini E, Schipani E. The hypoxia signature across skeletal progenitor cells. J Bone Miner Res 2024; 39:373-374. [PMID: 38528315 PMCID: PMC11207898 DOI: 10.1093/jbmr/zjae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/18/2023] [Accepted: 12/29/2023] [Indexed: 03/27/2024]
Affiliation(s)
- Elena Sabini
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ernestina Schipani
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
16
|
Sun L, Jin Y, Nishio M, Watanabe M, Kamakura T, Nagata S, Fukuda M, Maekawa H, Kawai S, Yamamoto T, Toguchida J. Oxidative phosphorylation is a pivotal therapeutic target of fibrodysplasia ossificans progressiva. Life Sci Alliance 2024; 7:e202302219. [PMID: 38365425 PMCID: PMC10875110 DOI: 10.26508/lsa.202302219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024] Open
Abstract
Heterotopic ossification (HO) is a non-physiological bone formation where soft tissue progenitor cells differentiate into chondrogenic cells. In fibrodysplasia ossificans progressiva (FOP), a rare genetic disease characterized by progressive and systemic HO, the Activin A/mutated ACVR1/mTORC1 cascade induces HO in progenitors in muscle tissues. The relevant biological processes aberrantly regulated by activated mTORC1 remain unclear, however. RNA-sequencing analyses revealed the enrichment of genes involved in oxidative phosphorylation (OXPHOS) during Activin A-induced chondrogenesis of mesenchymal stem cells derived from FOP patient-specific induced pluripotent stem cells. Functional analyses showed a metabolic transition from glycolysis to OXPHOS during chondrogenesis, along with increased mitochondrial biogenesis. mTORC1 inhibition by rapamycin suppressed OXPHOS, whereas OXPHOS inhibitor IACS-010759 inhibited cartilage matrix formation in vitro, indicating that OXPHOS is principally involved in mTORC1-induced chondrogenesis. Furthermore, IACS-010759 inhibited the muscle injury-induced enrichment of fibro/adipogenic progenitor genes and HO in transgenic mice carrying the mutated human ACVR1. These data indicated that OXPHOS is a critical downstream mediator of mTORC1 signaling in chondrogenesis and therefore is a potential FOP therapeutic target.
Collapse
Affiliation(s)
- Liping Sun
- Department of Regeneration Sciences and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yonghui Jin
- Department of Regeneration Sciences and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Megumi Nishio
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Makoto Watanabe
- Life Science Research Center, Technology Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Takeshi Kamakura
- Department of Regeneration Sciences and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Sanae Nagata
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Masayuki Fukuda
- Department of Regeneration Sciences and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hirotsugu Maekawa
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Shunsuke Kawai
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project, Kyoto, Japan
| | - Junya Toguchida
- Department of Regeneration Sciences and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Steltzer SS, Abraham AC, Killian ML. Interfacial Tissue Regeneration with Bone. Curr Osteoporos Rep 2024; 22:290-298. [PMID: 38358401 PMCID: PMC11060924 DOI: 10.1007/s11914-024-00859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
PURPOSE OF REVIEW Interfacial tissue exists throughout the body at cartilage-to-bone (osteochondral interface) and tendon-to-bone (enthesis) interfaces. Healing of interfacial tissues is a current challenge in regenerative approaches because the interface plays a critical role in stabilizing and distributing the mechanical stress between soft tissues (e.g., cartilage and tendon) and bone. The purpose of this review is to identify new directions in the field of interfacial tissue development and physiology that can guide future regenerative strategies for improving post-injury healing. RECENT FINDINGS Cues from interfacial tissue development may guide regeneration including biological cues such as cell phenotype and growth factor signaling; structural cues such as extracellular matrix (ECM) deposition, ECM, and cell alignment; and mechanical cues such as compression, tension, shear, and the stiffness of the cellular microenvironment. In this review, we explore new discoveries in the field of interfacial biology related to ECM remodeling, cellular metabolism, and fate. Based on emergent findings across multiple disciplines, we lay out a framework for future innovations in the design of engineered strategies for interface regeneration. Many of the key mechanisms essential for interfacial tissue development and adaptation have high potential for improving outcomes in the clinic.
Collapse
Affiliation(s)
- Stephanie S Steltzer
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Adam C Abraham
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Megan L Killian
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
18
|
Liu Z, Liu X, Zhang W, Gao R, Wei H, Yu CY. Current advances in modulating tumor hypoxia for enhanced therapeutic efficacy. Acta Biomater 2024; 176:1-27. [PMID: 38232912 DOI: 10.1016/j.actbio.2024.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/08/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Hypoxia is a common feature of most solid tumors, which promotes the proliferation, invasion, metastasis, and therapeutic resistance of tumors. Researchers have been developing advanced strategies and nanoplatforms to modulate tumor hypoxia to enhance therapeutic effects. A timely review of this rapidly developing research topic is therefore highly desirable. For this purpose, this review first introduces the impact of hypoxia on tumor development and therapeutic resistance in detail. Current developments in the construction of various nanoplatforms to enhance tumor treatment in response to hypoxia are also systematically summarized, including hypoxia-overcoming, hypoxia-exploiting, and hypoxia-disregarding strategies. We provide a detailed discussion of the rationale and research progress of these strategies. Through a review of current trends, it is hoped that this comprehensive overview can provide new prospects for clinical application in tumor treatment. STATEMENT OF SIGNIFICANCE: As a common feature of most solid tumors, hypoxia significantly promotes tumor progression. Advanced nanoplatforms have been developed to modulate tumor hypoxia to enhanced therapeutic effects. In this review, we first introduce the impact of hypoxia on tumor progression. Current developments in the construction of various nanoplatforms to enhance tumor treatment in response to hypoxia are systematically summarized, including hypoxia-overcoming, hypoxia-exploiting, and hypoxia-disregarding strategies. We discuss the rationale and research progress of the above strategies in detail, and finally introduce future challenges for treatment of hypoxic tumors. By reviewing the current trends, this comprehensive overview can provide new prospects for clinical translatable tumor therapy.
Collapse
Affiliation(s)
- Zihan Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xinping Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Wei Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ruijie Gao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
19
|
Chagin AS, Chu TL. The Origin and Fate of Chondrocytes: Cell Plasticity in Physiological Setting. Curr Osteoporos Rep 2023; 21:815-824. [PMID: 37837512 PMCID: PMC10724094 DOI: 10.1007/s11914-023-00827-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 10/16/2023]
Abstract
PURPOSE OF REVIEW Here, we discuss the origin of chondrocytes, their destiny, and their plasticity in relationship to bone growth, articulation, and formation of the trabeculae. We also consider these processes from a biological, clinical, and evolutionary perspective. RECENT FINDINGS Chondrocytes, which provide the template for the formation of most bones, are responsible for skeletal growth and articulation during postnatal life. In recent years our understanding of the fate of these cells has changed dramatically. Current evidence indicates a paradoxical situation during skeletogenesis, with some cells of mesenchymal condensation differentiating directly into osteoblasts, whereas others of the same kind give rise to highly similar osteoblasts via a complex process of differentiation involving several chondrocyte intermediates. The situation becomes even more paradoxical during postnatal growth when stem cells in the growth plate produce differentiated, functional progenies, which thereafter presumably dedifferentiate into another type of stem cell. Such a remarkable transition from one cell type to another under postnatal physiological conditions provides a fascinating example of cellular plasticity that may have valuable clinical implications.
Collapse
Affiliation(s)
- Andrei S Chagin
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden.
| | - Tsz Long Chu
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
20
|
Zhang F, Zhang B, Wang Y, Jiang R, Liu J, Wei Y, Gao X, Zhu Y, Wang X, Sun M, Kang J, Liu Y, You G, Wei D, Xin J, Bao J, Wang M, Gu Y, Wang Z, Ye J, Guo S, Huang H, Sun Q. An extra-erythrocyte role of haemoglobin body in chondrocyte hypoxia adaption. Nature 2023; 622:834-841. [PMID: 37794190 PMCID: PMC10600011 DOI: 10.1038/s41586-023-06611-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 09/05/2023] [Indexed: 10/06/2023]
Abstract
Although haemoglobin is a known carrier of oxygen in erythrocytes that functions to transport oxygen over a long range, its physiological roles outside erythrocytes are largely elusive1,2. Here we found that chondrocytes produced massive amounts of haemoglobin to form eosin-positive bodies in their cytoplasm. The haemoglobin body (Hedy) is a membraneless condensate characterized by phase separation. Production of haemoglobin in chondrocytes is controlled by hypoxia and is dependent on KLF1 rather than the HIF1/2α pathway. Deletion of haemoglobin in chondrocytes leads to Hedy loss along with severe hypoxia, enhanced glycolysis and extensive cell death in the centre of cartilaginous tissue, which is attributed to the loss of the Hedy-controlled oxygen supply under hypoxic conditions. These results demonstrate an extra-erythrocyte role of haemoglobin in chondrocytes, and uncover a heretofore unrecognized mechanism in which chondrocytes survive a hypoxic environment through Hedy.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Pathology, School of Basic Medicine and Xijing Hospital, State Key Laboratory of Cancer Biology, Air Force Medical Center, The Fourth Military Medical University, Xi'an, China.
