1
|
Stark R, Dempsey H, Kleeman E, Sassi M, Osborne-Lawrence S, Sheybani-Deloui S, Rushby HJ, Mirth CK, Austin-Muttitt K, Mullins J, Zigman JM, Davies JS, Andrews ZB. Hunger signalling in the olfactory bulb primes exploration, food-seeking and peripheral metabolism. Mol Metab 2024; 89:102025. [PMID: 39236785 PMCID: PMC11471258 DOI: 10.1016/j.molmet.2024.102025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024] Open
Abstract
OBJECTIVE Although the metabolic state of an organism affects olfactory function, the precise mechanisms and their impact on behavior and metabolism remain unknown. Here, we assess whether ghrelin receptors (GHSRs) in the olfactory bulb (OB) increase olfactory function and influence foraging behaviors and metabolism. METHODS We performed a detailed behavioural and metabolic analysis in mice lacking GHSRs in the OB (OBGHSR deletion). We also analsyed OB scRNA-seq and spatial transcriptomic datasets to assess GHSR+ cells in the main and accessory olfactory bulbs, as well as the anterior olfactory nucleus. RESULTS OBGHSR deletion affected olfactory discrimination and habituation to both food and non-food odors. Anxiety-like and depression-like behaviors were significantly greater after OBGHSR deletion, whereas exploratory behavior was reduced, with the greatest effect under fasted conditions. OBGHSR deletion impacted feeding behavior as evidenced by altered bout number and duration, as well as buried food-seeking. OBGHSR deletion increased body weight and fat mass, spared fat utilisation on a chow diet and impaired glucose metabolism indicating metabolic dysfunction. Cross referenced analysis of OB scRNA-seq and spatial transcriptomic datasets revealed GHSR+ glutamate neurons in the main and accessory olfactory bulbs, as well as the anterior olfactory nucleus. Ablation of glutamate neurons in the OB reduced ghrelin-induced food finding and phenocopied results seen after OBGHSR deletion. CONCLUSIONS OBGHSRs help to maintain olfactory function, particularly during hunger, and facilitate behavioral adaptations that optimise food-seeking in anxiogenic environments, priming metabolic pathways in preparation for food consumption.
Collapse
Affiliation(s)
- Romana Stark
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | - Harry Dempsey
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Elizabeth Kleeman
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia
| | - Martina Sassi
- Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Sherri Osborne-Lawrence
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sepideh Sheybani-Deloui
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Helen J Rushby
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Karl Austin-Muttitt
- Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Jonathan Mullins
- Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey S Davies
- Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
2
|
Friedman MI, Sørensen TIA, Taubes G, Lund J, Ludwig DS. Trapped fat: Obesity pathogenesis as an intrinsic disorder in metabolic fuel partitioning. Obes Rev 2024; 25:e13795. [PMID: 38961319 DOI: 10.1111/obr.13795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
Our understanding of the pathophysiology of obesity remains at best incomplete despite a century of research. During this time, two alternative perspectives have helped shape thinking about the etiology of the disorder. The currently prevailing view holds that excessive fat accumulation results because energy intake exceeds energy expenditure, with excessive food consumption being the primary cause of the imbalance. The other perspective attributes the initiating cause of obesity to intrinsic metabolic defects that shift fuel partitioning from pathways for mobilization and oxidation to those for synthesis and storage. The resulting reduction in fuel oxidation and trapping of energy in adipose tissue drives a compensatory increase in energy intake and, under some conditions, a decrease in expenditure. This theory of obesity pathogenesis has historically garnered relatively less attention despite its pedigree. Here, we present an updated comprehensive formulation of the fuel partitioning theory, focused on evidence gathered over the last 80 years from major animal models of obesity showing a redirection of fuel fluxes from oxidation to storage and accumulation of excess body fat with energy intake equal to or even less than that of lean animals. The aim is to inform current discussions about the etiology of obesity and by so doing, help lay new foundations for the design of more efficacious approaches to obesity research, treatment and prevention.
Collapse
Affiliation(s)
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Center for Childhood Health, Copenhagen, Denmark
| | | | - Jens Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - David S Ludwig
- New Balance Foundation Obesity Prevention Center, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| |
Collapse
|
3
|
Alemany M. The Metabolic Syndrome, a Human Disease. Int J Mol Sci 2024; 25:2251. [PMID: 38396928 PMCID: PMC10888680 DOI: 10.3390/ijms25042251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review focuses on the question of metabolic syndrome (MS) being a complex, but essentially monophyletic, galaxy of associated diseases/disorders, or just a syndrome of related but rather independent pathologies. The human nature of MS (its exceptionality in Nature and its close interdependence with human action and evolution) is presented and discussed. The text also describes the close interdependence of its components, with special emphasis on the description of their interrelations (including their syndromic development and recruitment), as well as their consequences upon energy handling and partition. The main theories on MS's origin and development are presented in relation to hepatic steatosis, type 2 diabetes, and obesity, but encompass most of the MS components described so far. The differential effects of sex and its biological consequences are considered under the light of human social needs and evolution, which are also directly related to MS epidemiology, severity, and relations with senescence. The triggering and maintenance factors of MS are discussed, with especial emphasis on inflammation, a complex process affecting different levels of organization and which is a critical element for MS development. Inflammation is also related to the operation of connective tissue (including the adipose organ) and the widely studied and acknowledged influence of diet. The role of diet composition, including the transcendence of the anaplerotic maintenance of the Krebs cycle from dietary amino acid supply (and its timing), is developed in the context of testosterone and β-estradiol control of the insulin-glycaemia hepatic core system of carbohydrate-triacylglycerol energy handling. The high probability of MS acting as a unique complex biological control system (essentially monophyletic) is presented, together with additional perspectives/considerations on the treatment of this 'very' human disease.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
4
|
Montalban E, Walle R, Castel J, Ansoult A, Hassouna R, Foppen E, Fang X, Hutelin Z, Mickus S, Perszyk E, Petitbon A, Berthelet J, Rodrigues-Lima F, Cebrian-Serrano A, Gangarossa G, Martin C, Trifilieff P, Bosch-Bouju C, Small DM, Luquet S. The Addiction-Susceptibility TaqIA/Ankk1 Controls Reward and Metabolism Through D 2 Receptor-Expressing Neurons. Biol Psychiatry 2023; 94:424-436. [PMID: 36805080 DOI: 10.1016/j.biopsych.2023.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/21/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND A large body of evidence highlights the importance of genetic variants in the development of psychiatric and metabolic conditions. Among these, the TaqIA polymorphism is one of the most commonly studied in psychiatry. TaqIA is located in the gene that codes for the ankyrin repeat and kinase domain containing 1 kinase (Ankk1) near the dopamine D2 receptor (D2R) gene. Homozygous expression of the A1 allele correlates with a 30% to 40% reduction of striatal D2R, a typical feature of addiction, overeating, and other psychiatric pathologies. The mechanisms by which the variant influences dopamine signaling and behavior are unknown. METHODS Here, we used transgenic and viral-mediated strategies to reveal the role of Ankk1 in the regulation of activity and functions of the striatum. RESULTS We found that Ankk1 is preferentially enriched in striatal D2R-expressing neurons and that Ankk1 loss of function in the dorsal and ventral striatum leads to alteration in learning, impulsivity, and flexibility resembling endophenotypes described in A1 carriers. We also observed an unsuspected role of Ankk1 in striatal D2R-expressing neurons of the ventral striatum in the regulation of energy homeostasis and documented differential nutrient partitioning in humans with or without the A1 allele. CONCLUSIONS Overall, our data demonstrate that the Ankk1 gene is necessary for the integrity of striatal functions and reveal a new role for Ankk1 in the regulation of body metabolism.
