1
|
Dmitrenko O, Karpova N, Nurbekov M. Increased Preeclampsia Risk in GDM Pregnancies: The Role of SIRT1 rs12778366 Polymorphism and Telomere Length. Int J Mol Sci 2025; 26:2967. [PMID: 40243583 PMCID: PMC11988573 DOI: 10.3390/ijms26072967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Preeclampsia (PE) and gestational diabetes mellitus (GDM) are common pregnancy disorders with shared pathophysiological mechanisms. This study examined the association between SIRT1 polymorphisms (rs12778366 and rs7895833) and relative telomere length (RTL) in women with PE and GDM. The DNA from pregnant women with GDM with and without PE was analyzed. The RTL and genotyping were measured using quantitative real-time PCR. The women with GDM and PE had significantly shorter telomeres. The rs12778366 TC genotype was associated with a 4.48-fold increased risk of PE (OR = 4.48; 95% CI 1.54-13.08; p = 0.003). The PE group had a higher prevalence of the heterozygous TC rs12778366 genotype with short telomeres. The SIRT1 variant rs12778366 is associated with shorter telomeres and an increased risk of developing preeclampsia, suggesting it may be a useful biomarker for preeclampsia risk assessment in GDM pregnancies.
Collapse
Affiliation(s)
| | - Nataliia Karpova
- Federal State Budgetary Institution “Research Institute of Pathology and Pathophysiology”, 125315 Moscow, Russia; (O.D.); (M.N.)
| | | |
Collapse
|
2
|
Xu Z, Huang J, Wen M, Zhang X, Lyu D, Li S, Xiao H, Li M, Shen C, Huang H. Gentiopicroside ameliorates glucose and lipid metabolism in T2DM via targeting FGFR1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155780. [PMID: 38885580 DOI: 10.1016/j.phymed.2024.155780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/07/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND The suppression of the fibroblast growth factor 21/fibroblast growth factor receptor 1 (FGF21/FGFR1) signaling pathway is considered as a vital factor in the type 2 diabetes mellitus (T2DM) progression. Our previous study showed that gentiopicroside (GPS), the main active compound present in Gentiana macrophylla Pall., has the capacity to control disorders related to glucose and lipid metabolism in individuals with T2DM. Nevertheless, the specific mechanism remains unclear. PURPOSE In light of the fact that the PharmMapper database suggests FGFR1 as the target of GPS, our investigation aims to determine if GPS can enhance glucose and lipid metabolism issues in T2DM by modulating the FGF21/FGFR1 signaling pathway. METHODS In this study, we used palmitic acid (PA)-induced HepG2 cells and db/db mice to investigate the function and mechanism of GPS in the FGF21/FGFR1 signaling pathway. To examine the interaction between GPS and FGFR1, researchers performed Cellular Thermal Shift Assay (CETSA) and Surface Plasmon Resonance (SPR) analysis. RESULTS The results suggest that GPS activates the traditional metabolic pathways, including PI3K/AKT and AMPK, which are the subsequent stages of the FGF21/FGFR1 pathway. This activation leads to the enhancement of glucose and lipid metabolism issues in PA-treated HepG2 cells and db/db mice. Furthermore, the depletion of FGFR1 has been noticed to oppose the stimulation of PI3K/AKT and AMPK pathways by GPS in HepG2 cells subjected to PA. Notability, our research affirms that GPS binds directly to FGFR1, hindering the ubiquitinated degradation of FGFR1 by neural precursor cells expressing developmentally decreased protein 4 (NEDD4) and ultimately promoting FGF21 signal transduction. CONCLUSION This study demonstrates that GPS targeting FGFR1 activates the PI3K/AKT and AMPK pathways, which is an important mechanism for its treatment of T2DM.
Collapse
Affiliation(s)
- Zhanchi Xu
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou 510801, China
| | - Jucun Huang
- Hubei NO.3 People's Hospital of Jianghan University, Wuhan 430033, China
| | - Min Wen
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xuting Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dongxin Lyu
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shanshan Li
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haiming Xiao
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Li
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Cuangpeng Shen
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Heqing Huang
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou 510801, China.
| |
Collapse
|
3
|
Lizárraga D, Gómez-Gil B, García-Gasca T, Ávalos-Soriano A, Casarini L, Salazar-Oroz A, García-Gasca A. Gestational diabetes mellitus: genetic factors, epigenetic alterations, and microbial composition. Acta Diabetol 2024; 61:1-17. [PMID: 37660305 DOI: 10.1007/s00592-023-02176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
Gestational diabetes mellitus (GDM) is a common metabolic disorder, usually diagnosed during the third trimester of pregnancy that usually disappears after delivery. In GDM, the excess of glucose, fatty acids, and amino acids results in foetuses large for gestational age. Hyperglycaemia and insulin resistance accelerate the metabolism, raising the oxygen demand, and creating chronic hypoxia and inflammation. Women who experienced GDM and their offspring are at risk of developing type-2 diabetes, obesity, and other metabolic or cardiovascular conditions later in life. Genetic factors may predispose the development of GDM; however, they do not account for all GDM cases; lifestyle and diet also play important roles in GDM development by modulating epigenetic signatures and the body's microbial composition; therefore, this is a condition with a complex, multifactorial aetiology. In this context, we revised published reports describing GDM-associated single-nucleotide polymorphisms (SNPs), DNA methylation and microRNA expression in different tissues (such as placenta, umbilical cord, adipose tissue, and peripheral blood), and microbial composition in the gut, oral cavity, and vagina from pregnant women with GDM, as well as the bacterial composition of the offspring. Altogether, these reports indicate that a number of SNPs are associated to GDM phenotypes and may predispose the development of the disease. However, extrinsic factors (lifestyle, nutrition) modulate, through epigenetic mechanisms, the risk of developing the disease, and some association exists between the microbial composition with GDM in an organ-specific manner. Genes, epigenetic signatures, and microbiota could be transferred to the offspring, increasing the possibility of developing chronic degenerative conditions through postnatal life.
Collapse
Affiliation(s)
- Dennise Lizárraga
- Laboratory of Molecular and Cell Biology, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico
| | - Bruno Gómez-Gil
- Laboratory of Microbial Genomics, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico
| | - Teresa García-Gasca
- Laboratory of Molecular and Cellular Biology, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias s/n, 76230, Juriquilla, Querétaro, Mexico
| | - Anaguiven Ávalos-Soriano
- Laboratory of Molecular and Cell Biology, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41125, Modena, Italy
| | - Azucena Salazar-Oroz
- Maternal-Fetal Department, Instituto Vidalia, Hospital Sharp Mazatlán, Avenida Rafael Buelna y Dr. Jesús Kumate s/n, 82126, Mazatlán, Sinaloa, Mexico
| | - Alejandra García-Gasca
- Laboratory of Molecular and Cell Biology, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico.