| | - Bo Zhang
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Academy of Military Medical Science; Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing, China
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing, China
- Nanhu Laboratory, Jiaxing, China
| | - Yuying Wang
- Department of Pathology, School of Basic Medicine and Xijing Hospital, State Key Laboratory of Cancer Biology, Air Force Medical Center, The Fourth Military Medical University, Xi'an, China
| | - Runmin Jiang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jin Liu
- Department of Pathology, School of Basic Medicine and Xijing Hospital, State Key Laboratory of Cancer Biology, Air Force Medical Center, The Fourth Military Medical University, Xi'an, China
| | - Yuexian Wei
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Academy of Military Medical Science; Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing, China
- Nanhu Laboratory, Jiaxing, China
| | - Xinyue Gao
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Academy of Military Medical Science; Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing, China
- Nanhu Laboratory, Jiaxing, China
| | - Yichao Zhu
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Academy of Military Medical Science; Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing, China
- Nanhu Laboratory, Jiaxing, China
| | - Xinli Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Mao Sun
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, China
| | - Junjun Kang
- Department of Neurobiology, The Fourth Military Medical University, Xi'an, China
| | - Yingying Liu
- Department of Neurobiology, The Fourth Military Medical University, Xi'an, China
| | - Guoxing You
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Ding Wei
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi'an, China
| | - Jiajia Xin
- Department of Blood Transfusion, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Junxiang Bao
- Department of Aerospace Hygiene, The Fourth Military Medical University, Xi'an, China
| | - Meiqing Wang
- Department of Oral Anatomy and Physiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yu Gu
- Department of Pathology, School of Basic Medicine and Xijing Hospital, State Key Laboratory of Cancer Biology, Air Force Medical Center, The Fourth Military Medical University, Xi'an, China
| | - Zhe Wang
- Department of Pathology, School of Basic Medicine and Xijing Hospital, State Key Laboratory of Cancer Biology, Air Force Medical Center, The Fourth Military Medical University, Xi'an, China
| | - Jing Ye
- Department of Pathology, School of Basic Medicine and Xijing Hospital, State Key Laboratory of Cancer Biology, Air Force Medical Center, The Fourth Military Medical University, Xi'an, China
| | - Shuangping Guo
- Department of Pathology, School of Basic Medicine and Xijing Hospital, State Key Laboratory of Cancer Biology, Air Force Medical Center, The Fourth Military Medical University, Xi'an, China
| | - Hongyan Huang
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing, China
| | - Qiang Sun
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Academy of Military Medical Science; Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing, China.
- Nanhu Laboratory, Jiaxing, China.
| |
Collapse
|
21
|
Wen X, Wang Y, Gu Y. Transferrin promotes chondrogenic differentiation in condylar growth through inducing autophagy via ULK1-ATG16L1 axis. Clin Sci (Lond) 2023; 137:1431-1449. [PMID: 37694282 DOI: 10.1042/cs20230544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023]
Abstract
Skeletal mandibular hypoplasia (SMH) is one of the most common skeletal craniofacial deformities in orthodontics, which was often accompanied by impaired chondrogenesis and increasing apoptosis of condylar chondrocytes. Therefore, protecting chondrocytes from apoptosis and promoting chondrogenesis in condylar growth is vital for treatment of SMH patients. Transferrin (TF) was highly expressed in condylar cartilage of newborn mice and was gradually declined as the condyle ceased growing. Interestingly, serum level of TF in SMH patients was significantly lower than normal subjects. Hence, the aim of our study was to investigate the effect of TF on survival and differentiation of chondrocytes and condylar growth. First, we found that TF protected chondrogenic cell line ATDC5 cells from hypoxia-induced apoptosis and promoted proliferation and chondrogenic differentiation in vitro. Second, TF promoted chondrogenic differentiation and survival through activating autophagic flux. Inhibiting autophagic flux markedly blocked the effects of TF. Third, TF significantly activated ULK1-ATG16L1 axis. Silencing either transferrin receptor (TFRC), ULK1/2 or ATG16 significantly blocked the autophagic flux induced by TF, as well as its effect on anti-apoptosis and chondrogenic differentiation. Furthermore, we established an organoid culture model of mandible ex vivo and found that TF significantly promoted condylar growth. Taken together, our study unraveled a novel function of TF in condylar growth that TF protected chondrocytes from hypoxia-induced apoptosis and promoted chondrogenic differentiation through inducing autophagy via ULK1-ATG16L1 axis, which demonstrated that TF could be a novel growth factor of condylar growth and shed new light on developing treatment strategy of SMH patients.
Collapse
Affiliation(s)
- Xi Wen
- Department of Orthodontics, Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Yan Gu
- Department of Orthodontics, Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| |
Collapse
|
22
|
Matsuoka K, Bakiri L, Bilban M, Toegel S, Haschemi A, Yuan H, Kasper M, Windhager R, Wagner EF. Metabolic rewiring controlled by c-Fos governs cartilage integrity in osteoarthritis. Ann Rheum Dis 2023; 82:1227-1239. [PMID: 37344157 PMCID: PMC10423482 DOI: 10.1136/ard-2023-224002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/11/2023] [Indexed: 06/23/2023]
Abstract
OBJECTIVES The activator protein-1 (AP-1) transcription factor component c-Fos regulates chondrocyte proliferation and differentiation, but its involvement in osteoarthritis (OA) has not been functionally assessed. METHODS c-Fos expression was evaluated by immunohistochemistry on articular cartilage sections from patients with OA and mice subjected to the destabilisation of the medial meniscus (DMM) model of OA. Cartilage-specific c-Fos knockout (c-FosΔCh) mice were generated by crossing c-fosfl/fl to Col2a1-CreERT mice. Articular cartilage was evaluated by histology, immunohistochemistry, RNA sequencing (RNA-seq), quantitative reverse transcription PCR (qRT-PCR) and in situ metabolic enzyme assays. The effect of dichloroacetic acid (DCA), an inhibitor of pyruvate dehydrogenase kinase (Pdk), was assessed in c-FosΔCh mice subjected to DMM. RESULTS FOS-positive chondrocytes were increased in human and murine OA cartilage during disease progression. Compared with c-FosWT mice, c-FosΔCh mice exhibited exacerbated DMM-induced cartilage destruction. Chondrocytes lacking c-Fos proliferate less, have shorter collagen fibres and reduced cartilage matrix. Comparative RNA-seq revealed a prominent anaerobic glycolysis gene expression signature. Consistently decreased pyruvate dehydrogenase (Pdh) and elevated lactate dehydrogenase (Ldh) enzymatic activities were measured in situ, which are likely due to higher expression of hypoxia-inducible factor-1α, Ldha, and Pdk1 in chondrocytes. In vivo treatment of c-FosΔCh mice with DCA restored Pdh/Ldh activity, chondrocyte proliferation, collagen biosynthesis and decreased cartilage damage after DMM, thereby reverting the deleterious effects of c-Fos inactivation. CONCLUSIONS c-Fos modulates cellular bioenergetics in chondrocytes by balancing pyruvate flux between anaerobic glycolysis and the tricarboxylic acid cycle in response to OA signals. We identify a novel metabolic adaptation of chondrocytes controlled by c-Fos-containing AP-1 dimers that could be therapeutically relevant.
Collapse
Affiliation(s)
- Kazuhiko Matsuoka
- Genes and Disease group, Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Cellular and Molecular Tumor biology, Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Latifa Bakiri
- Genes and Disease group, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Stefan Toegel
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | - Arvand Haschemi
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Hao Yuan
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Reinhard Windhager
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Erwin F Wagner
- Genes and Disease group, Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Genes and Disease group, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Moretton A, Kourtis S, Gañez Zapater A, Calabrò C, Espinar Calvo ML, Fontaine F, Darai E, Abad Cortel E, Block S, Pascual‐Reguant L, Pardo‐Lorente N, Ghose R, Vander Heiden MG, Janic A, Müller AC, Loizou JI, Sdelci S. A metabolic map of the DNA damage response identifies PRDX1 in the control of nuclear ROS scavenging and aspartate availability. Mol Syst Biol 2023; 19:e11267. [PMID: 37259925 PMCID: PMC10333845 DOI: 10.15252/msb.202211267] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/02/2023] Open
Abstract
While cellular metabolism impacts the DNA damage response, a systematic understanding of the metabolic requirements that are crucial for DNA damage repair has yet to be achieved. Here, we investigate the metabolic enzymes and processes that are essential for the resolution of DNA damage. By integrating functional genomics with chromatin proteomics and metabolomics, we provide a detailed description of the interplay between cellular metabolism and the DNA damage response. Further analysis identified that Peroxiredoxin 1, PRDX1, contributes to the DNA damage repair. During the DNA damage response, PRDX1 translocates to the nucleus where it reduces DNA damage-induced nuclear reactive oxygen species. Moreover, PRDX1 loss lowers aspartate availability, which is required for the DNA damage-induced upregulation of de novo nucleotide synthesis. In the absence of PRDX1, cells accumulate replication stress and DNA damage, leading to proliferation defects that are exacerbated in the presence of etoposide, thus revealing a role for PRDX1 as a DNA damage surveillance factor.