Collapse
Affiliation(s)
- Enrica Montalban
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France.
| | - Roman Walle
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Julien Castel
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Anthony Ansoult
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Rim Hassouna
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Ewout Foppen
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Xi Fang
- Modern Diet and Physiology Research Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Zach Hutelin
- Modern Diet and Physiology Research Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Sophie Mickus
- Modern Diet and Physiology Research Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Emily Perszyk
- Modern Diet and Physiology Research Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Anna Petitbon
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Jérémy Berthelet
- Université Paris Cité, CNRS, Unité Epigenetique et Destin Cellulaire, Paris, France
| | | | - Alberto Cebrian-Serrano
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Claire Martin
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Pierre Trifilieff
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | | | - Dana M Small
- Modern Diet and Physiology Research Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Serge Luquet
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France; Modern Diet and Physiology Research Center, New Haven, Connecticut.
| |
Collapse
|
5
|
Cincotta AH. Brain Dopamine-Clock Interactions Regulate Cardiometabolic Physiology: Mechanisms of the Observed Cardioprotective Effects of Circadian-Timed Bromocriptine-QR Therapy in Type 2 Diabetes Subjects. Int J Mol Sci 2023; 24:13255. [PMID: 37686060 PMCID: PMC10487918 DOI: 10.3390/ijms241713255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 09/10/2023] Open
Abstract
Despite enormous global efforts within clinical research and medical practice to reduce cardiovascular disease(s) (CVD), it still remains the leading cause of death worldwide. While genetic factors clearly contribute to CVD etiology, the preponderance of epidemiological data indicate that a major common denominator among diverse ethnic populations from around the world contributing to CVD is the composite of Western lifestyle cofactors, particularly Western diets (high saturated fat/simple sugar [particularly high fructose and sucrose and to a lesser extent glucose] diets), psychosocial stress, depression, and altered sleep/wake architecture. Such Western lifestyle cofactors are potent drivers for the increased risk of metabolic syndrome and its attendant downstream CVD. The central nervous system (CNS) evolved to respond to and anticipate changes in the external (and internal) environment to adapt survival mechanisms to perceived stresses (challenges to normal biological function), including the aforementioned Western lifestyle cofactors. Within the CNS of vertebrates in the wild, the biological clock circuitry surveils the environment and has evolved mechanisms for the induction of the obese, insulin-resistant state as a survival mechanism against an anticipated ensuing season of low/no food availability. The peripheral tissues utilize fat as an energy source under muscle insulin resistance, while increased hepatic insulin resistance more readily supplies glucose to the brain. This neural clock function also orchestrates the reversal of the obese, insulin-resistant condition when the low food availability season ends. The circadian neural network that produces these seasonal shifts in metabolism is also responsive to Western lifestyle stressors that drive the CNS clock into survival mode. A major component of this natural or Western lifestyle stressor-induced CNS clock neurophysiological shift potentiating the obese, insulin-resistant state is a diminution of the circadian peak of dopaminergic input activity to the pacemaker clock center, suprachiasmatic nucleus. Pharmacologically preventing this loss of circadian peak dopaminergic activity both prevents and reverses existing metabolic syndrome in a wide variety of animal models of the disorder, including high fat-fed animals. Clinically, across a variety of different study designs, circadian-timed bromocriptine-QR (quick release) (a unique formulation of micronized bromocriptine-a dopamine D2 receptor agonist) therapy of type 2 diabetes subjects improved hyperglycemia, hyperlipidemia, hypertension, immune sterile inflammation, and/or adverse cardiovascular event rate. The present review details the seminal circadian science investigations delineating important roles for CNS circadian peak dopaminergic activity in the regulation of peripheral fuel metabolism and cardiovascular biology and also summarizes the clinical study findings of bromocriptine-QR therapy on cardiometabolic outcomes in type 2 diabetes subjects.
