1
|
Huang L, Du J, Ye L, Zheng Y, Liu X, Huang E, Le J, Huang X, Du W, Liu C, Chen L. Species level and SNP profiling of skin microbiome improve the specificity in identifying forensic fluid and individual. Forensic Sci Int Genet 2025; 78:103256. [PMID: 40073753 DOI: 10.1016/j.fsigen.2025.103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/28/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
Human skin possesses individual and body fluid-specific microbial signatures potentially useful for forensic identification. Previous studies mostly attribute individuals based on the relative abundance of microbiota at single time point, however fluctuations in taxonomy and phylogenetic structure may cause this to be unreliable. In this study, we assessed the skin microbiome of individuals at consecutive time-point from fingers, palm, arm and forehead sites using full-length 16S rRNA gene sequencing. At the species level, hand samples (fingers, palm, arm) differed significantly from forehead microbes. Additionally, skin flora of the present study differed significantly from the dominant species that have been reported for saliva, feces, and vaginal secretions samples. ANOSIM analysis of all skin samples showed that inter-individual differences were greater than intra-individual differences, yet accuracy of individual identification was only 52.5 %. At the microbial gene level, three machine learning models based on single nucleotide polymorphism (SNP) profiles of Cutibacterium acnes resulted in accurate classification of more than 97.5 % individuals. These results indicate that consideration of bacterial SNP profiling may provide new directions for forensic identification and may have potential applications in body fluid identification and individual identification in forensic.
Collapse
Affiliation(s)
- Litao Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jieyu Du
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Linying Ye
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yangyang Zheng
- Guangdong Homy Genetics Incorporation, Foshan 528000, China
| | - Xueyuan Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Enping Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiaqian Le
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xuan Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Weian Du
- Guangdong Homy Genetics Incorporation, Foshan 528000, China.
| | - Chao Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China; National Anti-Drug Laboratory Guangdong Regional Center, Guangzhou, China.
| | - Ling Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
2
|
Paiwand S, Schäfer S, Kopp A, Beikler T, Fiedler I, Gosau M, Fuest S, Smeets R. Antibacterial potential of silver and zinc loaded plasma-electrolytic oxidation coatings for dental titanium implants. Int J Implant Dent 2025; 11:12. [PMID: 39960576 PMCID: PMC11833008 DOI: 10.1186/s40729-025-00595-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Peri-implantitis is known as an inflammatory condition affecting the soft and hard tissue around dental implants. A promising strategy to prevent these conditions is the use of antibacterial implants. This study aimed to evaluate the antibacterial potential of titanium (Ti) dental implants modified using plasma-electrolytic oxidation (PEO). The modified surfaces were subsequently loaded with silver (Ag) (n = 6) and zinc (Zn) (n = 6) ions and compared to unloaded Ti specimens (n = 6), with untreated specimens serving as controls. The specimens (each n = 5) were incubated in a culture medium containing a mixture of specific anaerobic bacterial strains. Scanning electron microscopy (SEM) was used to visualize the bacterial biofilm on each specimen. In addition, total bacterial deoxxyribonucleic acid (DNA) and the number of viable bacteria were determined using quantitative real-time polymerase chain reaction (qrt-PCR) and colony forming unit analysis (CFU), respectively. The results of the CFU analysis showed a 2 log (99%) reduction in viable bacteria in the samples loaded with Ag and Zn compared to the unloaded control group (p < 0.05). Moreover, significantly lower bacterial DNA counts were detected with a 5 log reduction (99.999%) in the Ag and Zn samples compared to the positive control group (bacterial mixed culture solution, p < 0.05). Therefore, it was considered that Ag and Zn loaded Ti implants may be a promising addition to current approaches to enable advanced antibacterial dental implants. However, further studies should be conducted to evaluate the in vivo cytocompatibility of the developed specimens.
Collapse
Affiliation(s)
- Sabawun Paiwand
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, 24105, Kiel, Germany
| | - Sogand Schäfer
- Department of Oral and Maxillofacial Surgery, Devision of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | | | - Thomas Beikler
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Imke Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Sandra Fuest
- Department of Oral and Maxillofacial Surgery, Devision of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
- Department of Oral and Maxillofacial Surgery, Devision of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
3
|
Isono H, Nakajima S, Watanabe S, Takeda AK, Yoshii H, Shimoda A, Yagishita H, Mitsudo K, Kioi M. Involvement of Oral Microbiome in the Development of Oral Malignancy. Cancers (Basel) 2025; 17:632. [PMID: 40002227 PMCID: PMC11852801 DOI: 10.3390/cancers17040632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
OBJECTIVE This study aimed to identify periodontal pathogens involved in the onset and progression of OSCC. METHODS Saliva samples were collected from 112 patients without oral mucosal diseases (OMDs) as controls; 36 patients with oral potentially malignant disorders (OPMDs); and 104 patients with OSCC. Periodontal examinations were performed on all patients. Endpoint PCR was performed for seven species of oral pathogens. The 16S rRNA analysis was performed using 20 DNA samples from each group. RESULTS Periodontitis tended to worsen in the OMDs group compared to the control group. The number of oral bacteria was significantly higher in the OSCC group than in the other groups. The detection rates of P. gingivalis and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) were significantly higher in the OSCC group than those in the control group. From 16S rRNA analysis, the relative abundance of Prevotella buccae and intermedia was significantly higher in OSCC than in the control. Moreover, LPS derived from P. gingivalis contributes to the early development of oral epithelial precancerous lesions and carcinomas in mice. CONCLUSIONS Specific periodontal pathogens are present in the oral cavities of patients with OPMDs and OSCC, and changes in the bacterial flora due to their presence may contribute to the onset and progression of OMDs.