Collapse
Affiliation(s)
- Amandine Moretton
- Center for Cancer Research, Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Savvas Kourtis
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Antoni Gañez Zapater
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Chiara Calabrò
- Center for Cancer Research, Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | | | - Frédéric Fontaine
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Evangelia Darai
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Etna Abad Cortel
- Department of Medicine and Life SciencesUniversitat Pompeu FabraBarcelonaSpain
| | - Samuel Block
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Laura Pascual‐Reguant
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Natalia Pardo‐Lorente
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Ritobrata Ghose
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMAUSA
- Dana‐Farber Cancer InstituteBostonMAUSA
| | - Ana Janic
- Department of Medicine and Life SciencesUniversitat Pompeu FabraBarcelonaSpain
| | - André C Müller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Joanna I Loizou
- Center for Cancer Research, Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Sara Sdelci
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| |
Collapse
|
24
|
Warren A, Porter RM, Reyes-Castro O, Ali MM, Marques-Carvalho A, Kim HN, Gatrell LB, Schipani E, Nookaew I, O'Brien CA, Morello R, Almeida M. The NAD salvage pathway in mesenchymal cells is indispensable for skeletal development in mice. Nat Commun 2023; 14:3616. [PMID: 37330524 PMCID: PMC10276814 DOI: 10.1038/s41467-023-39392-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 06/09/2023] [Indexed: 06/19/2023] Open
Abstract
NAD is an essential co-factor for cellular energy metabolism and multiple other processes. Systemic NAD+ deficiency has been implicated in skeletal deformities during development in both humans and mice. NAD levels are maintained by multiple synthetic pathways but which ones are important in bone forming cells is unknown. Here, we generate mice with deletion of Nicotinamide Phosphoribosyltransferase (Nampt), a critical enzyme in the NAD salvage pathway, in all mesenchymal lineage cells of the limbs. At birth, NamptΔPrx1 exhibit dramatic limb shortening due to death of growth plate chondrocytes. Administration of the NAD precursor nicotinamide riboside during pregnancy prevents the majority of in utero defects. Depletion of NAD post-birth also promotes chondrocyte death, preventing further endochondral ossification and joint development. In contrast, osteoblast formation still occurs in knockout mice, in line with distinctly different microenvironments and reliance on redox reactions between chondrocytes and osteoblasts. These findings define a critical role for cell-autonomous NAD homeostasis during endochondral bone formation.
Collapse
Affiliation(s)
- Aaron Warren
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ryan M Porter
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Olivia Reyes-Castro
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Md Mohsin Ali
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Adriana Marques-Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Ha-Neui Kim
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Landon B Gatrell
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ernestina Schipani
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Intawat Nookaew
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Charles A O'Brien
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Roy Morello
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Maria Almeida
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
25
|
Yao Q, Wu X, Tao C, Gong W, Chen M, Qu M, Zhong Y, He T, Chen S, Xiao G. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther 2023; 8:56. [PMID: 36737426 PMCID: PMC9898571 DOI: 10.1038/s41392-023-01330-w] [Citation(s) in RCA: 449] [Impact Index Per Article: 224.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disorder that leads to disability and affects more than 500 million population worldwide. OA was believed to be caused by the wearing and tearing of articular cartilage, but it is now more commonly referred to as a chronic whole-joint disorder that is initiated with biochemical and cellular alterations in the synovial joint tissues, which leads to the histological and structural changes of the joint and ends up with the whole tissue dysfunction. Currently, there is no cure for OA, partly due to a lack of comprehensive understanding of the pathological mechanism of the initiation and progression of the disease. Therefore, a better understanding of pathological signaling pathways and key molecules involved in OA pathogenesis is crucial for therapeutic target design and drug development. In this review, we first summarize the epidemiology of OA, including its prevalence, incidence and burdens, and OA risk factors. We then focus on the roles and regulation of the pathological signaling pathways, such as Wnt/β-catenin, NF-κB, focal adhesion, HIFs, TGFβ/ΒΜP and FGF signaling pathways, and key regulators AMPK, mTOR, and RUNX2 in the onset and development of OA. In addition, the roles of factors associated with OA, including MMPs, ADAMTS/ADAMs, and PRG4, are discussed in detail. Finally, we provide updates on the current clinical therapies and clinical trials of biological treatments and drugs for OA. Research advances in basic knowledge of articular cartilage biology and OA pathogenesis will have a significant impact and translational value in developing OA therapeutic strategies.
Collapse
Affiliation(s)
- Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chu Tao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Weiyuan Gong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Minghao Qu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiming Zhong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
26
|
Tang S, Liu D, Fang Y, Yong L, Zhang Y, Guan M, Lin X, Wang H, Cai F. Low expression of HIF1AN accompanied by less immune infiltration is associated with poor prognosis in breast cancer. Front Oncol 2023; 13:1080910. [PMID: 36816977 PMCID: PMC9932925 DOI: 10.3389/fonc.2023.1080910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Background Hypoxia-inducible factor 1-alpha (HIF-1α) stability and transcriptional action are reduced by the hypoxia-inducible factor 1-alpha subunit suppressor (HIF1AN). Its inappropriate expression is associated with the development of cancer and immune control. It is yet unknown how HIF1AN, clinical outcomes, and immune involvement in breast cancer (BC) are related. Methods Using the GEPIA, UALCAN, TIMER, Kaplan-Meier plotter, and TISIDB datasets, a thorough analysis of HIF1AN differential expression, medical prognosis, and the relationship between HIF1AN and tumor-infiltrating immune cells in BC was conducted. Quantitative real-time PCR (qRT-PCR) analysis of BC cells were used for external validation. Results The findings revealed that, as compared to standard specimens, BC cells had significantly lower levels of HIF1AN expression. Good overall survival (OS) for BC was associated with higher HIF1AN expression. Additionally, in BC, the expression of HIF1AN was closely associated with the chemokines and immune cell infiltration, including neutrophils, macrophages, T helper cells, B cells, Tregs, monocytes, dendritic cells, and NK cells. A high correlation between HIF1AN expression and several immunological indicators of T-cell exhaustion was particularly revealed by the bioinformatic study. Conclusions HIF1AN is a predictive indicator for breast tumors, and it is useful for predicting survival rates.
Collapse
Affiliation(s)
- Shasha Tang
- Department of Breast Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dongyang Liu
- Department of Breast Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuan Fang
- Department of Breast Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liyun Yong
- Department of Breast Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Zhang
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mengying Guan
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoyan Lin
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Wang
- Laboratory of Tumor Molecular Biology, School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China,*Correspondence: Fengfeng Cai, ; Hui Wang,
| | - Fengfeng Cai
- Department of Breast Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China,*Correspondence: Fengfeng Cai, ; Hui Wang,
| |
Collapse
|
27
|
Kobayashi T, Young C, Zhou W, Rhee EP. Reduced glycolysis links resting zone chondrocyte proliferation in the growth plate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524550. [PMID: 36711926 PMCID: PMC9882305 DOI: 10.1101/2023.01.18.524550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A gain-of-function mutation of the chondrocyte-specific microRNA, miR-140-5p, encoded by the MIR140 gene, causes spondyloepiphyseal dysplasia, Nishimura type (SEDN, also known as SED, MIR140 type; MIM, 611894). We reported that a mouse model for SEDN showed a unique growth plate phenotype that is characterized by an expansion of the resting zone of the growth plate and an increase in resting chondrocytes, of which the mechanism of regulation is poorly understood. We found that the miR-140 mutant chondrocytes showed a significant reduction of Hif1a, the master transcription factor that regulates energy metabolism in response to hypoxia. Based on this finding, we hypothesized that energy metabolism plays a regulatory role in resting chondrocyte proliferation and growth plate development. In this study, we show that suppression of glycolysis via LDH ablation causes an expansion of the resting zone and skeletal developmental defects. We have also found that reduced glycolysis results in reduced histone acetylation in the miR-140 mutant as well as LDH-deficient chondrocytes likely due to the reduction in acetyl-CoA generated from mitochondria-derived citrate. Reduction in acetyl-CoA conversion from citrate by deleting Acly caused an expansion of the resting zone and a similar gross phenotype to LDH-deficient bones without inducing energy deficiency, suggesting that the reduced acetyl-CoA, but not the ATP synthesis deficit, is responsible for the increase in resting zone chondrocytes. Comparison of the transcriptome between LDH-deficient and Acly-deficient chondrocytes also showed overlapping changes including upregulation in Fgfr3. We also confirmed that overexpression of an activation mutation of Ffgr3 causes an expansion of resting zone chondrocytes. These data demonstrate the association between reduced glycolysis and an expansion of the resting zone and suggest that it is caused by acetyl-CoA deficiency, but not energy deficiency, possibly through epigenetic upregulation of FGFR3 signaling.
