1
|
Diaz L, Bielczyk-Maczynska E. High-density lipoprotein cholesterol: how studying the 'good cholesterol' could improve cardiovascular health. Open Biol 2025; 15:240372. [PMID: 39965658 PMCID: PMC11835495 DOI: 10.1098/rsob.240372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
High cholesterol levels are associated with an increased risk of cardiovascular disease, specifically atherosclerosis, a leading cause of death worldwide. Atherosclerosis occurs when cholesterol and fat build up in plaques along blood vessel walls, restricting blood flow and preventing nutrients and oxygen from diffusing in and out of the bloodstream. High-density lipoprotein cholesterol (HDL) particles prevent the build-up of such plaques, removing excess cholesterol from the peripheral tissues and delivering it to the liver, where it can be removed from the body. This pathway is known as reverse cholesterol transport (RCT). Because HDL plays a key role in preventing plaque buildup, understanding how this molecule and RCT function in the body could help us develop much-needed new atherosclerosis therapies and prevention strategies. However, HDL metabolism is complex, and research on HDL has been less favoured than research investigating a much better-understood molecule, low-density lipoprotein cholesterol, as a treatment target. More specifically, the receptors involved in the process of taking up HDL within the liver and their relationships to one another, along with the mechanism of whole, or holoparticle uptake of HDL remain to be clarified. In this review, we discuss several outstanding mysteries in HDL metabolism, consider why previous clinical trials to improve cardiovascular health by modulating HDL levels have been unsuccessful and argue that understanding HDL metabolism is essential for crafting interventions to reduce cardiovascular disease risk.
Collapse
Affiliation(s)
- Lucy Diaz
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Ewa Bielczyk-Maczynska
- The Hormel Institute, University of Minnesota, Austin, MN, USA
- The Institute for Diabetes, Obesity, and Metabolism, University of Minnesota, Minneapolis, MN, USA
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Li Y, Liu R, Zhao Z. Targeting Brain Drug Delivery with Macromolecules Through Receptor-Mediated Transcytosis. Pharmaceutics 2025; 17:109. [PMID: 39861756 PMCID: PMC11769103 DOI: 10.3390/pharmaceutics17010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Brain diseases pose significant treatment challenges due to the restrictive nature of the blood-brain barrier (BBB). Recent advances in targeting macromolecules offer promising avenues for overcoming these obstacles through receptor-mediated transcytosis (RMT). We summarize the current progress in targeting brain drug delivery with macromolecules for brain diseases. This exploration details the transport mechanisms across the BBB, focusing on RMT and its use of natural ligands for drug delivery. Furthermore, the review examines macromolecular ligands such as antibodies, peptides, and aptamers that leverage RMT for effective BBB traversal. Advancements in macromolecules-based delivery systems for brain diseases are summarized, emphasizing their therapeutic potential and limitations. Finally, emerging RMT strategies, including viral vectors, exosomes, and boron neutron capture therapy, are discussed for their precision in brain-targeted treatments. This comprehensive overview underscores the potential of RMT-based approaches to revolutionize brain disease therapy.
Collapse
Affiliation(s)
- Yuanke Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - Ruiying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Zhen Zhao
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
3
|
Zahid R, Wang J, Cai Z, Ishtiaq A, Liu M, Ma D, Liang Y, Xu Y. Single chain fragment variable, a new theranostic approach for cardiovascular diseases. Front Immunol 2024; 15:1443290. [PMID: 39735545 PMCID: PMC11671482 DOI: 10.3389/fimmu.2024.1443290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/26/2024] [Indexed: 12/31/2024] Open
Abstract
Cardiovascular diseases (CVDs) remain a significant global health challenge, leading to substantial morbidity and mortality. Despite recent advancements in CVD management, pharmaceutical treatments often suffer from poor pharmacokinetics and high toxicity. With the rapid progress of modern molecular biology and immunology, however, single-chain fragment variable (scFv) molecule engineering has emerged as a promising theranostic tool to offer specificity and versatility in targeting CVD-related antigens. To represent the latest development on the potential of scFv in the context of CVDs, this review summarized the new mechanism of action and applications as therapeutic, as well as diagnostic agents. Furthermore, the advantages of scFv, including its small size, ease of modification, and ability to be engineered for enhanced affinity and specificity, are also described. Finally, such challenges as immunogenicity, stability, and scalability, alongside strategies to overcome these hurdles, are deeply scrutinized to provide safer and more effective strategies for the diagnosis and treatment of the incurable CVDs.
Collapse
Affiliation(s)
- Rukhshan Zahid
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, Anhui, China
| | - Juncheng Wang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, Anhui, China
| | - Zecheng Cai
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, Anhui, China
| | - Ayesha Ishtiaq
- College of Life Science, Anhui Normal University, Wuhu, Anhui, China
| | - Meng Liu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, Anhui, China
| | - Dan Ma
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, Anhui, China
| | - Yan Liang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, Anhui, China
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, Anhui, China
| |
Collapse
|
4
|
Tillison EA, Sahoo D. Sticky Business: Correlating Oligomeric Features of Class B Scavenger Receptors to Lipid Transport. Curr Atheroscler Rep 2024; 27:15. [PMID: 39630384 DOI: 10.1007/s11883-024-01260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 01/07/2025]
Abstract
PURPOSE OF THE REVIEW Atherosclerotic plaques result from imbalanced lipid metabolism and maladaptive chronic immune responses. Class B scavenger receptors are lipid transporters and regulators of their metabolism. The purpose of this review is to explore recent structural findings of these membrane-associated receptors, with particular focus on their higher-order oligomeric organization and impact on lipid transport. RECENT FINDINGS Class B scavenger receptors have evidence for oligomerization, with recent efforts placed on identifying residues and motifs responsible for mediating this process. The first studies correlating scavenger receptor oligomerization to function are described. This review highlights two emerging hypotheses regarding the function of scavenger receptor oligomerization. The first is a hydrophobic channel created by self-association of receptors to promote transport. The second hypothesis suggests that homo-oligomerization stabilizes receptors, prevents internalization and thereby promotes transport indirectly. Novel computational and in vitro experimental techniques with purified receptors are also described.
Collapse
Affiliation(s)
- Emma A Tillison
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Daisy Sahoo
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Division of Endocrinology & Molecular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- H4930 Health Research Center, Medical College of Wisconsin, 8701 W. Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
5
|
Dean HB, Greer RA, Yang S, Elston DS, Brett TJ, Roberson ED, Song Y. Multimerization of TREM2 is impaired by Alzheimer's disease-associated variants. Alzheimers Dement 2024; 20:6332-6350. [PMID: 39032157 PMCID: PMC11497687 DOI: 10.1002/alz.14124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 07/22/2024]
Abstract
INTRODUCTION The immune receptor triggering receptor expressed on myeloid cells 2 (TREM2) is among the strongest genetic risk factors for Alzheimer's disease (AD) and is a therapeutic target. TREM2 multimers have been identified in crystallography and implicated in the efficacy of antibody therapeutics; however, the molecular basis for TREM2 multimerization remains poorly understood. METHODS We used molecular dynamics simulations and binding energy analysis to determine the effects of AD-associated variants on TREM2 multimerization and validated with experimental results. RESULTS TREM2 trimers remained stably bound, driven primarily by salt bridge between residues D87 and R76 at the interface of TREM2 units. This salt bridge was disrupted by the AD-associated variants R47H and R98W and nearly ablated by the D87N variant. This decreased binding among TREM2 multimers was validated with co-immunoprecipitation assays. DISCUSSION This study uncovers a molecular basis for TREM2 forming stable trimers and unveils a novel mechanism by which TREM2 variants may increase AD risk by disrupting TREM2 oligomerization to impair TREM2 normal function. HIGHLIGHTS Triggering receptor expressed on myeloid cells 2 (TREM2) multimerization could regulate TREM2 activation and function. D87-R76 salt bridges at the interface of TREM2 units drive the formation of stable TREM2 dimers and trimers. Alzheimer's disease (AD)-associated R47H and R98W variants disrupt the D87-R76 salt bridge. The AD-associated D87N variant leads to complete loss of the D87-R76 salt bridge.