Collapse
|
6
|
Zhang S, Sun Z, Jiang X, Lu Z, Ding L, Li C, Tian X, Wang Q. Ferroptosis increases obesity: Crosstalk between adipocytes and the neuroimmune system. Front Immunol 2022; 13:1049936. [PMID: 36479119 PMCID: PMC9720262 DOI: 10.3389/fimmu.2022.1049936] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
Ferroptosis requires not only the accumulation of iron ions, but also changes in many ferroptosis-related regulators, including a decrease in GPX4 and inhibition of SLC7A11 for classical ferroptosis, a deletion of FSP1 or GCH1. Surprisingly, adipose tissue (AT) in the obesity conditions is also accompanied by iron buildup, decreased GSH, and increased ROS. On the neurological side, the pro-inflammatory factor released by AT may have first caused ferroptosis in the vagus nerve by inhibiting of the NRF2-GPX4 pathway, resulting in disorders of the autonomic nervous system. On the immune side, obesity may cause M2 macrophages ferroptosis due to damage to iron-rich ATMs (MFehi) and antioxidant ATMs (Mox), and lead to Treg cells ferroptosis through reductions in NRF2, GPX4, and GCH1 levels. At the same time, the reduction in GPX4 may also trigger the ferroptosis of B1 cells. In addition, some studies have also found the role of GPX4 in neutrophil autophagy, which is also worth pondering whether there is a connection with ferroptosis. In conclusion, this review summarizes the associations between neuroimmune regulation associated with obesity and ferroptosis, and on the basis of this, highlights their potential molecular mechanisms, proposing that ferroptosis in one or more cells in a multicellular tissue changes the fate of that tissue.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xuewen Tian
- *Correspondence: Xuewen Tian, ; Qinglu Wang,
| | - Qinglu Wang
- *Correspondence: Xuewen Tian, ; Qinglu Wang,
| |
Collapse
|
7
|
Tsuneki H, Sugiyama M, Ito T, Sato K, Matsuda H, Onishi K, Yubune K, Matsuoka Y, Nagai S, Yamagishi T, Maeda T, Honda K, Okekawa A, Watanabe S, Yaku K, Okuzaki D, Otsubo R, Nomoto M, Inokuchi K, Nakagawa T, Wada T, Yasui T, Sasaoka T. Food odor perception promotes systemic lipid utilization. Nat Metab 2022; 4:1514-1531. [PMID: 36376564 DOI: 10.1038/s42255-022-00673-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 09/30/2022] [Indexed: 11/16/2022]
Abstract
Food cues during fasting elicit Pavlovian conditioning to adapt for anticipated food intake. However, whether the olfactory system is involved in metabolic adaptations remains elusive. Here we show that food-odor perception promotes lipid metabolism in male mice. During fasting, food-odor stimulation is sufficient to increase serum free fatty acids via adipose tissue lipolysis in an olfactory-memory-dependent manner, which is mediated by the central melanocortin and sympathetic nervous systems. Additionally, stimulation with a food odor prior to refeeding leads to enhanced whole-body lipid utilization, which is associated with increased sensitivity of the central agouti-related peptide system, reduced sympathetic activity and peripheral tissue-specific metabolic alterations, such as an increase in gastrointestinal lipid absorption and hepatic cholesterol turnover. Finally, we show that intermittent fasting coupled with food-odor stimulation improves glycemic control and prevents insulin resistance in diet-induced obese mice. Thus, olfactory regulation is required for maintaining metabolic homeostasis in environments with either an energy deficit or energy surplus, which could be considered as part of dietary interventions against metabolic disorders.
Collapse
Affiliation(s)
- Hiroshi Tsuneki
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan.
| | - Masanori Sugiyama
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Toshihiro Ito
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan
| | - Kiyofumi Sato
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Hiroki Matsuda
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Kengo Onishi
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Koharu Yubune
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Yukina Matsuoka
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Sanaka Nagai
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Towa Yamagishi
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Takahiro Maeda
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Kosuke Honda
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Akira Okekawa
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Shiro Watanabe
- Division of Nutritional Biochemistry, University of Toyama, Toyama, Japan
| | - Keisuke Yaku
- Department of Molecular and Medical Pharmacology, University of Toyama, Toyama, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Ryota Otsubo
- Laboratory of Infectious Diseases and Immunity, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan
- Laboratory of Immunobiologics Evaluation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan
| | - Masanori Nomoto
- Department of Biochemistry, University of Toyama, Toyama, Japan
- Research Centre for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Kaoru Inokuchi
- Department of Biochemistry, University of Toyama, Toyama, Japan
- Research Centre for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, University of Toyama, Toyama, Japan
| | - Tsutomu Wada
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Teruhito Yasui
- Laboratory of Infectious Diseases and Immunity, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan.
- Laboratory of Immunobiologics Evaluation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan.
- Laboratory of Pharmaceutical Integrated Omics, Department of Pharmaceutical Engineering, Facility of Engineering, Toyama Prefectural University, Toyama, Japan.
| | - Toshiyasu Sasaoka
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan.