| |
Collapse
|
4
|
Li Y, Yang M, Yuan L, Li T, Zhong X, Guo Y. Associations between a polygenic risk score and the risk of gestational diabetes mellitus in a Chinese population: a case-control study. Endocr J 2023; 70:1159-1168. [PMID: 37779084 DOI: 10.1507/endocrj.ej23-0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
Our objective was to construct a polygenic risk score (PRS) and assess its utility and effectiveness in predicting the risk of gestational diabetes mellitus (GDM) in a Chinese population. We performed a case-control study involving 638 patients with GDM and 1,062 healthy controls. Genotyping was conducted utilizing a genome-wide association study (GWAS), and a PRS was constructed. We identified 12 susceptibility loci that exhibited significant associations with the risk of GDM at a p-value threshold of ≤5.0 × 10-8, of which four loci were newly discovered. A higher PRS was associated with an increased risk of GDM (OR: 1.44; 95% CI: 1.03, 2.01 for the highest quartile compared to the lowest quartile). The PRS demonstrated a clear linear relationship with the fasting plasma glucose (FPG), 1-hour postprandial glucose (1hPG), and 2-hour postprandial glucose (2hPG) levels. The maximally adjusted β coefficients and their corresponding 95% CIs were 0.181 (0.041, 0.320) for FPG, 0.225 (0.103, 0.346) for 1hPG, and 0.172 (0.036, 0.307) for 2hPG. Among the genetic variants examined, TCF7L2 rs7903146 displayed the strongest association with GDM risk (logOR = 0.18, p = 2.37 × 10-19), followed by ADAMTSL1 rs10963767 (logOR = 0.14, p = 3.58 × 10-15). The areas under the curve (AUCs) was significantly increased from 0.703 (0.678, 0.728) in the traditional risk factor model to 0.765 (0.741, 0.788) by including PRS. These findings indicate that pregnant women with a higher PRS could potentially derive considerable advantages from the implementation of a feasible PRS-based GDM screening program aimed at delivering precision prevention strategies within Chinese populations.
Collapse
Affiliation(s)
- Ying Li
- Department of Graduate School, Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Mengjiao Yang
- Department of Laboratory, The First People's Hospital of Shuangliu District, Chengdu, 610200, Sichuan, China
| | - Lu Yuan
- Department of Endocrinology, The First People's Hospital of Shuangliu District, Chengdu, 610200, Sichuan, China
| | - Ting Li
- Department of Endocrinology, The First People's Hospital of Shuangliu District, Chengdu, 610200, Sichuan, China
| | - Xinli Zhong
- Department of Gynaecology and Obstetrics, The First People's Hospital of Shuangliu District, Chengdu, 610200, Sichuan, China
| | - Yanying Guo
- Department of Endocrinology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang, China
| |
Collapse
|
5
|
França DCH, França EL, Sobrevia L, Barbosa AMP, Honorio-França AC, Rudge MVC. Integration of nutrigenomics, melatonin, serotonin and inflammatory cytokines in the pathophysiology of pregnancy-specific urinary incontinence in women with gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166737. [PMID: 37146917 DOI: 10.1016/j.bbadis.2023.166737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/12/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Gestational diabetes mellitus is an important public health problem and has been associated with the development of pregnancy-specific urinary incontinence. The interaction is related to hyperglycemia, and inflammatory and hormonal patterns, which favor functional alterations in different organs and systems. Several genes associated with human diseases have been identified and partially characterized. Most of these genes are known to cause monogenic diseases. However, about 3 % of diseases do not fit the monogenic theory due to the complex interactions between multiple genes and environmental factors, as in chronic metabolic diseases such as diabetes. The nutritional, immunological, and hormonal patterns associated with changes in maternal metabolism may influence and contribute to greater susceptibility to urinary tract disorders. However, early systematic reviews have not yielded consistent findings for these associations. This literature review summarizes important new findings from integrating nutrigenomics, hormones, and cytokines in women with Gestational diabetes mellitus and pregnancy-specific urinary incontinence. Changes in maternal metabolism due to hyperglycemia can generate an inflammatory environment with increased inflammatory cytokines. This environment modulated by inflammation can alter tryptophan uptake through food and thus influence the production of serotonin and melatonin. As these hormones seem to have protective effects against smooth muscle dysfunction and to restore the impaired contractility of the detrusor muscle, it is assumed that these changes may favor the onset of urinary incontinence specific to pregnancy.
Collapse
Affiliation(s)
- Danielle Cristina Honorio França
- Department of Gynecology and Obstetrics, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu 18618-687, Brazil.
| | - Eduardo Luzía França
- Institute of Biological and Health Science, Federal University of Mato Grosso (UFMT), Barra do Garças 78605-091, Brazil.
| | - Luis Sobrevia
- Department of Gynecology and Obstetrics, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu 18618-687, Brazil; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, E-41012 Seville, Spain; Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Australia; Department of Pathology and Medical Biology, University of Groningen, 9713GZ Groningen, the Netherlands; Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey 64710, Mexico.
| | - Angélica Mércia Pascon Barbosa
- Department of Gynecology and Obstetrics, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu 18618-687, Brazil; Department of Physiotherapy and Occupational Therapy, School of Philosophy and Sciences, São Paulo State University (UNESP), Marilia 17525-900, Brazil
| | | | - Marilza Vieira Cunha Rudge
- Department of Gynecology and Obstetrics, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu 18618-687, Brazil.
| |
Collapse
|
6
|
Chen F, Fei X, Li M, Zhang Z, Zhu W, Zhang M, Chen X, Xu J, Zhang M, Shen Y, Du J. Associations of the MTNR1B rs10830963 and PPARG rs1801282 variants with gestational diabetes mellitus: A meta-analysis. Int J Diabetes Dev Ctries 2023. [DOI: 10.1007/s13410-023-01188-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
|
7
|
Karami M, Mousavi SH, Rafiee M, Heidari R, Shahrokhi SZ. Biochemical and molecular biomarkers: unraveling their role in gestational diabetes mellitus. Diabetol Metab Syndr 2023; 15:5. [PMID: 36631877 PMCID: PMC9832639 DOI: 10.1186/s13098-023-00980-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is the most prevalent metabolic disorder during pregnancy, causing short- and long-term complications for both mother and baby. GDM is a multifactorial disease, and it may be affected by interactions between genetic, epigenetic, and environmental factors. However, the exact etiology is poorly understood. Despite the high prevalence of GDM, there is still debate regarding the optimal time for screening, the diagnostic threshold to apply, and the best strategies for treatment. Identifying effective strategies for therapeutic purposes as well as accurate biomarkers for prognostic and diagnostic purposes will reduce the GDM incidence and improve its management. In recent years, new biochemical and molecular biomarkers such as microRNAs, single-nucleotide polymorphisms, and DNA methylation have received great interest in the diagnosis of GDM. In this review, we discuss current and future diagnostic approaches for the detection of GDM and evaluate lifestyle and pharmacological strategies for GDM prevention.