Collapse
Affiliation(s)
- Hitoshi Isono
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (H.I.); (S.N.); (H.Y.); (A.S.); (K.M.)
| | - Shintaro Nakajima
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (H.I.); (S.N.); (H.Y.); (A.S.); (K.M.)
- Department of Life Science Dentistry, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Satoshi Watanabe
- Cykinso, Inc., 1-36-1 Yoyogi, Shibuya-ku, Tokyo 151-0053, Japan; (S.W.); (A.K.T.)
| | - Aya K. Takeda
- Cykinso, Inc., 1-36-1 Yoyogi, Shibuya-ku, Tokyo 151-0053, Japan; (S.W.); (A.K.T.)
| | - Haruka Yoshii
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (H.I.); (S.N.); (H.Y.); (A.S.); (K.M.)
| | - Ami Shimoda
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (H.I.); (S.N.); (H.Y.); (A.S.); (K.M.)
| | - Hisao Yagishita
- Division of Oral Diagnosis, Dental and Maxillofacial Radiology and Oral Pathology Diagnostic Services, The Nippon Dental University Hospital, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan;
| | - Kenji Mitsudo
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (H.I.); (S.N.); (H.Y.); (A.S.); (K.M.)
| | - Mitomu Kioi
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (H.I.); (S.N.); (H.Y.); (A.S.); (K.M.)
| |
Collapse
|
4
|
Holguín-Meráz C, Martínez-Martínez RE, Zaragoza-Contreras EA, Domínguez-Pérez RA, Reyes-López SY, Donohue-Cornejo A, Cuevas-González JC, Silva-Benítez EDL, Molina-Frechero N, Espinosa-Cristóbal LF. Antibacterial Effect of Silver Nanoparticles against Oral Biofilms in Subjects with Motor and Intellectual Disabilities. J Funct Biomater 2024; 15:191. [PMID: 39057312 PMCID: PMC11277624 DOI: 10.3390/jfb15070191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Motor and intellectual disabilities (MIDs) represent a great challenge for maintaining general health due to physical and cognitive limitations, particularly in the maintenance and preservation of oral health. Silver nanoparticles (AgNPs) have emerged as a promising therapeutic tool for bacterial control, including oral biofilms; however, knowledge of the bactericidal effectiveness of oral biofilms from patients with MIDs is insufficient. This study aims to determine the antimicrobial effect of AgNPs on different oral biofilms taken from patients with and without MIDs. METHODS Two sizes of AgNPs were prepared and characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Through consecutive sampling, biofilm samples were collected from 17 subjects with MIDs and 20 subjects without disorders. The antimicrobial effect was determined by obtaining the minimum inhibitory concentration (MIC) of AgNPs, and the identification and distribution of oral bacterial species were determined by polymerase chain reaction (PCR). Finally, correlations between sociodemographic characteristics and the antimicrobial levels of AgNPs were also explored. The values of the MIC results were analyzed with IBM-SPSS software (version25) using non-parametric tests for independent groups and correlations, with statistical significance being considered as p < 0.05. RESULTS Both sizes of AgNPs exhibited tight particle size distributions (smaller: 10.2 ± 0.7 nm; larger: 29.3 ± 2.3 nm) with zeta potential values (-35.0 ± 3.3 and -52.6 ± 8.5 mV, respectively) confirming the stability that resulted in little to no agglomeration of nanoparticles. Although both sizes of AgNPs had good antimicrobial activity in all oral biofilms, the smallest particles had the best antimicrobial effects on the oral biofilm samples from patients with and without MIDs, even better than chlorhexidine (CHX) (p < 0.05). Likewise, the patients with disabilities showed higher levels of antimicrobial sensitivity to AgNPs compared with CHX (p < 0.05). Although the microorganisms included in the biofilms of females had a statistically higher growth level, the AgNP antimicrobial effect was statistically similar in both genders (p > 0.05). The most frequent bacteria for all oral biofilms were S. mutans (100%), P. intermedia (91.6%), T. forsythia (75.0%), T. denticola (75.0%), P. gingivalis (66.6%), F. nucleatum (66.6%), S. sobrinus (50.0%), and A. actinomycetemcomitans (8.3%). CONCLUSIONS AgNPs exhibited considerable antimicrobial potential to be used as a complementary and alternative tool in maintaining and preserving oral health in patients with MIDs.
