1
|
Wang W, Gu W, Schweitzer R, Koren O, Khatib S, Tseng G, Konnikova L. In utero human intestine contains maternally derived bacterial metabolites. MICROBIOME 2025; 13:116. [PMID: 40329366 PMCID: PMC12054239 DOI: 10.1186/s40168-025-02110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 04/10/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Understanding when host-microbiome interactions are first established is crucial for comprehending normal development and identifying disease prevention strategies. Furthermore, bacterially derived metabolites play critical roles in shaping the intestinal immune system. Recent studies have demonstrated that memory T cells infiltrate human intestinal tissue early in the second trimester, suggesting that microbial components such as peptides that can prime adaptive immunity and metabolites that can influence the development and function of the immune system are also present in utero. Our previous study reported a unique fetal intestinal metabolomic profile with an abundance of several bacterially derived metabolites and aryl hydrocarbon receptor (AHR) ligands implicated in mucosal immune regulation. RESULTS In the current study, we demonstrate that a number of microbiome-associated metabolites present in the fetal intestines are also present in the placental tissue, and their abundance is different across the fetal intestine, fetal meconium, fetal placental villi, and the maternal decidua. The fetal gastrointestinal samples and maternal decidua samples show substantially higher positive correlation on the abundance of these microbial metabolites than the correlation between the fetal gastrointestinal samples and meconium samples. The expression of genes associated with the transport and signaling of some microbial metabolites is also detectable in utero. CONCLUSIONS We suggest that the microbiome-associated metabolites are maternally derived and vertically transmitted to the fetus. Notably, these bacterially derived metabolites, particularly short-chain fatty acids and secondary bile acids, are likely biologically active and functional in regulating the fetal immune system and preparing the gastrointestinal tract for postnatal microbial encounters, as the transcripts for their various receptors and carrier proteins are present in second trimester intestinal tissue through single-cell transcriptomic data. Video Abstract.
Collapse
Affiliation(s)
- Wenjia Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Weihong Gu
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Ron Schweitzer
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Department of Biotechnology, Tel-Hai College, Upper Galilee, Kiryat Shmona, Israel
- Department of Natural Compounds and Analytical Chemistry, MIGAL Galilee Research Institute, Kiryat Shmona, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Soliman Khatib
- Department of Biotechnology, Tel-Hai College, Upper Galilee, Kiryat Shmona, Israel
- Department of Natural Compounds and Analytical Chemistry, MIGAL Galilee Research Institute, Kiryat Shmona, Israel
| | - George Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Liza Konnikova
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, 06519, USA.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.
- Program in Translational Biomedicine, Yale School of Medicine, New Haven, CT, USA.
- Human Translational Immunology Program, Yale School of Medicine, New Haven, CT, USA.
- Center for Systems and Engineering Immunology, Yale School of Medicine, 375 Congress Avenue, New Haven, CT, 06519, USA.
| |
Collapse
|
2
|
Ocón B, Brulois KF, Hadeiba H, Gaafarelkhalifa M, Ayesha A, Bi Y, Xiang M, Gulman J, Kooshesh M, Pan J, Butcher EC. An SSTR2-somatostatin chemotactic axis drives T cell progenitor homing to the intestines. Nat Immunol 2025; 26:607-618. [PMID: 40140497 DOI: 10.1038/s41590-025-02097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/24/2025] [Indexed: 03/28/2025]
Abstract
Progenitors of intraepithelial T cells (IELps) migrate from the thymus to the intestines after birth where they develop into unconventional TCRγδ and TCRαβ lymphocytes in a process of extrathymic lymphopoiesis within cryptopatches. Mechanisms of IELp migration have remained unclear. Here we show that thymic IELps express the somatostatin receptor SSTR2, which contributes to their homing to the gut. IELp homing is Sstr2 dependent and correlates with neonatal induction of Sst encoding somatostatin in neuroendocrine and lamina propria stromal cells. The SSTR2 ligands somatostatin and cortistatin attract IELps in chemotaxis assays and somatostatin triggers IELp binding to the mucosal vascular addressin MAdCAM1. T cell transduction with Sstr2 confers homing to the neonatal colon. Human fetal thymic IELp-like cells express SSTR2 and intestinal stromal cells express SST at the time of initial T cell population, suggesting conserved mechanisms of progenitor seeding of the developing intestines. These results reveal an unexpected role for the SSTR2-somatostatin axis in early immune system development and describe a new role for a small peptide hormone G-protein-coupled receptor in developmental lymphocyte trafficking.
Collapse
Affiliation(s)
- Borja Ocón
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA.
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA.
| | - Kevin F Brulois
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Husein Hadeiba
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Mohammed Gaafarelkhalifa
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Aiman Ayesha
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Yuhan Bi
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Menglan Xiang
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jacob Gulman
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Maryam Kooshesh
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Junliang Pan
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Eugene C Butcher
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
3
|
Kilama J, Dahlen CR, Abbasi M, Shi X, Nagaraja TG, Crouse MS, Cushman RA, Snider AP, McCarthy KL, Caton JS, Amat S. Characterizing the prevalence of Fusobacterium necrophorum subsp. necrophorum, Fusobacterium necrophorum subsp. funduliforme, and Fusobacterium varium in bovine and ovine semen, bovine gut, and vagino-uterine and fetal microbiota using targeted culturing and qPCR. Microbiol Spectr 2025; 13:e0314524. [PMID: 40126218 PMCID: PMC12054004 DOI: 10.1128/spectrum.03145-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/31/2025] [Indexed: 03/25/2025] Open
Abstract
Fusobacterium necrophorum is an important pathogen associated with several infectious diseases in cattle. However, recent sequencing-based studies reported that F. necrophorum may be positively associated with pregnancy in beef cows and that Fusobacterium is highly abundant in bull seminal microbiota with potential involvement in reproductive health and fertility. Here, we performed a comprehensive screening to (i) determine the prevalence of Fusobacterium necrophorum (subspecies necrophorum [FNN] and funduliforme [FNF]) and Fusobacterium varium (FV) in the reproductive microbiota of cattle and sheep as well as bovine digestive tract ecosystems, and (ii) explore whether these Fusobacterium spp. colonize calf prenatally. For this, we screened 11 different sample types including bovine and ram semen, bovine vaginal and uterine swabs, and bull fecal samples, as well as samples from 180- and 260-day-old calf fetuses and their respective dams using both quantitative PCR (qPCR; 514 samples) and targeted culturing (499 samples). By qPCR, all the targeted Fusobacterium spp. were detected across all sample types with varying prevalence rates and viability. FNF was highly prevalent in the bull semen (66.7%) and maternal ruminal fluids (87.1%), and its viability was confirmed through culturing. All the targeted Fusobacterium spp. were identified in vaginal and uterine swab samples (3.1%-9.4%), caruncles, fetal fluids, rumen, and meconium samples (2.7%-26.3%) by qPCR but were not isolated by culture method. Overall, our results, for the first time, suggest that F. necrophorum is a commensal member of healthy male reproductive microbiota, and that FNF, FNN, and FV are present in bovine vagino-uterine microbiota and calf intestine prenatally.IMPORTANCERecent sequencing-based studies suggest that Fusobacterium, including F. necrophorum, a known primary etiological agent for several important infectious diseases in cattle, may be non-pathogenic members of the reproductive microbiota with pro-fertility effects. However, further information regarding the absolute abundance, viability, and higher taxonomic resolution of the Fusobacterium species and subspecies which cannot be achievable by the amplicon sequencing approach is needed to confirm the commensal and non-pathogenic status of the Fusobacterium spp. in cattle. Here, we performed a comprehensive screening of F. necrophorum subspecies necrophorum, F. necrophorum subspecies funduliforme, and Fusobacterium varium from over 500 samples from 11 different sample types using targeted culturing and qPCR. Overall, our results provide novel insights into the prevalence and viability of Fusobacterium spp. in bovine male and female reproductive tracts and their presence in calf fetuses, which will serve as the basis for further research into understanding the role of Fusobacterium in cattle fertility.
Collapse
Affiliation(s)
- Justine Kilama
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Carl R. Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, North Dakota, USA
| | - Mina Abbasi
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Xiaorong Shi
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - T. G. Nagaraja
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Matthew S. Crouse
- USDA, Agriculture Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Robert A. Cushman
- USDA, Agriculture Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Alexandria P. Snider
- USDA, Agriculture Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Kacie L. McCarthy
- Department of Animal Sciences, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Joel S. Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, North Dakota, USA
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
4
|
Tang MH, Ligthart I, Varga S, Lebeer S, van Overveld FJ, Rijkers GT. Mutual Interactions Between Microbiota and the Human Immune System During the First 1000 Days of Life. BIOLOGY 2025; 14:299. [PMID: 40136555 PMCID: PMC11940030 DOI: 10.3390/biology14030299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/25/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025]
Abstract
The development of the human immune system starts during the fetal period in a largely, but probably not completely, sterile environment. During and after birth, the immune system is exposed to an increasingly complex microbiota. The first microbiota encountered during passage through the birth canal colonize the infant gut and induce the tolerance of the immune system. Transplacentally derived maternal IgG as well as IgA from breast milk protect the infant from infections during the first 100 days, during which the immune system further develops and immunological memory is formed. The Weaning and introduction of solid food expose the immune system to novel (food) antigens and allow for other microbiota to colonize. The cells and molecules involved in the mutual and intricate interactions between microbiota and the developing immune system are now beginning to be recognized. These include bacterial components such as polysaccharide A from Bacteroides fragilis, as well as bacterial metabolites such as the short-chain fatty acid butyrate, indole-3-aldehyde, and indole-3-propionic acid. All these, and probably more, bacterial metabolites have specific immunoregulatory functions which shape the development of the human immune system during the first 1000 days of life.
Collapse
Affiliation(s)
- Muy Heang Tang
- Department of Science and Engineering, University College Roosevelt, 4331 CB Middelburg, The Netherlands; (M.H.T.); (I.L.); (S.V.); (F.J.v.O.)
| | - Ishbel Ligthart
- Department of Science and Engineering, University College Roosevelt, 4331 CB Middelburg, The Netherlands; (M.H.T.); (I.L.); (S.V.); (F.J.v.O.)
| | - Samuel Varga
- Department of Science and Engineering, University College Roosevelt, 4331 CB Middelburg, The Netherlands; (M.H.T.); (I.L.); (S.V.); (F.J.v.O.)
| | - Sarah Lebeer
- Lab of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, 2020 Antwerpen, Belgium;
| | - Frans J. van Overveld
- Department of Science and Engineering, University College Roosevelt, 4331 CB Middelburg, The Netherlands; (M.H.T.); (I.L.); (S.V.); (F.J.v.O.)
| | - Ger T. Rijkers
- Department of Science and Engineering, University College Roosevelt, 4331 CB Middelburg, The Netherlands; (M.H.T.); (I.L.); (S.V.); (F.J.v.O.)
| |
Collapse
|
5
|
Olaloye O, Gu W, Gehlhaar A, Sabuwala B, Eke CK, Li Y, Kehoe T, Farmer R, Gabernet G, Lucas CL, Tsang JS, Lakhani SA, Taylor SN, Tseng G, Kleinstein SH, Konnikova L. A single-cell atlas of circulating immune cells over the first 2 months of age in extremely premature infants. Sci Transl Med 2025; 17:eadr0942. [PMID: 40043141 DOI: 10.1126/scitranslmed.adr0942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/04/2024] [Accepted: 02/13/2025] [Indexed: 04/02/2025]
Abstract
Extremely premature infants (EPIs) who are born before 30 weeks of gestation are susceptible to infection; however, the trajectory of their peripheral immunity is poorly understood. Here, we undertook longitudinal analyses of immune cells from 250 μl of whole blood at 1 week, 1 month, and 2 months from 10 EPIs and compared these with samples from healthy adults and with preterm and full-term cord blood samples. Single-cell suspensions from individual samples were split to perform single-cell RNA sequencing, T and B cell receptor sequencing, and phosphoprotein mass cytometry. The trajectories of circulating T, B, myeloid, and natural killer cells in EPIs over the first 2 months of life were distinct from those of full-term infants. In EPIs, peripheral T cell development rapidly progressed over the first month of life, with an increase in the proportion of naïve CD4+, regulatory, and cycling T cells, accompanied by greater STAT5 (signal transducer and activator of transcription 5) signaling. EPI memory CD4+ T cells showed a T helper 1 (TH1) predominance compared with TH2 skewing of central memory-like T cells in full-term infants, and B cells from 2-month-old EPIs exhibited increased signatures of activation and differentiation. Both B and T cells from 2-month-old EPIs displayed increased interferon signatures compared with cells from full-term infants. In conclusion, we demonstrated the feasibility of longitudinal multiomic analyses in EPIs using minute amounts of blood and developed a resource describing peripheral immune development in EPIs that suggested ongoing activation in early life.