| |
Collapse
|
8
|
Cincotta AH, Cersosimo E, Alatrach M, Ezrokhi M, Agyin C, Adams J, Chilton R, Triplitt C, Chamarthi B, Cominos N, DeFronzo RA. Bromocriptine-QR Therapy Reduces Sympathetic Tone and Ameliorates a Pro-Oxidative/Pro-Inflammatory Phenotype in Peripheral Blood Mononuclear Cells and Plasma of Type 2 Diabetes Subjects. Int J Mol Sci 2022; 23:ijms23168851. [PMID: 36012132 PMCID: PMC9407769 DOI: 10.3390/ijms23168851] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Bromocriptine-QR is a sympatholytic dopamine D2 agonist for the treatment of type 2 diabetes that has demonstrated rapid (within 1 year) substantial reductions in adverse cardiovascular events in this population by as yet incompletely delineated mechanisms. However, a chronic state of elevated sympathetic nervous system activity and central hypodopaminergic function has been demonstrated to potentiate an immune system pro-oxidative/pro-inflammatory condition and this immune phenotype is known to contribute significantly to the advancement of cardiovascular disease (CVD). Therefore, the possibility exists that bromocriptine-QR therapy may reduce adverse cardiovascular events in type 2 diabetes subjects via attenuation of this underlying chronic pro-oxidative/pro-inflammatory state. The present study was undertaken to assess the impact of bromocriptine-QR on a wide range of immune pro-oxidative/pro-inflammatory biochemical pathways and genes known to be operative in the genesis and progression of CVD. Inflammatory peripheral blood mononuclear cell biology is both a significant contributor to cardiovascular disease and also a marker of the body’s systemic pro-inflammatory status. Therefore, this study investigated the effects of 4-month circadian-timed (within 2 h of waking in the morning) bromocriptine-QR therapy (3.2 mg/day) in type 2 diabetes subjects whose glycemia was not optimally controlled on the glucagon-like peptide 1 receptor agonist on (i) gene expression status (via qPCR) of a wide array of mononuclear cell pro-oxidative/pro-inflammatory genes known to participate in the genesis and progression of CVD (OXR1, NRF2, NQO1, SOD1, SOD2, CAT, GSR, GPX1, GPX4, GCH1, HMOX1, BiP, EIF2α, ATF4, PERK, XBP1, ATF6, CHOP, GSK3β, NFkB, TXNIP, PIN1, BECN1, TLR2, TLR4, TLR10, MAPK8, NLRP3, CCR2, GCR, L-selectin, VCAM1, ICAM1) and (ii) humoral measures of sympathetic tone (norepinephrine and normetanephrine), whole-body oxidative stress (nitrotyrosine, TBARS), and pro-inflammatory factors (IL-1β, IL-6, IL-18, MCP-1, prolactin, C-reactive protein [CRP]). Relative to pre-treatment status, 4 months of bromocriptine-QR therapy resulted in significant reductions of mRNA levels in PBMC endoplasmic reticulum stress-unfolded protein response effectors [GRP78/BiP (34%), EIF2α (32%), ATF4 (29%), XBP1 (25%), PIN1 (14%), BECN1 (23%)], oxidative stress response proteins [OXR1 (31%), NRF2 (32%), NQO1 (39%), SOD1 (52%), CAT (26%), GPX1 (33%), GPX4 (31%), GCH1 (30%), HMOX1 (40%)], mRNA levels of TLR pro-inflammatory pathway proteins [TLR2 (46%), TLR4 (20%), GSK3β (19%), NFkB (33%), TXNIP (18%), NLRP3 (32%), CCR2 (24%), GCR (28%)], mRNA levels of pro-inflammatory cellular receptor proteins CCR2 and GCR by 24% and 28%, and adhesion molecule proteins L-selectin (35%) and VCAM1 (24%). Relative to baseline, bromocriptine-QR therapy also significantly reduced plasma levels of norepinephrine and normetanephrine by 33% and 22%, respectively, plasma pro-oxidative markers nitrotyrosine and TBARS by 13% and 10%, respectively, and pro-inflammatory factors IL-18, MCP1, IL-1β, prolactin, and CRP by 21%,13%, 12%, 42%, and 45%, respectively. These findings suggest a unique role for circadian-timed bromocriptine-QR sympatholytic dopamine agonist therapy in reducing systemic low-grade sterile inflammation to thereby reduce cardiovascular disease risk.
Collapse
Affiliation(s)
- Anthony H. Cincotta
- VeroScience LLC, Tiverton, RI 02878, USA
- Correspondence: ; Tel.: +1-401-816-0525
| | - Eugenio Cersosimo
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Mariam Alatrach
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | - Christina Agyin
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - John Adams
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Robert Chilton
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Curtis Triplitt
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | - Ralph A. DeFronzo
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
9
|
Lhomme T, Clasadonte J, Imbernon M, Fernandois D, Sauve F, Caron E, Lima N, Heras V, Martinez-Corral I, Müller-Fielitz H, Rasika S, Schwaninger M, Nogueiras R, Prevot V. Tanycytic networks mediate energy balance by feeding lactate to glucose-insensitive POMC neurons. J Clin Invest 2021; 131:e140521. [PMID: 34324439 DOI: 10.1172/jci140521] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Hypothalamic glucose sensing enables an organism to match energy expenditure and food intake to circulating levels of glucose, the main energy source of the brain. Here, we established that tanycytes of the hypothalamic arcuate nucleus, specialized glia that line the wall of the third ventricle, convert brain glucose supplies into lactate that they transmit through monocarboxylate transporters to arcuate proopiomelanocortin neurons, which integrate this signal to drive their activity and to adapt the metabolic response to meet physiological demands. Furthermore, this transmission required the formation of extensive Connexin-43 gap-junction-mediated metabolic networks by arcuate tanycytes. Selectively suppressing either tanycytic monocarboxylate transporters or gap junctions resulted in altered feeding behavior and energy metabolism. Tanycytic intercellular communication and lactate production are thus integral to the mechanism by which hypothalamic neurons that regulate energy and glucose homeostasis efficiently perceive alterations in systemic glucose levels as a function of the physiological state of the organism.