Collapse
Affiliation(s)
- Carolina Holguín-Meráz
- Master Program in Dental Sciences, Stomatology Department, Institute of Biomedical Sciences, Autonomous University of Juarez City (UACJ), Envolvente del PRONAF and Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico; (C.H.-M.); (A.D.-C.); (J.C.C.-G.)
| | - Rita Elizabeth Martínez-Martínez
- Master Program in Advanced Dentistry, Faculty of Dentistry, Autonomous University of San Luis Potosi, Manuel Nava Avenue, University Campus, San Luis Potosí 78290, San Luis Potosí, Mexico;
| | - Erasto Armando Zaragoza-Contreras
- Department of Engineering and Materials Chemistry, Centro de Investigación en Materiales Avanzados, S. C., Miguel de Cervantes No. 120, Chihuahua 31136, Chihuahua, Mexico;
| | - Rubén Abraham Domínguez-Pérez
- Laboratory of Multidisciplinary Dental Research, Faculty of Medicine, Autonomous University of Queretaro, Clavel Street, Prados de La Capilla, Santiago de Querétaro 76176, Querétaro, Mexico;
| | - Simón Yobanny Reyes-López
- Institute of Biomedical Sciences, Autonomous University of Juarez City (UACJ), Envolvente del PRONAF and Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico;
| | - Alejandro Donohue-Cornejo
- Master Program in Dental Sciences, Stomatology Department, Institute of Biomedical Sciences, Autonomous University of Juarez City (UACJ), Envolvente del PRONAF and Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico; (C.H.-M.); (A.D.-C.); (J.C.C.-G.)
| | - Juan Carlos Cuevas-González
- Master Program in Dental Sciences, Stomatology Department, Institute of Biomedical Sciences, Autonomous University of Juarez City (UACJ), Envolvente del PRONAF and Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico; (C.H.-M.); (A.D.-C.); (J.C.C.-G.)
| | - Erika de Lourdes Silva-Benítez
- Faculty of Odontology, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez Street, Culiacán 80010, Sinaloa, Mexico;
| | - Nelly Molina-Frechero
- Division of Biological and Health Sciences, Autonomous Metropolitan University Xochimilco (UAM), Mexico City 04960, Mexico;
| | - León Francisco Espinosa-Cristóbal
- Master Program in Dental Sciences, Stomatology Department, Institute of Biomedical Sciences, Autonomous University of Juarez City (UACJ), Envolvente del PRONAF and Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico; (C.H.-M.); (A.D.-C.); (J.C.C.-G.)
| |
Collapse
|
5
|
Nomura R, Suehiro Y, Tojo F, Matayoshi S, Okawa R, Hamada M, Naka S, Matsumoto-Nakano M, Unesaki R, Koumoto K, Kawauchi K, Nishikata T, Akitomo T, Mitsuhata C, Yagi M, Mizoguchi T, Fujikawa K, Taniguchi T, Nakano K. Inhibitory Effects of Shikonin Dispersion, an Extract of Lithospermum erythrorhizon Encapsulated in β-1,3-1,6 Glucan, on Streptococcus mutans and Non-Mutans Streptococci. Int J Mol Sci 2024; 25:1075. [PMID: 38256148 PMCID: PMC10816867 DOI: 10.3390/ijms25021075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Shikonin is extracted from the roots of Lithospermum erythrorhizon, and shikonin extracts have been shown to have inhibitory effects on several bacteria. However, shikonin extracts are difficult to formulate because of their poor water solubility. In the present study, we prepared a shikonin dispersion, which was solubilized by the inclusion of β-1,3-1,6 glucan, and analysed the inhibitory effects of this dispersion on Streptococcus mutans and non-mutans streptococci. The shikonin dispersion showed pronounced anti-S. mutans activity, and inhibited growth of and biofilm formation by this bacterium. The shikonin dispersion also showed antimicrobial and antiproliferative effects against non-mutans streptococci. In addition, a clinical trial was conducted in which 20 subjects were asked to brush their teeth for 1 week using either shikonin dispersion-containing or non-containing toothpaste, respectively. The shikonin-containing toothpaste decreased the number of S. mutans in the oral cavity, while no such effect was observed after the use of the shikonin-free toothpaste. These results suggest that shikonin dispersion has an inhibitory effect on S. mutans and non-mutans streptococci, and toothpaste containing shikonin dispersion may be effective in preventing dental caries.