Collapse
Affiliation(s)
- Masoumeh Karami
- Department of Biochemistry, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Seyyed Hossein Mousavi
- Department of Cardiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Rafiee
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Heidari
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran
- Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran, Iran
| | - Seyedeh Zahra Shahrokhi
- Department of Biochemistry, School of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Lu W, Hu C. Molecular biomarkers for gestational diabetes mellitus and postpartum diabetes. Chin Med J (Engl) 2022; 135:1940-1951. [PMID: 36148588 PMCID: PMC9746787 DOI: 10.1097/cm9.0000000000002160] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT Gestational diabetes mellitus (GDM) is a growing public health problem worldwide that threatens both maternal and fetal health. Identifying individuals at high risk for GDM and diabetes after GDM is particularly useful for early intervention and prevention of disease progression. In the last decades, a number of studies have used metabolomics, genomics, and proteomic approaches to investigate associations between biomolecules and GDM progression. These studies clearly demonstrate that various biomarkers reflect pathological changes in GDM. The established markers have potential use as screening and diagnostic tools in GDM and in postpartum diabetes research. In the present review, we summarize recent studies of metabolites, single-nucleotide polymorphisms, microRNAs, and proteins associated with GDM and its transition to postpartum diabetes, with a focus on their predictive value in screening and diagnosis.
Collapse
Affiliation(s)
- Wenqian Lu
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510630, China
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to the Southern Medical University, Shanghai 201400, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510630, China
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to the Southern Medical University, Shanghai 201400, China
| |
Collapse
|
9
|
She L, Li W, Guo Y, Zhou J, Liu J, Zheng W, Dai A, Chen X, Wang P, He H, Zhang P, Zeng J, Xiang B, Li S, Wang L, Dai Q, Yang M. Association of glucokinase gene and glucokinase regulatory protein gene polymorphisms with gestational diabetes mellitus: A case-control study. Gene X 2022; 824:146378. [PMID: 35276241 DOI: 10.1016/j.gene.2022.146378] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/10/2022] [Accepted: 02/24/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate the association of glucokinase (GCK) gene, glucokinase regulatory protein (GCKR) gene polymorphisms with the susceptibility to GDM in Chinese population. RESEARCH DESIGN AND METHODS This case-control study included 835 GDM patients and 870 non-diabetic pregnant women who had their prenatal examinations at 24-28 gestational weeks at the Maternal and Child Health Hospital of Hubei Province from January 15, 2018 to March 31, 2019. The nurses were trained to collect clinical information and blood samples. The candidate single nucleotide polymorphism (SNPs, GCK rs1799884, rs4607517, rs10278336, rs2268574, rs730497 and GCKR rs780094, rs1260326) were genotyped on Sequenom Massarray platform. Statistical analysis including independent sample t test, chi-square test, logistic regression and one-way ANOVA were performed to evaluate the differences in allele and genotype distributions and their correlations with the odds of GDM. RESULTS There were statistically significant differences in age, pre-gestational BMI, education level and family history of diabetes between case and control group (P < 0.05). After adjusting for these confounders, GCK rs1799884 was still significantly associated with GDM (P < 0.05), but there were no significant associations between rs4607517, rs10278336 and rs2268574, rs780094 and rs1260326 polymorphisms and GDM odds (P > 0.05). In addition, the pregnant women with rs4607517 TT genotype had the significantly higher fasting blood glucose level than CC genotype (P < 0.05). CONCLUSION GCK rs1799884 mutation is associated with higher GDM odds in Chinese population. Further larger studies are needed to explore the association between GCK and GCKR polymorphisms and GDM susceptibility.
Collapse
Affiliation(s)
- Lu She
- School of Medicine, Wuhan University of Science and Technology, No.947, Heping Road, Wuhan, China
| | - Wei Li
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Wuhan, China
| | - Yan Guo
- Wuhan Centers for Disease Control and Prevention, No.288 Machang Road, Wuhan, China
| | - Jia Zhou
- Maternal and Child Health Hospital of Chongqing Yubei, No. 71 ShuanghuZhi Road, Chongqing, China
| | - Jianqiong Liu
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Wuhan, China
| | - Wenpei Zheng
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Wuhan, China
| | - Anna Dai
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, China
| | - Xiaohong Chen
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Wuhan, China
| | - Ping Wang
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Wuhan, China
| | - Hua He
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Wuhan, China
| | - Pei Zhang
- School of Medicine, Wuhan University of Science and Technology, No.947, Heping Road, Wuhan, China
| | - Jing Zeng
- School of Medicine, Wuhan University of Science and Technology, No.947, Heping Road, Wuhan, China
| | - Bing Xiang
- School of Medicine, Wuhan University of Science and Technology, No.947, Heping Road, Wuhan, China
| | - Shiyu Li
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Wuhan, China
| | - Liang Wang
- Wuhan Centers for Disease Control and Prevention, No.288 Machang Road, Wuhan, China
| | - Qiong Dai
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Wuhan, China.
| | - Mei Yang
- School of Medicine, Wuhan University of Science and Technology, No.947, Heping Road, Wuhan, China.
| |
Collapse
|
10
|
Personalized Nutrition in the Management of Female Infertility: New Insights on Chronic Low-Grade Inflammation. Nutrients 2022; 14:nu14091918. [PMID: 35565885 PMCID: PMC9105997 DOI: 10.3390/nu14091918] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Increasing evidence on the significance of nutrition in reproduction is emerging from both animal and human studies, suggesting a mutual association between nutrition and female fertility. Different “fertile” dietary patterns have been studied; however, in humans, conflicting results or weak correlations are often reported, probably because of the individual variations in genome, proteome, metabolome, and microbiome and the extent of exposure to different environmental conditions. In this scenario, “precision nutrition”, namely personalized dietary patterns based on deep phenotyping and on metabolomics, microbiome, and nutrigenetics of each case, might be more efficient for infertile patients than applying a generic nutritional approach. In this review, we report on new insights into the nutritional management of infertile patients, discussing the main nutrigenetic, nutrigenomic, and microbiomic aspects that should be investigated to achieve effective personalized nutritional interventions. Specifically, we will focus on the management of low-grade chronic inflammation, which is associated with several infertility-related diseases.