Collapse
Affiliation(s)
- Tori Lhomme
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, INSERM U1172, Lille, France
| | - Jerome Clasadonte
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, INSERM U1172, Lille, France
| | - Monica Imbernon
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, INSERM U1172, Lille, France
| | - Daniela Fernandois
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, INSERM U1172, Lille, France
| | - Florent Sauve
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, INSERM U1172, Lille, France
| | - Emilie Caron
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, INSERM U1172, Lille, France
| | - Natalia Lima
- CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Violeta Heras
- CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ines Martinez-Corral
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, INSERM U1172, Lille, France
| | - Helge Müller-Fielitz
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - S Rasika
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, INSERM U1172, Lille, France
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Ruben Nogueiras
- CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Vincent Prevot
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, INSERM U1172, Lille, France
| |
Collapse
|
10
|
Ezrokhi M, Zhang Y, Luo S, Cincotta AH. Time-of-Day-Dependent Effects of Bromocriptine to Ameliorate Vascular Pathology and Metabolic Syndrome in SHR Rats Held on High Fat Diet. Int J Mol Sci 2021; 22:ijms22116142. [PMID: 34200262 PMCID: PMC8201259 DOI: 10.3390/ijms22116142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 12/31/2022] Open
Abstract
The treatment of type 2 diabetes patients with bromocriptine-QR, a unique, quick release micronized formulation of bromocriptine, improves glycemic control and reduces adverse cardiovascular events. While the improvement of glycemic control is largely the result of improved postprandial hepatic glucose metabolism and insulin action, the mechanisms underlying the drug's cardioprotective effects are less well defined. Bromocriptine is a sympatholytic dopamine agonist and reduces the elevated sympathetic tone, characteristic of metabolic syndrome and type 2 diabetes, which potentiates elevations of vascular oxidative/nitrosative stress, known to precipitate cardiovascular disease. Therefore, this study investigated the impact of bromocriptine treatment upon biomarkers of vascular oxidative/nitrosative stress (including the pro-oxidative/nitrosative stress enzymes of NADPH oxidase 4, inducible nitric oxide (iNOS), uncoupled endothelial nitric oxide synthase (eNOS), the pro-inflammatory/pro-oxidative marker GTP cyclohydrolase 1 (GTPCH 1), and the pro-vascular health enzyme, soluble guanylate cyclase (sGC) as well as the plasma level of thiobarbituric acid reactive substances (TBARS), a circulating marker of systemic oxidative stress), in hypertensive SHR rats held on a high fat diet to induce metabolic syndrome. Inasmuch as the central nervous system (CNS) dopaminergic activities both regulate and are regulated by CNS circadian pacemaker circuitry, this study also investigated the time-of-day-dependent effects of bromocriptine treatment (10 mg/kg/day at either 13 or 19 h after the onset of light (at the natural waking time or late during the activity period, respectively) among animals held on 14 h daily photoperiods for 16 days upon such vascular biomarkers of vascular redox state, several metabolic syndrome parameters, and mediobasal hypothalamic (MBH) mRNA expression levels of neuropeptides neuropeptide Y (NPY) and agouti-related protein (AgRP) which regulate the peripheral fuel metabolism and of mRNA expression of other MBH glial and neuronal cell genes that support such metabolism regulating neurons in this model system. Such bromocriptine treatment at ZT 13 improved (reduced) biomarkers of vascular oxidative/nitrosative stress including plasma TBARS level, aortic NADPH oxidase 4, iNOS and GTPCH 1 levels, and improved other markers of coupled eNOS function, including increased sGC protein level, relative to controls. However, bromocriptine treatment at ZT 19 produced no improvement in either coupled eNOS function or sGC protein level. Moreover, such ZT 13 bromocriptine treatment reduced several metabolic syndrome parameters including fasting insulin and leptin levels, as well as elevated systolic and diastolic blood pressure, insulin resistance, body fat store levels and liver fat content, however, such effects of ZT 19 bromocriptine treatment were largely absent versus control. Finally, ZT 13 bromocriptine treatment reduced MBH NPY and AgRP mRNA levels and mRNA levels of several MBH glial cell/neuronal genes that code for neuronal support/plasticity proteins (suggesting a shift in neuronal structure/function to a new metabolic control state) while ZT 19 treatment reduced only AgRP, not NPY, and was with very little effect on such MBH glial cell genes expression. These findings indicate that circadian-timed bromocriptine administration at the natural circadian peak of CNS dopaminergic activity (that is diminished in insulin resistant states), but not outside this daily time window when such CNS dopaminergic activity is naturally low, produces widespread improvements in biomarkers of vascular oxidative stress that are associated with the amelioration of metabolic syndrome and reductions in MBH neuropeptides and gene expressions known to facilitate metabolic syndrome. These results of such circadian-timed bromocriptine treatment upon vascular pathology provide potential mechanisms for the observed marked reductions in adverse cardiovascular events with circadian-timed bromocriptine-QR therapy (similarly timed to the onset of daily waking as in this study) of type 2 diabetes subjects and warrant further investigations into related mechanisms and the potential application of such intervention to prediabetes and metabolic syndrome patients as well.
Collapse
|
11
|
Hu X, Li X, Xiao C, Kong L, Zhu Q, Song Z. Effects of Dietary Energy Level on Performance, Plasma Parameters, and Central AMPK Levels in Stressed Broilers. Front Vet Sci 2021; 8:681858. [PMID: 34124230 PMCID: PMC8192699 DOI: 10.3389/fvets.2021.681858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/05/2021] [Indexed: 11/28/2022] Open
Abstract
This study aimed to characterize the effects of diets with different energy levels on the growth performance, plasma parameters, and central AMPK signaling pathway in broilers under dexamethasone (DEX)-induced stress. A total of 216 1-day-old male broiler chickens were allocated to groups fed with high (HED), National Research Council-recommended (control), or low (LED) energy diets. At 10 days old, chickens were treated with or without dexamethasone (DEX, 2 mg/kg body weight) for 3 consecutive days. HED increased broiler average daily gain (ADG) at 10 days old, compared with the LED (P < 0.05), while average daily feed intake (ADFI) and feed conversion rate (FCR) decreased as the dietary energy level increased (P < 0.05). Chickens fed a HED had higher total protein (TP) content, albumin (ALB), glucose (GLU), total cholesterol (TCHO), high-density lipoprotein (HDL) cholesterol, and low-density lipoprotein (LDL) cholesterol, compared with the control group (P < 0.05). At 13 days old, DEX decreased ADG and increased FCR in broilers fed with different energy diets (P < 0.05). The DEX-HED group had a higher ADFI than non-DEX treated HED group chickens. In addition, TP, ALB, triglycerides (TG), TCHO, HDL, and LDL content levels in the DEX group were higher than those in the control group (P < 0.05). The uric acid (UA) content of the LED group was higher than that of the HED group (P < 0.05). Further, gene expression levels of liver kinase B1, AMP-activated protein kinase α1, neuropeptide Y, and GC receptor in the hypothalamus were increased in chickens treated with DEX (P < 0.05). There was a trend toward interaction between plasma TCHO and hypothalamic LKB1 expression (0.05 < P < 0.1). In conclusion, this study suggests that HED improves growth performance, plasma glucose and total cholesterol at 10 days old broilers, but had no significant effect on performance, plasma parameters, and central AMPK in stressed broilers.