Collapse
Affiliation(s)
- Ryota Nomura
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (Y.S.); (F.T.); (S.M.); (R.O.); (K.N.)
- Joint Research Laboratory of Next-Generation Science for Oral Infection Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.Y.); (T.M.); (K.F.); (T.T.)
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Hiroshima, Japan; (T.A.); (C.M.)
| | - Yuto Suehiro
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (Y.S.); (F.T.); (S.M.); (R.O.); (K.N.)
| | - Fumikazu Tojo
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (Y.S.); (F.T.); (S.M.); (R.O.); (K.N.)
| | - Saaya Matayoshi
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (Y.S.); (F.T.); (S.M.); (R.O.); (K.N.)
| | - Rena Okawa
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (Y.S.); (F.T.); (S.M.); (R.O.); (K.N.)
- Joint Research Laboratory of Next-Generation Science for Oral Infection Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.Y.); (T.M.); (K.F.); (T.T.)
| | - Masakazu Hamada
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan;
| | - Shuhei Naka
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Okayama, Japan; (S.N.); (M.M.-N.)
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Okayama, Japan; (S.N.); (M.M.-N.)
| | - Rika Unesaki
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Hyogo, Japan; (R.U.); (K.K.); (K.K.); (T.N.)
| | - Kazuya Koumoto
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Hyogo, Japan; (R.U.); (K.K.); (K.K.); (T.N.)
| | - Keiko Kawauchi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Hyogo, Japan; (R.U.); (K.K.); (K.K.); (T.N.)
| | - Takahito Nishikata
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Hyogo, Japan; (R.U.); (K.K.); (K.K.); (T.N.)
| | - Tatsuya Akitomo
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Hiroshima, Japan; (T.A.); (C.M.)
| | - Chieko Mitsuhata
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Hiroshima, Japan; (T.A.); (C.M.)
| | - Masatoshi Yagi
- Joint Research Laboratory of Next-Generation Science for Oral Infection Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.Y.); (T.M.); (K.F.); (T.T.)
- Pharmacrea Kobe Co., Ltd., Kobe 651-0085, Hyogo, Japan
| | - Toshiro Mizoguchi
- Joint Research Laboratory of Next-Generation Science for Oral Infection Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.Y.); (T.M.); (K.F.); (T.T.)
- TSET Co., Ltd., Kariya 448-0022, Aichi, Japan
| | - Koki Fujikawa
- Joint Research Laboratory of Next-Generation Science for Oral Infection Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.Y.); (T.M.); (K.F.); (T.T.)
- TSET Co., Ltd., Kariya 448-0022, Aichi, Japan
| | - Taizo Taniguchi
- Joint Research Laboratory of Next-Generation Science for Oral Infection Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.Y.); (T.M.); (K.F.); (T.T.)
- Pharmacrea Kobe Co., Ltd., Kobe 651-0085, Hyogo, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (Y.S.); (F.T.); (S.M.); (R.O.); (K.N.)
- Joint Research Laboratory of Next-Generation Science for Oral Infection Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.Y.); (T.M.); (K.F.); (T.T.)
| |
Collapse
|
6
|
Nakatogawa H, Hokamura K, Nomura R, Nakano K, Umemura K, Morita A, Homma Y, Tanaka T. Is Oral Streptococcus mutans with Collagen-Binding Protein a Risk Factor for Intracranial Aneurysm Rupture or Formation? Cerebrovasc Dis 2024; 53:722-728. [PMID: 38219720 DOI: 10.1159/000536203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/01/2024] [Indexed: 01/16/2024] Open
Abstract
INTRODUCTION Streptococcus mutans (SM) with the collagen-binding protein Cnm is a unique member of the oral resident flora because it causes hemorrhagic vascular disorders. In the multicenter study, we examined the relationship between Cnm-positive SM (CP-SM) and intracranial aneurysm (IA) rupture, which remains unknown. METHODS Between May 2013 and June 2018, we collected whole saliva samples from 431 patients with ruptured IAs (RIAs) and 470 patients with unruptured IAs (UIAs). Data were collected on age, sex, smoking and drinking habits, family history of subarachnoid hemorrhage, aneurysm size, number of teeth, and comorbidities of lifestyle disease. RESULTS There was no difference in the positivity rate of patients with CP-SM between the patients with RIAs (17.2%) and those with UIAs (19.4%). In subanalysis, the rate of positivity for CP-SM was significantly higher in all IAs <5 mm than in those ≥10 mm in diameter (p = 0.0304). In the entire cohort, the rate of positivity for CP-SM was lower in larger aneurysms than in smaller aneurysms (p = 0.0393). CONCLUSIONS CP-SM was not involved in the rupture of UIAs. In the subanalysis, the possibility of its involvement in the formation of vulnerable aneurysms remained.