Collapse
|
11
|
Franzago M, Porreca A, D’Ardes M, Di Nicola M, Di Tizio L, Liberati M, Stuppia L, Vitacolonna E. The Obesogenic Environment: Epigenetic Modifications in Placental Melanocortin 4 Receptor Gene Connected to Gestational Diabetes and Smoking. Front Nutr 2022; 9:879526. [PMID: 35571924 PMCID: PMC9100829 DOI: 10.3389/fnut.2022.879526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/11/2022] [Indexed: 12/02/2022] Open
Abstract
Background Maternal metabolic insults as well as Gestational Diabetes Mellitus (GDM) influence the fetal health and may affect ‘offspring’s susceptibility to chronic diseases via epigenetic modifications. GDM, the most common metabolic disorder in pregnancy, can be considered the result of complex interactions between genetic and environmental factors. A critical point in this view is the identification of genes which are epigenetically modified under the influence of GDM. The melanocortin 4 receptor (MC4R) gene plays a crucial role in nutritional health by suppressing appetite and participating in energy control regulation. The correlations between pregnant ‘women’s metabolic profiles and placental epigenetic modifications of this gene have been poorly investigated. Objective The aim of this study was to evaluate the effect of GDM and maternal clinical parameters at the third trimester of pregnancy to DNA methylation levels in the placenta at CpG sites of MC4R gene. Design and Methods Socio-demographic and clinical characteristics, Mediterranean diet adherence, smoking habits, and physical activity were assessed at the third trimester of pregnancy of 60 Caucasian pregnant women, of which 33 with GDM. Clinical parameters of the newborns were recorded at birth. MC4R DNA methylation on maternal and fetal sides of the placenta was analyzed using bisulfite pyrosequencing. Results MC4R DNA methylation levels at CpG1 and CpG2 were lower on the fetal side of the placenta in GDM-affected women than in non-GDM-affected recruits (p = 0.033). Moreover, DNA methylation levels on the maternal side at CpG1 were positively related to glucose concentration at 2-h oral glucose tolerance test (OGTT). On the other hand, CpG2 DNA methylation was positively related to both 1-h and 2-h during OGTT. Maternal DNA methylation level at CpG2 was also associated with low density lipoprotein cholesterol (LDL-C) at the third trimester of pregnancy (rho = 0.340, p < 0.05), while CpG1 methylation was negatively related to maternal weight variations at delivery (rho = −0.316, p < 0.05). Significant associations between MC4R DNA methylation on the maternal side and lipid profile at third trimester of pregnancy in women smokers were found. Conclusion Our results suggest that MC4R methylation profile in the placenta is related to maternal metabolic and nutritional conditions, potentially affecting fetal programming and the future metabolic health of the newborn.
Collapse
Affiliation(s)
- Marica Franzago
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d’Annunzio” University, Chieti, Italy
- Center for Advanced Studies and Technology, “G. d’Annunzio” University, Chieti, Italy
| | - Annamaria Porreca
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University, Chieti, Italy
| | - Mario D’Ardes
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d’Annunzio” University, Chieti, Italy
| | - Marta Di Nicola
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University, Chieti, Italy
| | - Luciano Di Tizio
- Department of Obstetrics and Gynaecology, SS. Annunziata Hospital, “G. d’Annunzio” University, Chieti, Italy
| | - Marco Liberati
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d’Annunzio” University, Chieti, Italy
| | - Liborio Stuppia
- Center for Advanced Studies and Technology, “G. d’Annunzio” University, Chieti, Italy
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University, Chieti, Italy
| | - Ester Vitacolonna
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d’Annunzio” University, Chieti, Italy
- Center for Advanced Studies and Technology, “G. d’Annunzio” University, Chieti, Italy
- *Correspondence: Ester Vitacolonna,
| |
Collapse
|
12
|
Genomics and Epigenomics of Gestational Diabetes Mellitus: Understanding the Molecular Pathways of the Disease Pathogenesis. Int J Mol Sci 2022; 23:ijms23073514. [PMID: 35408874 PMCID: PMC8998752 DOI: 10.3390/ijms23073514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
One of the most common complications during pregnancy is gestational diabetes mellitus (GDM), hyperglycemia that occurs for the first time during pregnancy. The condition is multifactorial, caused by an interaction between genetic, epigenetic, and environmental factors. However, the underlying mechanisms responsible for its pathogenesis remain elusive. Moreover, in contrast to several common metabolic disorders, molecular research in GDM is lagging. It is important to recognize that GDM is still commonly diagnosed during the second trimester of pregnancy using the oral glucose tolerance test (OGGT), at a time when both a fetal and maternal pathophysiology is already present, demonstrating the increased blood glucose levels associated with exacerbated insulin resistance. Therefore, early detection of metabolic changes and associated epigenetic and genetic factors that can lead to an improved prediction of adverse pregnancy outcomes and future cardio-metabolic pathologies in GDM women and their children is imperative. Several genomic and epigenetic approaches have been used to identify the genes, genetic variants, metabolic pathways, and epigenetic modifications involved in GDM to determine its etiology. In this article, we explore these factors as well as how their functional effects may contribute to immediate and future pathologies in women with GDM and their offspring from birth to adulthood. We also discuss how these approaches contribute to the changes in different molecular pathways that contribute to the GDM pathogenesis, with a special focus on the development of insulin resistance.
Collapse
|
13
|
Tian Y, Li P. Genetic risk score to improve prediction and treatment in gestational diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:955821. [PMID: 36339414 PMCID: PMC9627198 DOI: 10.3389/fendo.2022.955821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Diabetes mellitus is a chronic disease caused by the interaction of genetics and the environment that can lead to chronic damage to many organ systems. Genome-wide association studies have identified accumulating single-nucleotide polymorphisms related to type 2 diabetes mellitus and gestational diabetes mellitus. Genetic risk score (GRS) has been utilized to evaluate the incidence risk to improve prediction and optimize treatments. This article reviews the research progress in the use of the GRS in diabetes mellitus in recent years and discusses future prospects.
Collapse
|
14
|
Chen Y, Lu M, Nie J, Liu J, Liu Y, Meng Y, Sun X, Ji C, Zhang J, Yang X. Increasing prevalence of gestational diabetes mellitus when carrying the T variant allele of the MTHFR gene C677T polymorphism: a systematic review and meta-analysis. Arch Gynecol Obstet 2021; 305:1193-1202. [DOI: 10.1007/s00404-021-06303-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/18/2021] [Indexed: 12/28/2022]
|
15
|
Franzago M, Fraticelli F, Marchioni M, Di Nicola M, Di Sebastiano F, Liberati M, Stuppia L, Vitacolonna E. Fat mass and obesity-associated (FTO) gene epigenetic modifications in gestational diabetes: new insights and possible pathophysiological connections. Acta Diabetol 2021; 58:997-1007. [PMID: 33743080 PMCID: PMC8272710 DOI: 10.1007/s00592-020-01668-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/26/2020] [Indexed: 12/16/2022]
Abstract
AIMS Gestational diabetes mellitus (GDM) can lead to short- and long-term complications for the child. Epigenetic alterations could contribute to explaining the metabolic disturbances associated with foetal programming. Although the role of the FTO gene remains unclear, it affects metabolic phenotypes probably mediated by epigenetic mechanisms. The aim of this study was to assess whether placental DNA epigenetic modifications at FTO promoter-associated cysteine-phosphate-guanine (CpG) sites are correlated with GDM. A secondary aim was to evaluate the association between the placental FTO DNA methylation and the maternal metabolic traits in women with and without GDM. METHODS Socio-demographic characteristics, clinical parameters at the third trimester of pregnancy, Mediterranean diet adherence, and physical activity were assessed in 33 GDM women and 27 controls. Clinical information about the newborns was registered at birth. The FTO rs9939609 (T > A) was genotyped. RESULTS No association between FTO DNA methylation and GDM was found. DNA methylation on the maternal side at the CpG1 was associated with maternal smoking in GDM (p = 0.034), and DNA methylation at the CpG3 was correlated with smoking or former smoking in controls (p = 0.023). A higher level of TGs was correlated with higher foetal placental DNA methylation at the CpG2 (p = 0.036) in GDM. An inverse association between HDL-C and maternal placental DNA methylation at the CpG3 in controls (p = 0.045) was found. An association between FTO rs9939609 and neonatal birthweight (p = 0.033) was detected. CONCLUSIONS In the awareness that the obesity pathophysiology is complex, the study adds a piece to this intricate mosaic.