Collapse
Affiliation(s)
- Hunter B. Dean
- Department of Biomedical EngineeringSchool of EngineeringUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Alzheimer's Disease CenterCenter for Neurodegeneration and Experimental Therapeutics& Departments of Neurology and NeurobiologyMarnix E. Heersink School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Medical Scientist Training Program, Marnix E. Heersink School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Rory A. Greer
- Department of Biomedical EngineeringSchool of EngineeringUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Shan‐Zhong Yang
- Department of Biomedical EngineeringSchool of EngineeringUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Daniel S. Elston
- Alzheimer's Disease CenterCenter for Neurodegeneration and Experimental Therapeutics& Departments of Neurology and NeurobiologyMarnix E. Heersink School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Thomas J. Brett
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineDepartment of Biochemistry and Molecular BiophysicsHope Center for Neurological Disorders& Department of Cell Biology and PhysiologyWashington University School of Medicine, Washington University in St LouisSt. LouisMissouriUSA
| | - Erik D. Roberson
- Alzheimer's Disease CenterCenter for Neurodegeneration and Experimental Therapeutics& Departments of Neurology and NeurobiologyMarnix E. Heersink School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Yuhua Song
- Department of Biomedical EngineeringSchool of EngineeringUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
6
|
Zhou L, Ji S, Xue R, Tian Z, Wei M, Yuan X, Sun J, Ji H. Comparative analysis of Scarb1 and Cd36 in grass carp (Ctenopharyngodon idellus): Implications for DHA uptake. Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111025. [PMID: 39181181 DOI: 10.1016/j.cbpb.2024.111025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
The polyunsaturated fatty acid docosahexaenoic acid (DHA) significantly influences fish growth and lipid metabolism. Nevertheless, the specific mechanism by which DHA is transported and exerts its effects remains unclear. Scavenger receptor class B type I (SCARB1) is essential for maintaining cellular cholesterol levels and regulating the immune system in mammals, as well as facilitating the uptake of fatty acids (FAs). Another class B scavenger receptor, cluster-determinant 36 (CD36), is involved in promoting the uptake and transport of long-chain fatty acids. However, the molecular characteristics of the grass carp scarb1 gene have not yet been reported, and the potential role of Scarb1 and Cd36 in mediating DHA transport and metabolism remains uncertain. This study aimed to investigate the effects of Scarb1 and Cd36 on DHA transport. Initially, grass carp scarb1-1 and scarb1-2 were cloned. Predictions were made regarding their structural characteristics, including number and presence of transmembrane domains and glycosylation sites. Furthermore, gene structure analysis revealed that scarb1-1 has two additional exons in the 3'-region compared to scarb1-2. The multiple sequence alignment indicated that Scarb1 exhibits conserved motifs and amino acid residues across vertebrates. mRNA expression of scarb1-1 was the highest in the intestine, while scarb1-2 was highest expressed in adipose tissue, with both having lower expression levels in muscle tissue. Scarb1-1 was primarily localized on the cell membrane, whereas Scarb1-2 was found in both the cell membrane and cytoplasm. After overexpression of grass carp Scarb1-1, Scarb1-2, and Cd36 in HEK 293 T cells, DHA incubation showed that only Cd36 significantly increased cellular DHA relative content, suggesting a potential role of Cd36 in DHA transport. These findings will serve as a basis for further research on fatty acid transport in fish.
Collapse
Affiliation(s)
- Lu Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Shanghong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Rongrong Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Zhiqi Tian
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Mingkui Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xiangtong Yuan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jian Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
7
|
Fung KYY, Ho TWW, Xu Z, Neculai D, Beauchemin CAA, Lee WL, Fairn GD. Apolipoprotein A1 and high-density lipoprotein limit low-density lipoprotein transcytosis by binding SR-B1. J Lipid Res 2024; 65:100530. [PMID: 38479648 PMCID: PMC11004410 DOI: 10.1016/j.jlr.2024.100530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/09/2024] Open
Abstract
Atherosclerosis results from the deposition and oxidation of LDL and immune cell infiltration in the sub-arterial space leading to arterial occlusion. Studies have shown that transcytosis transports circulating LDL across endothelial cells lining blood vessels. LDL transcytosis is initiated by binding to either scavenger receptor B1 (SR-B1) or activin A receptor-like kinase 1 on the apical side of endothelial cells leading to its transit and release on the basolateral side. HDL is thought to partly protect individuals from atherosclerosis due to its ability to remove excess cholesterol and act as an antioxidant. Apolipoprotein A1 (APOA1), an HDL constituent, can bind to SR-B1, raising the possibility that APOA1/HDL can compete with LDL for SR-B1 binding, thereby limiting LDL deposition in the sub-arterial space. To examine this possibility, we used in vitro approaches to quantify the internalization and transcytosis of fluorescent LDL in coronary endothelial cells. Using microscale thermophoresis and affinity capture, we find that SR-B1 and APOA1 interact and that binding is enhanced when using the cardioprotective variant of APOA1 termed Milano (APOA1-Milano). In male mice, transiently increasing the levels of HDL reduced the acute deposition of fluorescently labeled LDL in the atheroprone inner curvature of the aorta. Reduced LDL deposition was also observed when increasing circulating wild-type APOA1 or the APOA1-Milano variant, with a more robust inhibition from the APOA1-Milano. The results suggest that HDL may limit SR-B1-mediated LDL transcytosis and deposition, adding to the mechanisms by which it can act as an atheroprotective particle.
Collapse
Affiliation(s)
- Karen Y Y Fung
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Tse Wing Winnie Ho
- Keenan Research Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Zizhen Xu
- Department of Cell Biology, and Department of Pathology Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dante Neculai
- Department of Cell Biology, and Department of Pathology Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Catherine A A Beauchemin
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada; Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS) program, RIKEN, Wako, Saitama, Japan
| | - Warren L Lee
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Gregory D Fairn
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
8
|
Glatz JFC, Heather LC, Luiken JJFP. CD36 as a gatekeeper of myocardial lipid metabolism and therapeutic target for metabolic disease. Physiol Rev 2024; 104:727-764. [PMID: 37882731 DOI: 10.1152/physrev.00011.2023] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023] Open
Abstract
The multifunctional membrane glycoprotein CD36 is expressed in different types of cells and plays a key regulatory role in cellular lipid metabolism, especially in cardiac muscle. CD36 facilitates the cellular uptake of long-chain fatty acids, mediates lipid signaling, and regulates storage and oxidation of lipids in various tissues with active lipid metabolism. CD36 deficiency leads to marked impairments in peripheral lipid metabolism, which consequently impact on the cellular utilization of multiple different fuels because of the integrated nature of metabolism. The functional presence of CD36 at the plasma membrane is regulated by its reversible subcellular recycling from and to endosomes and is under the control of mechanical, hormonal, and nutritional factors. Aberrations in this dynamic role of CD36 are causally associated with various metabolic diseases, in particular insulin resistance, diabetic cardiomyopathy, and cardiac hypertrophy. Recent research in cardiac muscle has disclosed the endosomal proton pump vacuolar-type H+-ATPase (v-ATPase) as a key enzyme regulating subcellular CD36 recycling and being the site of interaction between various substrates to determine cellular substrate preference. In addition, evidence is accumulating that interventions targeting CD36 directly or modulating its subcellular recycling are effective for the treatment of metabolic diseases. In conclusion, subcellular CD36 localization is the major adaptive regulator of cellular uptake and metabolism of long-chain fatty acids and appears a suitable target for metabolic modulation therapy to mend failing hearts.