Collapse
Affiliation(s)
- Hirokazu Nakatogawa
- Department of Neurosurgery, Seirei Hamamatsu General Hospital, Hamamatsu, Japan
| | - Kazuya Hokamura
- Department of Medical Education Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Hiroshima University, Hiroshima, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University, Osaka, Japan
| | - Kazuo Umemura
- Department of Pharmacology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akio Morita
- Department of Neurosurgery, Nippon Medical School, Tokyo, Japan
| | - Yoichiro Homma
- Department of General Internal Medicine, Seirei Hamamatsu General Hospital, Hamamatsu, Japan
| | - Tokutaro Tanaka
- Department of Neurosurgery, Seirei Hamamatsu General Hospital, Hamamatsu, Japan
| |
Collapse
|
7
|
Morales-Dorantes V, Domínguez-Pérez RA, Pérez-Serrano RM, Solís-Sainz JC, García-Solís P, Espinosa-Cristóbal LF, Cabeza-Cabrera CV, Ayala-Herrera JL. The Distribution of Eight Antimicrobial Resistance Genes in Streptococcus oralis, Streptococcus sanguinis, and Streptococcus gordonii Strains Isolated from Dental Plaque as Oral Commensals. Trop Med Infect Dis 2023; 8:499. [PMID: 37999618 PMCID: PMC10674312 DOI: 10.3390/tropicalmed8110499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
It has been proposed that oral commensal bacteria are potential reservoirs of a wide variety of antimicrobial resistance genes (ARGs) and could be the source of pathogenic bacteria; however, there is scarce information regarding this. In this study, three common streptococci of the mitis group (S. oralis, S. sanguinis, and S. gordonii) isolated from dental plaque (DP) were screened to identify if they were frequent reservoirs of specific ARGs (blaTEM, cfxA, tetM, tetW, tetQ, ermA, ermB, and ermC). DP samples were collected from 80 adults; one part of the sample was cultured, and from the other part DNA was obtained for first screening of the three streptococci species and the ARGs of interest. Selected samples were plated and colonies were selected for molecular identification. Thirty identified species were screened for the presence of the ARGs. From those selected, all of the S. sanguinis and S. oralis carried at least three, while only 30% of S. gordonii strains carried three or more. The most prevalent were tetM in 73%, and blaTEM and tetW both in 66.6%. On the other hand, ermA and cfxA were not present. Oral streptococci from the mitis group could be considered frequent reservoirs of specifically tetM, blaTEM, and tetW. In contrast, these three species appear not to be reservoirs of ermA and cfxA.
Collapse
Affiliation(s)
- Verónica Morales-Dorantes
- Laboratory of Multidisciplinary Dentistry Research, Faculty of Medicine, Universidad Autónoma de Querétaro, Santiago de Querétaro 76176, Mexico
| | - Rubén Abraham Domínguez-Pérez
- Laboratory of Multidisciplinary Dentistry Research, Faculty of Medicine, Universidad Autónoma de Querétaro, Santiago de Querétaro 76176, Mexico
| | - Rosa Martha Pérez-Serrano
- Laboratorio de Genética y Biología Molecular, Faculty of Medicine, Universidad Autónoma de Querétaro, Santiago de Querétaro 76176, Mexico
| | - Juan Carlos Solís-Sainz
- Departamento de Investigación Biomédica, Faculty of Medicine, Universidad Autónoma de Querétaro, Santiago de Querétaro 76176, Mexico
| | - Pablo García-Solís
- Departamento de Investigación Biomédica, Faculty of Medicine, Universidad Autónoma de Querétaro, Santiago de Querétaro 76176, Mexico
| | - León Francisco Espinosa-Cristóbal
- Programa de Maestría en Ciencias Odontológicas, Departamento de Estomatología, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico
| | - Claudia Verónica Cabeza-Cabrera
- Clínica de la Licenciatura y Posgrados de Odontología, Faculty of Medicine, Universidad Autónoma de Querétaro, Santiago de Querétaro 76176, Mexico
| | | |
Collapse
|
8
|
Yu D, Zhang J, Gao N, Huo Y, Li W, Wang T, Zhang X, Simayijiang H, Yan J. Rapid and visual detection of specific bacteria for saliva and vaginal fluid identification with the lateral flow dipstick strategy. Int J Legal Med 2023; 137:1853-1863. [PMID: 37358650 DOI: 10.1007/s00414-023-03051-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
Identification of body fluids is critical for crime scene reconstruction, and a source of investigation source of investigative leads. In recent years, microbial DNA analysis using sequencing and quantitative real-time polymerase chain reaction have been used to identify body fluids. However, these techniques are time-consuming, expensive, and require complex workflows. In this study, a new method for simultaneous detection of Streptococcus salivarius and Lactobacillus crispatus using polymerase chain reaction (PCR) in combination with a lateral flow dipstick (LFD) was developed to identify saliva and vaginal fluid in forensic samples. LFD results can be observed with the naked eye within 3 min with a sensitivity of 0.001 ng/µL DNA. The PCR-LFD assay was successfully used to detect S. salivarius and L. crispatus in saliva and vaginal fluid respectively, and showed negative results in blood, semen, nasal fluid, and skin. Moreover, saliva and vaginal fluid were detectable even at an extremely high mixing ratio of sample DNA (1:999). Saliva and vaginal fluid were identified in various mock forensic samples. These results indicate that saliva and vaginal fluid can be effectively detected by identifying S. salivarius and L. crispatus, respectively. Furthermore, we have shown that DNA samples used to identify saliva and vaginal fluid can also provide a complete short tandem repeat (STR) profile when used as source material for forensic STR profiling. In summary, our results suggest that PCR-LFD is a promising assay for rapid, simple, reliable, and efficient identification of body fluids.