Collapse
Affiliation(s)
- Marica Franzago
- Department of Medicine and Aging, School of Medicine and Health Sciences, "G. D'Annunzio" University, Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Federica Fraticelli
- Department of Medicine and Aging, School of Medicine and Health Sciences, "G. D'Annunzio" University, Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
| | - Michele Marchioni
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, "G.D'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Marta Di Nicola
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, "G.D'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Francesca Di Sebastiano
- Department of Obstetric and Gynaecology, SS. Annunziata Hospital, "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Marco Liberati
- Department of Medicine and Aging, School of Medicine and Health Sciences, "G. D'Annunzio" University, Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
| | - Liborio Stuppia
- Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Ester Vitacolonna
- Department of Medicine and Aging, School of Medicine and Health Sciences, "G. D'Annunzio" University, Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy.
- Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
16
|
Franzago M, Sabovic I, Franchi S, De Santo M, Di Nisio A, Luddi A, Piomboni P, Vitacolonna E, Stuppia L, Foresta C. Sperm DNA Methylation at Metabolism-Related Genes in Vegan Subjects. Front Endocrinol (Lausanne) 2021; 12:633943. [PMID: 33767672 PMCID: PMC7985526 DOI: 10.3389/fendo.2021.633943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 01/06/2023] Open
Abstract
Objective To investigate if epigenome of sperm cells could be dynamically affected by nutrition. Design and Methods We assessed 40 healthy volunteers with different dietary habits and collected their demographic characteristics, as well as clinical and anthropometric parameters. We compared methylation profiles in sperm quantified by bisulfite pyrosequencing, at promoter-associated CpG sites of genes involved in metabolism including fat mass and obesity-associated (FTO) and melanocortin-4 receptor (MC4R) from six vegans and 34 omnivores. In addition, the FTO rs9939609 (T>A) was genotyped. Results Higher DNA methylation levels were detected in the sperm of vegan at FTO gene CpG1 (p=0.02), CpG2 (p=0.001), CpG3 (p=0.004), and CpG4 (p=0.003) sites and at MC4R-CpG2 site [p=0.016] as compared to sperm of omnivores. This association was not related to FTO genotype. Conclusions Although limited by the small number of investigated cases, our data provide insight into the role of diet on sperm DNA methylation in genes involved in metabolism.
Collapse
Affiliation(s)
- Marica Franzago
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. D’Annunzio” University, Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Iva Sabovic
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Sara Franchi
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University, Chieti-Pescara, Chieti, Italy
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. D’Annunzio” University, Chieti-Pescara, Chieti, Italy
| | | | - Andrea Di Nisio
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
| | - Alice Luddi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Ester Vitacolonna
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. D’Annunzio” University, Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Liborio Stuppia
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University, Chieti-Pescara, Chieti, Italy
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. D’Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Carlo Foresta
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
17
|
Dias S, Adam S, Rheeder P, Pheiffer C. No Association Between ADIPOQ or MTHFR Polymorphisms and Gestational Diabetes Mellitus in South African Women. Diabetes Metab Syndr Obes 2021; 14:791-800. [PMID: 33658815 PMCID: PMC7917309 DOI: 10.2147/dmso.s294328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/16/2021] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Gestational diabetes mellitus (GDM) is a growing public health concern. GDM affects approximately 14% of pregnancies globally, and without effective treatment, is associated with short- and long-term complications in mother and child. Lower serum adiponectin (ADIPOQ) concentrations and aberrant DNA methylation have been reported during GDM. The aim of this study was to investigate the association between the ADIPOQ -11377C>G and -11391G>A, and methylenetetrahydrofolate reductase (MTHFR) 677C>T polymorphisms and GDM in a population of black South African women. MATERIALS AND METHODS DNA was isolated from the peripheral blood of 447 pregnant women with (n=116) or without (n=331) GDM, where after ADIPOQ (rs266729 and rs17300539) and MTHFR (rs1801133) polymorphisms were genotyped using TaqMan Quantitative Real-Time PCR analysis. RESULTS Women with GDM had a higher body mass index (p=0.012), were more insulin resistant (p<0.001) and had lower adiponectin levels (p=0.013) compared to pregnant women with normoglycemia. Genotypic, dominant and recessive genetic models showed no association between ADIPOQ rs266729 and rs17300539 and MTHFR rs1801133 polymorphisms and GDM. Intriguingly, the risk G allele of ADIPOQ rs266729 was associated with higher fasting glucose and insulin concentrations, while the T allele in MTHFR rs1801133 was associated with higher fasting insulin concentrations only. CONCLUSION ADIPOQ rs266729 and rs17300539 and MTHFR rs1801133 polymorphisms are not associated with GDM in a population of black South African women. These findings suggest that these single nucleotide polymorphisms (SNPs) do not individually increase GDM risk in the African population. However, the role of these SNPs in possible gene-gene or gene-environment interactions remain to be established.
Collapse
Affiliation(s)
- Stephanie Dias
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Cape Town, 7505, South Africa
- Department of Obstetrics and Gynecology, University of Pretoria, Pretoria, 0001, South Africa
| | - Sumaiya Adam
- Department of Obstetrics and Gynecology, University of Pretoria, Pretoria, 0001, South Africa
| | - Paul Rheeder
- Department of Internal Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, 0001, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Cape Town, 7505, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Cape Town, 7505, South Africa
- Correspondence: Carmen Pheiffer Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, 7505, South AfricaTel +27 21 938 0292 Email
| |
Collapse
|
18
|
Franzago M, Lanuti P, Fraticelli F, Marchioni M, Buca D, Di Nicola M, Liberati M, Miscia S, Stuppia L, Vitacolonna E. Biological insight into the extracellular vesicles in women with and without gestational diabetes. J Endocrinol Invest 2021; 44:49-61. [PMID: 32335856 DOI: 10.1007/s40618-020-01262-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/16/2020] [Indexed: 01/06/2023]
Abstract
PURPOSE Gestational diabetes mellitus (GDM) is the most common metabolic disorder in pregnancy, with increasing prevalence worldwide and still unclear pathogenic mechanisms. Extracellular vesicles (EVs) are emerging as potential biomarkers of disease-specific pathways in metabolic disorders, but their potential role in GDM is not fully understood. Therefore, the main aim of this study was to evaluate the link between EVs and hyperglycaemia during pregnancy. METHODS We assessed 50 GDM women and 50 controls at the third trimester of pregnancy in whom we collected demographic characteristics and clinical and anthropometric parameters. In addition, the circulating total EVs (tEVs) and their subpopulations were assessed using flow cytometry. RESULTS The levels of tEVs and EVs subtypes, expressed as median and interquartile range, were not significantly different between two groups; however, adipocyte-derived EVs (aEVs) concentration, expressed as percentage, was higher in controls than in GDM women (p = 0.045). In addition, a significant correlation was observed between aEVs (%) and third trimester total cholesterol (p = 0.022) within the GDM group. Furthermore, a significant correlation between endothelial-derived EVs (eEVs) and platelet-derived EVs (pEVs) within both groups was found, as well as a significant relation between aEVs and pEVs. CONCLUSIONS These data, although preliminary, represent the starting point for further studies to determine the role of circulating EVs in GDM.