Collapse
Affiliation(s)
| | - Weihong Gu
- Department of Pediatrics, Yale Medical School, New Haven, CT 06520, USA
| | - Arne Gehlhaar
- Department of Pediatrics, Yale Medical School, New Haven, CT 06520, USA
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, Oxford OX3 7L3, UK
- Medizinische Fakultät Heidelberg, Heidelberg University, 69117 Heidelberg, Germany
| | - Burhanuddin Sabuwala
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Program in Computational Biology and Bioinformatics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Chino K Eke
- Department of Pediatrics, Yale Medical School, New Haven, CT 06520, USA
| | - Yujia Li
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tessa Kehoe
- Department of Pediatrics, Yale Medical School, New Haven, CT 06520, USA
| | - Rohit Farmer
- NIH Center for Human Immunology, Inflammation, and Autoimmunity, NIAID, NIH, Bethesda, MD 20852, USA
| | - Gisela Gabernet
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Carrie L Lucas
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - John S Tsang
- Program in Computational Biology and Bioinformatics, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
- Center for Systems and Engineering Immunology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale School of Medicine, New Haven, CT 06520, USA
| | - Saquib A Lakhani
- Department of Pediatrics, Yale Medical School, New Haven, CT 06520, USA
- Department of Pediatrics, Cedar Sinai Guerin Children's Hospital, Los Angeles, CA 90048, USA
| | - Sarah N Taylor
- Department of Pediatrics, Yale Medical School, New Haven, CT 06520, USA
| | - George Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Steven H Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Program in Computational Biology and Bioinformatics, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
- Center for Systems and Engineering Immunology, Yale School of Medicine, New Haven, CT 06520, USA
- Human and Translational Immunology Program, Yale School of Medicine, New Haven, CT 06520, USA
| | - Liza Konnikova
- Department of Pediatrics, Yale Medical School, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
- Center for Systems and Engineering Immunology, Yale School of Medicine, New Haven, CT 06520, USA
- Human and Translational Immunology Program, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Obstetrics Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
6
|
Garg P, Weitkamp JH, McDonald AG, Cilvik SN, Mir I, Shenberger JS, Olaloye O, Konnikova L, Kallapur SG, Garg PM. Placenta and Intestinal Injury in Preterm Infants. Am J Perinatol 2025; 42:415-419. [PMID: 38889889 PMCID: PMC11724007 DOI: 10.1055/a-2347-4135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Necrotizing enterocolitis (NEC) is one of the most common gastrointestinal conditions affecting 6 to 10% of low-birth-weight infants and remains a leading cause of death. The risk factors associated with NEC are complex and multifactorial, including preterm birth and intrauterine exposure to inflammation and hypoxia. Chorioamnionitis has been associated with intestinal injury in animal and human clinical studies. This review presents current evidence about the clinical impact of the intrauterine environment on intestinal injury during pregnancy and postpregnancy. We present information from our own clinical and laboratory research in conjunction with information collected from an extensive search in the databases PubMed, EMBASE, and Scopus. Prospective multicenter studies, including accurate and precise clinical, maternal, and laboratory predictors (e.g., inflammatory biomarkers), will help identify the mechanisms associated with the placental pathology, the development of NEC, and the impact of in utero-triggered inflammation on the clinical outcomes. Filling the knowledge gap to link the inflammatory surge to postnatal life will aid in identifying at-risk infants for NEC in a timely manner and facilitate the development of novel immunomodulatory treatments or interventions to improve the outcomes of these vulnerable infants. KEY POINTS: · Placental inflammatory and vascular lesions are associated with NEC severity.. · Higher grade chorioamnionitis with a fetal response is associated with an increased risk of surgical NEC.. · There is a need for routine bedside utilization of placenta pathology in clinical decision-making..
Collapse
Affiliation(s)
- Padma Garg
- Department of Pediatric Critical Care, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jörn-Hendrik Weitkamp
- Department of Pediatrics/Neonatology, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, Tennessee
| | - Anna G McDonald
- Department of Pathology, Atrium Health Wake Forest Baptist, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Sarah N Cilvik
- Department of Pediatrics/Neonatology, Atrium Health Wake Forest Baptist, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Imran Mir
- Department of Pediatrics/Neonatology, UT Southwestern Medical Center, Dallas, Texas
| | - Jeffrey S Shenberger
- Department of Pediatrics/Neonatology, Connecticut Children's, Hartford, Connecticut
| | - Oluwabunmi Olaloye
- Division of Neonatology, Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| | - Liza Konnikova
- Division of Neonatology, Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
- Human and Translational Immunology Program, Department of Immunobiology, Department of Obstetrics Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Suhas G Kallapur
- Department of Pediatrics/Neonatology, UCLA Mattel Children's Hospital, Los Angeles, California
| | - Parvesh M Garg
- Department of Pediatrics/Neonatology, Atrium Health Wake Forest Baptist, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
7
|
Varela MF, Oria M, Poling HM, Lopriore E, Peiro JL. Development and Validation of a Minimally Invasive Transuterine Experimental Model of Gastroschisis. J Pediatr Surg 2025; 60:162163. [PMID: 39823694 DOI: 10.1016/j.jpedsurg.2025.162163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/13/2024] [Accepted: 01/05/2025] [Indexed: 01/20/2025]
Abstract
INTRODUCTION Perinatal management of gastroschisis remains a subject of substantial research. Current models, including teratogenic, genetic, and surgical approaches, often fail to accurately replicate gastroschisis, exhibiting limitations such as inaccurate phenotyping, low success rates, high mortality, lack of scientific validation, and significant technical challenges. Refined disease models are essential for improving the understanding of GS. This study seeks to develop and validate a minimally invasive transuterine experimental model of GS that overcomes these existing constraints to advance gastroschisis research. METHODS A gastroschisis model was surgically created in rat fetuses at E17 (n = 51 fetuses from n = 13 dams). Intestines were harvested at term and divided into herniated gastroschisis (GS-H), intra-abdominal gastroschisis (GS-I), and control (Co) groups. Morphometric analysis, histopathological examination, immunohistochemistry for interstitial cells of Cajal (ICC), double immunofluorescence for ICC and mast cells, TUNEL assay for apoptotic cells, and multiplex cytokine assay were performed to assess intestinal architecture, inflammation, ICC network, apoptosis, and cytokine levels across studied groups. RESULTS Histology from GS intestines revealed subchronic inflammation, peel formation, and architectural disruption. Herniated intestines exhibited a significantly increased weight/length ratio and thicker outer layers (p < 0.001) compared with control intestines. Herniated intestines had elevated inflammatory cytokine levels (GS-H vs GS-I and Co, p < 0.05 for G-CSF, GM-CSF, IL-12p70, IL-1beta) and increased apoptotic activity. CONCLUSIONS We developed and validated a new surgical model of GS that offers improved survival and feasibility. The key morphological changes and molecular markers observed in this experimental model resemble human gastroschisis.
Collapse
Affiliation(s)
- Maria Florencia Varela
- The Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Neonatology, Department of Pediatrics, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Marc Oria
- The Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH 45229, USA; University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH 45267, USA
| | - Holly Marie Poling
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Enrico Lopriore
- Division of Neonatology, Department of Pediatrics, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Jose Luis Peiro
- The Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH 45229, USA; University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH 45267, USA.
| |
Collapse
|
8
|
Li H, Côté P, Kuoch M, Ezike J, Frenis K, Afanassiev A, Greenstreet L, Tanaka-Yano M, Tarantino G, Zhang S, Whangbo J, Butty VL, Moiso E, Falchetti M, Lu K, Connelly GG, Morris V, Wang D, Chen AF, Bianchi G, Daley GQ, Garg S, Liu D, Chou ST, Regev A, Lummertz da Rocha E, Schiebinger G, Rowe RG. The dynamics of hematopoiesis over the human lifespan. Nat Methods 2025; 22:422-434. [PMID: 39639169 PMCID: PMC11908799 DOI: 10.1038/s41592-024-02495-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 09/19/2024] [Indexed: 12/07/2024]
Abstract
Over a lifetime, hematopoietic stem cells (HSCs) adjust their lineage output to support age-aligned physiology. In model organisms, stereotypic waves of hematopoiesis have been observed corresponding to defined age-biased HSC hallmarks. However, how the properties of hematopoietic stem and progenitor cells change over the human lifespan remains unclear. To address this gap, we profiled individual transcriptome states of human hematopoietic stem and progenitor cells spanning gestation, maturation and aging. Here we define the gene expression networks dictating age-specific differentiation of HSCs and the dynamics of fate decisions and lineage priming throughout life. We additionally identifiy and functionally validate a fetal-specific HSC state with robust engraftment and multilineage capacity. Furthermore, we observe that classification of acute myeloid leukemia against defined transcriptional age states demonstrates that utilization of early life transcriptional programs associates with poor prognosis. Overall, we provide a disease-relevant framework for heterochronic orientation of stem cell ontogeny along the real time axis of the human lifespan.
Collapse
Affiliation(s)
- Hojun Li
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Pediatrics, University of California, San Diego, CA, USA.
- Division of Hematology/Oncology, Rady Children's Hospital, San Diego, CA, USA.
| | - Parker Côté
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Michael Kuoch
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jideofor Ezike
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Katie Frenis
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Anton Afanassiev
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura Greenstreet
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mayuri Tanaka-Yano
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Giuseppe Tarantino
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stephen Zhang
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jennifer Whangbo
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Vor Biopharma, Cambridge, MA, USA
| | - Vincent L Butty
- Barbara K. Ostrom Bioinformatics Facility, Integrated Genomics and Bioinformatics Core of the Koch Institute, Cambridge, MA, USA
| | - Enrico Moiso
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marcelo Falchetti
- Departments of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Kate Lu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Guinevere G Connelly
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vivian Morris
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Dahai Wang
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Antonia F Chen
- Harvard Medical School, Boston, MA, USA
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Giada Bianchi
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - George Q Daley
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Salil Garg
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - David Liu
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stella T Chou
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Aviv Regev
- Division of Hematology/Oncology, Rady Children's Hospital, San Diego, CA, USA
- Genentech, South San Francisco, CA, USA
| | - Edroaldo Lummertz da Rocha
- Departments of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Geoffrey Schiebinger
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
| | - R Grant Rowe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Faas MM, Smink AM. Shaping immunity: the influence of the maternal gut bacteria on fetal immune development. Semin Immunopathol 2025; 47:13. [PMID: 39891756 PMCID: PMC11787218 DOI: 10.1007/s00281-025-01039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025]
Abstract
The development of the fetal immune response is a highly complex process. In the present review, we describe the development of the fetal immune response and the role of the maternal gut bacteria in this process. In contrast to the previous belief that the fetal immune response is inert, it is now thought that the fetal immune response is uniquely tolerant to maternal and allo-antigens, but able to respond to infectious agents, such as bacteria. This is accomplished by the development of T cells toward regulatory T cells rather than toward effector T cells, but also by the presence of functional innate immune cells, such as monocytes and NK cells. Moreover, in fetuses there is different programming of CD8 + T cells and memory T cells toward innate immune cells rather than to adaptive immune cells. The maternal gut bacteria are important in shaping the fetal immune response by producing bacterial products and metabolites that pass the placenta into the fetus and influence development of the fetal immune response. Insight into how and when these products affect the fetal immune response may open new treatment options with pre- or probiotics to affect the maternal gut bacteria and therewith the fetal immune response.
Collapse
Affiliation(s)
- Marijke M Faas
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, Groningen, 9713 GZ, The Netherlands.
| | - Alexandra M Smink
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, Groningen, 9713 GZ, The Netherlands
| |
Collapse
|
10
|
Du Q, Liu X, Zhang R, Hu G, Liu Q, Wang R, Ma W, Hu Y, Fan Z, Li J. Placental and Fetal Microbiota in Rhesus Macaque: A Case Study Using Metagenomic Sequencing. Am J Primatol 2025; 87:e23718. [PMID: 39716039 DOI: 10.1002/ajp.23718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/04/2024] [Accepted: 11/30/2024] [Indexed: 12/25/2024]
Abstract
Recent evidence challenging the notion of a sterile intrauterine environment has sparked research into the origins and effects of fetal microbiota on immunity development during gestation. Rhesus macaques (RMs) serve as valuable nonhuman primate models due to their similarities to humans in development, placental structure, and immune response. In this study, metagenomic analysis was applied to the placenta, umbilical cord, spleen, gastrointestinal tissues of an unborn RM fetus, and the maternal intestine, revealing the diversity and functionality of microbes in these tissues. Additionally, gut metagenomic data of adult Rhesus macaques from our previous study, along with data from a human fetus obtained from public databases, were included for comparison. We observed substantial microbial sharing between the mother and fetus, with the microbial composition of the placenta and umbilical cord more closely resembling that of the fetal organs than the maternal intestine. Notably, compared with other adult RMs, there was a clear convergence between maternal and fetal microbiota, alongside distinct differences between the microbiota of adults and the fetus, which underscores the unique microbial profiles in fetal environments. Furthermore, the fetal microbiota displayed a less developed carbohydrate metabolism capacity than adult RMs. It also shared antibiotic resistance genes with both maternal and adult RM microbiomes, indicating potential vertical transmission. Comparative analysis of the metagenomes between the RM fetus and a human fetus revealed significant differences in microbial composition and genes, yet also showed similarities in certain abundant microbiota. Collectively, our results contribute to a more comprehensive understanding of the intrauterine microbial environment in macaques.
Collapse
Affiliation(s)
- Qiao Du
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Xu Liu
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Rusong Zhang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Gang Hu
- SCU-SGHB Joint Laboratory on Nonhuman Primates Research, Sichuan Green-house Biotech Co. Ltd., Meishan, China
| | - Qinghua Liu
- SCU-SGHB Joint Laboratory on Nonhuman Primates Research, Sichuan Green-house Biotech Co. Ltd., Meishan, China
| | - Rui Wang
- SCU-SGHB Joint Laboratory on Nonhuman Primates Research, Sichuan Green-house Biotech Co. Ltd., Meishan, China
| | - Wen Ma
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Ying Hu
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhenxin Fan
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Jing Li
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Liu P, Pan Y, Chang HC, Wang W, Fang Y, Xue X, Zou J, Toothaker JM, Olaloye O, Santiago EG, McCourt B, Mitsialis V, Presicce P, Kallapur SG, Snapper SB, Liu JJ, Tseng GC, Konnikova L, Liu S. Comprehensive evaluation and practical guideline of gating methods for high-dimensional cytometry data: manual gating, unsupervised clustering, and auto-gating. Brief Bioinform 2024; 26:bbae633. [PMID: 39656848 PMCID: PMC11630031 DOI: 10.1093/bib/bbae633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
Cytometry is an advanced technique for simultaneously identifying and quantifying many cell surface and intracellular proteins at a single-cell resolution. Analyzing high-dimensional cytometry data involves identifying and quantifying cell populations based on their marker expressions. This study provided a quantitative review and comparison of various ways to phenotype cellular populations within the cytometry data, including manual gating, unsupervised clustering, and supervised auto-gating. Six datasets from diverse species and sample types were included in the study, and manual gating with two hierarchical layers was used as the truth for evaluation. For manual gating, results from five researchers were compared to illustrate the gating consistency among different raters. For unsupervised clustering, 23 tools were quantitatively compared in terms of accuracy with the truth and computing cost. While no method outperformed all others, several tools, including PAC-MAN, CCAST, FlowSOM, flowClust, and DEPECHE, generally demonstrated strong performance. For supervised auto-gating methods, four algorithms were evaluated, where DeepCyTOF and CyTOF Linear Classifier performed the best. We further provided practical recommendations on prioritizing gating methods based on different application scenarios. This study offers comprehensive insights for biologists to understand diverse gating methods and choose the best-suited ones for their applications.