Collapse
Affiliation(s)
- Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lisa C Heather
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
9
|
Li Y, Xiong Z, Jiang WL, Tian D, Zhou H, Hou Q, Xiao L, Zhang M, Huang L, Zhong L, Zhou L, Zeng GG. An innovative viewpoint on the existing and prospectiveness of SR-B1. Curr Probl Cardiol 2024; 49:102226. [PMID: 38040207 DOI: 10.1016/j.cpcardiol.2023.102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Scavenger Receptor Class B Type 1 (SR-B1), a receptor protein expressed on the cell membrane, plays a crucial role in the metabolism and transport of cholesterol and other lipids, contributing significantly to the homeostasis of lipid levels within the body. Bibliometric analysis involves the application of mathematical and statistical methods to quantitatively analyze different types of documents. It involves the analysis of structural and temporal trends in scholarly articles, coupled with the identification of subject emphasis and variations. Through a bibliometric analysis, this study examines the historical background, current research trends, and future directions in the exploration of SR-B1. By offering insights into the research status and development of SR-B1, this paper aims to assist researchers in identifying novel pathways and areas of investigation in this field of study. Following the screening process, it can be concluded that research on SR-B1 has consistently remained a topic of significant interest over the past 17 years. Interestingly, SR-B1 has recently garnered attention in areas beyond its traditional research focus, including the field of cancer. The primary objective of this review is to provide a concise and accessible overview of the development process of SR-B1 that can help readers who are not well-versed in SR-B1 research quickly grasp its key aspects. Furthermore, this review aims to offer insights and suggestions to researchers regarding potential future research directions and areas of emphasis relating to SR-B1.
Collapse
Affiliation(s)
- Yonggui Li
- The Second Affiliated Hospital, Department of Digestive Internal Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhijie Xiong
- The Second Affiliated Hospital, Department of Digestive Internal Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wan-Li Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Dandan Tian
- School of Nursing, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Haiyou Zhou
- The Second Affiliated Hospital, Department of Digestive Internal Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Qin Hou
- Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Liang Xiao
- The Second Affiliated Hospital, Department of Digestive Internal Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Mengjie Zhang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Liubin Huang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Lianping Zhong
- The Second Affiliated Hospital, Department of Digestive Internal Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Gastroenterology, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Li Zhou
- Department of Pathology, Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing, China
| | - Guang-Gui Zeng
- The Second Affiliated Hospital, Department of Digestive Internal Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
10
|
Vieyres G, Pietschmann T. The role of human lipoproteins for hepatitis C virus persistence. Curr Opin Virol 2023; 60:101327. [PMID: 37031484 DOI: 10.1016/j.coviro.2023.101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/23/2023] [Accepted: 03/05/2023] [Indexed: 04/11/2023]
Abstract
Hepatitis C virus (HCV) is a hepatotropic virus that establishes a chronic infection in most individuals. Effective treatments are available; however, many patients are not aware of their infection. Consequently, they do not receive treatment and HCV transmission remains high, particularly among groups at high risk of exposure such as people who inject intravenous drugs. A prophylactic vaccine may reduce HCV transmission, but is currently not available. HCV has evolved immune evasion strategies, which facilitate persistence and complicate development of a protective vaccine. The peculiar association of HCV particles with human lipoproteins is thought to facilitate evasion from humoral immune response and viral homing to liver cells. A better understanding of these aspects provides the basis for development of protective vaccination strategies. Here, we review key information about the composition of HCV particles, the mechanisms mediating lipoprotein incorporation, and the functional consequences of this interaction.
Collapse
Affiliation(s)
- Gabrielle Vieyres
- Leibniz Institute of Virology, Hamburg, Germany; Integrative Analysis of Pathogen-Induced Compartments, Leibniz ScienceCampus InterACt, Hamburg, Germany
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany.
| |
Collapse
|
11
|
Abstract
Most cholesterol in mammalian cells is stored in the plasma membrane (PM). Cholesterol transport from the PM to low-sterol regulatory regions of the endoplasmic reticulum (ER) controls cholesterol synthesis and uptake, and thereby influences the rates of cholesterol flux between tissues of complex organisms. Cholesterol transfer to the ER is also required for steroidogenesis, oxysterol and bile acid synthesis, and cholesterol esterification. The ER-resident Aster proteins (Aster-A, -B, and -C) form contacts with the PM to move cholesterol to the ER in mammals. Mice lacking Aster-B have low adrenal cholesteryl ester stores and impaired steroidogenesis because of a defect in cholesterol transport from high-density lipoprotein (HDL) to the ER. This work reviews the molecular characteristics of Asters, their role in HDL- and low-density lipoprotein (LDL)-cholesterol movement, and how cholesterol transferred to the ER is utilized by cells. The roles of other lipid transporters and of membrane lipid organization in maintaining aspects of cholesterol homeostasis are also highlighted.
Collapse
Affiliation(s)
- John P Kennelly
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
12
|
Yuan J, Lv T, Yang J, Wu Z, Yan L, Yang J, Shi Y, Jiang L. HDLBP Promotes Hepatocellular Carcinoma Proliferation and Sorafenib Resistance by Suppressing Trim71-dependent RAF1 Degradation. Cell Mol Gastroenterol Hepatol 2023; 15:307-325. [PMID: 36244648 PMCID: PMC9772558 DOI: 10.1016/j.jcmgh.2022.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS The contribution of abnormal metabolic targets to hepatocellular carcinoma (HCC) progression and the associated regulatory mechanisms are attractive research areas. High-density lipoprotein binding protein (HDLBP) is an important transporter that protects cells from excessive cholesterol accumulation, but few studies have identified a role for HDLBP in HCC progression. METHODS HDLBP expression was determined in HCC tissues and published datasets. The biological roles of HDLBP in vitro and in vivo were examined by performing a series of functional experiments. RESULTS An integrated analysis confirmed that HDLBP expression was significantly elevated in HCC compared with noncancerous liver tissues. The knockdown or overexpression of HDLBP substantially inhibited or enhanced, respectively, HCC proliferation and sorafenib resistance. Subsequently, a mass spectrometry screen identified RAF1 as a potential downstream target of HDLBP. Mechanistically, when RAF1 was stabilized by HDLBP, MEKK1 continuously induced RAF1Ser259-dependent MAPK signaling. Meanwhile, HDLBP interacted with RAF1 by competing with the TRIM71 E3 ligase and inhibited RAF1 degradation through the ubiquitin-proteasome pathway. CONCLUSIONS Our study reveals that HDLBP is an important mediator that stabilizes the RAF1 protein and maintains its activity, leading to HCC progression and sorafenib resistance. Thus, HDLBP might represent a potential biomarker and future therapeutic target for HCC.