Collapse
Affiliation(s)
- M Franzago
- Department of Medicine and Aging, School of Medicine and Health Sciences, "G. D'Annunzio" University, Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - P Lanuti
- Department of Medicine and Aging, School of Medicine and Health Sciences, "G. D'Annunzio" University, Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - F Fraticelli
- Department of Medicine and Aging, School of Medicine and Health Sciences, "G. D'Annunzio" University, Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - M Marchioni
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - D Buca
- Department of Obstetrics and Gynaecology, SS. Annunziata Hospital, "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - M Di Nicola
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - M Liberati
- Department of Medicine and Aging, School of Medicine and Health Sciences, "G. D'Annunzio" University, Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
| | - S Miscia
- Department of Medicine and Aging, School of Medicine and Health Sciences, "G. D'Annunzio" University, Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - L Stuppia
- Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - E Vitacolonna
- Department of Medicine and Aging, School of Medicine and Health Sciences, "G. D'Annunzio" University, Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy.
- Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
19
|
Naureen Z, Miggiano GAD, Aquilanti B, Velluti V, Matera G, Gagliardi L, Zulian A, Romanelli R, Bertelli M. Genetic test for the prescription of diets in support of physical activity. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020011. [PMID: 33170161 PMCID: PMC8023120 DOI: 10.23750/abm.v91i13-s.10584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/17/2020] [Indexed: 01/03/2023]
Abstract
Owing to the fields of nutrigenetics and nutrigenomics today we can think of devising approaches to optimize health, delay onset of diseases and reduce its severity according to our genetic blue print. However this requires a deep understanding of nutritional impact on expression of genes that may result in a specific phenotype. The extensive research and observational studies during last two decades reporting interactions between genes, diet and physical activity suggest a cross talk between various genetic and environmental factors and lifestyle interventions. Although considerable efforts have been made in unraveling the mechanisms of gene-diet interactions the scientific evidences behind developing commercial genetic tests for providing personalized nutrition recommendations are still scarce. In this scenario the current mini-review aims to provide useful insights into salient feature of nutrition based genetic research and its commercial application and the ethical issue and concerns related to its outcome.
Collapse
Affiliation(s)
- Zakira Naureen
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa, Oman.
| | | | - Barbara Aquilanti
- UOC Nutrizione Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Valeria Velluti
- UOC Nutrizione Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Giuseppina Matera
- UOC Nutrizione Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Lucilla Gagliardi
- UOC Nutrizione Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | | | | | - Matteo Bertelli
- MAGI'S LAB, Rovereto (TN), Italy; MAGI EUREGIO, Bolzano, Italy; EBTNA-LAB, Rovereto (TN), Italy.
| |
Collapse
|
20
|
Franzago M, Santurbano D, Vitacolonna E, Stuppia L. Genes and Diet in the Prevention of Chronic Diseases in Future Generations. Int J Mol Sci 2020; 21:ijms21072633. [PMID: 32290086 PMCID: PMC7178197 DOI: 10.3390/ijms21072633] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022] Open
Abstract
Nutrition is a modifiable key factor that is able to interact with both the genome and epigenome to influence human health and fertility. In particular, specific genetic variants can influence the response to dietary components and nutrient requirements, and conversely, the diet itself is able to modulate gene expression. In this context and the era of precision medicine, nutrigenetic and nutrigenomic studies offer significant opportunities to improve the prevention of metabolic disturbances, such as Type 2 diabetes, gestational diabetes, hypertension, and cardiovascular diseases, even with transgenerational effects. The present review takes into account the interactions between diet, genes and human health, and provides an overview of the role of nutrigenetics, nutrigenomics and epigenetics in the prevention of non-communicable diseases. Moreover, we focus our attention on the mechanism of intergenerational or transgenerational transmission of the susceptibility to metabolic disturbances, and underline that the reversibility of epigenetic modifications through dietary intervention could counteract perturbations induced by lifestyle and environmental factors.
Collapse
Affiliation(s)
- Marica Franzago
- Department of Medicine and Aging, School of Medicine and Health Sciences, ‘G. d’Annunzio’ University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), ‘G. d’Annunzio’ University of Chieti-Pescara, 66100 Chieti, Italy
| | | | - Ester Vitacolonna
- Department of Medicine and Aging, School of Medicine and Health Sciences, ‘G. d’Annunzio’ University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), ‘G. d’Annunzio’ University of Chieti-Pescara, 66100 Chieti, Italy
- Correspondence:
| | - Liborio Stuppia
- Center for Advanced Studies and Technology (CAST), ‘G. d’Annunzio’ University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, ‘G. d’Annunzio’ University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
21
|
Dalfrà MG, Burlina S, Del Vescovo GG, Lapolla A. Genetics and Epigenetics: New Insight on Gestational Diabetes Mellitus. Front Endocrinol (Lausanne) 2020; 11:602477. [PMID: 33335512 PMCID: PMC7736606 DOI: 10.3389/fendo.2020.602477] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is the most common metabolic complication of pregnancy, with a prevalence that has increased significantly in the last decade, coming to affect 12-18% of all pregnancies. GDM is believed to be the result of a combination of genetic, epigenetic and environmental factors. Following the identification of susceptibility genes for type 2 diabetes by means of genome-wide association studies, an association has also been demonstrated between some type 2 diabetes susceptibility genes and GDM, suggesting a partial similarity of the genetic architecture behind the two forms of diabetes. More recent genome-wide association studies, focusing on maternal metabolism during pregnancy, have demonstrated an overlap in the genes associated with metabolic traits in gravid and non-gravid populations, as well as in genes apparently unique to pregnancy. Epigenetic changes-such as DNA methylation, histone modifications and microRNA gene silencing-have also been identified in GDM patients. Metabolomics has been used to profile the metabolic state of women during pregnancy, based on the measurement of numerous low-molecular-weight metabolites. Measuring amino acids and conventional metabolites has revealed changes in pregnant women with a higher insulin resistance and high blood glucose levels that resemble the changes seen in non-gravid, insulin-resistant populations. This would suggest similarities in the metabolic profiles typical of insulin resistance and hyperglycemia whether individuals are pregnant or not. Future studies combining data obtained using multiple technologies will enable an integrated systems biology approach to maternal metabolism during a pregnancy complicated by GDM. This review highlights the recent knowledge on the impact of genetics and epigenetics in the pathophysiology of GDM and the maternal and fetal complications associated with this pathology condition.