Collapse
Affiliation(s)
- Peng Liu
- Department of Biostatistics, School of Public Health, University of Pittsburgh, 130 De Soto St., Pittsburgh, PA 15261, US
| | - Yuchen Pan
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, 1400 Pressler St., Houston, TX 77030, US
| | - Hung-Ching Chang
- Department of Biostatistics, School of Public Health, University of Pittsburgh, 130 De Soto St., Pittsburgh, PA 15261, US
| | - Wenjia Wang
- Department of Biostatistics, School of Public Health, University of Pittsburgh, 130 De Soto St., Pittsburgh, PA 15261, US
| | - Yusi Fang
- Department of Biostatistics, School of Public Health, University of Pittsburgh, 130 De Soto St., Pittsburgh, PA 15261, US
| | - Xiangning Xue
- Department of Biostatistics, School of Public Health, University of Pittsburgh, 130 De Soto St., Pittsburgh, PA 15261, US
| | - Jian Zou
- Department of Biostatistics, School of Public Health, University of Pittsburgh, 130 De Soto St., Pittsburgh, PA 15261, US
| | - Jessica M Toothaker
- Department of Immunology, University of Pittsburgh, 5051 Centre Avenue, Pittsburgh, PA 15213, US
- Department of Pediatrics, Yale University, 15 York Street New Haven, CT 06510, US
| | - Oluwabunmi Olaloye
- Department of Pediatrics, Yale University, 15 York Street New Haven, CT 06510, US
| | | | - Black McCourt
- Department of Pediatrics, Yale University, 15 York Street New Haven, CT 06510, US
| | - Vanessa Mitsialis
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital and Department of Pediatrics, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115, US
- Department of Medicine, Division of Gastroenterology, Hepatology, and Endoscopy, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115, US
| | - Pietro Presicce
- Division of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California Los Angeles, 757 Westwood Plaza, Los Angeles, CA 90095, US
| | - Suhas G Kallapur
- Division of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California Los Angeles, 757 Westwood Plaza, Los Angeles, CA 90095, US
| | - Scott B Snapper
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital and Department of Pediatrics, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115, US
- Department of Medicine, Division of Gastroenterology, Hepatology, and Endoscopy, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115, US
| | - Jia-Jun Liu
- Drug Discovery Institute, School of Medicine, University of Pittsburgh, 700 Technology Dr, Pittsburgh, PA 15219, US
- Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261, US
| | - George C Tseng
- Department of Biostatistics, School of Public Health, University of Pittsburgh, 130 De Soto St., Pittsburgh, PA 15261, US
- Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15213, US
| | - Liza Konnikova
- Department of Pediatrics, Yale University, 15 York Street New Haven, CT 06510, US
- Division of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California Los Angeles, 757 Westwood Plaza, Los Angeles, CA 90095, US
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, 333 Cedar Street, New Haven, CT 06510, US
- Department of Immunobiology, Yale University, 300 Cedar Street, New Haven, CT 06520, US
- Program in Human and Translational Immunology, Yale University, 300 Cedar Street, New Haven, CT 06520, US
- Program in Translational Biomedicine, Yale University, 300 Cedar Street, New Haven, CT 06520, US
- Center for Systems and Engineering Immunology, Yale University, 100 College St., New Haven, CT 06510, US
| | - Silvia Liu
- Drug Discovery Institute, School of Medicine, University of Pittsburgh, 700 Technology Dr, Pittsburgh, PA 15219, US
- Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261, US
- Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15213, US
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, 200 Lothrop St., Pittsburgh, PA 15261, US
- Hillman Cancer Center, University of Pittsburgh, 5150 Centre Ave., Pittsburgh, PA 15232, US
| |
Collapse
|
12
|
Andrade AF, Annett A, Karimi E, Topouza DG, Rezanejad M, Liu Y, McNicholas M, Gonzalez Santiago EG, Llivichuzhca-Loja D, Gehlhaar A, Jessa S, De Cola A, Chandarana B, Russo C, Faury D, Danieau G, Puligandla E, Wei Y, Zeinieh M, Wu Q, Hebert S, Juretic N, Nakada EM, Krug B, Larouche V, Weil AG, Dudley RWR, Karamchandani J, Agnihotri S, Quail DF, Ellezam B, Konnikova L, Walsh LA, Pathania M, Kleinman CL, Jabado N. Immune landscape of oncohistone-mutant gliomas reveals diverse myeloid populations and tumor-promoting function. Nat Commun 2024; 15:7769. [PMID: 39237515 PMCID: PMC11377583 DOI: 10.1038/s41467-024-52096-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
Histone H3-mutant gliomas are deadly brain tumors characterized by a dysregulated epigenome and stalled differentiation. In contrast to the extensive datasets available on tumor cells, limited information exists on their tumor microenvironment (TME), particularly the immune infiltrate. Here, we characterize the immune TME of H3.3K27M and G34R/V-mutant gliomas, and multiple H3.3K27M mouse models, using transcriptomic, proteomic and spatial single-cell approaches. Resolution of immune lineages indicates high infiltration of H3-mutant gliomas with diverse myeloid populations, high-level expression of immune checkpoint markers, and scarce lymphoid cells, findings uniformly reproduced in all H3.3K27M mouse models tested. We show these myeloid populations communicate with H3-mutant cells, mediating immunosuppression and sustaining tumor formation and maintenance. Dual inhibition of myeloid cells and immune checkpoint pathways show significant therapeutic benefits in pre-clinical syngeneic mouse models. Our findings provide a valuable characterization of the TME of oncohistone-mutant gliomas, and insight into the means for modulating the myeloid infiltrate for the benefit of patients.
Collapse
Affiliation(s)
- Augusto Faria Andrade
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
- The Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Alva Annett
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Elham Karimi
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada
| | | | - Morteza Rezanejad
- Departments of Psychology and Computer Science, University of Toronto, Toronto, ON, M5S 3G3, M5S 2E4, Canada
| | - Yitong Liu
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Michael McNicholas
- Department of Oncology and The Milner Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
- CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, E20 1JQ, UK
| | | | | | - Arne Gehlhaar
- Life and Medical Sciences Institute, University of Bonn, Bonn, 53115, Germany
| | - Selin Jessa
- Quantitative Life Sciences, McGill University, Montreal, QC, Canada
- Lady Davis Research Institute, Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Antonella De Cola
- Department of Oncology and The Milner Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
- CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, E20 1JQ, UK
| | - Bhavyaa Chandarana
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Caterina Russo
- The Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
- Department of Pediatrics, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Damien Faury
- The Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
- Department of Pediatrics, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Geoffroy Danieau
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
- Division of Orthopedic Surgery, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Evan Puligandla
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Yuhong Wei
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Michele Zeinieh
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Qing Wu
- The Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
- Department of Pediatrics, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Steven Hebert
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
- Lady Davis Research Institute, Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Nikoleta Juretic
- The Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
- Department of Pediatrics, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Emily M Nakada
- The Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
- Department of Pediatrics, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Brian Krug
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Valerie Larouche
- Department of Pediatrics, Centre mère-enfant Soleil du CHU de Québec-Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Alexander G Weil
- Brain and Development Research Axis, Sainte-Justine Research Centre, Montreal, QC, H3T 1C5, Canada
- Division of Neurosurgery, Department of Surgery, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, QC, H3T 1C5, Canada
- Department of Neuroscience, University of Montreal, Montreal, QC, H2X 0A9, Canada
| | - Roy W R Dudley
- Department of Pediatric Surgery, Division of Neurosurgery, Montreal Children's Hospital, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Jason Karamchandani
- Department of Pathology, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Sameer Agnihotri
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Daniela F Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada
- Department of Physiology, Faculty of Medicine, McGill University, Montreal, QC, H3G 1Y6, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Benjamin Ellezam
- Division of Pathology, Department of Pathology and Cell Biology, CHU Sainte-Justine, Université de Montréal, Montreal, QC, H3T 1C5, Canada
| | - Liza Konnikova
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, 06510, USA.
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA.
- Human and Translational Immunology Program, Yale School of Medicine, New Haven, CT, 06510, USA.
| | - Logan A Walsh
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Manav Pathania
- Department of Oncology and The Milner Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK.
- CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, E20 1JQ, UK.
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada.
- Lady Davis Research Institute, Jewish General Hospital, Montreal, QC, H3T 1E2, Canada.
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada.
- The Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada.
- Department of Pediatrics, McGill University, Montreal, QC, H4A 3J1, Canada.
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
13
|
Wang W, Gu W, Schweitzer R, Koren O, Khatib S, Tseng G, Konnikova L. In utero human intestine contains maternally derived bacterial metabolites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608888. [PMID: 39229010 PMCID: PMC11370329 DOI: 10.1101/2024.08.20.608888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Understanding when host-microbiome interactions are first established is crucial for comprehending normal development and identifying disease prevention strategies. Furthermore, bacterially derived metabolites play critical roles in shaping the intestinal immune system. Recent studies have demonstrated that memory T cells infiltrate human intestinal tissue early in the second trimester, suggesting that intestinal immune education begins in utero. Our previous study reported a unique fetal intestinal metabolomic profile with an abundance of several bacterially derived metabolites and aryl hydrocarbon receptor (AHR) ligands implicated in mucosal immune regulation. To follow up on this work, in the current study, we demonstrate that a number of microbial byproducts present in fetal intestines in utero are maternally derived and vertically transmitted to the fetus. Notably, these bacterially derived metabolites, particularly short chain fatty acids and secondary bile acids, are likely biologically active and functional in regulating the fetal immune system and preparing the gastrointestinal tract for postnatal microbial encounters, as the transcripts for their various receptors and carrier proteins are present in second trimester intestinal tissue through single-cell transcriptomic data.
Collapse
Affiliation(s)
- Wenjia Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Weihong Gu
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Ron Schweitzer
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
- Department of Biotechnology, Tel-Hai College, Upper Galilee, Israel
- Department of Natural Compounds and Analytical Chemistry, Migal Galilee Research Institute, Kiryat Shmona, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Soliman Khatib
- Department of Biotechnology, Tel-Hai College, Upper Galilee, Israel
- Department of Natural Compounds and Analytical Chemistry, Migal Galilee Research Institute, Kiryat Shmona, Israel
| | - George Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Liza Konnikova
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
- Departments of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Departments of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
- Program in Translational Biomedicine, Yale School of Medicine, New Haven, CT, USA
- Human Translational Immunology Program, Yale School of Medicine, New Haven, CT, USA
- Center for Systems and Engineering Immunology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
14
|
Gu W, Eke C, Gonzalez Santiago E, Olaloye O, Konnikova L. Single-cell atlas of the small intestine throughout the human lifespan demonstrates unique features of fetal immune cells. Mucosal Immunol 2024; 17:599-617. [PMID: 38555026 PMCID: PMC11384551 DOI: 10.1016/j.mucimm.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/15/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Proper development of mucosal immunity is critical for human health. Over the past decade, it has become evident that in humans, this process begins in utero. However, there are limited data on the unique features and functions of fetal mucosal immune cells. To address this gap, we integrated several single-cell ribonucleic acid sequencing datasets of the human small intestine (SI) to create an SI transcriptional atlas throughout the human life span, ranging from the first trimester to adulthood, with a focus on immune cells. Fetal SI displayed a complex immune landscape comprising innate and adaptive immune cells that exhibited distinct transcriptional programs from postnatal samples, especially compared with pediatric and adult samples. We identified shifts in myeloid populations across gestation and progression of memory T-cell states throughout the human lifespan. In particular, there was a marked shift of memory T cells from those with stem-like properties in the fetal samples to fully differentiated cells with a high expression of activation and effector function genes in adult samples, with neonatal samples containing both features. Finally, we demonstrate that the SI developmental atlas can be used to elucidate improper trajectories linked to mucosal diseases by implicating developmental abnormalities underlying necrotizing enterocolitis, a severe intestinal complication of prematurity. Collectively, our data provide valuable resources and important insights into intestinal immunity that will facilitate regenerative medicine and disease understanding.
Collapse
Affiliation(s)
- Weihong Gu
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Chino Eke
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | | | - Oluwabunmi Olaloye
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Liza Konnikova
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Department of Obstetrics, Gynecology and Reproductive Science, Yale University School of Medicine, New Haven, CT, USA; Program in Translational Biomedicine, Yale University School of Medicine, New Haven, CT, USA; Program in Human Translational Immunology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
15
|
Montecino-Rodriguez E, Estrada OI, Dorshkind K. Transient PU.1 low fetal progenitors generate lymphoid progeny that contribute to adult immunity. Life Sci Alliance 2024; 7:e202402629. [PMID: 38830768 PMCID: PMC11147949 DOI: 10.26508/lsa.202402629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024] Open
Abstract
Hematopoietic stem cells and multipotential progenitors emerge in multiple, overlapping waves of fetal development. Some of these populations seed the bone marrow and sustain adult B- and T-cell development long-term after birth. However, others are present transiently, but whether they are vestigial or generate B and T cells that contribute to the adult immune system is not well understood. We now report that transient fetal progenitors distinguished by expression of low levels of the PU.1 transcription factor generated activated and memory T and B cells that colonized and were maintained in secondary lymphoid tissues. These included the small and large intestines, where they may contribute to the maintenance of gut homeostasis through at least middle age. At least some of the activated/memory cells may have been the progeny of B-1 and marginal zone B cells, as transient PU.1low fetal progenitors efficiently generated those populations. Taken together, our data demonstrate the potential of B- and T-cell progeny of transient PU.1low fetal progenitors to make an early and long-term contribution to the adult immune system.