Collapse
Affiliation(s)
- Jingsheng Yuan
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Lv
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, China
| | - Jian Yang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, China
| | - Zhenru Wu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, China
| | - Lvnan Yan
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, China
| | - Jiayin Yang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, China.
| | - Yujun Shi
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, China; Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, China.
| | - Li Jiang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Yuan J, Lv T, Yang J, Wu Z, Yan L, Yang J, Shi Y, Jiang L. The lipid transporter HDLBP promotes hepatocellular carcinoma metastasis through BRAF-dependent epithelial-mesenchymal transition. Cancer Lett 2022; 549:215921. [PMID: 36122630 DOI: 10.1016/j.canlet.2022.215921] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
Tumor metastasis is a major cause of cancer mortality. However, little is known regarding the regulation of abnormal cholesterol metabolism in hepatocellular carcinoma (HCC) metastasis. Here, we show that the expression of high-density lipoprotein binding protein (HDLBP), a lipid transporter, is clinically correlated with tumor metastasis in HCC patients. Moreover, HDLBP was required for cholesterol-induced HCC metastasis. We revealed that knockdown and overexpression of HDLBP significantly inhibited and enhanced, respectively, the metastasis, invasion and epithelial-mesenchymal transition (EMT) of HCC cells in vitro and in vivo. Mechanistically, coimmunoprecipitation and mass spectrometry screening uncovered BRAF as a protein target of HDLBP. HDLBP was found to promote EMT signaling in a BRAF-dependent manner. Furthermore, HDLBP interacts with BRAF and inhibits its ubiquitinated degradation by abrogating BRAF-ITCH interactions. Notably, further studies suggest that dabrafenib exhibited a greater metastasis-suppressive effect in HDLBP knockout HCC than isolated treatment. Overall, our findings imply that cholesterol-induced HDLBP contributes to the metastasis and invasion of HCC through BRAF-dependent EMT signaling and that HDLBP may be applied as a biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Jingsheng Yuan
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Tao Lv
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jian Yang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Zhenru Wu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Lvnan Yan
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jiayin Yang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Yujun Shi
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Li Jiang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, 610041, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
May SC, Sahoo D. A short amphipathic alpha helix in scavenger receptor BI facilitates bidirectional HDL-cholesterol transport. J Biol Chem 2022; 298:102333. [PMID: 35926711 PMCID: PMC9436806 DOI: 10.1016/j.jbc.2022.102333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/24/2022] Open
Abstract
During reverse cholesterol transport, high-density lipoprotein (HDL) carries excess cholesterol from peripheral cells to the liver for excretion in bile. The first and last steps of this pathway involve the HDL receptor, scavenger receptor BI (SR-BI). While the mechanism of SR-BI-mediated cholesterol transport has not yet been established, it has long been suspected that cholesterol traverses through a hydrophobic tunnel in SR-BI’s extracellular domain. Confirmation of a hydrophobic tunnel is hindered by the lack of a full-length SR-BI structure. Part of SR-BI’s structure has been resolved, encompassing residues 405 to 475, which includes the C-terminal transmembrane domain and its adjacent extracellular region. Within the extracellular segment is an amphipathic helix (residues 427–436, referred to as AH(427–436)) that showed increased protection from solvent in NMR-based studies. Homology models predict that hydrophobic residues in AH(427–436) line a core cavity in SR-BI’s extracellular region that may facilitate cholesterol transport. Therefore, we hypothesized that hydrophobic residues in AH(427–436) are required for HDL cholesterol transport. Here, we tested this hypothesis by mutating individual residues along AH(427–436) to a charged residue (aspartic acid), transiently transfecting COS-7 cells with plasmids encoding wild-type and mutant SR-BI, and performing functional analyses. We found that mutating hydrophobic, but not hydrophilic, residues in AH(427–436) impaired SR-BI bidirectional cholesterol transport. Mutating phenylalanine-430 was particularly detrimental to SR-BI’s functions, suggesting that this residue may facilitate important interactions for cholesterol delivery within the hydrophobic tunnel. Our results support the hypothesis that a hydrophobic tunnel within SR-BI mediates cholesterol transport.
Collapse
Affiliation(s)
- Sarah C May
- Department of Medicine, Division of Endocrinology & Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Daisy Sahoo
- Department of Medicine, Division of Endocrinology & Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Scavenger receptor class B type 1 (SR-B1) promotes atheroprotection through its role in HDL metabolism and reverse cholesterol transport in the liver. However, evidence indicates that SR-B1 may impact atherosclerosis through nonhepatic mechanisms. RECENT FINDINGS Recent studies have brought to light various mechanisms by which SR-B1 affects lesional macrophage function and protects against atherosclerosis. Efferocytosis is efficient in early atherosclerotic lesions. At this stage, and beyond its role in cholesterol efflux, SR-B1 promotes free cholesterol-induced apoptosis of macrophages through its control of apoptosis inhibitor of macrophage (AIM). At more advanced stages, macrophage SR-B1 binds and mediates the removal of apoptotic cells. SR-B1 also participates in the induction of autophagy which limits necrotic core formation and increases plaque stability. SUMMARY These studies shed new light on the atheroprotective role of SR-B1 by emphasizing its essential contribution in macrophages during atherogenesis as a function of lesion stages. These new findings suggest that macrophage SR-B1 is a therapeutic target in cardiovascular disease.
Collapse
Affiliation(s)
- Thierry Huby
- Sorbonne Universités, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Paris, France
| | | |
Collapse
|
16
|
Juhl AD, Wüstner D. Pathways and Mechanisms of Cellular Cholesterol Efflux-Insight From Imaging. Front Cell Dev Biol 2022; 10:834408. [PMID: 35300409 PMCID: PMC8920967 DOI: 10.3389/fcell.2022.834408] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/04/2022] [Indexed: 12/24/2022] Open
Abstract
Cholesterol is an essential molecule in cellular membranes, but too much cholesterol can be toxic. Therefore, mammalian cells have developed complex mechanisms to remove excess cholesterol. In this review article, we discuss what is known about such efflux pathways including a discussion of reverse cholesterol transport and formation of high-density lipoprotein, the function of ABC transporters and other sterol efflux proteins, and we highlight their role in human diseases. Attention is paid to the biophysical principles governing efflux of sterols from cells. We also discuss recent evidence for cholesterol efflux by the release of exosomes, microvesicles, and migrasomes. The role of the endo-lysosomal network, lipophagy, and selected lysosomal transporters, such as Niemann Pick type C proteins in cholesterol export from cells is elucidated. Since oxysterols are important regulators of cellular cholesterol efflux, their formation, trafficking, and secretion are described briefly. In addition to discussing results obtained with traditional biochemical methods, focus is on studies that use established and novel bioimaging approaches to obtain insight into cholesterol efflux pathways, including fluorescence and electron microscopy, atomic force microscopy, X-ray tomography as well as mass spectrometry imaging.
Collapse
Affiliation(s)
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, PhyLife, Physical Life Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
17
|
Hinuma S, Kuroda S. Binding of Hepatitis B Virus Pre-S1 Domain-Derived Synthetic Myristoylated Peptide to Scavenger Receptor Class B Type 1 with Differential Properties from Sodium Taurocholate Cotransporting Polypeptide. Viruses 2022; 14:v14010105. [PMID: 35062309 PMCID: PMC8780415 DOI: 10.3390/v14010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The myristoylated pre-S1 peptide (Myr47) synthesized to mimic pre-S1 domain (2-48) in large (L) surface protein of hepatitis B virus (HBV) prevents HBV infection to hepatocytes by binding to sodium taurocholate cotransporting polypeptide (NTCP). We previously demonstrated that yeast-derived nanoparticles containing L protein (bio-nanocapsules: BNCs) bind scavenger receptor class B type 1 (SR-B1). In this study, we examined the binding of Mry47 to SR-B1. (2) Methods: The binding and endocytosis of fluorescence-labeled Myr47 to SR-B1 (and its mutants)-green fluorescence protein (GFP) fusion proteins expressed in HEK293T cells were analyzed using flow cytometry and laser scanning microscopy (LSM). Various ligand-binding properties were compared between SR-B1-GFP and NTCP-GFP. Furthermore, the binding of biotinylated Myr47 to SR-B1-GFP expressed on HEK293T cells was analyzed via pull-down assays using a crosslinker and streptavidin-conjugated beads. (3) Conclusions: SR-B1 bound not only Myr47 but also its myristoylated analog and BNCs, but failed to bind a peptide without myristoylation. However, NTCP only bound Myr47 among the ligands tested. Studies using SR-B1 mutants suggested that both BNCs and Myr47 bind to similar sites of SR-B1. Crosslinking studies indicated that Myr47 binds preferentially SR-B1 multimer than monomer in both HEK293T and HepG2 cells.