Collapse
|
22
|
Vitacolonna E, Succurro E, Lapolla A, Scavini M, Bonomo M, Di Cianni G, Di Benedetto A, Napoli A, Tumminia A, Festa C, Lencioni C, Torlone E, Sesti G, Mannino D, Purrello F. Guidelines for the screening and diagnosis of gestational diabetes in Italy from 2010 to 2019: critical issues and the potential for improvement. Acta Diabetol 2019; 56:1159-1167. [PMID: 31396699 DOI: 10.1007/s00592-019-01397-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022]
Abstract
AIMS In 2010, Italian health professionals rapidly implemented the one-step screening for gestational diabetes mellitus (GDM) based on a 75 g OGTT, to comply with the diagnostic criteria proposed by the International Association of Diabetes and Pregnancy Study Groups (IADPSG). The change was promoted by the two main Italian scientific societies of diabetology, Associazione Medici Diabetologi (AMD) and Società Italiana di Diabetologia (SID), and it took just a few months for the Istituto Superiore di Sanità, together with several scientific societies, to revise the criteria and include them in the National Guidelines System. Over the last 9 years, the implementation of these guidelines has shown some benefits and some drawbacks. METHODS In order to evaluate the critical issues arisen from the implementation of the current Italian guidelines for the diagnosis of GDM, the studies published on this topic have been reviewed. The search was performed using the following keywords: "gestational diabetes" AND "diagnostic criteria" OR screening AND Ital*. The study is an expert opinion paper, based on the relevant scientific literature published between 2010 and 2019. The databases screened for the literature review included PubMed, MEDLINE, and Scopus. RESULTS The implementation of the Guidelines for Screening and Diagnosis of GDM in Italy present some strengths and some weaknesses. One of the positive aspects is that high-risk women are required to perform an OGTT early in pregnancy. By contrast, there are several aspects in need of improvement: (1) In spite of the current indications, only a minority of high-risk women perform OGTT early in pregnancy; (2) several low-risk women are screened for GDM; (3) in some low-risk women affected by GDM, the diagnosis might be missed with the application of the current guidelines; (4) there is a lack of homogeneity in the risk assessment data from different regions. CONCLUSIONS In order to improve the current Italian GDM guidelines, some practical solutions have been suggested.
Collapse
Affiliation(s)
- Ester Vitacolonna
- Diabetes and Pregnancy Study Group, Italian Society of Diabetology (SID), Rome, Italy.
- Diabetes and Pregnancy Study Group, Italian Association of Diabetologists (AMD), Rome, Italy.
- Department of Medicine and Aging, School of Medicine and Health Sciences, "G. d'Annunzio" University, Chieti-Pescara, Chieti, Italy.
| | - Elena Succurro
- Diabetes and Pregnancy Study Group, Italian Society of Diabetology (SID), Rome, Italy
- Diabetes and Pregnancy Study Group, Italian Association of Diabetologists (AMD), Rome, Italy
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Annunziata Lapolla
- Diabetes and Pregnancy Study Group, Italian Society of Diabetology (SID), Rome, Italy
- Diabetes and Pregnancy Study Group, Italian Association of Diabetologists (AMD), Rome, Italy
- Department of Medicine, Diabetology and Dietetics Unit, Padova University, Padua, Italy
| | - Marina Scavini
- Diabetes and Pregnancy Study Group, Italian Society of Diabetology (SID), Rome, Italy
- Diabetes and Pregnancy Study Group, Italian Association of Diabetologists (AMD), Rome, Italy
- Division of Immunology, Transplantation and Infectious Diseases, Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Bonomo
- Diabetes and Pregnancy Study Group, Italian Society of Diabetology (SID), Rome, Italy
- Diabetes and Pregnancy Study Group, Italian Association of Diabetologists (AMD), Rome, Italy
- SSD Diabetology, Ca'Granda Niguarda Hospital, Milan, Italy
| | - Graziano Di Cianni
- Diabetes and Pregnancy Study Group, Italian Society of Diabetology (SID), Rome, Italy
- Diabetes and Pregnancy Study Group, Italian Association of Diabetologists (AMD), Rome, Italy
- Diabetes and Metabolic Diseases Unit, Health Local Unit Nord-West Tuscany, Livorno Hospital, Leghorn, Italy
| | - Antonino Di Benedetto
- Diabetes and Pregnancy Study Group, Italian Society of Diabetology (SID), Rome, Italy
- Diabetes and Pregnancy Study Group, Italian Association of Diabetologists (AMD), Rome, Italy
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
| | - Angela Napoli
- Diabetes and Pregnancy Study Group, Italian Society of Diabetology (SID), Rome, Italy
- Diabetes and Pregnancy Study Group, Italian Association of Diabetologists (AMD), Rome, Italy
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University, Rome, Italy
| | - Andrea Tumminia
- Diabetes and Pregnancy Study Group, Italian Society of Diabetology (SID), Rome, Italy
- Diabetes and Pregnancy Study Group, Italian Association of Diabetologists (AMD), Rome, Italy
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Camilla Festa
- Diabetes and Pregnancy Study Group, Italian Society of Diabetology (SID), Rome, Italy
- Diabetes and Pregnancy Study Group, Italian Association of Diabetologists (AMD), Rome, Italy
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University, Rome, Italy
| | - Cristina Lencioni
- Diabetes and Pregnancy Study Group, Italian Society of Diabetology (SID), Rome, Italy
- Diabetes and Pregnancy Study Group, Italian Association of Diabetologists (AMD), Rome, Italy
- Diabetes Unit, Usl Nord Ovest Tuscany, Lucca, Italy
| | - Elisabetta Torlone
- Diabetes and Pregnancy Study Group, Italian Society of Diabetology (SID), Rome, Italy
- Diabetes and Pregnancy Study Group, Italian Association of Diabetologists (AMD), Rome, Italy
- Internal Medicine, Endocrinology and Metabolism, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Giorgio Sesti
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
- Italian Diabetes and Research Foundation, Italian Society of Diabetology (SID), Rome, Italy
| | - Domenico Mannino
- Diabetes and Pregnancy Study Group, Italian Society of Diabetology (SID), Rome, Italy
- Diabetes and Pregnancy Study Group, Italian Association of Diabetologists (AMD), Rome, Italy
- Section of Endocrinology and Diabetes, Bianchi Melacrino Morelli Hospital, Reggio Calabria, Italy
- Italian Association of Diabetologists (AMD), Rome, Italy
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Italian Society of Diabetology (SID), Rome, Italy
| |
Collapse
|
23
|
Franzago M, Fraticelli F, Stuppia L, Vitacolonna E. Nutrigenetics, epigenetics and gestational diabetes: consequences in mother and child. Epigenetics 2019; 14:215-235. [PMID: 30865571 PMCID: PMC6557546 DOI: 10.1080/15592294.2019.1582277] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gestational Diabetes Mellitus (GDM) is the most common metabolic condition during pregnancy and may result in short- and long-term complications for both mother and offspring. The complexity of phenotypic outcomes seems influenced by genetic susceptibility, nutrient-gene interactions and lifestyle interacting with clinical factors. There is strong evidence that not only the adverse genetic background but also the epigenetic modifications in response to nutritional and environmental factors could influence the maternal hyperglycemia in pregnancy and the foetal metabolic programming. In this view, the correlation between epigenetic modifications and their transgenerational effects represents a very interesting field of study. The present review gives insight into the role of gene variants and their interactions with nutrients in GDM. In addition, we provide an overview of the epigenetic changes and their role in the maternal-foetal transmission of chronic diseases. Overall, the knowledge of epigenetic modifications induced by an adverse intrauterine and perinatal environment could shed light on the potential pathophysiological mechanisms of long-term disease development in the offspring and provide useful tools for their prevention.