Collapse
Affiliation(s)
- Daijing Yu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Jun Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Niu Gao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Yumei Huo
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Wanting Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Tian Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Xiaomeng Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Halimureti Simayijiang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China.
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China.
| |
Collapse
|
9
|
Dass M, Singh Y, Ghai M. A Review on Microbial Species for Forensic Body Fluid Identification in Healthy and Diseased Humans. Curr Microbiol 2023; 80:299. [PMID: 37491404 PMCID: PMC10368579 DOI: 10.1007/s00284-023-03413-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/08/2023] [Indexed: 07/27/2023]
Abstract
Microbial communities present in body fluids can assist in distinguishing between types of body fluids. Metagenomic studies have reported bacterial genera which are core to specific body fluids and are greatly influenced by geographical location and ethnicity. Bacteria in body fluids could also be due to bacterial infection; hence, it would be worthwhile taking into consideration bacterial species associated with diseases. The present review reports bacterial species characteristic of diseased and healthy body fluids across geographical locations, and bacteria described in forensic studies, with the aim of collating a set of bacteria to serve as the core species-specific markers for forensic body fluid identification. The most widely reported saliva-specific bacterial species are Streptococcus salivarius, Prevotella melaninogenica, Neisseria flavescens, with Fusobacterium nucleatum associated with increased diseased state. Lactobacillus crispatus and Lactobacillus iners are frequently dominant in the vaginal microbiome of healthy women. Atopobium vaginae, Prevotella bivia, and Gardnerella vaginalis are more prevalent in women with bacterial vaginosis. Semen and urine-specific bacteria at species level have not been reported, and menstrual blood bacteria are indistinguishable from vaginal fluid. Targeting more than one bacterial species is recommended for accurate body fluid identification. Although metagenomic sequencing provides information of a broad microbial profile, the specific bacterial species could be used to design biosensors for rapid body fluid identification. Validation of microbial typing methods and its application in identifying body fluids in a mixed sample would allow regular use of microbial profiling in a forensic workflow.
Collapse
Affiliation(s)
- Mishka Dass
- Department of Genetics, School of Life Sciences, University of KwaZulu Natal, Westville Campus, Private Bag X 54001, Durban, KwaZulu-Natal South Africa
| | - Yashna Singh
- Department of Genetics, School of Life Sciences, University of KwaZulu Natal, Westville Campus, Private Bag X 54001, Durban, KwaZulu-Natal South Africa
| | - Meenu Ghai
- Department of Genetics, School of Life Sciences, University of KwaZulu Natal, Westville Campus, Private Bag X 54001, Durban, KwaZulu-Natal South Africa
| |
Collapse
|
10
|
Duarte JCM, Costa IB, Teixeira DDB, Fregatto LF, Mendes CG, Mascarin AMN, da Silveira Junior SB, Serva BEBM, Comar LP, da Silva RG, Buchaim DV, Buchaim RL, Chagas EFB, Agostinho Junior F, Cola PC. Biochemical and Microbiological Aspects of the Oral Cavity of Children and Young People with Neurological Impairment and Oropharyngeal Dysphagia. Life (Basel) 2023; 13:1342. [PMID: 37374125 PMCID: PMC10303689 DOI: 10.3390/life13061342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The components and the salivary flow have a direct influence on the composition of the oral microbiota of children and young people with oropharyngeal dysphagia, and studies have already demonstrated the excessive accumulation of supragingival dental calculus in individuals with enteral nutrition. This study aimed to compare the oral hygiene, biochemical, and microbiological aspects of the oral cavity of children and young people with neurological impairment and oropharyngeal dysphagia. Forty children and young people with neurological impairment and oropharyngeal dysphagia were enrolled and divided into two groups: group I, encompassing 20 participants fed via gastrostomy; and group II, encompassing 20 participants fed via the oral route. Oral hygiene and salivary pH and flow were assessed, and a polymerase chain reaction was performed to evaluate the messenger RNA expressions of Porphyromonas gingivalis, Tanerella forsythia, and Treponema denticola. In groups I and II, the mean Oral Hygiene Index-Simplified scores were 4 and 2, respectively, showing a significant difference; the mean Calculus Index scores were 2 and 0, respectively, showing a significant difference; and the mean pH was 7.5 and 6.0, respectively, showing a significant difference. Bacterial analysis indicated no association between the two groups. It can be concluded that children and young people who use gastrostomy had a poorer oral hygiene, greater dental calculus deposition, and higher salivary pH. The saliva of patients in both groups contained Porphyromonas gingivalis, Tanerella forsythia, and Treponema denticola.