Collapse
Affiliation(s)
- Xiyi Hu
- Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Xianlei Li
- Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Chuanpi Xiao
- Department of Animal Science, Shandong Agricultural University, Taian, China.,Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Linglian Kong
- Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Qidong Zhu
- Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Zhigang Song
- Department of Animal Science, Shandong Agricultural University, Taian, China
| |
Collapse
|
12
|
Extra-forebrain impact of antipsychotics indicated by c-Fos or FosB/ΔFosB expression: A minireview. Endocr Regul 2021; 55:120-130. [PMID: 34020528 DOI: 10.2478/enr-2021-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
It is apparent that the c-Fos and FosB/ΔFosB immunohistochemistry has generally become a useful tool for determining the different antipsychotic (AP) drugs activities in the brain. It is also noteworthy that there are no spatial limits, while to the extent of their identification over the whole brain axis. In addition, they can be in a parallel manner utilized in the unmasking of the brain cell phenotype character activated by APs and by this way also to identify the possible brain circuits underwent to the APs action. However, up to date, the number of APs involved in the extra-striatal studies is still limited, what prevents the possibility to fully understand their extra-striatal effects as a complex as well as differentiate their extra-striatal impact in qualitative and quantitative dimensions. Actually, it is very believable that more and more anatomical/functional knowledge might bring new insights into the APs extra-striatal actions by identifying new region-specific activities of APs as well as novel cellular targets affected by APs, which might reveal more details of their possible side effects of the extra-striatal origin.
Collapse
|
13
|
DOLAPOĞLU N, YÜREKLİ BPŞ, EKER MÇ, ELBİ H. Relationship Between Serum Agouti-Related Peptide Levels and Metabolic Syndrome in Euthymic Bipolar Patients. Noro Psikiyatr Ars 2021; 58:16-20. [PMID: 33795947 PMCID: PMC7980713 DOI: 10.29399/npa.25005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 07/15/2020] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Agouti-Related Peptide (AgRP) is expressed primarily in the hypothalamic arcuate nucleus, stimulates appetite and decreases metabolism and energy expenditure. The aim of our study is to evaluate the relationship between serum Agouti-Related Peptide (AgRP) levels and metabolic syndrome in euthymic bipolar patients. METHODS Forty euthymic bipolar patients who used only mood stabilizer for at least three months and 40 healthy volunteers as control group were included in the study. We measured fasting blood glucose levels and serum levels of AgRP, total cholesterol, triglyceride, high-density lipoprotein (HDL) and low-density lipoprotein (LDL) of all participants. The main outcome measure was the difference between patients and control groups in terms of metabolic syndrome frequency and the relationship between serum AgRP level and metabolic syndrome is also investigated. RESULTS The metabolic syndrome was significantly more common in euthymic bipolar patients than in control group (p=0.039). Additionally, levels of blood glucose and triglyceride were significantly higher in the patient group than in the control group (p=0.006 and 0.01 respectively). Serum AgRP levels did not differ between the patient and control groups (p=0.35). Also, in euthymic bipolar patients, there was no significant difference in serum AgRP levels between patients with metabolic syndrome and those without (p=0.754). CONCLUSION We found significantly higher frequency of metabolic syndrome in euthymic bipolar patients than in the control group. However, there was no significant difference in the levels of serum AgRP between bipolar patients with and without metabolic syndrome in either study groups.
Collapse
Affiliation(s)
- Nazan DOLAPOĞLU
- Balıkesir Atatürk State Hospital, Psychiatry Clinic, Balıkesir, Turkey
- Ege University Medical School, Department of Psychiatry, İzmir, Turkey
| | - Banu Pınar şarer YÜREKLİ
- Ege University Medical School, Department of Clinical Endocrinology and Metabolism, İzmir, Turkey
| | | | - Hayriye ELBİ
- Ege University Medical School, Department of Psychiatry, İzmir, Turkey
| |
Collapse
|
14
|
Exercise alters the mitochondrial proteostasis and induces the mitonuclear imbalance and UPR mt in the hypothalamus of mice. Sci Rep 2021; 11:3813. [PMID: 33589652 PMCID: PMC7884690 DOI: 10.1038/s41598-021-82352-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/14/2021] [Indexed: 01/20/2023] Open
Abstract
The maintenance of mitochondrial activity in hypothalamic neurons is determinant to the control of energy homeostasis in mammals. Disturbs in the mitochondrial proteostasis can trigger the mitonuclear imbalance and mitochondrial unfolded protein response (UPRmt) to guarantee the mitochondrial integrity and function. However, the role of mitonuclear imbalance and UPRmt in hypothalamic cells are unclear. Combining the transcriptomic analyses from BXD mice database and in vivo experiments, we demonstrated that physical training alters the mitochondrial proteostasis in the hypothalamus of C57BL/6J mice. This physical training elicited the mitonuclear protein imbalance, increasing the mtCO-1/Atp5a ratio, which was accompanied by high levels of UPRmt markers in the hypothalamus. Also, physical training increased the maximum mitochondrial respiratory capacity in the brain. Interestingly, the transcriptomic analysis across several strains of the isogenic BXD mice revealed that hypothalamic mitochondrial DNA-encoded genes were negatively correlated with body weight and several genes related to the orexigenic response. As expected, physical training reduced body weight and food intake. Interestingly, we found an abundance of mt-CO1, a mitochondrial DNA-encoded protein, in NPY-producing neurons in the lateral hypothalamus nucleus of exercised mice. Collectively, our data demonstrated that physical training altered the mitochondrial proteostasis and induced the mitonuclear protein imbalance and UPRmt in hypothalamic cells.