Collapse
Affiliation(s)
- Marica Franzago
- a Department of Medicine and Aging, School of Medicine and Health Sciences , "G. d'Annunzio" University, Chieti-Pescara , Chieti , Italy.,b Molecular Genetics, Unit , CeSI-Met , Chieti , Italy
| | - Federica Fraticelli
- a Department of Medicine and Aging, School of Medicine and Health Sciences , "G. d'Annunzio" University, Chieti-Pescara , Chieti , Italy
| | - Liborio Stuppia
- b Molecular Genetics, Unit , CeSI-Met , Chieti , Italy.,c Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences , "G. d'Annunzio" University, Chieti-Pescara , Chieti , Italy
| | - Ester Vitacolonna
- a Department of Medicine and Aging, School of Medicine and Health Sciences , "G. d'Annunzio" University, Chieti-Pescara , Chieti , Italy
| |
Collapse
|
24
|
Lin Z, Wang Y, Zhang B, Jin Z. Association of type 2 diabetes susceptible genes GCKR, SLC30A8, and FTO polymorphisms with gestational diabetes mellitus risk: a meta-analysis. Endocrine 2018; 62:34-45. [PMID: 30091126 DOI: 10.1007/s12020-018-1651-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/08/2018] [Indexed: 12/23/2022]
Abstract
PURPOSE Current studies have detected the correlation of polymorphisms in type 2 diabetes susceptible genes GCKR, SLC30A8 and FTO with gestational diabetes mellitus (GDM) risk. However, findings of these studies were incongruous. Hence, we performed an integrated review and meta-analysis for the researches regarding the association of single nucleotide polymorphisms (SNPs) in GCKR, SLC30A8 and FTO genes and GDM risk. METHODS Eligible publications were selected on the basis of several inclusion and exclusion criteria. Correlation between each SNP and GDM risk was estimated by computing odds ratios (ORs) with 95% confidence intervals (95%CIs). RESULTS Consequently, 19 case-control studies (from 16 citations) including 3636 GDM cases and 7229 GDM-free controls were participated in a meta-analysis of seven prevalent SNPs (GCKR rs1260326 and rs780094; SLC30A8 rs13266634 and rs11558471; FTO rs8050136, rs1421085 and rs9939609). Our results demonstrated that the rs780094, rs13266634 and rs9939609 SNPs were significantly associated with GDM risk. In stratified analysis, correlations of rs780094 and rs13266634 SNPs could be observed in Asian and Caucasian subgroups. Moreover, association between rs9939609 SNP and GDM risk was detected in Caucasian subgroup. CONCLUSIONS The GCKR rs780094, SLC30A8 rs13266634 and FTO rs9939609 SNPs were demonstrated to be the potential biomarkers for GDM risk prediction.
Collapse
Affiliation(s)
- Ziqi Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004, Liaoning, China
| | - Yue Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004, Liaoning, China
| | - Bao Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004, Liaoning, China
| | - Zhen Jin
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
25
|
Molecular Biomarkers for Gestational Diabetes Mellitus. Int J Mol Sci 2018; 19:ijms19102926. [PMID: 30261627 PMCID: PMC6213110 DOI: 10.3390/ijms19102926] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 12/20/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a growing public health problem worldwide. The condition is associated with perinatal complications and an increased risk for future metabolic disease in both mothers and their offspring. In recent years, molecular biomarkers received considerable interest as screening tools for GDM. The purpose of this review is to provide an overview of the current status of single-nucleotide polymorphisms (SNPs), DNA methylation, and microRNAs as biomarkers for GDM. PubMed, Scopus, and Web of Science were searched for articles published between January 1990 and August 2018. The search terms included “gestational diabetes mellitus”, “blood”, “single-nucleotide polymorphism (SNP)”, “DNA methylation”, and “microRNAs”, including corresponding synonyms and associated terms for each word. This review updates current knowledge of the candidacy of these molecular biomarkers for GDM with recommendations for future research avenues.
Collapse
|
26
|
Franzago M, Fraticelli F, Di Nicola M, Bianco F, Marchetti D, Celentano C, Liberati M, De Caterina R, Stuppia L, Vitacolonna E. Early Subclinical Atherosclerosis in Gestational Diabetes: The Predictive Role of Routine Biomarkers and Nutrigenetic Variants. J Diabetes Res 2018; 2018:9242579. [PMID: 30671483 PMCID: PMC6323479 DOI: 10.1155/2018/9242579] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/17/2018] [Accepted: 10/30/2018] [Indexed: 12/14/2022] Open
Abstract
Gestational diabetes mellitus (GDM) can be considered a silent risk for out-of-pregnancy diabetes mellitus (DM) and cardiovascular disease (CVD) later in life. We aimed to assess the predictive role of 3rd trimester lipid profile during pregnancy for the susceptibility to markers of subclinical atherosclerosis (CVD susceptibility) at 3 years in a cohort of women with history of GDM. A secondary aim is to evaluate the usefulness of novel nutrigenetic markers, in addition to traditional parameters, for predicting early subclinical atherosclerosis in such women in order to plan adequate early prevention interventions. We assessed 28 consecutive GDM women in whom we collected socio-demographic characteristics and clinical and anthropometric parameters at the 3rd trimester of pregnancy. In a single blood sample, from each patient, we assessed 9 single nucleotide polymorphisms (SNPs) from 9 genes related to nutrients and metabolism, which were genotyped by High Resolution Melting analysis. All women then attended a 3-year-postpartum follow-up and on that occasion performed an oral glucose tolerance test (OGTT, with 75 g oral glucose), the measurement of carotid artery intima-media thickness (cIMT), and analyses of metabolic parameters. In addition, we evaluated the physical activity level and the adherence to Mediterranean diet (MedDiet) using the International Physical Activity Questionnaire (IPAQ-short version) and PREDIMED questionnaires. We found an association between 3rd trimester triglycerides and cIMT (p = 0.014). We also found significant associations between the APOA5 CC genotype and cIMT after adjustments for age and body mass index (p = 0.045) and between the interaction CC APOA5/CC LDLR and cIMT (p = 0.010). At the follow-up, the cohort also featured a mean BMI in the overweight range and a high mean waist circumference. We found no difference in the MedDiet adherence, physical activity, and smoking but an inverse correlation between the PREDIMED and the IPAQ scores with the IMT. In conclusion, this preliminary study provides insight into the predictive role of lipid profile during pregnancy and of some genetic variants on cIMT taken as a parameter of subclinical CVD susceptibility in GDM.
Collapse
Affiliation(s)
- Marica Franzago
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Federica Fraticelli
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Marta Di Nicola
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Francesco Bianco
- Institute of Cardiology, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Daniela Marchetti
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Claudio Celentano
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Marco Liberati
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Raffaele De Caterina
- Institute of Cardiology, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Ester Vitacolonna
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| |
Collapse
|