Collapse
Affiliation(s)
- Tatsuya Kobayashi
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - Cameron Young
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - Wen Zhou
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
- Current address, Johnson & Johnson, Cambridge, MA 02142 USA
| | - Eugene P. Rhee
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
- Renal Unit, Massachusetts General Hospital and Harvard Medical School
- Broad Institute Cambridge, MA
| |
Collapse
|
28
|
Yamamoto H, Uchida Y, Kurimoto R, Chiba T, Matsushima T, Ito Y, Inotsume M, Miyata K, Watanabe K, Inada M, Goshima N, Uchida T, Asahara H. RNA-binding protein LIN28A upregulates transcription factor HIF1α by posttranscriptional regulation via direct binding to UGAU motifs. J Biol Chem 2023; 299:102791. [PMID: 36509142 PMCID: PMC9823215 DOI: 10.1016/j.jbc.2022.102791] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Hypoxia-inducible factor 1α (HIF1α) is a transcription factor that regulates angiogenesis under hypoxic conditions. To investigate the posttranscriptional regulatory mechanism of HIF1α, we performed a cell-based screening to reveal potential cis-elements and the regulatory RNA-binding proteins that act as trans-factors. We found that LIN28A promoted HIF1α protein expression independently of the downregulation of microRNA let-7, which is also directly mediated by LIN28A. Transcriptome analysis and evaluation of RNA stability using RNA-seq and SLAM-seq analyses, respectively, revealed that LIN28A upregulates HIF1A expression via mRNA stabilization. To investigate the physical association of LIN28A with HIF1A mRNA, we performed enhanced crosslinking immunoprecipitation in 293FT cells and integrally analyzed the transcriptome. We observed that LIN28A associates with HIF1A mRNA via its cis-element motif "UGAU". The "UGAU" motifs are recognized by the cold shock domain of LIN28A, and the introduction of a loss-of-function mutation to the cold shock domain diminished the upregulatory activities performed by LIN28A. Finally, the microvessel density assay showed that the expression of LIN28A promoted angiogenesis in vivo. In conclusion, our study elucidated the role of LIN28A in enhancing the HIF1α axis at the posttranscription layer.
Collapse
Affiliation(s)
- Hiroto Yamamoto
- Department of Systems BioMedicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Anesthesiology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yutaro Uchida
- Department of Systems BioMedicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryota Kurimoto
- Department of Systems BioMedicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tomoki Chiba
- Department of Systems BioMedicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takahide Matsushima
- Department of Systems BioMedicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yoshiaki Ito
- Department of Systems BioMedicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Maiko Inotsume
- Department of Systems BioMedicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kohei Miyata
- Department Obstetrics and Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Kenta Watanabe
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Masaki Inada
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Naoki Goshima
- Biomedicinal Information Research Center, The National Institute of Advanced Industrial Science and Technology, Tokyo, Japan; Department of Human Science, Faculty of Human Science, Musashino University, Tokyo, Japan
| | - Tokujiro Uchida
- Department of Anesthesiology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Molecular and Experimental Medicine, The Scripps Research Institute, San Diego, California, USA.
| |
Collapse
|
29
|
Abstract
The mammalian skeleton is integral to whole body physiology with a multitude of functions beyond mechanical support and locomotion, including support of hematopoiesis, mineral homeostasis and potentially other endocrine roles. Formation of the skeleton begins in the embryo and mostly from a cartilage template that is ultimately replaced by bone through endochondrial ossification. Skeletal development and maturation continue after birth in most species and last into the second decade of postnatal life in humans. In the mature skeleton, articular cartilage lining the synovial joint surfaces is vital for bodily movement and damages to the cartilage are a hallmark of osteoarthritis. The mature bone tissue undergoes continuous remodeling initiated with bone resorption by osteoclasts and completed with bone formation from osteoblasts. In a healthy state, the exquisite balance between bone resorption and formation is responsible for maintaining a stable bone mass and structural integrity, while meeting the physiological needs for minerals via controlled release from bone. Disruption of the balance in favor of bone resorption is the root cause for osteoporosis. Whereas osteoclasts pump molar quantities of hydrochloric acid to dissolve the bone minerals in a process requiring ATP hydrolysis, osteoblasts build bone mass by synthesizing and secreting copious amounts of bone matrix proteins. Thus, both osteoclasts and osteoblasts engage in energy-intensive activities to fulfill their physiological functions, but the bioenergetics of those and other skeletal cell types are not well understood. Nonetheless, the past ten years have witnessed a resurgence of interest in studies of skeletal cell metabolism, resulting in an unprecedented understanding of energy substrate utilization and its role in cell fate and activity regulation. The present review attempts to synthesize the current findings of glucose metabolism in chondrocytes, osteoblasts and osteoclasts. Advances with the other relevant cell types including skeletal stem cells and marrow adipocytes will not be discussed here as they have been extensively reviewed recently by others (van Gastel and Carmeliet, 2021). Elucidation of the bioenergetic mechanisms in the skeletal cells is likely to open new avenues for developing additional safe and effective bone therapies.
Collapse
Affiliation(s)
- Fanxin Long
- Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Department of Orthopedic Surgery, University of Pennsylvania, United States of America
| |
Collapse
|
30
|
Lee H, Kim DW. Deletion of ATAD3A inhibits osteogenesis by impairing mitochondria structure and function in pre-osteoblast. Dev Dyn 2022; 251:1982-2000. [PMID: 36000457 DOI: 10.1002/dvdy.528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/22/2022] [Accepted: 08/08/2022] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND ATPase family AAA-domain containing protein 3A (ATAD3A) is a nuclear encoded mitochondrial membrane protein that spans inner and outer membrane, and it has been shown to regulate mitochondrial dynamics and cholesterol metabolism. Since the mitochondrial functions have been implicated for osteogenic differentiation, a role of ATAD3A in skeletal development has been investigated. RESULTS Mesenchyme-specific ATAD3 knockout mice displayed severe defects in skeletal development. Additionally, osteoblast-specific deletion of ATAD3 in mice caused significant reduction in bone mass, while cartilage-specific ATAD3 knockout mice did not show any significant phenotypes. Consistent with these in vivo findings, ATAD3A knockdown impaired mitochondrial morphology and function in calvarial pre-osteoblast cultures, which, in turn, suppressed osteogenic differentiation in vitro. CONCLUSIONS The current findings suggest that ATAD3A plays a crucial role in mitochondria homeostasis, which is required for osteogenic differentiation during skeletal development.
Collapse
Affiliation(s)
- Hyeri Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Dae-Won Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
31
|
A critical bioenergetic switch is regulated by IGF2 during murine cartilage development. Commun Biol 2022; 5:1230. [PMID: 36369360 PMCID: PMC9652369 DOI: 10.1038/s42003-022-04156-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
Long bone growth requires the precise control of chondrocyte maturation from proliferation to hypertrophy during endochondral ossification, but the bioenergetic program that ensures normal cartilage development is still largely elusive. We show that chondrocytes have unique glucose metabolism signatures in these stages, and they undergo bioenergetic reprogramming from glycolysis to oxidative phosphorylation during maturation, accompanied by an upregulation of the pentose phosphate pathway. Inhibition of either oxidative phosphorylation or the pentose phosphate pathway in murine chondrocytes and bone organ cultures impaired hypertrophic differentiation, suggesting that the appropriate balance of these pathways is required for cartilage development. Insulin-like growth factor 2 (IGF2) deficiency resulted in a profound increase in oxidative phosphorylation in hypertrophic chondrocytes, suggesting that IGF2 is required to prevent overactive glucose metabolism and maintain a proper balance of metabolic pathways. Our results thus provide critical evidence of preference for a bioenergetic pathway in different stages of chondrocytes and highlight its importance as a fundamental mechanism in skeletal development.