Collapse
|
15
|
Batury VL, Walton E, Tam F, Wronski ML, Buchholz V, Frieling H, Ehrlich S. DNA methylation of ghrelin and leptin receptors in underweight and recovered patients with anorexia nervosa. J Psychiatr Res 2020; 131:271-278. [PMID: 33091847 DOI: 10.1016/j.jpsychires.2020.08.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/12/2020] [Accepted: 08/22/2020] [Indexed: 12/25/2022]
Abstract
Epigenetic mechanisms, which modulate gene expression, are becoming increasingly important in the research on anorexia nervosa (AN). Patients with AN have difficulties with the perception of hunger even though hormones like high ghrelin and low leptin signal the need for energy intake. Given the prominent role of the growth hormone secretagogue receptor (GHS-R1a) and the leptin receptor (LEPR) in appetite regulation, a dysregulation of the receptors' expression levels, possibly resulting from altered DNA promoter methylation, may contribute to the pathophysiology of AN. Such alterations could be secondary effects of undernutrition (state markers) or biological processes that may play an antecedent, possibly causal, role in the pathophysiology (trait markers). Therefore, the objective of this study was to examine DNA promoter methylation of the GHS-R1a and LEPR gene promoter regions and investigate whether methylation levels are associated with AN symptoms. We studied medication-free underweight patients with acute AN as well as weight-recovered patients and normal-weight, healthy female control subjects. While DNA methylation of the LEPR gene was similar across groups, GHS-R1a promoter methylation was increased in underweight AN compared to healthy controls - a finding which can be interpreted within the framework of the "ghrelin-resistance" hypothesis in AN. The results of the current study suggest for the first time a potential epigenetic mechanism underlying altered GHS-R1a sensitivity or altered ghrelin signaling in acutely underweight AN. If a ghrelin-centered model of AN can be verified, a next step could be the search for a dietary or psychopharmacological modulation at the ghrelin receptor, potentially via epigenetic mechanisms.
Collapse
Affiliation(s)
- Victoria-Luise Batury
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, UK
| | - Friederike Tam
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Marie-Louis Wronski
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Vanessa Buchholz
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School (MHH), Hannover, Germany
| | - Helge Frieling
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School (MHH), Hannover, Germany
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
16
|
Lu Q, Yang Y, Jia S, Zhao S, Gu B, Lu P, He Y, Liu RX, Wang J, Ning G, Ma QY. SRC1 Deficiency in Hypothalamic Arcuate Nucleus Increases Appetite and Body Weight. J Mol Endocrinol 2018; 62:JME-18-0075.R2. [PMID: 30400041 DOI: 10.1530/jme-18-0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/25/2018] [Indexed: 01/09/2023]
Abstract
Appetite is tightly controlled by neural and hormonal signals in animals. In general, steroid receptor co-activator 1 (SRC1) enhances steroid hormone signalling in energy balance and serves as a common co-activator of several steroid receptors, such as estrogen and glucocorticoid receptors. However, the key roles of SRC1 in energy balance remain largely unknown. We first confirmed that SRC1 is abundantly expressed in the hypothalamic arcuate nucleus (ARC), which is a critical centre for regulating feeding and energy balance; it is further co-localised with agouti-related protein and proopiomelanocortin neurons in the arcuate nucleus. Interestingly, local SRC1 expression changes with the transition between sufficiency and deficiency of food supply. To identify its direct role in appetite regulation, we repressed SRC1 expression in the hypothalamic ARC using lentivirus shRNA and found that SRC1 deficiency significantly promoted food intake and body weight gain, particularly in mice fed with a high-fat diet. We also found the activation of the AMP-activated protein kinase (AMPK) signalling pathway due to SRC1 deficiency. Thus, our results suggest that SRC1 in the ARC regulates appetite and body weight and that AMPK signalling is involved in this process. We believe that our study results have important implications for recognising the overlapping and integrating effects of several steroid hormones/receptors on accurate appetite regulation in future studies.
Collapse
Affiliation(s)
- Qianqian Lu
- Q Lu, The Institute of Health Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuying Yang
- Y Yang, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sheng Jia
- S Jia, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shaoqian Zhao
- S Zhao, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bin Gu
- B Gu, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Peng Lu
- P Lu, The Institute of Health Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yang He
- Y He, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Rui-Xin Liu
- R Liu, Endocrinology, Rujin Hospital, Shanghai, China
| | - Jiqiu Wang
- J Wang, Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China
| | - Guang Ning
- G Ning, Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, shanghai, China
| | - Qin-Yun Ma
- Q Ma, Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai , Shanghai, China
| |
Collapse
|
17
|
Alterations in neuronal control of body weight and anxiety behavior by glutathione peroxidase 4 deficiency. Neuroscience 2017. [DOI: 10.1016/j.neuroscience.2017.05.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Elizabeth de Sousa Rodrigues M, Bekhbat M, Houser MC, Chang J, Walker DI, Jones DP, Oller do Nascimento CM, Barnum CJ, Tansey MG. Chronic psychological stress and high-fat high-fructose diet disrupt metabolic and inflammatory gene networks in the brain, liver, and gut and promote behavioral deficits in mice. Brain Behav Immun 2017; 59:158-172. [PMID: 27592562 PMCID: PMC5154856 DOI: 10.1016/j.bbi.2016.08.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/19/2016] [Accepted: 08/31/2016] [Indexed: 11/25/2022] Open
Abstract
The mechanisms underlying the association between chronic psychological stress, development of metabolic syndrome (MetS), and behavioral impairment in obesity are poorly understood. The aim of the present study was to assess the effects of mild chronic psychological stress on metabolic, inflammatory, and behavioral profiles in a mouse model of diet-induced obesity. We hypothesized that (1) high-fat high-fructose diet (HFHF) and psychological stress would synergize to mediate the impact of inflammation on the central nervous system in the presence of behavioral dysfunction, and that (2) HFHF and stress interactions would impact insulin and lipid metabolism. C57Bl/6 male mice underwent a combination of HFHF and two weeks of chronic psychological stress. MetS-related conditions were assessed using untargeted plasma metabolomics, and structural and immune changes in the gut and liver were evaluated. Inflammation was measured in plasma, liver, gut, and brain. Our results show a complex interplay of diet and stress on gut alterations, energetic homeostasis, lipid metabolism, and plasma insulin levels. Psychological stress and HFHF diet promoted changes in intestinal tight junctions proteins and increases in insulin resistance and plasma cholesterol, and impacted the RNA expression of inflammatory factors in the hippocampus. Stress promoted an adaptive anti-inflammatory profile in the hippocampus that was abolished by diet treatment. HFHF increased hippocampal and hepatic Lcn2 mRNA expression as well as LCN2 plasma levels. Behavioral changes were associated with HFHF and stress. Collectively, these results suggest that diet and stress as pervasive factors exacerbate MetS-related conditions through an inflammatory mechanism that ultimately can impact behavior. This rodent model may prove useful for identification of possible biomarkers and therapeutic targets to treat metabolic syndrome and mood disorders.