Collapse
Affiliation(s)
- Janaina Costa Marangon Duarte
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marilia 17525-902, Brazil (E.F.B.C.)
| | - Isabela Bazzo Costa
- Postgraduate Program in Animal Health, Production and Environment, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| | - Daniel de Bortoli Teixeira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marilia 17525-902, Brazil (E.F.B.C.)
- Postgraduate Program in Animal Health, Production and Environment, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| | - Luiz Fernando Fregatto
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marilia 17525-902, Brazil (E.F.B.C.)
- Nursing School, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
- UNIMAR Beneficent Hospital (HBU), University of Marilia (UNIMAR), Marilia 17525-160, Brazil
| | - Claudemir Gregorio Mendes
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marilia 17525-902, Brazil (E.F.B.C.)
- Faculty of Pharmacy and Biomedicine, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| | - Aline Maria Noli Mascarin
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marilia 17525-902, Brazil (E.F.B.C.)
- UNIMAR Beneficent Hospital (HBU), University of Marilia (UNIMAR), Marilia 17525-160, Brazil
| | - Salum Bueno da Silveira Junior
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marilia 17525-902, Brazil (E.F.B.C.)
| | | | - Livia Picchi Comar
- Dentistry School, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| | - Roberta Gonçalves da Silva
- Dysphagia Research Rehabilitation Center, Graduate of Speech, Language and Hearing Sciences Department, São Paulo State University (UNESP), Marilia 17525-900, Brazil
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marilia 17525-902, Brazil (E.F.B.C.)
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil;
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil
| | - Eduardo Federighi Baisi Chagas
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marilia 17525-902, Brazil (E.F.B.C.)
| | - Francisco Agostinho Junior
- Child’s Love Project, Projeto Amor de Criança, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| | - Paula Cristina Cola
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marilia 17525-902, Brazil (E.F.B.C.)
- Speech Therapy Department, São Paulo State University (UNESP), Marilia 17525-900, Brazil
| |
Collapse
|
11
|
Safir F, Vu N, Tadesse LF, Firouzi K, Banaei N, Jeffrey SS, Saleh AAE, Khuri-Yakub B(P, Dionne JA. Combining Acoustic Bioprinting with AI-Assisted Raman Spectroscopy for High-Throughput Identification of Bacteria in Blood. NANO LETTERS 2023; 23:2065-2073. [PMID: 36856600 PMCID: PMC10037319 DOI: 10.1021/acs.nanolett.2c03015] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Identifying pathogens in complex samples such as blood, urine, and wastewater is critical to detect infection and inform optimal treatment. Surface-enhanced Raman spectroscopy (SERS) and machine learning (ML) can distinguish among multiple pathogen species, but processing complex fluid samples to sensitively and specifically detect pathogens remains an outstanding challenge. Here, we develop an acoustic bioprinter to digitize samples into millions of droplets, each containing just a few cells, which are identified with SERS and ML. We demonstrate rapid printing of 2 pL droplets from solutions containing S. epidermidis, E. coli, and blood; when they are mixed with gold nanorods (GNRs), SERS enhancements of up to 1500× are achieved.We then train a ML model and achieve ≥99% classification accuracy from cellularly pure samples and ≥87% accuracy from cellularly mixed samples. We also obtain ≥90% accuracy from droplets with pathogen:blood cell ratios <1. Our combined bioprinting and SERS platform could accelerate rapid, sensitive pathogen detection in clinical, environmental, and industrial settings.
Collapse
Affiliation(s)
- Fareeha Safir
- *Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Nhat Vu
- Pumpkinseed
Technologies, Inc., Palo Alto, California 94306, United States
| | - Loza F. Tadesse
- Department
of Bioengineering, Stanford University School
of Medicine and School of Engineering, Stanford, California 94305, United States
| | - Kamyar Firouzi
- E.
L. Ginzton Laboratory, Stanford University, Stanford, California 94305, United States
| | - Niaz Banaei
- Department
of Pathology, Stanford University School
of Medicine, Stanford, 94305 California, United
States
- Clinical
Microbiology Laboratory, Stanford Health Care, Palo Alto, California 94304, United States
- Department
of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Stefanie S. Jeffrey
- Department
of Surgery, Stanford University School of
Medicine, Stanford, California 94305, United States
| | - Amr. A. E. Saleh
- Department
of Engineering Mathematics and Physics, Cairo University, Cairo 12613, Egypt
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Butrus (Pierre)
T. Khuri-Yakub
- E.