Collapse
|
18
|
Powers HR, Sahoo D. SR-B1's Next Top Model: Structural Perspectives on the Functions of the HDL Receptor. Curr Atheroscler Rep 2022; 24:277-288. [PMID: 35107765 PMCID: PMC8809234 DOI: 10.1007/s11883-022-01001-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 02/04/2023]
Abstract
PURPOSE OF REVIEW The binding of high-density lipoprotein (HDL) to its primary receptor, scavenger receptor class B type 1 (SR-B1), is critical for lowering plasma cholesterol levels and reducing cardiovascular disease risk. This review provides novel insights into how the structural elements of SR-B1 drive efficient function with an emphasis on bidirectional cholesterol transport. RECENT FINDINGS We have generated a new homology model of full-length human SR-B1 based on the recent resolution of the partial structures of other class B scavenger receptors. Interrogating this model against previously published observations allows us to generate structurally informed hypotheses about SR-B1's ability to mediate HDL-cholesterol (HDL-C) transport. Furthermore, we provide a structural perspective as to why human variants of SR-B1 may result in impaired HDL-C clearance. A comprehensive understanding of SR-B1's structure-function relationships is critical to the development of therapeutic agents targeting SR-B1 and modulating cardiovascular disease risk.
Collapse
Affiliation(s)
- Hayley R. Powers
- grid.30760.320000 0001 2111 8460Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI USA
| | - Daisy Sahoo
- grid.30760.320000 0001 2111 8460Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI USA ,grid.30760.320000 0001 2111 8460Department of Medicine, Division of Endocrinology & Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI USA ,grid.30760.320000 0001 2111 8460Cardiovascular Center, H4930 Health Research Center, Medical College of Wisconsin, 8701 W. Watertown Plank Road, Milwaukee, WI 53226 USA
| |
Collapse
|
19
|
Xu J, Guo Y, Huang X, Ma X, Li P, Wang Y, Wang X, Yuan L. Effects of DHA dietary intervention on hepatic lipid metabolism in apolipoprotein E-deficient and C57BL/6J wild-type mice. Biomed Pharmacother 2021; 144:112329. [PMID: 34653759 DOI: 10.1016/j.biopha.2021.112329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 02/08/2023] Open
Abstract
Lipid metabolic disorder occurs when ApoE gene is deficient. However, the role of Docosahexaenoic acid (DHA) in relieving hepatic lipid metabolic disorder in apolipoprotein E-deficient (ApoE -/-) mice remains unknown. We fed 3-month-old C57BL/6J wild-type (C57 wt) and ApoE -/- mice respectively with normal or DHA fortified diet for 5 months. We found ApoE gene deficiency caused hepatic lipid deposition and increased lipid levels in plasma and liver. Hepatic gene expression of SRB1, CD36 and FABP5 in ApoE -/- mice, protein expression of HMGCR, LRP1 in C57 wt mice and protein expression of LRP1 in ApoE -/- mice increased after DHA intervention. In DHA-fed ApoE -/- mice, LXRα/β and PPARα protein expression down-regulated in cytoplasm, but LXRα/β protein expression up-regulated in nucleus. DHA treatment decreased RXRα and RXRβ expression in C57 wt and ApoE -/- female mice. Deletion of ApoE gene caused lipid metabolism disorder in liver of mice. DHA treatment efficiently meliorated lipid metabolism caused by ApoE deficient through the regulation of gene and protein expressions of molecules involved in liver fatty acids transport and lipid metabolism.
Collapse
Affiliation(s)
- Jingjing Xu
- School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Yujie Guo
- School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Xiaochen Huang
- School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Xiaojun Ma
- School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Pengfei Li
- School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Ying Wang
- The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, PR China
| | - Xixiang Wang
- School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Linhong Yuan
- School of Public Health, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
20
|
Xu H, Thomas MJ, Kaul S, Kallinger R, Ouweneel AB, Maruko E, Oussaada SM, Jongejan A, Cense HA, Nieuwdorp M, Serlie MJ, Goldberg IJ, Civelek M, Parks BW, Lusis AJ, Knaack D, Schill RL, May SC, Reho JJ, Grobe JL, Gantner B, Sahoo D, Sorci-Thomas MG. Pcpe2, a Novel Extracellular Matrix Protein, Regulates Adipocyte SR-BI-Mediated High-Density Lipoprotein Uptake. Arterioscler Thromb Vasc Biol 2021; 41:2708-2725. [PMID: 34551590 PMCID: PMC8551036 DOI: 10.1161/atvbaha.121.316615] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/24/2021] [Indexed: 01/22/2023]
Abstract
Objective To investigate the role of adipocyte Pcpe2 (procollagen C-endopeptidase enhancer 2) in SR-BI (scavenger receptor class BI)-mediated HDL-C (high-density lipoprotein cholesterol) uptake and contributions to adipose lipid storage. Approach and Results Pcpe2, a glycoprotein devoid of intrinsic proteolytic activity, is believed to participate in extracellular protein-protein interactions, supporting SR-BI- mediated HDL-C uptake. In published studies, Pcpe2 deficiency increased the development of atherosclerosis by reducing SR-BI-mediated HDL-C catabolism, but the biological impact of this deficiency on adipocyte SR-BI-mediated HDL-C uptake is unknown. Differentiated cells from Ldlr-/-/Pcpe2-/- (Pcpe2-/-) mouse adipose tissue showed elevated SR-BI protein levels, but significantly reduced HDL-C uptake compared to Ldlr-/- (control) adipose tissue. SR-BI-mediated HDL-C uptake was restored by preincubation of cells with exogenous Pcpe2. In diet-fed mice lacking Pcpe2, significant reductions in visceral, subcutaneous, and brown adipose tissue mass were observed, despite elevations in plasma triglyceride and cholesterol concentrations. Significant positive correlations exist between adipose mass and Pcpe2 expression in both mice and humans. Conclusions Overall, these findings reveal a novel and unexpected function for Pcpe2 in modulating SR-BI expression and function as it relates to adipose tissue expansion and cholesterol balance in both mice and humans.