Collapse
Affiliation(s)
- Maria Elizabeth de Sousa Rodrigues
- Department of Physiology, School of Medicine at Emory University, United States,Department of Physiology of Nutrition, Federal University of Sao Paulo, SP, Brazil
| | - Mandakh Bekhbat
- Department of Physiology, School of Medicine at Emory University, United States.
| | - Madelyn C. Houser
- Department of Physiology, School of Medicine at Emory University, United States
| | - Jianjun Chang
- Department of Physiology, School of Medicine at Emory University, United States.
| | - Douglas I. Walker
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine at Emory University, United States
| | - Dean P. Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine at Emory University, United States
| | | | | | - Malú G. Tansey
- Department of Physiology, School of Medicine at Emory University, United States,Corresponding author at: Emory University School of Medicine, 605L Whitehead Biomedical Res. Bldg., 615 Michael Street, Atlanta, GA 30322-3110, United States
| |
Collapse
|
19
|
Gorwood P, Blanchet-Collet C, Chartrel N, Duclos J, Dechelotte P, Hanachi M, Fetissov S, Godart N, Melchior JC, Ramoz N, Rovere-Jovene C, Tolle V, Viltart O, Epelbaum J. New Insights in Anorexia Nervosa. Front Neurosci 2016; 10:256. [PMID: 27445651 PMCID: PMC4925664 DOI: 10.3389/fnins.2016.00256] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/23/2016] [Indexed: 12/18/2022] Open
Abstract
Anorexia nervosa (AN) is classically defined as a condition in which an abnormally low body weight is associated with an intense fear of gaining weight and distorted cognitions regarding weight, shape, and drive for thinness. This article reviews recent evidences from physiology, genetics, epigenetics, and brain imaging which allow to consider AN as an abnormality of reward pathways or an attempt to preserve mental homeostasis. Special emphasis is put on ghrelino-resistance and the importance of orexigenic peptides of the lateral hypothalamus, the gut microbiota and a dysimmune disorder of neuropeptide signaling. Physiological processes, secondary to underlying, and premorbid vulnerability factors-the "pondero-nutritional-feeding basements"- are also discussed.
Collapse
Affiliation(s)
- Philip Gorwood
- Centre Hospitalier Sainte-Anne (CMME)Paris, France; UMR-S 894, Institut National de la Santé et de la Recherche Médicale, Centre de Psychiatrie et NeurosciencesParis, France; Université Paris Descartes, Sorbonne Paris CitéParis, France
| | | | - Nicolas Chartrel
- Institut National de la Santé et de la Recherche Médicale U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in BiomedicineRouen, France; Normandy UniversityCaen, France; University of RouenRouen, France
| | - Jeanne Duclos
- Adolescents and Young Adults Psychiatry Department, Institut Mutualiste MontsourisParis, France; CESP, Institut National de la Santé et de la Recherche Médicale, Université Paris-Descartes, USPCParis, France; University Reims, Champagne-Ardenne, Laboratoire Cognition, Santé, Socialisation (C2S)-EA 6291Reims, France
| | - Pierre Dechelotte
- Institut National de la Santé et de la Recherche Médicale U1073 IRIB Normandy UniversityRouen, France; Faculté de Médecine-PharmacieRouen, France
| | - Mouna Hanachi
- Université de Versailles Saint-Quentin-en-Yvelines, Institut National de la Santé et de la Recherche Médicale U1179, équipe Thérapeutiques Innovantes et Technologies Appliquées aux Troubles Neuromoteurs, UFR des Sciences de la Santé Simone VeilMontigny-le-Bretonneux, France; Département de Médecine (Unité de Nutrition), Hôpital Raymond Poincaré, Assistance Publique-Hôpitaux de ParisGarches, France
| | - Serguei Fetissov
- Institut National de la Santé et de la Recherche Médicale U1073 IRIB Normandy University Rouen, France
| | - Nathalie Godart
- Adolescents and Young Adults Psychiatry Department, Institut Mutualiste MontsourisParis, France; CESP, Institut National de la Santé et de la Recherche Médicale, Université Paris-Descartes, USPCParis, France
| | - Jean-Claude Melchior
- Université de Versailles Saint-Quentin-en-Yvelines, Institut National de la Santé et de la Recherche Médicale U1179, équipe Thérapeutiques Innovantes et Technologies Appliquées aux Troubles Neuromoteurs, UFR des Sciences de la Santé Simone VeilMontigny-le-Bretonneux, France; Département de Médecine (Unité de Nutrition), Hôpital Raymond Poincaré, Assistance Publique-Hôpitaux de ParisGarches, France
| | - Nicolas Ramoz
- UMR-S 894, Institut National de la Santé et de la Recherche Médicale, Centre de Psychiatrie et NeurosciencesParis, France; Université Paris Descartes, Sorbonne Paris CitéParis, France
| | - Carole Rovere-Jovene
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Centre National de la Recherche Scientifique Valbonne, France
| | - Virginie Tolle
- UMR-S 894, Institut National de la Santé et de la Recherche Médicale, Centre de Psychiatrie et NeurosciencesParis, France; Université Paris Descartes, Sorbonne Paris CitéParis, France
| | - Odile Viltart
- Université Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer Lille, France
| | - Jacques Epelbaum
- UMR-S 894, Institut National de la Santé et de la Recherche Médicale, Centre de Psychiatrie et NeurosciencesParis, France; Université Paris Descartes, Sorbonne Paris CitéParis, France
| |
Collapse
|
20
|
Cansell C, Luquet S. Triglyceride sensing in the reward circuitry: A new insight in feeding behaviour regulation. Biochimie 2016; 120:75-80. [PMID: 26159487 DOI: 10.1016/j.biochi.2015.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/03/2015] [Indexed: 12/17/2022]
|