Collapse
Affiliation(s)
| | - Oscar I Estrada
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kenneth Dorshkind
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
16
|
Fu J, Hsiao T, Waffarn E, Meng W, Long KD, Frangaj K, Jones R, Gorur A, Shtewe A, Li M, Muntnich CB, Rogers K, Jiao W, Velasco M, Matsumoto R, Kubota M, Wells S, Danzl N, Ravella S, Iuga A, Vasilescu ER, Griesemer A, Weiner J, Farber DL, Luning Prak ET, Martinez M, Kato T, Hershberg U, Sykes M. Dynamic establishment and maintenance of the human intestinal B cell population and repertoire following transplantation in a pediatric-dominated cohort. Front Immunol 2024; 15:1375486. [PMID: 39007142 PMCID: PMC11239347 DOI: 10.3389/fimmu.2024.1375486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction It is unknown how intestinal B cell populations and B cell receptor (BCR) repertoires are established and maintained over time in humans. Following intestinal transplantation (ITx), surveillance ileal mucosal biopsies provide a unique opportunity to map the dynamic establishment of recipient gut lymphocyte populations in immunosuppressed conditions. Methods Using polychromatic flow cytometry that includes HLA allele group-specific antibodies distinguishing donor from recipient cells along with high throughput BCR sequencing, we tracked the establishment of recipient B cell populations and BCR repertoire in the allograft mucosa of ITx recipients. Results We confirm the early presence of naïve donor B cells in the circulation (donor age range: 1-14 years, median: 3 years) and, for the first time, document the establishment of recipient B cell populations, including B resident memory cells, in the intestinal allograft mucosa (recipient age range at the time of transplant: 1-44 years, median: 3 years). Recipient B cell repopulation of the allograft was most rapid in infant (<1 year old)-derived allografts and, unlike T cell repopulation, did not correlate with rejection rates. While recipient memory B cell populations were increased in graft mucosa compared to circulation, naïve recipient B cells remained detectable in the graft mucosa for years. Comparisons of peripheral and intra-mucosal B cell repertoires in the absence of rejection (recipient age range at the time of transplant: 1-9 years, median: 2 years) revealed increased BCR mutation rates and clonal expansion in graft mucosa compared to circulating B cells, but these parameters did not increase markedly after the first year post-transplant. Furthermore, clonal mixing between the allograft mucosa and the circulation was significantly greater in ITx recipients, even years after transplantation, than in deceased adult donors. In available pan-scope biopsies from pediatric recipients, we observed higher percentages of naïve recipient B cells in colon allograft compared to small bowel allograft and increased BCR overlap between native colon vs colon allograft compared to that between native colon vs ileum allograft in most cases, suggesting differential clonal distribution in large intestine vs small intestine. Discussion Collectively, our data demonstrate intestinal mucosal B cell repertoire establishment from a circulating pool, a process that continues for years without evidence of stabilization of the mucosal B cell repertoire in pediatric ITx patients.
Collapse
Affiliation(s)
- Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Thomas Hsiao
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Elizabeth Waffarn
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Katherine D. Long
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Kristjana Frangaj
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Rebecca Jones
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Alaka Gorur
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Areen Shtewe
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Muyang Li
- Department of Pathology, Columbia University, New York, NY, United States
| | - Constanza Bay Muntnich
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Kortney Rogers
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Wenyu Jiao
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Monica Velasco
- Department of Pediatrics, Columbia University, New York, NY, United States
| | - Rei Matsumoto
- Department of Microbiology and Immunology, Columbia University, New York, NY, United States
| | - Masaru Kubota
- Department of Microbiology and Immunology, Columbia University, New York, NY, United States
| | - Steven Wells
- Department of Microbiology and Immunology, Columbia University, New York, NY, United States
| | - Nichole Danzl
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Shilpa Ravella
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, United States
| | - Alina Iuga
- Department of Pathology, Columbia University, New York, NY, United States
| | | | - Adam Griesemer
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
- Department of Surgery, Columbia University, New York, NY, United States
| | - Joshua Weiner
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
- Department of Surgery, Columbia University, New York, NY, United States
| | - Donna L. Farber
- Department of Microbiology and Immunology, Columbia University, New York, NY, United States
- Department of Surgery, Columbia University, New York, NY, United States
| | - Eline T. Luning Prak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mercedes Martinez
- Department of Pediatrics, Columbia University, New York, NY, United States
| | - Tomoaki Kato
- Department of Surgery, Columbia University, New York, NY, United States
| | - Uri Hershberg
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
- Department of Microbiology and Immunology, Columbia University, New York, NY, United States
- Department of Surgery, Columbia University, New York, NY, United States
| |
Collapse
|
17
|
Giugliano FP, Navis M, Ouahoud S, Garcia TM, Kreulen IA, Ferrantelli E, Meisner S, Vermeulen JL, van Roest M, Billaud JN, Koster J, Dawood Y, de Bakker BS, Picavet-Havik DI, Schimmel IM, van der Wel NN, Koelink PJ, Wildenberg ME, Derikx JP, de Jonge WJ, Renes IB, van Elburg RM, Muncan V. Pro-inflammatory T cells-derived cytokines enhance the maturation of the human fetal intestinal epithelial barrier. iScience 2024; 27:109909. [PMID: 38812539 PMCID: PMC11134877 DOI: 10.1016/j.isci.2024.109909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/31/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
Small intestine (SI) maturation during early life is pivotal in preventing the onset of gut diseases. In this study we interrogated the milestones of SI development by gene expression profiling and ingenuity pathway analyses. We identified a set of cytokines as main regulators of changes observed across different developmental stages. Upon cytokines stimulation, with IFNγ as the most contributing factor, human fetal organoids (HFOs) increase brush border gene expression and enzyme activity as well as trans-epithelial electrical resistance. Electron microscopy revealed developed brush border and loss of fetal cell characteristics in HFOs upon cytokine stimulation. We identified T cells as major source of IFNγ production in the fetal SI lamina propria. Co-culture of HFOs with T cells recapitulated the major effects of cytokine stimulation. Our findings underline pro-inflammatory cytokines derived from T cells as pivotal factors inducing functional SI maturation in vivo and capable of modulating the barrier maturation of HFOs in vitro.
Collapse
Affiliation(s)
- Francesca P. Giugliano
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Marit Navis
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Sarah Ouahoud
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Tânia Martins Garcia
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Irini A.M. Kreulen
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Evelina Ferrantelli
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Sander Meisner
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Jacqueline L.M. Vermeulen
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Manon van Roest
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Jean-Noël Billaud
- QIAGEN Digital Insights, 1001 Marshall Street, Redwood City, CA, USA
- DNAnexus, 204 El Camino Real, Mountain View, CA, USA
| | - Jan Koster
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Yousif Dawood
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction and Development research institute, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Bernadette S. de Bakker
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction and Development research institute, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Daisy I. Picavet-Havik
- Department of Medical Biology, Electron Microscopy Center Amsterdam, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Irene M. Schimmel
- Department of Medical Biology, Electron Microscopy Center Amsterdam, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Nicole N. van der Wel
- Department of Medical Biology, Electron Microscopy Center Amsterdam, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Pim J. Koelink
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Manon E. Wildenberg
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Joep P.M. Derikx
- Department of Pediatric Surgery, Pediatric Surgery Center of Amsterdam, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Wouter J. de Jonge
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Ingrid B. Renes
- Department of Pediatrics, Amsterdam University Medical Center (AUMC), Emma Children’s Hospital, Amsterdam, the Netherlands
- Danone Nutricia Research, Utrecht, the Netherlands
| | - Ruurd M. van Elburg
- Department of Pediatrics, Amsterdam University Medical Center (AUMC), Emma Children’s Hospital, Amsterdam, the Netherlands
| | - Vanesa Muncan
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
18
|
Lassoued N, Yero A, Jenabian MA, Soret R, Pilon N. Efficient enzyme-free method to assess the development and maturation of the innate and adaptive immune systems in the mouse colon. Sci Rep 2024; 14:11063. [PMID: 38744932 PMCID: PMC11094196 DOI: 10.1038/s41598-024-61834-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
Researchers who aim to globally analyze the gastrointestinal immune system via flow cytometry have many protocol options to choose from, with specifics generally tied to gut wall layers of interest. To get a clearer idea of the approach we should use on full-thickness colon samples from mice, we first undertook a systematic comparison of three tissue dissociation techniques: two based on enzymatic cocktails and the other one based on manual crushing. Using flow cytometry panels of general markers of lymphoid and myeloid cells, we found that the presence of cell-surface markers and relative cell population frequencies were more stable with the mechanical method. Both enzymatic approaches were associated with a marked decrease of several cell-surface markers. Using mechanical dissociation, we then developed two minimally overlapping panels, consisting of a total of 26 antibodies, for serial profiling of lymphoid and myeloid lineages from the mouse colon in greater detail. Here, we highlight how we accurately delineate these populations by manual gating, as well as the reproducibility of our panels on mouse spleen and whole blood. As a proof-of-principle of the usefulness of our general approach, we also report segment- and life stage-specific patterns of immune cell profiles in the colon. Overall, our data indicate that mechanical dissociation is more suitable and efficient than enzymatic methods for recovering immune cells from all colon layers at once. Additionally, our panels will provide researchers with a relatively simple tool for detailed immune cell profiling in the murine gastrointestinal tract, regardless of life stage or experimental conditions.
Collapse
Affiliation(s)
- Nejia Lassoued
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC, Canada
- Centre d'excellence en recherche sur les maladies orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC, Canada
| | - Alexis Yero
- Centre d'excellence en recherche sur les maladies orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC, Canada
- Human Immuno-Virology Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC, Canada
| | - Mohammad-Ali Jenabian
- Centre d'excellence en recherche sur les maladies orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC, Canada
- Human Immuno-Virology Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC, Canada
| | - Rodolphe Soret
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC, Canada.
- Centre d'excellence en recherche sur les maladies orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC, Canada.
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC, Canada.
- Centre d'excellence en recherche sur les maladies orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC, Canada.
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
19
|
Camacho-Pacheco RT, Hernández-Pineda J, Brito-Pérez Y, Plazola-Camacho N, Coronado-Zarco IA, Arreola-Ramírez G, Bermejo-Haro MY, Najera-Hernández MA, González-Pérez G, Herrera-Salazar A, Olmos-Ortiz A, Soriano-Becerril D, Sandoval-Montes C, Figueroa-Damian R, Rodríguez-Martínez S, Mancilla-Herrera I. Disturbances in the IgG Antibody Profile in HIV-Exposed Uninfected Infants Associated with Maternal Factors. J Immunol Res 2024; 2024:8815767. [PMID: 38375063 PMCID: PMC10876311 DOI: 10.1155/2024/8815767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 02/21/2024] Open
Abstract
Over the last 20 years, the incidence of vertical HIV transmission has decreased from 25%-42% to less than 1%. Although there are no signs of infection, the health of HIV-exposed uninfected (HEU) infants is notoriously affected during the first months of life, with opportunistic infections being the most common disease. Some studies have reported effects on the vertical transfer of antibodies, but little is known about the subclass distribution of these antibodies. We proposed to evaluate the total IgG concentration and its subclasses in HIV+ mothers and HEU pairs and to determine which maternal factors condition their levels. In this study, plasma from 69 HEU newborns, their mothers, and 71 control pairs was quantified via immunoassays for each IgG isotype. Furthermore, we followed the antibody profile of HEUs throughout the first year of life. We showed that mothers present an antibody profile characterized by high concentrations of IgG1 and IgG3 but reduced IgG2, and HEU infants are born with an IgG subclass profile similar to that of their maternal pair. Interestingly, this passively transferred profile could remain influenced even during their own antibody production in HEU infants, depending on maternal conditions such as CD4+ T-cell counts and maternal antiretroviral treatment. Our findings indicate that HEU infants exhibit an altered IgG subclass profile influenced by maternal factors, potentially contributing to their increased susceptibility to infections.
Collapse
Affiliation(s)
- Rodrigo T. Camacho-Pacheco
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jessica Hernández-Pineda
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico
| | - Yesenia Brito-Pérez
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico
| | - Noemi Plazola-Camacho
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico
| | | | | | - Mextli Y. Bermejo-Haro
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - M. Angel Najera-Hernández
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico
| | - Gabriela González-Pérez
- Department of Physiology and Cellular Development, National Institute of Perinatology (INPer), Mexico City, Mexico
| | - Alma Herrera-Salazar
- Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, UNAM, Cuautitlán Izcalli, Mexico
| | - Andrea Olmos-Ortiz
- Immunobiochemistry Department, National Institute of Perinatology (INPer), Mexico City, Mexico
| | - Diana Soriano-Becerril
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico
| | - Claudia Sandoval-Montes
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ricardo Figueroa-Damian
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico
| | - Sandra Rodríguez-Martínez
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ismael Mancilla-Herrera
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico
| |
Collapse
|
20
|
Koren O, Konnikova L, Brodin P, Mysorekar IU, Collado MC. The maternal gut microbiome in pregnancy: implications for the developing immune system. Nat Rev Gastroenterol Hepatol 2024; 21:35-45. [PMID: 38097774 DOI: 10.1038/s41575-023-00864-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 01/04/2024]
Abstract
The gut microbiome has important roles in host metabolism and immunity, and microbial dysbiosis affects human physiology and health. Maternal immunity and microbial metabolites during pregnancy, microbial transfer during birth, and transfer of immune factors, microorganisms and metabolites via breastfeeding provide critical sources of early-life microbial and immune training, with important consequences for human health. Only a few studies have directly examined the interactions between the gut microbiome and the immune system during pregnancy, and the subsequent effect on offspring development. In this Review, we aim to describe how the maternal microbiome shapes overall pregnancy-associated maternal, fetal and early neonatal immune systems, focusing on the existing evidence and highlighting current gaps to promote further research.
Collapse
Affiliation(s)
- Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Liza Konnikova
- Department of Paediatrics and Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Petter Brodin
- Department of Immunology and Inflammation, Imperial College London, London, UK
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Indira U Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain.
| |
Collapse
|
21
|
Locher V, Park S, Bunis DG, Makredes S, Mayer M, Burt TD, Fragiadakis GK, Halkias J. Homeostatic cytokines reciprocally modulate the emergence of prenatal effector PLZF+CD4+ T cells in humans. JCI Insight 2023; 8:e164672. [PMID: 37856221 PMCID: PMC10721317 DOI: 10.1172/jci.insight.164672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
The development of human prenatal adaptive immunity progresses faster than previously appreciated, with the emergence of memory CD4+ T cells alongside regulatory T cells by midgestation. We previously identified a prenatal specific population of promyelocytic leukemia zinc finger-positive (PLZF+) CD4+ T cells with heightened effector potential that were enriched in the developing intestine and accumulated in the cord blood of infants exposed to prenatal inflammation. However, the signals that drive their tissue distribution and effector maturation are unknown. Here, we define the transcriptional and functional heterogeneity of human prenatal PLZF+CD4+ T cells and identify the compartmentalization of T helper-like (Th-like) effector function across the small intestine (SI) and mesenteric lymph nodes (MLNs). IL-7 was more abundant in the SI relative to the MLNs and drove the preferential expansion of naive PLZF+CD4+ T cells via enhanced STAT5 and MEK/ERK signaling. Exposure to IL-7 was sufficient to induce the acquisition of CD45RO expression and rapid effector function in a subset of PLZF+CD4+ T cells, identifying a human analog of memory phenotype CD4+ T cells. Further, IL-7 modulated the differentiation of Th1- and Th17-like PLZF+CD4+ T cells and thus likely contributes to the anatomic compartmentalization of human prenatal CD4+ T cell effector function.