Collapse
Affiliation(s)
- Hao Xu
- Department of Medicine, Division of Endocrinology and Molecular Medicine
| | - Michael J. Thomas
- Pharmacology & Toxicology and
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sushma Kaul
- Department of Medicine, Division of Endocrinology and Molecular Medicine
| | | | - Amber B. Ouweneel
- Department of Medicine, Division of Endocrinology and Molecular Medicine
| | - Elisa Maruko
- Department of Medicine, Division of Endocrinology and Molecular Medicine
| | - Sabrina M. Oussaada
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
| | - Aldo Jongejan
- Department of Bioinformatics, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
| | - Huib A. Cense
- Department of Surgery, Rode Kruis Ziekenhuis, Beverwijk, the Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
| | - Mireille J. Serlie
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
| | - Ira J. Goldberg
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University Langone School of Medicine, New York, NY
| | - Mete Civelek
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Brian W. Parks
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | - Aldons J. Lusis
- Department of Medicine, Human Genetics, Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, California
| | - Darcy Knaack
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Rebecca L. Schill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sarah C. May
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - John J. Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Comprehensive Rodent Metabolic Phenotyping Core
| | - Justin L. Grobe
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Comprehensive Rodent Metabolic Phenotyping Core
- Department of Biomedical Engineering
| | - Benjamin Gantner
- Department of Medicine, Division of Endocrinology and Molecular Medicine
| | - Daisy Sahoo
- Department of Medicine, Division of Endocrinology and Molecular Medicine
- Pharmacology & Toxicology and
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mary G. Sorci-Thomas
- Department of Medicine, Division of Endocrinology and Molecular Medicine
- Pharmacology & Toxicology and
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
21
|
Trigatti BL. Pcpe2: A New Partner for the Scavenger Receptor Class B Type I in High-Density Lipoprotein Selective Lipid Uptake. Arterioscler Thromb Vasc Biol 2021; 41:2726-2729. [PMID: 34615373 DOI: 10.1161/atvbaha.121.316971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Bernardo L Trigatti
- Department of Biochemistry and Biomedical Sciences, Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
22
|
Abstract
Plasma HDL-cholesterol concentrations correlate negatively with the risk of atherosclerotic cardiovascular disease (ASCVD). According to a widely cited model, HDL elicits its atheroprotective effect through its role in reverse cholesterol transport, which comprises the efflux of cholesterol from macrophages to early forms of HDL, followed by the conversion of free cholesterol (FCh) contained in HDL into cholesteryl esters, which are hepatically extracted from the plasma by HDL receptors and transferred to the bile for intestinal excretion. Given that increasing plasma HDL-cholesterol levels by genetic approaches does not reduce the risk of ASCVD, the focus of research has shifted to HDL function, especially in the context of macrophage cholesterol efflux. In support of the reverse cholesterol transport model, several large studies have revealed an inverse correlation between macrophage cholesterol efflux to plasma HDL and ASCVD. However, other studies have cast doubt on the underlying reverse cholesterol transport mechanism: in mice and humans, the FCh contained in HDL is rapidly cleared from the plasma (within minutes), independently of esterification and HDL holoparticle uptake by the liver. Moreover, the reversibility of FCh transfer between macrophages and HDL has implicated the reverse process - that is, the transfer of FCh from HDL to macrophages - in the aetiology of increased ASCVD under conditions of very high plasma HDL-FCh concentrations.
Collapse
|
23
|
Levic DS, Yamaguchi N, Wang S, Knaut H, Bagnat M. Knock-in tagging in zebrafish facilitated by insertion into non-coding regions. Development 2021; 148:dev199994. [PMID: 34495314 PMCID: PMC8513609 DOI: 10.1242/dev.199994] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022]
Abstract
Zebrafish provide an excellent model for in vivo cell biology studies because of their amenability to live imaging. Protein visualization in zebrafish has traditionally relied on overexpression of fluorescently tagged proteins from heterologous promoters, making it difficult to recapitulate endogenous expression patterns and protein function. One way to circumvent this problem is to tag the proteins by modifying their endogenous genomic loci. Such an approach is not widely available to zebrafish researchers because of inefficient homologous recombination and the error-prone nature of targeted integration in zebrafish. Here, we report a simple approach for tagging proteins in zebrafish on their N or C termini with fluorescent proteins by inserting PCR-generated donor amplicons into non-coding regions of the corresponding genes. Using this approach, we generated endogenously tagged alleles for several genes that are crucial for epithelial biology and organ development, including the tight junction components ZO-1 and Cldn15la, the trafficking effector Rab11a, the apical polarity protein aPKC and the ECM receptor Integrin β1b. Our approach facilitates the generation of knock-in lines in zebrafish, opening the way for accurate quantitative imaging studies.
Collapse
Affiliation(s)
- Daniel S. Levic
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Naoya Yamaguchi
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, Department of Cell Biology, New York, NY 10016, USA
| | - Siyao Wang
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, Department of Cell Biology, New York, NY 10016, USA
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
24
|
Hinuma S, Fujita K, Kuroda S. Binding of Nanoparticles Harboring Recombinant Large Surface Protein of Hepatitis B Virus to Scavenger Receptor Class B Type 1. Viruses 2021; 13:v13071334. [PMID: 34372540 PMCID: PMC8310236 DOI: 10.3390/v13071334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 12/28/2022] Open
Abstract
(1) Background: As nanoparticles containing the hepatitis B virus (HBV) large (L) surface protein produced in yeast are expected to be useful as a carrier for targeting hepatocytes, they are also referred to as bio-nanocapsules (BNCs). However, a definitive cell membrane receptor for BNC binding has not yet been identified. (2) Methods: By utilizing fluorescence-labeled BNCs, we examined BNC binding to the scavenger receptor class B type 1 (SR-B1) expressed in HEK293T cells. (3) Results: Analyses employing SR-B1 siRNA and expression of SR-B1 fused with a green fluorescent protein (SR-B1-GFP) indicated that BNCs bind to SR-B1. As mutagenesis induced in the SR-B1 extracellular domain abrogates or attenuates BNC binding and endocytosis via SR-B1 in HEK293T cells, it was suggested that the ligand-binding site of SR-B1 is similar or close among high-density lipoprotein (HDL), silica, liposomes, and BNCs. On the other hand, L protein was suggested to attenuate an interaction between phospholipids and SR-B1. (4) Conclusions: SR-B1 can function as a receptor for binding and endocytosis of BNCs in HEK293T cells. Being expressed various types of cells, it is suggested that functions as a receptor for BNCs not only in HEK293T cells but also in other types of cells.
Collapse
Affiliation(s)
- Shuji Hinuma
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki 567-0047, Osaka, Japan
- Correspondence: (S.H.); (S.K.)
| | - Kazuyo Fujita
- Faculty of Human Life Science, Senri Kinran University, Fujisirodai 5-25-1, Suita 565-0873, Osaka, Japan;
| | - Shun’ichi Kuroda
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki 567-0047, Osaka, Japan
- Correspondence: (S.H.); (S.K.)
| |
Collapse
|
25
|
Gracia-Rubio I, Martín C, Civeira F, Cenarro A. SR-B1, a Key Receptor Involved in the Progression of Cardiovascular Disease: A Perspective from Mice and Human Genetic Studies. Biomedicines 2021; 9:biomedicines9060612. [PMID: 34072125 PMCID: PMC8229968 DOI: 10.3390/biomedicines9060612] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022] Open
Abstract
High plasma level of low-density lipoprotein (LDL) is the main driver of the initiation and progression of cardiovascular disease (CVD). Nevertheless, high-density lipoprotein (HDL) is considered an anti-atherogenic lipoprotein due to its role in reverse cholesterol transport and its ability to receive cholesterol that effluxes from macrophages in the artery wall. The scavenger receptor B class type 1 (SR-B1) was identified as the high-affinity HDL receptor, which facilitates the selective uptake of cholesterol ester (CE) into the liver via HDL and is also implicated in the plasma clearance of LDL, very low-density lipoprotein (VLDL) and lipoprotein(a) (Lp(a)). Thus, SR-B1 is a multifunctional receptor that plays a main role in the metabolism of different lipoproteins. The aim of this review is to highlight the association between SR-B1 and CVD risk through mice and human genetic studies.
Collapse
Affiliation(s)
- Irene Gracia-Rubio
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain; (F.C.); (A.C.)