Collapse
|
32
|
Chen Y, Wu J, Zhang S, Gao W, Liao Z, Zhou T, Li Y, Su D, Liu H, Yang X, Su P, Xu C. Hnrnpk maintains chondrocytes survival and function during growth plate development via regulating Hif1α-glycolysis axis. Cell Death Dis 2022; 13:803. [PMID: 36127325 PMCID: PMC9489716 DOI: 10.1038/s41419-022-05239-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 01/23/2023]
Abstract
The harmonious functioning of growth plate chondrocytes is crucial for skeletogenesis. These cells rely on an appropriate intensity of glycolysis to maintain survival and function in an avascular environment, but the underlying mechanism is poorly understood. Here we show that Hnrnpk orchestrates growth plate development by maintaining the appropriate intensity of glycolysis in chondrocytes. Ablating Hnrnpk causes the occurrence of dwarfism, exhibiting damaged survival and premature differentiation of growth plate chondrocytes. Furthermore, Hnrnpk deficiency results in enhanced transdifferentiation of hypertrophic chondrocytes and increased bone mass. In terms of mechanism, Hnrnpk binds to Hif1a mRNA and promotes its degradation. Deleting Hnrnpk upregulates the expression of Hif1α, leading to the increased expression of downstream glycolytic enzymes and then exorbitant glycolysis. Our study establishes an essential role of Hnrnpk in orchestrating the survival and differentiation of chondrocytes, regulating the Hif1α-glycolysis axis through a post-transcriptional mechanism during growth plate development.
Collapse
Affiliation(s)
- Yuyu Chen
- grid.412615.50000 0004 1803 6239Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Jinna Wu
- grid.410737.60000 0000 8653 1072Department of Breast Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095 China
| | - Shun Zhang
- grid.412615.50000 0004 1803 6239Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Wenjie Gao
- grid.412536.70000 0004 1791 7851Department of Orthopaedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120 China
| | - Zhiheng Liao
- grid.412615.50000 0004 1803 6239Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Taifeng Zhou
- grid.412615.50000 0004 1803 6239Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Yongyong Li
- grid.412615.50000 0004 1803 6239Precision Medicine Institute, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Deying Su
- grid.284723.80000 0000 8877 7471Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Hengyu Liu
- grid.412615.50000 0004 1803 6239Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Xiaoming Yang
- grid.412632.00000 0004 1758 2270Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Peiqiang Su
- grid.412615.50000 0004 1803 6239Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Caixia Xu
- grid.412615.50000 0004 1803 6239Research Center for Translational Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| |
Collapse
|
33
|
Yoshioka H, Komura S, Kuramitsu N, Goto A, Hasegawa T, Amizuka N, Ishimoto T, Ozasa R, Nakano T, Imai Y, Akiyama H. Deletion of Tfam in Prx1-Cre expressing limb mesenchyme results in spontaneous bone fractures. J Bone Miner Metab 2022; 40:839-852. [PMID: 35947192 DOI: 10.1007/s00774-022-01354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/21/2022] [Indexed: 10/15/2022]
Abstract
INTRODUCTION Osteoblasts require substantial amounts of energy to synthesize the bone matrix and coordinate skeleton mineralization. This study analyzed the effects of mitochondrial dysfunction on bone formation, nano-organization of collagen and apatite, and the resultant mechanical function in mouse limbs. MATERIALS AND METHODS Limb mesenchyme-specific Tfam knockout (Tfamf/f;Prx1-Cre: Tfam-cKO) mice were analyzed morphologically and histologically, and gene expressions in the limb bones were assessed by in situ hybridization, qPCR, and RNA sequencing (RNA-seq). Moreover, we analyzed the mitochondrial function of osteoblasts in Tfam-cKO mice using mitochondrial membrane potential assay and transmission electron microscopy (TEM). We investigated the pathogenesis of spontaneous bone fractures using immunohistochemical analysis, TEM, birefringence analyzer, microbeam X-ray diffractometer and nanoindentation. RESULTS Forelimbs in Tfam-cKO mice were significantly shortened from birth, and spontaneous fractures occurred after birth, resulting in severe limb deformities. Histological and RNA-seq analyses showed that bone hypoplasia with a decrease in matrix mineralization was apparent, and the expression of type I collagen and osteocalcin was decreased in osteoblasts of Tfam-cKO mice, although Runx2 expression was unchanged. Decreased type I collagen deposition and mineralization in the matrix of limb bones in Tfam-cKO mice were associated with marked mitochondrial dysfunction. Tfam-cKO mice bone showed a significantly lower Young's modulus and hardness due to poor apatite orientation which is resulted from decreased osteocalcin expression. CONCLUSION Mice with limb mesenchyme-specific Tfam deletions exhibited spontaneous limb bone fractures, resulting in severe limb deformities. Bone fragility was caused by poor apatite orientation owing to impaired osteoblast differentiation and maturation.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Shingo Komura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Norishige Kuramitsu
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Atsushi Goto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime, Japan
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.
| |
Collapse
|
34
|
Baysal BE, Alahmari AA, Rodrick TC, Tabaczynski D, Curtin L, Seshadri M, Jones DR, Sexton S. Succinate dehydrogenase inversely regulates red cell distribution width and healthy lifespan in chronically hypoxic mice. JCI Insight 2022; 7:158737. [PMID: 35881479 PMCID: PMC9536274 DOI: 10.1172/jci.insight.158737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Increased red cell distribution width (RDW), which measures erythrocyte volume (MCV) variability (anisocytosis), has been linked to early mortality in many diseases and in older adults through unknown mechanisms. Hypoxic stress has been proposed as a potential mechanism. However, experimental models to investigate the link between increased RDW and reduced survival are lacking. Here, we show that lifelong hypobaric hypoxia (~10% O2) increases erythrocyte numbers, hemoglobin and RDW, while reducing longevity in male mice. Compound heterozygous knockout (chKO) mutations in succinate dehydrogenase (Sdh; mitochondrial complex II) genes Sdhb, Sdhc and Sdhd reduce Sdh subunit protein levels, RDW, and increase healthy lifespan compared to wild-type (WT) mice in chronic hypoxia. RDW-SD, a direct measure of MCV variability, and the standard deviation of MCV (1SD-RDW) show the most statistically significant reductions in Sdh hKO mice. Tissue metabolomic profiling of 147 common metabolites shows the largest increase in succinate with elevated succinate to fumarate and succinate to oxoglutarate (2-ketoglutarate) ratios in Sdh hKO mice. These results demonstrate that mitochondrial complex II level is an underlying determinant of both RDW and healthy lifespan in hypoxia, and suggest that therapeutic targeting of Sdh might reduce high RDW-associated clinical mortality in hypoxic diseases.
Collapse
Affiliation(s)
- Bora E Baysal
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, United States of America
| | - Abdulrahman A Alahmari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, United States of America
| | - Tori C Rodrick
- Metabolomics Core Resource Laboratory, NYU Langone Health, New York, United States of America
| | - Debra Tabaczynski
- Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, United States of America
| | - Leslie Curtin
- Laboratory Animal Shared Resources, Roswell Park Comprehensive Cancer Center, Buffalo, United States of America
| | - Mukund Seshadri
- Department of Dentistry and Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, United States of America
| | - Drew R Jones
- Metabolomics Core Resource Laboratory, NYU Langone Health, New York, United States of America
| | - Sandra Sexton
- Laboratory Animal Shared Resources, Roswell Park Comprehensive Cancer Center, Buffalo, United States of America
| |
Collapse
|
35
|
D'Amico D, Olmer M, Fouassier AM, Valdés P, Andreux PA, Rinsch C, Lotz M. Urolithin A improves mitochondrial health, reduces cartilage degeneration, and alleviates pain in osteoarthritis. Aging Cell 2022; 21:e13662. [PMID: 35778837 PMCID: PMC9381911 DOI: 10.1111/acel.13662] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/11/2022] [Accepted: 06/07/2022] [Indexed: 01/22/2023] Open
Abstract
Osteoarthritis (OA) is the most common age‐related joint disorder with no effective therapy. According to the World Health Organization, OA affects over 500 million people and is characterized by degradation of cartilage and other joint tissues, severe pain, and impaired mobility. Mitochondrial dysfunction contributes to OA pathology. However, interventions to rescue mitochondrial defects in human OA are not available. Urolithin A (Mitopure) is a natural postbiotic compound that promotes mitophagy and mitochondrial function and beneficially impacts muscle health in preclinical models of aging and in elderly and middle‐aged humans. Here, we showed that Urolithin A improved mitophagy and mitochondrial respiration in primary chondrocytes from joints of both healthy donors and OA patients. Furthermore, Urolithin A reduced disease progression in a mouse model of OA, decreasing cartilage degeneration, synovial inflammation, and pain. These improvements were associated with increased mitophagy and mitochondrial content, in joints of OA mice. These findings indicate that UA promotes joint mitochondrial health, alleviates OA pathology, and supports Urolithin A's potential to improve mobility with beneficial effects on structural damage in joints.