Collapse
Affiliation(s)
- Veronica Locher
- Division of Neonatology, Department of Pediatrics, and
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, California, USA
- Committee on Immunology, University of Chicago, Chicago, Illinois, USA
| | - Sara Park
- Division of Neonatology, Department of Pediatrics, and
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, California, USA
| | - Daniel G. Bunis
- Bakar ImmunoX Initiative and
- CoLabs, UCSF, San Francisco, California, USA
| | - Stephanie Makredes
- Division of Neonatology, Department of Pediatrics, and
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, California, USA
| | - Margareta Mayer
- Division of Neonatology, Department of Pediatrics, and
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, California, USA
| | - Trevor D. Burt
- Division of Neonatology and the Children’s Health & Discovery Initiative, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Gabriela K. Fragiadakis
- Bakar ImmunoX Initiative and
- CoLabs, UCSF, San Francisco, California, USA
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Joanna Halkias
- Division of Neonatology, Department of Pediatrics, and
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, California, USA
- Bakar ImmunoX Initiative and
| |
Collapse
|
22
|
Donald K, Finlay BB. Early-life interactions between the microbiota and immune system: impact on immune system development and atopic disease. Nat Rev Immunol 2023; 23:735-748. [PMID: 37138015 DOI: 10.1038/s41577-023-00874-w] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 05/05/2023]
Abstract
Prenatal and early postnatal life represent key periods of immune system development. In addition to genetics and host biology, environment has a large and irreversible role in the immune maturation and health of an infant. One key player in this process is the gut microbiota, a diverse community of microorganisms that colonizes the human intestine. The diet, environment and medical interventions experienced by an infant determine the establishment and progression of the intestinal microbiota, which interacts with and trains the developing immune system. Several chronic immune-mediated diseases have been linked to an altered gut microbiota during early infancy. The recent rise in allergic disease incidence has been explained by the 'hygiene hypothesis', which states that societal changes in developed countries have led to reduced early-life microbial exposures, negatively impacting immunity. Although human cohort studies across the globe have established a correlation between early-life microbiota composition and atopy, mechanistic links and specific host-microorganism interactions are still being uncovered. Here, we detail the progression of immune system and microbiota maturation in early life, highlight the mechanistic links between microbes and the immune system, and summarize the role of early-life host-microorganism interactions in allergic disease development.
Collapse
Affiliation(s)
- Katherine Donald
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
23
|
Yang Q, Cai X, Zhu Y, Hu Z, Wei Y, Dang Q, Zhang Y, Zhao X, Jiang X, Yu H. Oat β-glucan supplementation pre- and during pregnancy alleviates fetal intestinal immunity development damaged by gestational diabetes in rats. Food Funct 2023; 14:8453-8466. [PMID: 37622658 DOI: 10.1039/d3fo00429e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Oat β-glucan (OG) has been shown to improve intestinal microecology in gestational diabetes mellitus (GDM), but the effect on fetal intestine health is unknown. Herein, we aimed to investigate the effects of OG supplementation during gestation in GDM dams on fetal intestinal immune development. OG was supplemented one week before mating until the end of the experiment. GDM rats were made with a high-fat diet (HFD) with a minimal streptozotocin (STZ) dose. The fetal intestines were sampled at gestation day (GD) 19.5, and the intestinal morphology, chemical barrier molecules, intraepithelial immune cell makers, and levels of inflammatory cytokines were investigated. The results showed that OG supplementation alleviated the decrease of the depth of fetal intestinal villi and crypts, the number of goblet cells (GCs), protein expression of mucin-1 (Muc1) and Muc2, the mRNA levels of Gpr41, Gpr43, and T cell markers, and increased the number of paneth cells (PCs), the mRNA levels of defensin-6 (defa6), and macrophage (Mø) marker and the expression of cytokines induced by GDM. In addition, OG supplementation alleviated the function of immune cell self-proliferation, chemotaxis and assembly capabilities, protein, fat, folic acid, and zinc absorption damaged by GDM. As indicated by these findings, OG supplementation before and during pregnancy improved the fetal intestinal chemical barriers, immune cells, cytokines, and the metabolism of nutrients to protect the fetal intestinal immunity.
Collapse
Affiliation(s)
- Qian Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Lab of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China.
| | - Xiaxia Cai
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Lab of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China.
| | - Yandi Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Lab of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China.
| | - Zhuo Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Lab of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China.
| | - Yuchen Wei
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Lab of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China.
| | - Qinyu Dang
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Lab of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China.
| | - Yadi Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Lab of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China.
| | - Xiaoyan Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Lab of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China.
| | - Xinyin Jiang
- Departments of Health and Nutrition Sciences, Brooklyn College of City, University of New York, NY 11210, USA
| | - Huanling Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Beijing Key Lab of Environmental Toxicology, Capital Medical University, Beijing 100069, P.R. China.
| |
Collapse
|
24
|
Bouffi C, Wikenheiser-Brokamp KA, Chaturvedi P, Sundaram N, Goddard GR, Wunderlich M, Brown NE, Staab JF, Latanich R, Zachos NC, Holloway EM, Mahe MM, Poling HM, Vales S, Fisher GW, Spence JR, Mulloy JC, Zorn AM, Wells JM, Helmrath MA. In vivo development of immune tissue in human intestinal organoids transplanted into humanized mice. Nat Biotechnol 2023; 41:824-831. [PMID: 36702898 PMCID: PMC10264243 DOI: 10.1038/s41587-022-01558-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/07/2022] [Indexed: 01/27/2023]
Abstract
Human intestinal organoids (HIOs) derived from pluripotent stem cells provide a valuable model for investigating human intestinal organogenesis and physiology, but they lack the immune components required to fully recapitulate the complexity of human intestinal biology and diseases. To address this issue and to begin to decipher human intestinal-immune crosstalk during development, we generated HIOs containing immune cells by transplanting HIOs under the kidney capsule of mice with a humanized immune system. We found that human immune cells temporally migrate to the mucosa and form cellular aggregates that resemble human intestinal lymphoid follicles. Moreover, after microbial exposure, epithelial microfold cells are increased in number, leading to immune cell activation determined by the secretion of IgA antibodies in the HIO lumen. This in vivo HIO system with human immune cells provides a framework for future studies on infection- or allergen-driven intestinal diseases.
Collapse
Affiliation(s)
- Carine Bouffi
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kathryn A Wikenheiser-Brokamp
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Praneet Chaturvedi
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nambirajan Sundaram
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gillian R Goddard
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nicole E Brown
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Janet F Staab
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rachel Latanich
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas C Zachos
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emily M Holloway
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Maxime M Mahe
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Holly M Poling
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Simon Vales
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Garrett W Fisher
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jason R Spence
- Division of Gastroenterology, Department of Internal Medicine, Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA
| | - James C Mulloy
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Aaron M Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael A Helmrath
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
25
|
Egozi A, Olaloye O, Werner L, Silva T, McCourt B, Pierce RW, An X, Wang F, Chen K, Pober JS, Shouval D, Itzkovitz S, Konnikova L. Single-cell atlas of the human neonatal small intestine affected by necrotizing enterocolitis. PLoS Biol 2023; 21:e3002124. [PMID: 37205711 PMCID: PMC10234541 DOI: 10.1371/journal.pbio.3002124] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/01/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a gastrointestinal complication of premature infants with high rates of morbidity and mortality. A comprehensive view of the cellular changes and aberrant interactions that underlie NEC is lacking. This study aimed at filling in this gap. We combine single-cell RNA sequencing (scRNAseq), T-cell receptor beta (TCRβ) analysis, bulk transcriptomics, and imaging to characterize cell identities, interactions, and zonal changes in NEC. We find an abundance of proinflammatory macrophages, fibroblasts, endothelial cells as well as T cells that exhibit increased TCRβ clonal expansion. Villus tip epithelial cells are reduced in NEC and the remaining epithelial cells up-regulate proinflammatory genes. We establish a detailed map of aberrant epithelial-mesenchymal-immune interactions that are associated with inflammation in NEC mucosa. Our analyses highlight the cellular dysregulations of NEC-associated intestinal tissue and identify potential targets for biomarker discovery and therapeutics.
Collapse
Affiliation(s)
- Adi Egozi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Oluwabunmi Olaloye
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Lael Werner
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center of Israel, Petah Tikva, Israel, affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tatiana Silva
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Blake McCourt
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Richard W. Pierce
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, United States of America
- Program in Human and Translational Immunology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Xiaojing An
- Department of Medicine, University of Pittsburgh Medical Center Montefiore Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Fujing Wang
- Department of Medicine, University of Pittsburgh Medical Center Montefiore Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Kong Chen
- Department of Medicine, University of Pittsburgh Medical Center Montefiore Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Jordan S. Pober
- Program in Human and Translational Immunology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Dror Shouval
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center of Israel, Petah Tikva, Israel, affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Liza Konnikova
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, United States of America
- Program in Human and Translational Immunology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
26
|
Torow N, Hand TW, Hornef MW. Programmed and environmental determinants driving neonatal mucosal immune development. Immunity 2023; 56:485-499. [PMID: 36921575 PMCID: PMC10079302 DOI: 10.1016/j.immuni.2023.02.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/17/2023] [Indexed: 03/15/2023]
Abstract
The mucosal immune system of neonates goes through successive, non-redundant phases that support the developmental needs of the infant and ultimately establish immune homeostasis. These phases are informed by environmental cues, including dietary and microbial stimuli, but also evolutionary developmental programming that functions independently of external stimuli. The immune response to exogenous stimuli is tightly regulated during early life; thresholds are set within this neonatal "window of opportunity" that govern how the immune system will respond to diet, the microbiota, and pathogenic microorganisms in the future. Thus, changes in early-life exposure, such as breastfeeding or environmental and microbial stimuli, influence immunological and metabolic homeostasis and the risk of developing diseases such as asthma/allergy and obesity.
Collapse
Affiliation(s)
- Natalia Torow
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Timothy W Hand
- Pediatrics Department, Infectious Disease Section, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA.
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany.
| |
Collapse
|
27
|
Guo N, Li N, Jia L, Jiang Q, Schreurs M, van Unen V, de Sousa Lopes SMC, Vloemans AA, Eggermont J, Lelieveldt B, Staal FJT, de Miranda NFCC, Pascutti MF, Koning F. Immune subset-committed proliferating cells populate the human foetal intestine throughout the second trimester of gestation. Nat Commun 2023; 14:1318. [PMID: 36899020 PMCID: PMC10006174 DOI: 10.1038/s41467-023-37052-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
The intestine represents the largest immune compartment in the human body, yet its development and organisation during human foetal development is largely unknown. Here we show the immune subset composition of this organ during development, by longitudinal spectral flow cytometry analysis of human foetal intestinal samples between 14 and 22 weeks of gestation. At 14 weeks, the foetal intestine is mainly populated by myeloid cells and three distinct CD3-CD7+ ILC, followed by rapid appearance of adaptive CD4+, CD8+ T and B cell subsets. Imaging mass cytometry identifies lymphoid follicles from week 16 onwards in a villus-like structure covered by epithelium and confirms the presence of Ki-67+ cells in situ within all CD3-CD7+ ILC, T, B and myeloid cell subsets. Foetal intestinal lymphoid subsets are capable of spontaneous proliferation in vitro. IL-7 mRNA is detected within both the lamina propria and the epithelium and IL-7 enhances proliferation of several subsets in vitro. Overall, these observations demonstrate the presence of immune subset-committed cells capable of local proliferation in the developing human foetal intestine, likely contributing to the development and growth of organized immune structures throughout most of the 2nd trimester, which might influence microbial colonization upon birth.
Collapse
Affiliation(s)
- Nannan Guo
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Na Li
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- State Key Laboratory of Zoonotic Diseases, Institute of Zoonoses, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Li Jia
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Qinyue Jiang
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Mette Schreurs
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Vincent van Unen
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | | | | | - Jeroen Eggermont
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Frank J T Staal
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | | - M Fernanda Pascutti
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands.
| | - Frits Koning
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
28
|
Bastos-Amador P, Duarte EL, Torres J, Caldeira AT, Silva I, Salvador C, Assunção R, Alvito P, Ferreira M. Maternal dietary exposure to mycotoxin aflatoxin B 1 promotes intestinal immune alterations and microbiota modifications increasing infection susceptibility in mouse offspring. Food Chem Toxicol 2023; 173:113596. [PMID: 36603704 DOI: 10.1016/j.fct.2022.113596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Mycotoxins are secondary metabolites produced by fungi occurring in food that are toxic to animals and humans. Early-life mycotoxins exposure has been linked to diverse pathologies. However, how maternal exposure to mycotoxins impacts on the intestinal barrier function of progeny has not been explored. Here, exposure of pregnant and lactating C57Bl/6J female mice to aflatoxin B1 (AFB1; 400 μg/kg body weight/day; 3 times a week) in gelatine pellets, from embryonic day (E)11.5 until weaning (postnatal day 21), led to gut immunological changes in progeny. The results showed an overall increase of lymphocyte number in intestine, a reduction of expression of epithelial genes related to microbial defence, as well as a decrease in cytokine production by intestinal type 2 innate lymphoid cells (ILC2). While susceptibility to chemically induced colitis was not worsened, immune alterations were associated with changes in gut microbiota and with a higher vulnerability to infection by the protozoan Eimeria vermiformis at early-life. Together these results show that maternal dietary exposure to AFB1 can dampen intestinal barrier homeostasis in offspring decreasing their capability to tackle intestinal pathogens. These data provide insights to understand AFB1 potential harmfulness in early-life health in the context of intestinal infections.