- Correspondence: or ; Tel.: +34-976-765-500 (ext. 142895)
| | - César Martín
- Instituto Biofisika (UPV/EHU, CSIC) y Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco UPB/EHU, 48940 Bilbao, Spain;
| | - Fernando Civeira
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain; (F.C.); (A.C.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto Salud Carlos III, 28029 Madrid, Spain
- Departamento de Medicina, Psiquiatría y Dermatología, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Ana Cenarro
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain; (F.C.); (A.C.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto Salud Carlos III, 28029 Madrid, Spain
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
| |
Collapse
|
26
|
Binding of liposomes composed of phosphatidylcholine to scavenger receptor class B type 1 and its modulation by phosphatidic acid in HEK293T cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119043. [PMID: 33862056 DOI: 10.1016/j.bbamcr.2021.119043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 12/29/2022]
Abstract
In this study, we developed a method to analyze liposomal binding to a cell membrane receptor using fluorescence-labeled liposomes and demonstrated that scavenger class B type 1 (SR-B1) plays a crucial role in binding of liposomes containing phosphatidylcholine (PC) to HEK293T cell membrane and phosphatidic acid (PA) can modulate it. Site-directed mutagenesis of SR-B1 revealed that S112F and T175A mutations in its ectodomain abrogated binding and endocytosis of PC liposomes in HEK293T cells. K151A and K156A mutations attenuated their binding and endocytosis too. Although the effects of mutations on binding and endocytosis were similar between PC liposomes and PC/PA and PA liposomes, SR-B1 dependency appeared to be PC > PC/PA > PA liposomes. Our data indicate that (i) nanoparticles including high-density lipoprotein (HDL), silica, and liposomes bind to a common or close site of SR-B1, and (ii) PC/PA and PA liposomes bind not only to SR-B1 but also other receptor(s) in HEK293T cells. In addition, PC/PA liposomes induced lipid droplet (LD) formation in HEK293T cells more than PC liposomes. Treatment of HEK293T cells with SR-B1 siRNA suppressed PC/PA liposome-induced LD formation. Taken together, our results demonstrate that SR-B1 plays an essential role in binding PC-containing liposomes and the subsequent induction of cellular responses, while PA can modulate them.
Collapse
|
27
|
May SC, Dron JS, Hegele RA, Sahoo D. Human variant of scavenger receptor BI (R174C) exhibits impaired cholesterol transport functions. J Lipid Res 2021; 62:100045. [PMID: 33577783 PMCID: PMC7985710 DOI: 10.1016/j.jlr.2021.100045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/22/2021] [Indexed: 11/29/2022] Open
Abstract
HDL and its primary receptor, scavenger receptor class B type I (SR-BI), work together to promote the clearance of excess plasma cholesterol, thereby protecting against atherosclerosis. Human variants of SR-BI have been identified in patients with high HDL-cholesterol levels, and at least one variant has been linked to cardiovascular disease. Therefore, while often regarded as beneficial, very high levels of HDL-cholesterol may result from impaired cholesterol clearance through SR-BI and contribute to cardiovascular risk. In this study, we characterized the function of a rare human variant of SR-BI, resulting in the substitution of arginine-174 with cysteine (R174C), which was previously identified in a heterozygous individual with high levels of HDL-cholesterol. We hypothesized that the R174C-SR-BI variant has impaired cholesterol transport functions, which were assessed in COS-7 cells after transient transfection with full-length WT or R174C-SR-BI. Although R174C-SR-BI was expressed at levels comparable to the WT receptor, HDL binding, cholesteryl hexadecyl ether uptake, free cholesterol efflux, and modulation of membrane cholesterol were disrupted in the presence of R174C-SR-BI. We further examined the role of salt bridges as a potential mechanism for R174C-SR-BI dysfunction. If translatable, this human variant could lead to increased plasma HDL-cholesterol levels, impaired cholesterol clearance, and increased cardiovascular disease risk.
Collapse
Affiliation(s)
- Sarah C May
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jacqueline S Dron
- Robarts Research Institute, Western University, London, Ontario, Canada; Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Robert A Hegele
- Robarts Research Institute, Western University, London, Ontario, Canada; Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Daisy Sahoo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
28
|
Abumrad NA, Cabodevilla AG, Samovski D, Pietka T, Basu D, Goldberg IJ. Endothelial Cell Receptors in Tissue Lipid Uptake and Metabolism. Circ Res 2021; 128:433-450. [PMID: 33539224 DOI: 10.1161/circresaha.120.318003] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lipid uptake and metabolism are central to the function of organs such as heart, skeletal muscle, and adipose tissue. Although most heart energy derives from fatty acids (FAs), excess lipid accumulation can cause cardiomyopathy. Similarly, high delivery of cholesterol can initiate coronary artery atherosclerosis. Hearts and arteries-unlike liver and adrenals-have nonfenestrated capillaries and lipid accumulation in both health and disease requires lipid movement from the circulation across the endothelial barrier. This review summarizes recent in vitro and in vivo findings on the importance of endothelial cell receptors and uptake pathways in regulating FAs and cholesterol uptake in normal physiology and cardiovascular disease. We highlight clinical and experimental data on the roles of ECs in lipid supply to tissues, heart, and arterial wall in particular, and how this affects organ metabolism and function. Models of FA uptake into ECs suggest that receptor-mediated uptake predominates at low FA concentrations, such as during fasting, whereas FA uptake during lipolysis of chylomicrons may involve paracellular movement. Similarly, in the setting of an intact arterial endothelial layer, recent and historic data support a role for receptor-mediated processes in the movement of lipoproteins into the subarterial space. We conclude with thoughts on the need to better understand endothelial lipid transfer for fuller comprehension of the pathophysiology of hyperlipidemia, and lipotoxic diseases such as some forms of cardiomyopathy and atherosclerosis.
Collapse
Affiliation(s)
- Nada A Abumrad
- Division of Nutritional Sciences, Department of Medicine, Washington University School of Medicine, Saint Louis, MO (N.A.A., D.S., T.P.)
| | - Ainara G Cabodevilla
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine (A.G.C., D.B., I.J.G.)
| | - Dmitri Samovski
- Division of Nutritional Sciences, Department of Medicine, Washington University School of Medicine, Saint Louis, MO (N.A.A., D.S., T.P.)
| | - Terri Pietka
- Division of Nutritional Sciences, Department of Medicine, Washington University School of Medicine, Saint Louis, MO (N.A.A., D.S., T.P.)
| | - Debapriya Basu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine (A.G.C., D.B., I.J.G.)
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine (A.G.C., D.B., I.J.G.)
| |
Collapse
|
29
|
Alberts A, Klingberg A, Hoffmeister L, Wessig AK, Brand K, Pich A, Neumann K. Binding of Macrophage Receptor MARCO, LDL, and LDLR to Disease-Associated Crystalline Structures. Front Immunol 2020; 11:596103. [PMID: 33363539 PMCID: PMC7753766 DOI: 10.3389/fimmu.2020.596103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Endogenous and exogenous crystalline structures are involved in various pathologies and diseases in humans by inducing sterile inflammation, mechanical stress, or obstruction of excretory organs. The best studied of these diseases is gout, in which crystallization of uric acid in the form of monosodium urate (MSU) mainly in synovial fluid of the joints leads to sterile inflammation. Though some of these diseases have been described for centuries, little is known about if and how the immune system recognizes the associated crystals. Thus, in this study we aimed at identifying possible recognition molecules of MSU using liquid chromatography-mass spectrometry (LC-MS) analysis of MSU-binding serum proteins. Among the strongest binding proteins, we unexpectedly found two transmembrane receptors, namely macrophage receptor with collagenous structure (MARCO) and low-density lipoprotein (LDL) receptor (LDLR). We show that recombinant versions of both human and mouse MARCO directly bind to unopsonized MSU and several other disease-associated crystals. Recombinant LDLR binds many types of crystals mainly when opsonized with serum proteins. We show that this interaction is predominantly mediated by LDL, which we found to bind to all crystalline structures tested except for cholesterol crystals. However, murine macrophages lacking LDLR expression do neither show altered phagocytosis nor interleukin-1β (IL-1β) production in response to opsonized crystals. Binding of LDL to MSU has previously been shown to inhibit the production of reactive oxygen species (ROS) by human neutrophils. We extend these findings and show that LDL inhibits neutrophil ROS production in response to most crystals tested, even cholesterol crystals. The inhibition of neutrophil ROS production only partly correlated with the inhibition of IL-1β production by peripheral blood mononuclear cells (PBMCs): LDL inhibited IL-1β production in response to large MSU crystals, but not small MSU or silica crystals. This may suggest distinct upstream signals for IL-1β production depending on the size or the shape of the crystals. Together, we identify MARCO and LDLR as potential crystal recognition receptors, and show that LDL binding to diverse disease-associated crystalline structures has variable effects on crystal-induced innate immune cell activation.