Collapse
Affiliation(s)
- Davide D'Amico
- Amazentis SA, EPFL Innovation Park, Lausanne, Switzerland
| | - Merissa Olmer
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | | | - Pamela Valdés
- Amazentis SA, EPFL Innovation Park, Lausanne, Switzerland
| | | | - Chris Rinsch
- Amazentis SA, EPFL Innovation Park, Lausanne, Switzerland
| | - Martin Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| |
Collapse
|
36
|
Tower RJ, Busse E, Jaramillo J, Lacey M, Hoffseth K, Guntur AR, Simkin J, Sammarco MC. Spatial transcriptomics reveals metabolic changes underly age-dependent declines in digit regeneration. eLife 2022; 11:71542. [PMID: 35616636 PMCID: PMC9135401 DOI: 10.7554/elife.71542] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 05/18/2022] [Indexed: 12/12/2022] Open
Abstract
De novo limb regeneration after amputation is restricted in mammals to the distal digit tip. Central to this regenerative process is the blastema, a heterogeneous population of lineage-restricted, dedifferentiated cells that ultimately orchestrates regeneration of the amputated bone and surrounding soft tissue. To investigate skeletal regeneration, we made use of spatial transcriptomics to characterize the transcriptional profile specifically within the blastema. Using this technique, we generated a gene signature with high specificity for the blastema in both our spatial data, as well as other previously published single-cell RNA-sequencing transcriptomic studies. To elucidate potential mechanisms distinguishing regenerative from non-regenerative healing, we applied spatial transcriptomics to an aging model. Consistent with other forms of repair, our digit amputation mouse model showed a significant impairment in regeneration in aged mice. Contrasting young and aged mice, spatial analysis revealed a metabolic shift in aged blastema associated with an increased bioenergetic requirement. This enhanced metabolic turnover was associated with increased hypoxia and angiogenic signaling, leading to excessive vascularization and altered regenerated bone architecture in aged mice. Administration of the metabolite oxaloacetate decreased the oxygen consumption rate of the aged blastema and increased WNT signaling, leading to enhanced in vivo bone regeneration. Thus, targeting cell metabolism may be a promising strategy to mitigate aging-induced declines in tissue regeneration.
Collapse
Affiliation(s)
- Robert J Tower
- Department of Orthopaedics, Johns Hopkins University, Baltimore, United States
| | - Emily Busse
- Department of Surgery, Tulane School of Medicine, New Orleans, United States
| | - Josue Jaramillo
- Department of Surgery, Tulane School of Medicine, New Orleans, United States
| | - Michelle Lacey
- Department of Mathematics, Tulane University, New Orleans, United States
| | - Kevin Hoffseth
- Department of Biological & Agricultural Engineering, Louisiana State University, Baton Rouge, United States
| | - Anyonya R Guntur
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, United States
| | - Jennifer Simkin
- Department of Orthopaedic Surgery, Louisiana State University Health Sciences Center, New Orleans, United States
| | - Mimi C Sammarco
- Department of Surgery, Tulane School of Medicine, New Orleans, United States
| |
Collapse
|
37
|
Growth and mechanobiology of the tendon-bone enthesis. Semin Cell Dev Biol 2022; 123:64-73. [PMID: 34362655 PMCID: PMC8810906 DOI: 10.1016/j.semcdb.2021.07.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Tendons are cable-like connective tissues that transfer both active and passive forces generated by skeletal muscle to bone. In the mature skeleton, the tendon-bone enthesis is an interfacial zone of transitional tissue located between two mechanically dissimilar tissues: compliant, fibrous tendon to rigid, dense mineralized bone. In this review, we focus on emerging areas in enthesis development related to its structure, function, and mechanobiology, as well as highlight established and emerging signaling pathways and physiological processes that influence the formation and adaptation of this important transitional tissue.
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Osteoblasts are responsible for bone matrix production during bone development and homeostasis. Much is known about the transcriptional regulation and signaling pathways governing osteoblast differentiation. However, less is known about how osteoblasts obtain or utilize nutrients to fulfill the energetic demands associated with osteoblast differentiation and bone matrix synthesis. The goal of this review is to highlight and discuss what is known about the role and regulation of bioenergetic metabolism in osteoblasts with a focus on more recent studies. RECENT FINDINGS Bioenergetic metabolism has emerged as an important regulatory node in osteoblasts. Recent studies have begun to identify the major nutrients and bioenergetic pathways favored by osteoblasts as well as their regulation during differentiation. Here, we highlight how osteoblasts obtain and metabolize glucose, amino acids, and fatty acids to provide energy and other metabolic intermediates. In addition, we highlight the signals that regulate nutrient uptake and metabolism and focus on how energetic metabolism promotes osteoblast differentiation. Bioenergetic metabolism provides energy and other metabolites that are critical for osteoblast differentiation and activity. This knowledge contributes to a more comprehensive understanding of osteoblast biology and may inform novel strategies to modulate osteoblast differentiation and bone anabolism in patients with bone disorders.
Collapse
Affiliation(s)
- Leyao Shen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guoli Hu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Courtney M Karner
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
39
|
Kan S, Duan M, Liu Y, Wang C, Xie J. Role of Mitochondria in Physiology of Chondrocytes and Diseases of Osteoarthritis and Rheumatoid Arthritis. Cartilage 2021; 13:1102S-1121S. [PMID: 34894777 PMCID: PMC8804744 DOI: 10.1177/19476035211063858] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PURPOSE OF REVIEW Mitochondria are recognized to be one of the most important organelles in chondrocytes for their role in triphosphate (ATP) generation through aerobic phosphorylation. Mitochondria also participate in many intracellular processes involving modulating reactive oxygen species (ROS), responding to instantaneous hypoxia stress, regulating cytoplasmic transport of calcium ion, and directing mitophagy to maintain the homeostasis of individual chondrocytes. DESIGNS To summarize the specific role of mitochondria in chondrocytes, we screened related papers in PubMed database and the search strategy is ((mitochondria) AND (chondrocyte)) AND (English [Language]). The articles published in the past 5 years were included and 130 papers were studied. RESULTS In recent years, the integrity of mitochondrial structure has been regarded as a prerequisite for normal chondrocyte survival and defect in mitochondrial function has been found in cartilage-related diseases, such as osteoarthritis (OA) and rheumatoid arthritis (RA). However, the understanding of mitochondria in cartilage is still largely limited. The mechanism on how the changes in mitochondrial structure and function directly lead to the occurrence and development of cartilage-related diseases remains to be elusive. CONCLUSION This review aims to summarize the role of mitochondria in chondrocytes under the physiological and pathological changes from ATP generation, calcium homeostasis, redox regulation, mitophagy modulation, mitochondria biogenesis to immune response activation. The enhanced understanding of molecular mechanisms in mitochondria might offer some new cues for cartilage remodeling and pathological intervention.
Collapse
Affiliation(s)
- Shiyi Kan
- State Key Laboratory of Oral Diseases,
West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases,
West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases,
West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chunli Wang
- “111” Project Laboratory of
Biomechanics and Tissue Repair, Bioengineering College, Chongqing University,
Chongqing, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases,
West China Hospital of Stomatology, Sichuan University, Chengdu, China,“111” Project Laboratory of
Biomechanics and Tissue Repair, Bioengineering College, Chongqing University,
Chongqing, China,Lab of Bone & Joint Disease, State
Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan
University, Chengdu, China,Jing Xie, Lab of Bone & Joint Disease,
State Key Laboratory of Oral Diseases, West China Hospital of Stomatology,
Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
40
|
Testing Hypoxia in Pig Meniscal Culture: Biological Role of the Vascular-Related Factors in the Differentiation and Viability of Neonatal Meniscus. Int J Mol Sci 2021; 22:ijms222212465. [PMID: 34830345 PMCID: PMC8617958 DOI: 10.3390/ijms222212465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Menisci play an essential role in shock absorption, joint stability, load resistance and its transmission thanks to their conformation. Adult menisci can be divided in three zones based on the vascularization: an avascular inner zone with no blood supply, a fully vascularized outer zone, and an intermediate zone. This organization, in addition to the incomplete knowledge about meniscal biology, composition, and gene expression, makes meniscal regeneration still one of the major challenges both in orthopedics and in tissue engineering. To overcome this issue, we aimed to investigate the role of hypoxia in the differentiation of the three anatomical areas of newborn piglet menisci (anterior horn (A), central body (C), and posterior horn (P)) and its effects on vascular factors. After sample collection, menisci were divided in A, C, P, and they were cultured in vitro under hypoxic (1% O2) and normoxic (21% O2) conditions at four different experimental time points (T0 = day of explant; T7 = day 7; T10 = day 10; T14 = day 14); samples were then evaluated through immune, histological, and molecular analyses, cell morpho-functional characteristics; with particular focus on matrix composition and expression of vascular factors. It was observed that hypoxia retained the initial phenotype of cells and induced extracellular matrix production resembling a mature tissue. Hypoxia also modulated the expression of angiogenic factors, especially in the early phase of the study. Thus, we observed that hypoxia contributes to the fibro-chondrogenic differentiation with the involvement of angiogenic factors, especially in the posterior horn, which corresponds to the predominant weight-bearing portion.