Collapse
Affiliation(s)
- Patricia Bastos-Amador
- Food and Nutrition Department, National Institute of Health Dr. Ricardo Jorge, 1649-016, Lisbon, Portugal; Champalimaud Foundation, Champalimaud Centre for the Unknown, 1400-038, Lisbon, Portugal
| | - Elsa Leclerc Duarte
- University of Évora, School of Science and Technology, 7000-671, Évora, Portugal; MED-Mediterranean Institute for Agriculture, Environment and Development, 7006-554, Évora, Portugal
| | - Júlio Torres
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Center for Neuroscience and Cell Biology, 3004-504, Coimbra, Portugal
| | | | - Inês Silva
- University of Évora, School of Science and Technology, 7000-671, Évora, Portugal; MED-Mediterranean Institute for Agriculture, Environment and Development, 7006-554, Évora, Portugal; HERCULES Laboratory, Universidade de Évora, 7000-809, Évora, Portugal
| | - Cátia Salvador
- HERCULES Laboratory, Universidade de Évora, 7000-809, Évora, Portugal
| | - Ricardo Assunção
- IUEM, Instituto Universitário Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior, CRL, 2829 - 511, Caparica, Portugal; University of Aveiro, CESAM - Centre for Environmental and Marine Studies, 3810-193, Aveiro, Portugal
| | - Paula Alvito
- Food and Nutrition Department, National Institute of Health Dr. Ricardo Jorge, 1649-016, Lisbon, Portugal; University of Aveiro, CESAM - Centre for Environmental and Marine Studies, 3810-193, Aveiro, Portugal
| | - Manuela Ferreira
- Champalimaud Foundation, Champalimaud Centre for the Unknown, 1400-038, Lisbon, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Center for Neuroscience and Cell Biology, 3004-504, Coimbra, Portugal.
| |
Collapse
|
29
|
Olaloye O, Eke C, Jolteus A, Konnikova L. Single cell analysis via mass cytometry of spontaneous intestinal perforation reveals alterations in small intestinal innate and adaptive mucosal immunity. Front Immunol 2023; 14:995558. [PMID: 36825028 PMCID: PMC9941693 DOI: 10.3389/fimmu.2023.995558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction Spontaneous intestinal perforation (SIP) is a poorly understood severe gastrointestinal complications of prematurity which is poorly understood. Extremely premature infants born prior to 28 weeks' gestation develop a localized perforation of the terminal ileum during the first week of life and therapy involves surgery and cessation of enteral feeds. Little is known regardj g the impact of mucosal immune dysfunction on disease pathogenesis. Methods We performed mass cytometry time of flight (CyTOF) of small intestinal mucosa of patients with SIP (Gestational age (GA) 24 - 27 weeks, n=8) compared to patients who had surgery for non-SIP conditions (neonatal (GA >36 weeks, n=5 ) and fetal intestine from elective terminations (GA 18-21 weeks, n=4). CyTOF analysis after stimulation of T cells with PMA/Ionomycin was also performed. Results We noted changes in innate and adaptive mucosal immunity in SIP. SIP mucosa had an expansion of ckit+ neutrophils, an influx of naïve CD4 and CD8 T cells and a reduction of effector memory T cells. SIP T cells were characterized by reduced CCR6 and CXCR3 expression and increased interferon gamma expression after stimulation. Discussion These findings suggest that previously unrecognized immune dysregulation is associated with SIP and should be explored in future studies.
Collapse
Affiliation(s)
- Oluwabunmi Olaloye
- Department of Pediatrics, Yale University, New Haven, CT, United States
- Division of Neonatal and Perinatal Medicine Yale University, New Haven, CT, United States
| | - Chino Eke
- Department of Pediatrics, Yale University, New Haven, CT, United States
| | - Abigail Jolteus
- Department of Pediatrics, Yale University, New Haven, CT, United States
| | - Liza Konnikova
- Department of Pediatrics, Yale University, New Haven, CT, United States
- Division of Neonatal and Perinatal Medicine Yale University, New Haven, CT, United States
- Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, United States
- Program in Human and Translational Immunology, Yale University, New Haven, CT, United States
| |
Collapse
|
30
|
Jardine L, Schim van der Loeff I, Haq IJ, Sproat TDR. Gestational Development of the Human Immune System. Immunol Allergy Clin North Am 2023; 43:1-15. [PMID: 36410996 DOI: 10.1016/j.iac.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Building an immune system is a monumental task critical to the survival of the fetus and newborn. A functional fetal immune system must complement the maternal immune system in handling in utero infection; abstain from damaging non-self-reactions that would compromise the materno-fetal interface; mobilize in response to infection and equip mucosal tissues for pathogen exposure at birth. There is growing appreciation that immune cells also have noncanonical roles in development and specifically may contribute to tissue morphogenesis. In this review we detail how hematopoietic and lymphoid organs jointly establish cellular constituents of the immune system; how these constituents are organized in 2 mucosal sites-gut and lung-where early life immune function has long-term consequences for health; and how exemplar diseases of prematurity and inborn errors of immunity reveal dominant pathways in prenatal immunity.
Collapse
Affiliation(s)
- Laura Jardine
- Biosciences Institute, Newcastle University, Faculty of Medical Sciences, Newcastle Upon Tyne NE2 4HH, United Kingdom; Haematology Department, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom.
| | - Ina Schim van der Loeff
- Translational and Clinical Research Institute, Newcastle University, Faculty of Medical Sciences, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | - Iram J Haq
- Translational and Clinical Research Institute, Newcastle University, Faculty of Medical Sciences, Newcastle Upon Tyne NE2 4HH, United Kingdom; Department of Paediatric Respiratory Medicine, Great North Children's Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | - Thomas D R Sproat
- Neonatal Unit, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Richardson Road, Newcastle Upon Tyne NE1 4LP, United Kingdom
| |
Collapse
|
31
|
Nunzi E, Mezzasoma L, Bellezza I, Zelante T, Orvietani P, Coata G, Giardina I, Sagini K, Manni G, Di Michele A, Gargaro M, Talesa VN, Di Renzo GC, Fallarino F, Romani R. Microbiota-Associated HAF-EVs Regulate Monocytes by Triggering or Inhibiting Inflammasome Activation. Int J Mol Sci 2023; 24:ijms24032527. [PMID: 36768851 PMCID: PMC9916438 DOI: 10.3390/ijms24032527] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
In pregnancy, human amniotic fluid extracellular vesicles (HAF-EVs) exert anti-inflammatory effects on T cells and on monocytes, supporting their immunoregulatory roles. The specific mechanisms are still not completely defined. The aim of this study was to investigate the ability of HAF-EVs, isolated from pregnant women who underwent amniocentesis and purified by gradient ultracentrifugation, to affect inflammasome activation in the human monocytes. Proteomic studies revealed that HAF-EV samples expressed several immunoregulatory molecules as well as small amounts of endotoxin. Surprisingly, metagenomic analysis shows the presence of specific bacterial strain variants associated with HAF-EVs as potential sources of the endotoxin. Remarkably, we showed that a single treatment of THP-1 cells with HAF-EVs triggered inflammasome activation, whereas the same treatment followed by LPS and ATP sensitization prevented inflammasome activation, a pathway resembling monocyte refractories. A bioinformatics analysis of microbiota-HAF-EVs functional pathways confirmed the presence of enzymes for endotoxin biosynthesis as well as others associated with immunoregulatory functions. Overall, these data suggest that HAF-EVs could serve as a source of the isolation of a specific microbiota during early pregnancy. Moreover, HAF-EVs could act as a novel system to balance immune training and tolerance by modulating the inflammasome in monocytes or other cells.
Collapse
Affiliation(s)
- Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant’Andrea delle Fratte, P.e Lucio Severi 1, 06132 Perugia, Italy
| | - Letizia Mezzasoma
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant’Andrea delle Fratte, P.e Lucio Severi 1, 06132 Perugia, Italy
| | - Ilaria Bellezza
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant’Andrea delle Fratte, P.e Lucio Severi 1, 06132 Perugia, Italy
| | - Teresa Zelante
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant’Andrea delle Fratte, P.e Lucio Severi 1, 06132 Perugia, Italy
| | - Pierluigi Orvietani
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant’Andrea delle Fratte, P.e Lucio Severi 1, 06132 Perugia, Italy
| | - Giuliana Coata
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant’Andrea delle Fratte, P.e Lucio Severi 1, 06132 Perugia, Italy
| | - Irene Giardina
- Department of Obstetrics and Gynecology, University Hospital of Perugia, Sant’Andrea delle Fratte, P.e Lucio Severi 1, 06132 Perugia, Italy
| | - Krizia Sagini
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Giorgia Manni
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant’Andrea delle Fratte, P.e Lucio Severi 1, 06132 Perugia, Italy
| | - Alessandro Di Michele
- Department of Physics and Geology, University of Perugia, Via Pascoli, 06123 Perugia, Italy
| | - Marco Gargaro
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant’Andrea delle Fratte, P.e Lucio Severi 1, 06132 Perugia, Italy
| | - Vincenzo N. Talesa
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant’Andrea delle Fratte, P.e Lucio Severi 1, 06132 Perugia, Italy
| | - Gian Carlo Di Renzo
- Department of Obstetrics, Gynecology and Perinatology IM Sechenov First State University, 117997 Moscow, Russia
| | - Francesca Fallarino
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant’Andrea delle Fratte, P.e Lucio Severi 1, 06132 Perugia, Italy
- Correspondence: (F.F.); (R.R.)
| | - Rita Romani
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant’Andrea delle Fratte, P.e Lucio Severi 1, 06132 Perugia, Italy
- Correspondence: (F.F.); (R.R.)
| |
Collapse
|
32
|
Kennedy KM, de Goffau MC, Perez-Muñoz ME, Arrieta MC, Bäckhed F, Bork P, Braun T, Bushman FD, Dore J, de Vos WM, Earl AM, Eisen JA, Elovitz MA, Ganal-Vonarburg SC, Gänzle MG, Garrett WS, Hall LJ, Hornef MW, Huttenhower C, Konnikova L, Lebeer S, Macpherson AJ, Massey RC, McHardy AC, Koren O, Lawley TD, Ley RE, O'Mahony L, O'Toole PW, Pamer EG, Parkhill J, Raes J, Rattei T, Salonen A, Segal E, Segata N, Shanahan F, Sloboda DM, Smith GCS, Sokol H, Spector TD, Surette MG, Tannock GW, Walker AW, Yassour M, Walter J. Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies. Nature 2023; 613:639-649. [PMID: 36697862 PMCID: PMC11333990 DOI: 10.1038/s41586-022-05546-8] [Citation(s) in RCA: 187] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/09/2022] [Indexed: 01/26/2023]
Abstract
Whether the human fetus and the prenatal intrauterine environment (amniotic fluid and placenta) are stably colonized by microbial communities in a healthy pregnancy remains a subject of debate. Here we evaluate recent studies that characterized microbial populations in human fetuses from the perspectives of reproductive biology, microbial ecology, bioinformatics, immunology, clinical microbiology and gnotobiology, and assess possible mechanisms by which the fetus might interact with microorganisms. Our analysis indicates that the detected microbial signals are likely the result of contamination during the clinical procedures to obtain fetal samples or during DNA extraction and DNA sequencing. Furthermore, the existence of live and replicating microbial populations in healthy fetal tissues is not compatible with fundamental concepts of immunology, clinical microbiology and the derivation of germ-free mammals. These conclusions are important to our understanding of human immune development and illustrate common pitfalls in the microbial analyses of many other low-biomass environments. The pursuit of a fetal microbiome serves as a cautionary example of the challenges of sequence-based microbiome studies when biomass is low or absent, and emphasizes the need for a trans-disciplinary approach that goes beyond contamination controls by also incorporating biological, ecological and mechanistic concepts.
Collapse
Affiliation(s)
- Katherine M Kennedy
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Marcus C de Goffau
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Vascular Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Wellcome Sanger Institute, Cambridge, UK
| | - Maria Elisa Perez-Muñoz
- Department of Agriculture, Food and Nutrition Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Marie-Claire Arrieta
- International Microbiome Center, University of Calgary, Calgary, Alberta, Canada
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
- Yonsei Frontier Lab (YFL), Yonsei University, Seoul, South Korea
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Thorsten Braun
- Department of Obstetrics and Experimental Obstetrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frederic D Bushman
- Department of Microbiology Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel Dore
- Université Paris-Saclay, INRAE, MetaGenoPolis, AgroParisTech, MICALIS, Jouy-en-Josas, France
| | - Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Ashlee M Earl
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Jonathan A Eisen
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
- UC Davis Genome Center, University of California, Davis, Davis, CA, USA
| | - Michal A Elovitz
- Maternal and Child Health Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Stephanie C Ganal-Vonarburg
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Michael G Gänzle
- Department of Agriculture, Food and Nutrition Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA, USA
- Department of Medicine and Division of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Lindsay J Hall
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
- Chair of Intestinal Microbiome, ZIEL-Institute for Food and Health, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Curtis Huttenhower
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Liza Konnikova
- Departments of Pediatrics and Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Andrew J Macpherson
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Ruth C Massey
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Alice Carolyn McHardy
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
- German Center for Infection Research (DZIF), Hannover Braunschweig site, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Trevor D Lawley
- Department of Vascular Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Liam O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Paul W O'Toole
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Eric G Pamer
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jeroen Raes
- VIB Center for Microbiology, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eran Segal
- Weizmann Institute of Science, Rehovot, Israel
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
- European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Gordon C S Smith
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Harry Sokol
- Gastroenterology Department, AP-HP, Saint Antoine Hospital, Centre de Recherche Saint-Antoine, CRSA, INSERM and Sorbonne Université, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM), Fédération Hospitalo-Universitaire, Paris, France
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - Tim D Spector
- Department of Twin Research, King's College London, London, UK
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gerald W Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Alan W Walker
- Gut Health Group, Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Moran Yassour
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jens Walter
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- School of Microbiology, University College Cork, Cork, Ireland.
- Department of Medicine, University College Cork, Cork, Ireland.
| |
Collapse
|
33
|
Wu X, Khatun A, Kasmani MY, Chen Y, Zheng S, Atkinson S, Nguyen C, Burns R, Taparowsky EJ, Salzman NH, Hand TW, Cui W. Group 3 innate lymphoid cells require BATF to regulate gut homeostasis in mice. J Exp Med 2022; 219:e20211861. [PMID: 36048018 PMCID: PMC9440727 DOI: 10.1084/jem.20211861] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/18/2022] [Accepted: 08/03/2022] [Indexed: 12/22/2022] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) are crucial for the maintenance of host-microbiota homeostasis in gastrointestinal mucosal tissues. The mechanisms that maintain lineage identity of intestinal ILC3s and ILC3-mediated orchestration of microbiota and mucosal T cell immunity are elusive. Here, we identified BATF as a gatekeeper of ILC3 homeostasis in the gut. Depletion of BATF in ILC3s resulted in excessive interferon-γ production, dysbiosis, aberrant T cell immune responses, and spontaneous inflammatory bowel disease (IBD), which was considerably ameliorated by the removal of adaptive immunity, interferon-γ blockade, or antibiotic treatment. Mechanistically, BATF directly binds to the cis-regulatory elements of type 1 effector genes, restrains their chromatin accessibility, and inhibits their expression. Conversely, BATF promotes chromatin accessibility of genes involved in MHCII antigen processing and presentation pathways, which in turn directly promotes the transition of precursor ILC3s to MHCII+ ILC3s. Collectively, our findings reveal that BATF is a key transcription factor for maintaining ILC3 stability and coordinating ILC3-mediated control of intestinal homeostasis.