Collapse
Affiliation(s)
- Anika Alberts
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Annika Klingberg
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Leonie Hoffmeister
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | | | - Korbinian Brand
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Andreas Pich
- Research Core Unit Proteomics & Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Konstantin Neumann
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
30
|
Jomard A, Osto E. High Density Lipoproteins: Metabolism, Function, and Therapeutic Potential. Front Cardiovasc Med 2020; 7:39. [PMID: 32296714 PMCID: PMC7136892 DOI: 10.3389/fcvm.2020.00039] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
High Density Lipoproteins (HDLs) have long been considered as “good cholesterol,” beneficial to the whole body and, in particular, to cardio-vascular health. However, HDLs are complex particles that undergoes dynamic remodeling through interactions with various enzymes and tissues throughout their life cycle, making the complete understanding of its functions and roles more complicated than initially expected. In this review, we explore the novel understanding of HDLs' behavior in health and disease as a multifaceted class of lipoprotein, with different size subclasses, molecular composition, receptor interactions, and functionality. Further, we report on emergent HDL-based therapeutics tested in small and larger scale clinical trials and their mixed successes.
Collapse
Affiliation(s)
- Anne Jomard
- Laboratory of Translational Nutrition Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.,Institute of Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| | - Elena Osto
- Laboratory of Translational Nutrition Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.,Institute of Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland.,Department of Cardiology, Heart Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Ikonen E, Kanerva K. Shuttling HDL Cholesterol to the Membrane via Metastable Receptor Multimers. Dev Cell 2020; 50:257-258. [PMID: 31386858 DOI: 10.1016/j.devcel.2019.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In this issue of Developmental Cell, Marques et al. (2019) provide evidence that the main receptor for high-density lipoporoteins (HDL), scavenger receptor B1 (SR-B1), forms large and dynamic homo-multimers at the plasma membrane. This helps the receptor to evade endocytosis, bind HDL, and facilitate selective lipid uptake from HDL.
Collapse
Affiliation(s)
- Elina Ikonen
- Faculty of Medicine, Department of Anatomy and Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland.
| | - Kristiina Kanerva
- Faculty of Medicine, Department of Anatomy and Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| |
Collapse
|
32
|
Hoekstra M, van der Sluis RJ, Hildebrand RB, Lammers B, Zhao Y, Praticò D, van Berkel TJC, Rensen PCN, Kooijman S, Jauhiainen M, van Eck M. Disruption of Phospholipid Transfer Protein-Mediated High-Density Lipoprotein Maturation Reduces Scavenger Receptor BI Deficiency-Driven Atherosclerosis Susceptibility Despite Unexpected Metabolic Complications. Arterioscler Thromb Vasc Biol 2020; 40:611-623. [PMID: 31941380 DOI: 10.1161/atvbaha.119.313862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE We tested the hypothesis that enlarged, dysfunctional HDL (high-density lipoprotein) particles contribute to the augmented atherosclerosis susceptibility associated with SR-BI (scavenger receptor BI) deficiency in mice. Approach and Results: We eliminated the ability of HDL particles to fully mature by targeting PLTP (phospholipid transfer protein) functionality. Particle size of the HDL population was almost fully normalized in male and female SR-BI×PLTP double knockout mice. In contrast, the plasma unesterified cholesterol to cholesteryl ester ratio remained elevated. The PLTP deficiency-induced reduction in HDL size in SR-BI knockout mice resulted in a normalized aortic tissue oxidative stress status on Western-type diet. Atherosclerosis susceptibility was-however-only partially reversed in double knockout mice, which can likely be attributed to the fact that they developed a metabolic syndrome-like phenotype characterized by obesity, hypertriglyceridemia, and a reduced glucose tolerance. Mechanistic studies in chow diet-fed mice revealed that the diminished glucose tolerance was probably secondary to the exaggerated postprandial triglyceride response. The absence of PLTP did not affect LPL (lipoprotein lipase)-mediated triglyceride lipolysis but rather modified the ability of VLDL (very low-density lipoprotein)/chylomicron remnants to be cleared from the circulation by the liver through receptors other than SR-BI. As a result, livers of double knockout mice only cleared 26% of the fractional dose of [14C]cholesteryl oleate after intravenous VLDL-like particle injection. CONCLUSIONS We have shown that disruption of PLTP-mediated HDL maturation reduces SR-BI deficiency-driven atherosclerosis susceptibility in mice despite the induction of proatherogenic metabolic complications in the double knockout mice.
Collapse
Affiliation(s)
- Menno Hoekstra
- From the Division of BioTherapeutics, Leiden Academic Centre for Drug Research, The Netherlands (M.H., R.J.v.d.S., R.B.H., B.L., Y.Z., T.J.C.v.B., M.v.E.)
| | - Ronald J van der Sluis
- From the Division of BioTherapeutics, Leiden Academic Centre for Drug Research, The Netherlands (M.H., R.J.v.d.S., R.B.H., B.L., Y.Z., T.J.C.v.B., M.v.E.)
| | - Reeni B Hildebrand
- From the Division of BioTherapeutics, Leiden Academic Centre for Drug Research, The Netherlands (M.H., R.J.v.d.S., R.B.H., B.L., Y.Z., T.J.C.v.B., M.v.E.)
| | - Bart Lammers
- From the Division of BioTherapeutics, Leiden Academic Centre for Drug Research, The Netherlands (M.H., R.J.v.d.S., R.B.H., B.L., Y.Z., T.J.C.v.B., M.v.E.)
| | - Ying Zhao
- From the Division of BioTherapeutics, Leiden Academic Centre for Drug Research, The Netherlands (M.H., R.J.v.d.S., R.B.H., B.L., Y.Z., T.J.C.v.B., M.v.E.)
| | - Domenico Praticò
- Alzheimer's Center at Temple, Department of Pharmacology, Philadelphia, PA (D.P.)
| | - Theo J C van Berkel
- From the Division of BioTherapeutics, Leiden Academic Centre for Drug Research, The Netherlands (M.H., R.J.v.d.S., R.B.H., B.L., Y.Z., T.J.C.v.B., M.v.E.)
| | | | - Sander Kooijman
- Division of Endocrinology, Department of Medicine (P.C.N.R., S.K.)
| | - Matti Jauhiainen
- Einthoven Laboratory for Experimental Vascular and Regenerative Medicine, Leiden University Medical Center, The Netherlands (P.C.N.R., S.K)
| | - Miranda van Eck
- From the Division of BioTherapeutics, Leiden Academic Centre for Drug Research, The Netherlands (M.H., R.J.v.d.S., R.B.H., B.L., Y.Z., T.J.C.v.B., M.v.E.)
| |
Collapse
|
33
|
Abstract
Cholesterol homeostasis is of central importance for life. Therefore, cells have developed a divergent set of pathways to meet their cholesterol needs. In this review, we focus on the direct transfer of cholesterol from lipoprotein particles to the cell membrane. More molecular details on the transfer of lipoprotein-derived lipids were gained by recent studies using phospholipid bilayers. While amphiphilic lipids are transferred right after contact of the lipoprotein particle with the membrane, the transfer of core lipids is restricted. Amphiphilic lipid transfer gains special importance in genetic diseases impairing lipoprotein metabolism like familial hypercholesterolemia. Taken together, these data indicate that there is a constant exchange of amphiphilic lipids between lipoprotein particles and the cell membrane.
Collapse
|