Collapse
|
41
|
Shi Y, Wang Y, Jiang H, Sun X, Xu H, Wei X, Wei Y, Xiao G, Song Z, Zhou F. Mitochondrial dysfunction induces radioresistance in colorectal cancer by activating [Ca 2+] m-PDP1-PDH-histone acetylation retrograde signaling. Cell Death Dis 2021; 12:837. [PMID: 34489398 PMCID: PMC8421510 DOI: 10.1038/s41419-021-03984-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022]
Abstract
Mitochondrial retrograde signaling (mito-RTG) triggered by mitochondrial dysfunction plays a potential role in regulating tumor metabolic reprogramming and cellular sensitivity to radiation. Our previous studies showed phos-pyruvate dehydrogenase (p-PDH) and PDK1, which involved in aerobic glycolysis, were positively correlated with radioresistance, but how they initiate and work in the mito-RTG pathway is still unknown. Our further genomics analysis revealed that complex I components were widely downregulated in mitochondrial dysfunction model. In the present study, high expression of p-PDH was found in the complex I deficient cells and induced radioresistance. Mechanistically, complex I defects led to a decreased PDH both in cytoplasm and nucleus through [Ca2+]m-PDP1-PDH axis, and decreased PDH in nucleus promote DNA damage repair (DDR) response via reducing histone acetylation. Meanwhile, NDUFS1 (an important component of the complex I) overexpression could enhance the complex I activity, reverse glycolysis and resensitize cancer cells to radiation in vivo and in vitro. Furthermore, low NDUFS1 and PDH expression were validated to be correlated with poor tumor regression grading (TRG) in local advanced colorectal cancer (CRC) patients underwent neoadjuvant radiotherapy. Here, we propose that the [Ca2+]m-PDP1-PDH-histone acetylation retrograde signaling activated by mitochondrial complex I defects contribute to cancer cell radioresistance, which provides new insight in the understanding of the mito-RTG. For the first time, we reveal that NDUFS1 could be served as a promising predictor of radiosensitivity and modification of complex I function may improve clinical benefits of radiotherapy in CRC.
Collapse
Affiliation(s)
- Yingying Shi
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- Hubei clinical cancer study center, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - You Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- Hubei clinical cancer study center, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Huangang Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- Hubei clinical cancer study center, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Xuehua Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- Hubei clinical cancer study center, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Hui Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- Hubei clinical cancer study center, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Xue Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- Hubei clinical cancer study center, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yan Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- Hubei clinical cancer study center, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Guohui Xiao
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- Hubei clinical cancer study center, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Zhiyin Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, 430071, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.
- Hubei clinical cancer study center, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW In this review, we provide a recent update on bioenergetic pathways in osteocytes and identify potential future areas of research interest. Studies have identified a role for regulation of bone formation and bone resorption through osteocyte mechanosensing and osteocyte secreted factors. Nevertheless, there is a paucity of studies on the bioenergetics and energy metabolism of osteocytes, which are required for the regulation of bone remodeling. RECENT FINDINGS Osteocytes are cells of the osteoblast lineage embedded in bone. The osteocyte lacunocanalicular network within the skeletal matrix is exposed to a unique hypoxic environment. Therefore, the bioenergetic requirements of these cells could differ from other bone cells due to its location in the ossified matrix and its role in bone regulation transduced by mechanical signals. Recent findings highlighted in this review provide some evidence that metabolism of these cells is dependent on their location due to the substrates present in the microenvironment and metabolic cues from stress pathways. Both glycolysis (glucose metabolism) and oxidative phosphorylation (mitochondrial dynamics, ROS generation) affect osteocyte function and viability. In this review, we provide evidence that is currently available about information regarding bioenergetics pathways in osteocytes. We discuss published studies showing a role for hypoxia-driven glucose metabolism in regulating osteocyte bioenergetics. We also provide information on various substrates that osteocytes could utilize to fuel energetic needs, namely pyruvate, amino acids, and fatty acids. This is based on some preliminary experimental evidence that is available in literature. The role of parathyroid hormone PTH and parathryoid hormone-related peptide PTHrP in bone anabolism and resorption, along with regulation of metabolic pathways in the cells of the skeletal niche, needs to be explored further. Mitochondrial metabolism has a role in osteocyte bioenergetics through substrate utilization, location of the osteocyte in the bone cortex, and mitochondrial biogenesis. While there are limitations in studying metabolic flux in traditional cell lines, there are now novel cell lines and sophisticated tools available to study osteocyte bioenergetics to help harness its potential in vivo in the future.
Collapse
Affiliation(s)
- Vivin Karthik
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Anyonya R Guntur
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA.
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA.
- Tufts University School of Medicine, Tufts University, Boston, MA, USA.
| |
Collapse
|
43
|
The role of HIF proteins in maintaining the metabolic health of the intervertebral disc. Nat Rev Rheumatol 2021; 17:426-439. [PMID: 34083809 PMCID: PMC10019070 DOI: 10.1038/s41584-021-00621-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 01/18/2023]
Abstract
The physiologically hypoxic intervertebral disc and cartilage rely on the hypoxia-inducible factor (HIF) family of transcription factors to mediate cellular responses to changes in oxygen tension. During homeostatic development, oxygen-dependent prolyl hydroxylases, circadian clock proteins and metabolic intermediates control the activities of HIF1 and HIF2 in these tissues. Mechanistically, HIF1 is the master regulator of glycolytic metabolism and cytosolic lactate levels. In addition, HIF1 regulates mitochondrial metabolism by promoting flux through the tricarboxylic acid cycle, inhibiting downsteam oxidative phosphorylation and controlling mitochondrial health through modulation of the mitophagic pathway. Accumulation of metabolic intermediates from HIF-dependent processes contribute to intracellular pH regulation in the disc and cartilage. Namely, to prevent changes in intracellular pH that could lead to cell death, HIF1 orchestrates a bicarbonate buffering system in the disc, controlled by carbonic anhydrase 9 (CA9) and CA12, sodium bicarbonate cotransporters and an intracellular H+/lactate efflux mechanism. In contrast to HIF1, the role of HIF2 remains elusive; in disorders of the disc and cartilage, its function has been linked to both anabolic and catabolic pathways. The current knowledge of hypoxic cell metabolism and regulation of HIF1 activity provides a strong basis for the development of future therapies designed to repair the degenerative disc.
Collapse
|
44
|
Tata Z, Merceron C, Schipani E. Fetal Growth Plate Cartilage : Histological and Immunohistochemical Techniques. Methods Mol Biol 2021; 2245:53-84. [PMID: 33315195 DOI: 10.1007/978-1-0716-1119-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Skeletal development is a tightly regulated process that primarily occurs through two distinct mechanisms. In intramembranous ossification, mesenchymal progenitors condense and transdifferentiate directly into osteoblasts, giving rise to the flat bones of the skull. The majority of the skeleton develops through endochondral ossification, in which mesenchymal progenitors give rise to a cartilaginous template that is gradually replaced by bone. The study of these processes necessitates a suitable animal model, a requirement to which the mouse is admirably suited. Their rapid reproductive ability, developmental and physiologic similarity to humans, and easily manipulated genetics all contribute to their widespread use. Outlined here are the most common histological and immunohistochemical techniques utilized in our laboratory for the isolation and analysis of specimens from the developing murine skeleton.
Collapse
Affiliation(s)
- Zachary Tata
- Departments of Orthopedic Surgery, Medicine and Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Christophe Merceron
- Departments of Orthopedic Surgery, Medicine and Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Ernestina Schipani
- Departments of Orthopedic Surgery, Medicine and Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
45
|
Yao Q, Parvez-Khan M, Schipani E. In vivo survival strategies for cellular adaptation to hypoxia: HIF1α-dependent suppression of mitochondrial oxygen consumption and decrease of intracellular hypoxia are critical for survival of hypoxic chondrocytes. Bone 2020; 140:115572. [PMID: 32768687 PMCID: PMC11610531 DOI: 10.1016/j.bone.2020.115572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022]
Abstract
Hypoxia occurs not only in pathological conditions like cancer and ischemia and in a variety of physiological settings in the adult organism, but also during normal embryonic development. In the inner portion of the fetal growth plate, which is an avascular tissue originating from mesenchymal progenitor cells, chondrocytes experience physiological hypoxia. Hypoxia-Inducible Transcription Factor-1α (HIF1α), a crucial mediator of cellular adaptation to hypoxia, is an essential survival factor for fetal growth plate chondrocytes. This brief review summarizes our current understanding of the survival function of HIF1α during endochondral bone development.
Collapse
Affiliation(s)
- Qing Yao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment and School of Medicine, Southern University of Science and Technology, 1088 Xue Yuan Road, Shenzhen, Guangdong 518055, China
| | - Mohd Parvez-Khan
- Departments of Orthopaedic Surgery, Medicine, and Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Ernestina Schipani
- Departments of Orthopaedic Surgery, Medicine, and Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.
| |
Collapse
|
46
|
Nakamichi R, Kurimoto R, Tabata Y, Asahara H. Transcriptional, epigenetic and microRNA regulation of growth plate. Bone 2020; 137:115434. [PMID: 32422296 PMCID: PMC7387102 DOI: 10.1016/j.bone.2020.115434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
Abstract
Endochondral ossification is a critical event in bone formation, particularly in long shaft bones. Many cellular differentiation processes work in concert to facilitate the generation of cartilage primordium to formation of trabecular structures, all of which occur within the growth plate. Previous studies have revealed that the growth plate is tightly regulated by various transcription factors, epigenetic systems, and microRNAs. Hence, understanding these mechanisms that regulate the growth plate is crucial to furthering the current understanding on skeletal diseases, and in formulating effective treatment strategies. In this review, we focus on describing the function and mechanisms of the transcription factors, epigenetic systems, and microRNAs known to regulate the growth plate.