Collapse
Affiliation(s)
- Xiaopeng Wu
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Achia Khatun
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Moujtaba Y. Kasmani
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Yao Chen
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Shikan Zheng
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Samantha Atkinson
- Department of Pediatrics, Division of Gastroenterology and Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI
| | - Christine Nguyen
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Robert Burns
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Elizabeth J. Taparowsky
- Department of Biological Sciences and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN
| | - Nita H. Salzman
- Department of Pediatrics, Division of Gastroenterology and Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI
| | - Timothy W. Hand
- R.K. Mellon Institute for Pediatric Research, Pediatrics Department, Infectious Disease Section, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA
| | - Weiguo Cui
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
34
|
Fortmann MI, Dirks J, Goedicke-Fritz S, Liese J, Zemlin M, Morbach H, Härtel C. Immunization of preterm infants: current evidence and future strategies to individualized approaches. Semin Immunopathol 2022; 44:767-784. [PMID: 35922638 PMCID: PMC9362650 DOI: 10.1007/s00281-022-00957-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/08/2022] [Indexed: 12/15/2022]
Abstract
Preterm infants are at particularly high risk for infectious diseases. As this vulnerability extends beyond the neonatal period into childhood and adolescence, preterm infants benefit greatly from infection-preventive measures such as immunizations. However, there is an ongoing discussion about vaccine safety and efficacy due to preterm infants' distinct immunological features. A significant proportion of infants remains un- or under-immunized when discharged from primary hospital stay. Educating health care professionals and parents, promoting maternal immunization and evaluating the potential of new vaccination tools are important means to reduce the overall burden from infectious diseases in preterm infants. In this narrative review, we summarize the current knowledge about vaccinations in premature infants. We discuss the specificities of early life immunity and memory function, including the role of polyreactive B cells, restricted B cell receptor diversity and heterologous immunity mediated by a cross-reactive T cell repertoire. Recently, mechanistic studies indicated that tissue-resident memory (Trm) cell populations including T cells, B cells and macrophages are already established in the fetus. Their role in human early life immunity, however, is not yet understood. Tissue-resident memory T cells, for example, are diminished in airway tissues in neonates as compared to older children or adults. Hence, the ability to make specific recall responses after secondary infectious stimulus is hampered, a phenomenon that is transcriptionally regulated by enhanced expression of T-bet. Furthermore, the microbiome establishment is a dominant factor to shape resident immunity at mucosal surfaces, but it is often disturbed in the context of preterm birth. The proposed function of Trm T cells to remember benign interactions with the microbiome might therefore be reduced which would contribute to an increased risk for sustained inflammation. An improved understanding of Trm interactions may determine novel targets of vaccination, e.g., modulation of T-bet responses and facilitate more individualized approaches to protect preterm babies in the future.
Collapse
Affiliation(s)
- Mats Ingmar Fortmann
- Department of Pediatrics, University Lübeck, University Hospital Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Johannes Dirks
- Department of Pediatrics, University Hospital of Würzburg, Würzburg, Germany
| | - Sybelle Goedicke-Fritz
- Department of General Pediatrics and Neonatology, Faculty of Medicine, Saarland University Hospital and Saarland University, Homburg, Germany
| | - Johannes Liese
- Department of Pediatrics, University Hospital of Würzburg, Würzburg, Germany
| | - Michael Zemlin
- Department of General Pediatrics and Neonatology, Faculty of Medicine, Saarland University Hospital and Saarland University, Homburg, Germany
| | - Henner Morbach
- Department of General Pediatrics and Neonatology, Faculty of Medicine, Saarland University Hospital and Saarland University, Homburg, Germany
| | - Christoph Härtel
- Department of Pediatrics, University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
35
|
Development of the immune system in the human embryo. Pediatr Res 2022; 92:951-955. [PMID: 35042957 DOI: 10.1038/s41390-022-01940-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/18/2021] [Accepted: 12/14/2021] [Indexed: 01/16/2023]
Abstract
The fetal immune system is highly specialized which is to generate both tolerogenic and protective immune responses to tolerate both self- and maternal-antigens. Fetal T cells with pro-inflammatory potential are born in a tolerogenic environment and are tightly controlled by both cell-intrinsic and -extrinsic mechanisms. Fetal B-1 and B-2 B cells involved in innate and adaptive immune responses, respectively, arise in staggered waves of development from distinct progenitors. Innate immune responses are the key to the protection against infection and adaptive immunity creates memory after an initial response to a specific pathogen. This review aims to discuss the recent advances in understanding the development of immune system in fetus. IMPACT: During gestation, essential developmental changes occur to survive the neonates. At early stage, developmental signals and changes may be influenced due to immune deficiencies.
Collapse
|
36
|
Kloepfer KM, McCauley KE, Kirjavainen PV. The Microbiome as a Gateway to Prevention of Allergic Disease Development. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY: IN PRACTICE 2022; 10:2195-2204. [PMID: 35718258 DOI: 10.1016/j.jaip.2022.05.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 12/18/2022]
Abstract
Allergic diseases exclusively affect tissues that face environmental challenges and harbor endogenous bacterial microbiota. The microbes inhabiting the affected tissues may not be mere bystanders in this process but actively affect the risk of allergic sensitization, disease development, and exacerbation or abatement of symptoms. Experimental evidence provides several plausible means by which the human microbiota could influence the development of allergic diseases including, but not limited to, effects on antigen presentation and induction of tolerance and allergen permeation by endorsing or disrupting epithelial barrier integrity. Epidemiological evidence attests to the significance of age-appropriate, nonpathogenic microbiota development in skin, gastrointestinal tract, and airways for protection against allergic disease development. Thus, there exist potential targets for preventive actions either in the prenatal or postnatal period. These could include maternal dietary interventions, antibiotic stewardship for both the mother and infant, reducing elective cesarean deliveries, and understanding barriers to breastfeeding and timing of food diversification. In here, we will review the current understanding and evidence of allergy-associated human microbiota patterns, their role in the development of allergic diseases, and how we could harness these associations to our benefit against allergies.
Collapse
|
37
|
Schmitt G, Barrow P. Considerations for and against dosing rodent pups before 7 days of age in juvenile toxicology studies. Reprod Toxicol 2022; 112:77-87. [PMID: 35772686 DOI: 10.1016/j.reprotox.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
This review focuses on preweaning ontogenic and developmental processes that can influence the selection of the appropriate age at which to start dosing rodent pups in juvenile animal studies (JAS). The ICH S11 guideline on 'Nonclinical Safety Testing in Support of Development of Paediatric Medicines' highlights the need to adapt the age from which animals are dosed according to the stage of development in the target organs/tissues of concern in the youngest pediatric patients. Rodents (rat or mouse) are the most common species for JAS. Despite previous practices, based on comparative ontogeny, it is rarely necessary to dose rodents younger than one week of age since postnatal day (PND)7 is appropriate to address concern for the vast majority of organs. In exceptional cases, earlier dosing (e.g., PND4) can be appropriate to address specific concern in preterm neonates and when a tissue of concern has a particularly early developmental trajectory in the rodent compared to humans. The comparative development of the CNS is particularly complex. While exposure of rodents from PND10 covers most CNS development stages relevant to human neonates, a later dosing start (yet, not later than PND14) can sometimes be appropriate to reflect specific aspects (e.g., transformation of GABAergic transmission). An extended study design including subsets of several ages can be helpful to address multiple concerns within a preweaning JAS. Such design can allow for individual assessment of each concern, whilst minimizing (potentially irrelevant) signals from tissues exposed at a developmental stage that do not match the human situation.
Collapse
Affiliation(s)
- Georg Schmitt
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH 4070 Basel, Switzerland.
| | - Paul Barrow
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH 4070 Basel, Switzerland
| |
Collapse
|
38
|
Le T, Reeves RK, McKinnon LR. The Functional Diversity of Tissue-Resident Natural Killer Cells Against Infection. Immunology 2022; 167:28-39. [PMID: 35751452 DOI: 10.1111/imm.13523] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 06/03/2022] [Indexed: 11/30/2022] Open
Abstract
For decades, studies of natural killer (NK) cells have focused on those found in peripheral blood (PBNK cells) as the prototype for NK cell biology. Only recently have researchers begun to explore the diversity of tissue-resident NK (tr-NK) cells. While tr-NK cells were initially identified from mice parabiosis and intravascular staining experiments, they can also be identified by tissue retention markers such as CD69, CD103, and others. More importantly, tr-NK cells have distinct functions compared to PBNK cells. Within the liver, there are diverse subsets of tr-NK cells expressing different combinations of tissue-retention markers and transcription factors, the clinical relevance of which are still unclear. Functionally, liver tr-NK are primed with immediate responsiveness to infection and equipped with regulatory mechanisms to prevent liver damage. When decidual NK (dNK) cells were first discovered, they were mainly characterized by their reduced cytotoxicity and functions related to placental development. Recent studies, however, revealed different mechanisms by which dNK cells prevent uterine infections. The lungs are one of the most highly exposed sites for infection due to their role in oxygen exchange. Upon influenza infection, lung tr-NK cells can degranulate and produce more inflammatory cytokines than PBNK cells. Less understood are gut tr-NK cells which were recently characterized in infants and adults for their functional differences. In this mini-review, we aim to provide a brief overview of the most recent discoveries on how several tr-NK cells are implicated in the immune response against infection. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Toby Le
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - R Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, Durham, NC, USA.,Department of Surgery, Duke University School of Medicine, Durham, NC, USA.,Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Lyle R McKinnon
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| |
Collapse
|
39
|
Abstract
Tissue-resident immune cells span both myeloid and lymphoid cell lineages, have been found in multiple human tissues, and play integral roles at all stages of the immune response, from maintaining homeostasis to responding to infectious challenges to resolution of inflammation to tissue repair. In humans, studying immune cells and responses in tissues is challenging, although recent advances in sampling and high-dimensional profiling have provided new insights into the ontogeny, maintenance, and functional role of tissue-resident immune cells. Each tissue contains a specific complement of resident immune cells. Moreover, resident immune cells for each lineage share core properties, along with tissue-specific adaptations. Here we propose a five-point checklist for defining resident immune cell types in humans and describe the currently known features of resident immune cells, their mechanisms of development, and their putative functional roles within various human organs. We also consider these aspects of resident immune cells in the context of future studies and therapeutics.
Collapse
Affiliation(s)
- Joshua I Gray
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, USA;
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, USA;
- Department of Surgery, Columbia University Irving Medical Center, New York, USA
| |
Collapse
|
40
|
Liu Y, Tang W, Ao J, Zhang J, Feng L. Transcriptomics integrated with metabolomics reveals the effect of Bisphenol F (BPF) exposure on intestinal inflammation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151644. [PMID: 34774955 DOI: 10.1016/j.scitotenv.2021.151644] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/16/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
As a viable alternative to Bisphenol A (BPA), Bisphenol F (BPF) has been detected in humans at comparable concentrations and detection frequencies. Emerging evidence reveals that BPF induces intestinal toxicity. However, less information is available concerning BPF and its potential effects on intestinal inflammation, which has been associated with numerous disorders. The results from the present study showed that BPF exposure triggered lipopolysaccharide (LPS)-induced explosion of pro-inflammatory cytokines interleukin-17A (IL-17A), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) and impairment of the intestinal epithelial barrier by downregulating the expression of tight junction proteins Zonula Occludens-1 (ZO-1) and Claudin-1 (CLDN1) in normal colonic epithelial cells (NCM460). A multi-omics analysis integrating the transcriptomics with metabolomics revealed an altered transcripts and metabolites profile following BPF exposure. Correlation analysis indicated that RAS Guanyl Releasing Protein 2 (RASGRP2) and Phospholipase A2 Group IVE (PLA2G4E) were positively associated with the increased serotonin which was positively associated with the stimulated IFN-γ in BPF-treated NCM460 cells. Pyrogallol, pyridoxine, and N-acetylputrescine were positively associated with IL-17A levels. Collectively, the integrative analyses demonstrated an orchestrated coordination between the inflammatory response, transcriptomic, and metabolomics changes. Data presented herein provide evidence for the possible roles of BPF in the pathogenesis of intestinal inflammation. These results illustrate the advantages of using integrative analyses of high throughput datasets for characterizing the effects and mechanisms of toxicants.
Collapse
Affiliation(s)
- Yongjie Liu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Weifeng Tang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjie Ao
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liping Feng
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA.
| |
Collapse
|
41
|
Ricardo-Gonzalez RR, Molofsky AB, Locksley RM. ILC2s - development, divergence, dispersal. Curr Opin Immunol 2022; 75:102168. [PMID: 35176675 PMCID: PMC9131705 DOI: 10.1016/j.coi.2022.102168] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/15/2022]
Abstract
Over the last decade, we have come to appreciate group 2 innate lymphoid cells (ILC2s) as important players in host and tissue immunity. New studies of ILC2s and their precursors using novel reporter mice, advanced microscopy, and multi-omics approaches have expanded our knowledge on how these cells contribute to tissue physiology and function. This review highlights recent literature on this enigmatic cell, and we organize our discussion across three important paradigms in ILC2 biology: development, divergence, and dispersal. In addition, we frame our discussion in the context of other innate and adaptive immune cells to emphasize the relevance of expanding knowledge of ILC2s and tissue immunity.
Collapse
Affiliation(s)
- Roberto R Ricardo-Gonzalez
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA; Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Ari B Molofsky
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA; Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Richard M Locksley
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, USA; Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
42
|
Regulation of tissue-resident memory T cells by the Microbiota. Mucosal Immunol 2022; 15:408-417. [PMID: 35194180 PMCID: PMC9063729 DOI: 10.1038/s41385-022-00491-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023]
Abstract
Resident memory T cells (Trms) predominantly reside within tissue and are critical for providing rapid protection against invasive viruses, fungi and bacteria. Given that tissues are heavily impacted and shaped by the microbiota, it stands to reason that Trms are also influenced by the microbiota that inhabits barrier sites. The influence of the microbiota is largely mediated by microbial production of metabolites which are crucial to the immune response to both viral infection and cancerous tumors. In addition to the effects of metabolites, antigens derived from the microbiota can activate T cell responses. While microbiota-specific T cells may assist in tissue repair, control of infection and anti-tumor immunity, the actual 'memory' potential of these cells remains unclear. Here, we hypothesize that memory responses to antigens from the microbiota must be 'licensed' by inflammatory signals activated by invasion of the host by microorganisms.