Collapse
Affiliation(s)
- Ryo Nakamichi
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA; Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Ryota Kurimoto
- Department of Systems Biomedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yusuke Tabata
- Department of Orthopaedic Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Hirosi Asahara
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA; Department of Systems Biomedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
47
|
Madhu V, Boneski PK, Silagi E, Qiu Y, Kurland I, Guntur AR, Shapiro IM, Risbud MV. Hypoxic Regulation of Mitochondrial Metabolism and Mitophagy in Nucleus Pulposus Cells Is Dependent on HIF-1α-BNIP3 Axis. J Bone Miner Res 2020; 35:1504-1524. [PMID: 32251541 PMCID: PMC7778522 DOI: 10.1002/jbmr.4019] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/28/2020] [Accepted: 03/15/2020] [Indexed: 12/31/2022]
Abstract
Nucleus pulposus (NP) cells reside in an avascular and hypoxic microenvironment of the intervertebral disc and are predominantly glycolytic due to robust HIF-1 activity. It is generally thought that NP cells contain few functional mitochondria compared with cells that rely on oxidative metabolism. Consequently, the contribution of mitochondria to NP cell metabolism and the role of hypoxia and HIF-1 in mitochondrial homeostasis is poorly understood. Using mitoQC reporter mice, we show for the first time to our knowledge that NP cell mitochondria undergo age-dependent mitophagy in vivo. Mechanistically, in vitro studies suggest that, under hypoxic conditions, mitochondria in primary NP cells undergo HIF-1α-dependent fragmentation, controlled by modulating the levels of key proteins DRP1 and OPA1 that are involved in mitochondrial fission and fusion, respectively. Seahorse assays and steady state metabolic profiling coupled with [1-2-13 C]-glucose flux analysis revealed that in hypoxia, HIF-1α regulated metabolic flux through coordinating glycolysis and the mitochondrial TCA cycle interactions, thereby controlling the overall biosynthetic capacity of NP cells. We further show that hypoxia and HIF-1α trigger mitophagy in NP cells through the mitochondrial translocation of BNIP3, an inducer of receptor-mediated mitophagy. Surprisingly, however, loss of HIF-1α in vitro and analysis of NP-specific HIF-1α null mice do not show a decrease in mitophagic flux in NP cells but a compensatory increase in NIX and PINK1-Parkin pathways with higher mitochondrial number. Taken together, our studies provide novel mechanistic insights into the complex interplay between hypoxia and HIF-1α signaling on the mitochondrial metabolism and quality control in NP cells. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Vedavathi Madhu
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Paige K Boneski
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Elizabeth Silagi
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA.,Cell Biology and Regenerative Medicine Graduate Program, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yunping Qiu
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Irwin Kurland
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anyonya R Guntur
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Irving M Shapiro
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA.,Cell Biology and Regenerative Medicine Graduate Program, Thomas Jefferson University, Philadelphia, PA, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA.,Cell Biology and Regenerative Medicine Graduate Program, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
48
|
Cinque L, De Leonibus C, Iavazzo M, Krahmer N, Intartaglia D, Salierno FG, De Cegli R, Di Malta C, Svelto M, Lanzara C, Maddaluno M, Wanderlingh LG, Huebner AK, Cesana M, Bonn F, Polishchuk E, Hübner CA, Conte I, Dikic I, Mann M, Ballabio A, Sacco F, Grumati P, Settembre C. MiT/TFE factors control ER-phagy via transcriptional regulation of FAM134B. EMBO J 2020; 39:e105696. [PMID: 32716134 PMCID: PMC7459426 DOI: 10.15252/embj.2020105696] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 01/08/2023] Open
Abstract
Lysosomal degradation of the endoplasmic reticulum (ER) via autophagy (ER-phagy) is emerging as a critical regulator of cell homeostasis and function. The recent identification of ER-phagy receptors has shed light on the molecular mechanisms underlining this process. However, the signaling pathways regulating ER-phagy in response to cellular needs are still largely unknown. We found that the nutrient responsive transcription factors TFEB and TFE3-master regulators of lysosomal biogenesis and autophagy-control ER-phagy by inducing the expression of the ER-phagy receptor FAM134B. The TFEB/TFE3-FAM134B axis promotes ER-phagy activation upon prolonged starvation. In addition, this pathway is activated in chondrocytes by FGF signaling, a critical regulator of skeletal growth. FGF signaling induces JNK-dependent proteasomal degradation of the insulin receptor substrate 1 (IRS1), which in turn inhibits the PI3K-PKB/Akt-mTORC1 pathway and promotes TFEB/TFE3 nuclear translocation and enhances FAM134B transcription. Notably, FAM134B is required for protein secretion in chondrocytes, and cartilage growth and bone mineralization in medaka fish. This study identifies a new signaling pathway that allows ER-phagy to respond to both metabolic and developmental cues.
Collapse
Affiliation(s)
- Laura Cinque
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Maria Iavazzo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Natalie Krahmer
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Munich-Neuherberg, Germany.,Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | | - Rossella De Cegli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Chiara Di Malta
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Maria Svelto
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Carmela Lanzara
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | | | - Antje K Huebner
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Marcella Cesana
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Florian Bonn
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Frankfurt am Main, Germany
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Ivan Dikic
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Frankfurt am Main, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.,Faculty of Health Sciences, NNF Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Department of Translational Medicine, Federico II University, Naples, Italy.,Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Francesca Sacco
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Department of Translational Medicine, Federico II University, Naples, Italy
| |
Collapse
|
49
|
Geurts J, Nasi S, Distel P, Müller-Gerbl M, Prolla TA, Kujoth GC, Walker UA, Hügle T. Prematurely aging mitochondrial DNA mutator mice display subchondral osteopenia and chondrocyte hypertrophy without further osteoarthritis features. Sci Rep 2020; 10:1296. [PMID: 31992827 PMCID: PMC6987232 DOI: 10.1038/s41598-020-58385-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 01/15/2020] [Indexed: 11/23/2022] Open
Abstract
Mitochondrial mutations and dysfunction have been demonstrated in several age-related disorders including osteoarthritis, yet its relative contribution to pathogenesis remains unknown. Here we evaluated whether premature aging caused by accumulation of mitochondrial DNA mutations in PolgD275A mice predisposes to the development of knee osteoarthritis. Compared with wild type animals, homozygous PolgD275A mice displayed a specific bone phenotype characterized by osteopenia of epiphyseal trabecular bone and subchondral cortical plate. Trabecular thickness was significantly associated with osteocyte apoptosis rates and osteoclasts numbers were increased in subchondral bone tissues. While chondrocyte apoptosis rates in articular and growth plate cartilage were similar between groups, homozygous mitochondrial DNA mutator mice displayed elevated numbers of hypertrophic chondrocytes in articular calcified cartilage. Low grade cartilage degeneration, predominantly loss of proteoglycans, was present in all genotypes and the development of osteoarthritis features was not found accelerated in premature aging. Somatically acquired mitochondrial DNA mutations predispose to elevated subchondral bone turnover and hypertrophy in calcified cartilage, yet additional mechanical or metabolic stimuli would seem required for induction and accelerated progression of aging-associated osteoarthritis.
Collapse
Affiliation(s)
- Jeroen Geurts
- Department of Rheumatology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Sonia Nasi
- Department of Rheumatology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Pascal Distel
- Department of Biomedical Engineering, University Hospital of Basel, Basel, Switzerland
| | | | - Tomas A Prolla
- Departments of Genetics and Medical Genetics, University of Wisconsin, Madison, USA
| | - Gregory C Kujoth
- Departments of Genetics and Medical Genetics, University of Wisconsin, Madison, USA
| | - Ulrich A Walker
- Department of Rheumatology, University Hospital of Basel, Basel, Switzerland
| | - Thomas Hügle
- Department of Rheumatology, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| |
Collapse
|
50
|
Abstract
In this issue of Developmental Cell, Yao et al. (2019) disrupt mitochondrial respiration in limb skeletal progenitors by conditionally deleting Tfam in the mouse embryo. They discover that not only is mitochondrial respiration dispensable for embryonic cartilage development, but also its elimination obviates the need for Hif1α to promote chondrocyte survival under hypoxia.
Collapse
Affiliation(s)
- Fanxin Long
- Translational Research Program in Pediatric Orthopaedics, The Children's Hospital of Philadelphia; Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|