Collapse
|
43
|
Toothaker JM, Olaloye O, McCourt BT, McCourt CC, Silva TN, Case RM, Liu P, Yimlamai D, Tseng G, Konnikova L. Immune landscape of human placental villi using single-cell analysis. Development 2022; 149:274057. [PMID: 35050308 PMCID: PMC8935213 DOI: 10.1242/dev.200013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022]
Abstract
Maintenance of a healthy pregnancy is reliant on a successful balance between the fetal and maternal immune systems. Although the maternal mechanisms responsible have been well studied, those used by the fetal immune system remain poorly understood. Using suspension mass cytometry and various imaging modalities, we report a complex immune system within the mid-gestation (17-23 weeks) human placental villi (PV). Consistent with recent reports in other fetal organs, T cells with memory phenotypes, although rare in abundance, were detected within the PV tissue and vasculature. Moreover, we determined that T cells isolated from PV samples may be more proliferative after T cell receptor stimulation than adult T cells at baseline. Collectively, we identified multiple subtypes of fetal immune cells within the PV and specifically highlight the enhanced proliferative capacity of fetal PV T cells.
Collapse
Affiliation(s)
- Jessica M. Toothaker
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA,Department of Pediatrics, Yale University, New Haven, CT 06510, USA
| | | | - Blake T. McCourt
- Department of Pediatrics, Yale University, New Haven, CT 06510, USA
| | - Collin C. McCourt
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15219, USA
| | - Tatiana N. Silva
- Department of Pediatrics, Yale University, New Haven, CT 06510, USA
| | - Rebecca M. Case
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15219, USA
| | - Peng Liu
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Dean Yimlamai
- Department of Pediatrics, Yale University, New Haven, CT 06510, USA
| | - George Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Liza Konnikova
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA,Department of Pediatrics, Yale University, New Haven, CT 06510, USA,Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, CT 06519, USA,Program in Human and Translational Immunology, Yale University, New Haven, CT 06519, USA,Author for correspondence ()
| |
Collapse
|
44
|
Amat S, Holman DB, Schmidt K, McCarthy KL, Dorsam ST, Ward AK, Borowicz PP, Reynolds LP, Caton JS, Sedivec KK, Dahlen CR. Characterization of the Microbiota Associated With 12-Week-Old Bovine Fetuses Exposed to Divergent in utero Nutrition. Front Microbiol 2022; 12:771832. [PMID: 35126326 PMCID: PMC8811194 DOI: 10.3389/fmicb.2021.771832] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/24/2021] [Indexed: 12/18/2022] Open
Abstract
A recent study reported the existence of a diverse microbiota in 5-to-7-month-old calf fetuses, suggesting that colonization of the bovine gut with so-called “pioneer” microbiota may begin during mid-gestation. In the present study, we investigated 1) the presence of microbiota in bovine fetuses at early gestation (12 weeks), and 2) whether the fetal microbiota is influenced by the maternal rate of gain or dietary supplementation with vitamins and minerals (VTM) during early gestation. Amniotic and allantoic fluids, and intestinal and placental (cotyledon) tissue samples obtained from fetuses (n = 33) on day 83 of gestation were processed for the assessment of fetal microbiota using 16S rRNA gene sequencing. The sequencing results revealed that a diverse and complex microbial community was present in each of these fetal compartments evaluated. Allantoic and amniotic fluids, and fetal intestinal and placenta microbiota each had distinctly different (0.047 ≥ R2 ≥ 0.019, P ≤ 0.031) microbial community structures. Allantoic fluid had a greater (P < 0.05) microbial richness (number of OTUs) (Mean 122) compared to amniotic fluid (84), intestine (63), and placenta (66). Microbial diversity (Shannon index) was similar for the intestinal and placental samples, and both were less diverse compared with fetal fluid microbiota (P < 0.05). Thirty-nine different archaeal and bacterial phyla were detected across all fetal samples, with Proteobacteria (55%), Firmicutes (16.2%), Acidobacteriota (13.6%), and Bacteroidota (5%) predominating. Among the 20 most relatively abundant bacterial genera, Acidovorax, Acinetobacter, Brucella, Corynebacterium, Enterococcus, Exiguobacterium, and Stenotrophomonas differed by fetal sample type (P < 0.05). A total of 55 taxa were shared among the four different microbial communities. qPCR of bacteria in the intestine and placenta samples as well as scanning electron microscopy imaging of fetal fluids provided additional evidence for the presence of a microbiota in these samples. Minor effects of maternal rate of gain and VTM supplementation, and their interactions on microbial richness and composition were detected. Overall, the results of this study indicate that colonization with pioneer microbiota may occur during early gestation in bovine fetuses, and that the maternal nutritional regime during gestation may influence the early fetal microbiota.
Collapse
Affiliation(s)
- Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
- *Correspondence: Samat Amat,
| | - Devin B. Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Kaycie Schmidt
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Kacie L. McCarthy
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Sheri T. Dorsam
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Alison K. Ward
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Pawel P. Borowicz
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Lawrence P. Reynolds
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Joel S. Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Kevin K. Sedivec
- Central Grasslands Research Extension Center, North Dakota State University, Streeter, ND, United States
| | - Carl R. Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
45
|
Wang S, Ma X, Wu L, Yu H, Shan Y, Tian Y, Liu T, Gu X. Effect of gastrointestinal heat retention syndrome on gut microbiota in children with upper respiratory tract infection and lung-heat syndrome. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
46
|
James KR, Elmentaite R, Teichmann SA, Hold GL. Redefining intestinal immunity with single-cell transcriptomics. Mucosal Immunol 2022; 15:531-541. [PMID: 34848830 PMCID: PMC8630196 DOI: 10.1038/s41385-021-00470-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 02/04/2023]
Abstract
The intestinal immune system represents the largest collection of immune cells in the body and is continually exposed to antigens from food and the microbiota. Here we discuss the contribution of single-cell transcriptomics in shaping our understanding of this complex system. We consider the impact on resolving early intestine development, engagement with the neighbouring microbiota, diversity of intestinal immune cells, compartmentalisation within the intestines and interactions with non-immune cells. Finally, we offer a perspective on open questions about gut immunity that evolving single-cell technologies are well placed to address.
Collapse
Affiliation(s)
- Kylie Renee James
- grid.415306.50000 0000 9983 6924Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010 Australia ,grid.1005.40000 0004 4902 0432School of Medical Sciences, University of New South Wales, Sydney, NSW 2006 Australia
| | - Rasa Elmentaite
- grid.10306.340000 0004 0606 5382Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA UK
| | - Sarah Amalia Teichmann
- grid.10306.340000 0004 0606 5382Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA UK ,grid.5335.00000000121885934Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge, NSW CB3 0HE UK
| | - Georgina Louise Hold
- grid.1005.40000 0004 4902 0432University of New South Wales Microbiome Research Centre, Sydney, NSW 2217 Australia
| |
Collapse
|
47
|
Feyaerts D, Urbschat C, Gaudillière B, Stelzer IA. Establishment of tissue-resident immune populations in the fetus. Semin Immunopathol 2022; 44:747-766. [PMID: 35508672 PMCID: PMC9067556 DOI: 10.1007/s00281-022-00931-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/17/2022] [Indexed: 12/15/2022]
Abstract
The immune system establishes during the prenatal period from distinct waves of stem and progenitor cells and continuously adapts to the needs and challenges of early postnatal and adult life. Fetal immune development not only lays the foundation for postnatal immunity but establishes functional populations of tissue-resident immune cells that are instrumental for fetal immune responses amidst organ growth and maturation. This review aims to discuss current knowledge about the development and function of tissue-resident immune populations during fetal life, focusing on the brain, lung, and gastrointestinal tract as sites with distinct developmental trajectories. While recent progress using system-level approaches has shed light on the fetal immune landscape, further work is required to describe precise roles of prenatal immune populations and their migration and adaptation to respective organ environments. Defining points of prenatal susceptibility to environmental challenges will support the search for potential therapeutic targets to positively impact postnatal health.
Collapse
Affiliation(s)
- Dorien Feyaerts
- grid.168010.e0000000419368956Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA USA
| | - Christopher Urbschat
- grid.13648.380000 0001 2180 3484Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg, Hamburg, Germany
| | - Brice Gaudillière
- grid.168010.e0000000419368956Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA USA ,grid.168010.e0000000419368956Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA USA
| | - Ina A. Stelzer
- grid.168010.e0000000419368956Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA USA
| |
Collapse
|
48
|
Wang Y, Yang Y, Zhang Y, Kulyar MFEA, Waqas M, Han Z, Jiang X. Milk replacer supplementation in early life optimizes the development of intestinal microbes in goats. Microb Pathog 2021; 161:105210. [PMID: 34563609 DOI: 10.1016/j.micpath.2021.105210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/30/2022]
Abstract
Colonization and development of the gut microbiome during early life is important in establishing a host-microbial symbiotic relationship. It contributes to maintaining health and well-being throughout the life span. To date, early longitudinal development of intestinal microflora in the ileum micro-ecology of the Yimeng black goats (YBGs) is rare. The purpose of this research was to study the effect of milk replacer with age on the ileal microbiota growth and maturation in YBGs throughout the post-weaning phase. The newborn YBGs (n = 24) were divided into two groups, i.e., milk replacer (R group) and control group (B group). The microbiome of Ileum was observed on days 15, 25, 45, and 75. When compared with baseline (B group), the R group's alpha diversity was lower (day 15, 25, 45), but it gradually approached and exceeded the baseline in the later stages (day 75). On the time axis, the richness of intestinal microflora was increased with age, but there was no statistically significant difference. The relative abundances of Proteobacteria, Firmicutes, Peptoclustridium, Lachnospiraceae, and Prevotellaceae showed a continuous trend of increase initially. They then decreased except Ruminococcaceae, which reflected the gradual maturity of intestinal microbial development. Milk replacer treatment temporarily increased the abundance of Actinomycetes (day 25 and 45), while the relative proportion of several intestinal bacteria such as Parasutterella, Megasphaera, Prevotellaceae, Akkermansia, and Subdoligranulum species were significantly higher in R group than in B group. The major changes in gut microflora composition might reflect positive effect of milk replacer on the development and maturation of the intestine during the early stage, connecting with substrate availability in the gut. Our study provides an effective strategy to promote the development of the gut microbiome, which is helpful for a smooth transition during the early-weaning period in YBGs.
Collapse
Affiliation(s)
- Yaping Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi 276000 , China; Hubei Three Gorges Polytechnic, Yichang, 443000, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yanmei Yang
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, PR China
| | - Yan Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | | | - Muhammad Waqas
- Faculty of Veterinary and Animal Sciences, University of Poonch, Rawalakot, District Poonch, 12350, Azad Jammu and Kashmir, Pakistan
| | - Zhaoqing Han
- College of Agriculture and Forestry Science, Linyi University, Linyi 276000 , China.
| | - Xiong Jiang
- Hubei Three Gorges Polytechnic, Yichang, 443000, PR China.
| |
Collapse
|
49
|
Egozi A, Llivichuzhca-Loja D, McCourt BT, Bahar Halpern K, Farack L, An X, Wang F, Chen K, Konnikova L, Itzkovitz S. Insulin is expressed by enteroendocrine cells during human fetal development. Nat Med 2021; 27:2104-2107. [PMID: 34887578 DOI: 10.1038/s41591-021-01586-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022]
Abstract
Generation of beta cells via transdifferentiation of other cell types is a promising avenue for the treatment of diabetes. Here we reconstruct a single-cell atlas of the human fetal and neonatal small intestine. We identify a subset of fetal enteroendocrine K/L cells that express high levels of insulin and other beta cell genes. Our findings highlight a potential extra-pancreatic source of beta cells and expose its molecular blueprint.
Collapse
Affiliation(s)
- Adi Egozi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dhana Llivichuzhca-Loja
- Department of Pediatrics and Department of Obstetrics, Gynecology and Reproductive Sciences, Human and Translational Immunology, Yale Medical School, New Haven, CT, USA
| | - Blake T McCourt
- Department of Pediatrics and Department of Obstetrics, Gynecology and Reproductive Sciences, Human and Translational Immunology, Yale Medical School, New Haven, CT, USA
| | - Keren Bahar Halpern
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lydia Farack
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Xiaojing An
- Department of Medicine, University of Pittsburgh Medical Center, Montefiore Hospital, Pittsburgh, PA, USA
| | - Fujing Wang
- Department of Medicine, University of Pittsburgh Medical Center, Montefiore Hospital, Pittsburgh, PA, USA
| | - Kong Chen
- Department of Medicine, University of Pittsburgh Medical Center, Montefiore Hospital, Pittsburgh, PA, USA
| | - Liza Konnikova
- Department of Pediatrics and Department of Obstetrics, Gynecology and Reproductive Sciences, Human and Translational Immunology, Yale Medical School, New Haven, CT, USA.
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
50
|
Jašarević E, Hill EM, Kane PJ, Rutt L, Gyles T, Folts L, Rock KD, Howard CD, Morrison KE, Ravel J, Bale TL. The composition of human vaginal microbiota transferred at birth affects offspring health in a mouse model. Nat Commun 2021; 12:6289. [PMID: 34725359 PMCID: PMC8560944 DOI: 10.1038/s41467-021-26634-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Newborns are colonized by maternal microbiota that is essential for offspring health and development. The composition of these pioneer communities exhibits individual differences, but the importance of this early-life heterogeneity to health outcomes is not understood. Here we validate a human microbiota-associated model in which fetal mice are cesarean delivered and gavaged with defined human vaginal microbial communities. This model replicates the inoculation that occurs during vaginal birth and reveals lasting effects on offspring metabolism, immunity, and the brain in a community-specific manner. This microbial effect is amplified by prior gestation in a maternal obesogenic or vaginal dysbiotic environment where placental and fetal ileum development are altered, and an augmented immune response increases rates of offspring mortality. Collectively, we describe a translationally relevant model to examine the defined role of specific human microbial communities on offspring health outcomes, and demonstrate that the prenatal environment dramatically shapes the postnatal response to inoculation.
Collapse
Affiliation(s)
- Eldin Jašarević
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Elizabeth M Hill
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Patrick J Kane
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lindsay Rutt
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Trevonn Gyles
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lillian Folts
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kylie D Rock
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Christopher D Howard
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kathleen E Morrison
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jacques Ravel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Tracy L Bale
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA.
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|