L. Ginzton Laboratory, Stanford University, Stanford, California 94305, United States
- Department
of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jennifer A. Dionne
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
- Department
of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94035, United States
| |
Collapse
|
12
|
Hamilton S, Shea D, Ibsen S, Brasino M. On-chip dielectrophoretic recovery and detection of a lactate sensing probiotic from model human saliva. Electrophoresis 2023; 44:442-449. [PMID: 36401837 PMCID: PMC10090127 DOI: 10.1002/elps.202200214] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/20/2022]
Abstract
Early detection has led to increased survival for multiple cancers; however, the 5-year survival rate of oral carcinoma (OC) has remained at 40% for the last several decades. Screening for OC is routinely done via visual examinations, followed by tissue biopsy and laboratory testing. Point-of-care testing would be a more convenient and widely available alternative for at-risk individuals. Increased lactate production is a hallmark of many head-and-neck tumors, due to the Warburg Effect, where tumor cells favor glycolysis in the place of oxidative phosphorylation. To detect excess lactate, we have modified the commensal bacterium Escherichia coli Nissle 1917 to express fluorescent reporter genes in response to extracellular lactate. Administering this commensal as a mouth wash and subsequently collecting saliva for the detection of the reporter may allow for noninvasive, early detection of cancerous lesions in at-risk individuals. Furthermore, we demonstrate a new on-chip electrokinetic technique to recover these probiotic probes from model saliva fluid to improve the detection of reporter gene activation.
Collapse
Affiliation(s)
- Sean Hamilton
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA
| | - Delaney Shea
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA
| | - Stuart Ibsen
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA
| | - Michael Brasino
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA
| |
Collapse
|
13
|
Okahashi N, Nakata M, Kuwata H, Kawabata S. Oral mitis group streptococci: A silent majority in our oral cavity. Microbiol Immunol 2022; 66:539-551. [PMID: 36114681 DOI: 10.1111/1348-0421.13028] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022]
Abstract
Members of the oral mitis group streptococci including Streptococcus oralis, Streptococcus sanguinis, and Streptococcus gordonii are the most abundant inhabitants of human oral cavity and dental plaque, and have been implicated in infectious complications such as bacteremia and infective endocarditis. Oral mitis group streptococci are genetically close to Streptococcus pneumoniae; however, they do not produce cytolysin (pneumolysin), which is a key virulence factor of S. pneumoniae. Similar to S. pneumoniae, oral mitis group streptococci possess several cell surface proteins that bind to the cell surface components of host mammalian cells. S. sanguinis expresses long filamentous pili that bind to the matrix proteins of host cells. The cell wall-anchored nuclease of S. sanguinis contributes to the evasion of the neutrophil extracellular trap by digesting its web-like extracellular DNA. Oral mitis group streptococci produce glucosyltransferases, which synthesize glucan (glucose polymer) from sucrose of dietary origin. Neuraminidase (NA) is a virulent factor in oral mitis group streptococci. Influenza type A virus (IAV) relies on viral NA activity to release progeny viruses from infected cells and spread the infection, and NA-producing oral streptococci elevate the risk of IAV infection. Moreover, oral mitis group streptococci produce hydrogen peroxide (H2 O2 ) as a by-product of sugar metabolism. Although the concentrations of streptococcal H2 O2 are low (1-2 mM), they play important roles in bacterial competition in the oral cavity and evasion of phagocytosis by host macrophages and neutrophils. In this review, we intended to describe the diverse pathogenicity of oral mitis group streptococci.
Collapse
Affiliation(s)
- Nobuo Okahashi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan.,Center for Frontier Oral Science, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Masanobu Nakata
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hirotaka Kuwata
- Department of Oral Microbiology and Immunology, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
14
|
Otsugu M, Mikasa Y, Kitamura T, Suehiro Y, Matayoshi S, Nomura R, Nakano K. Clinical characteristics of children and guardians possessing CBP-positive Streptococcus mutans strains: a cross-sectional study. Sci Rep 2022; 12:17510. [PMID: 36266432 PMCID: PMC9585102 DOI: 10.1038/s41598-022-22378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/13/2022] [Indexed: 01/12/2023] Open
Abstract
Streptococcus mutans is a major etiological agent for dental caries. We previously demonstrated that S. mutans strains expressing collagen-binding proteins (CBPs) were related to the pathogenesis of systemic diseases. However, their acquisition and colonization remain unknown. Here, we investigated the detection rates of CBP-positive S. mutans strains in children and their guardians to clarify the background for the acquisition and colonization in children. Saliva samples were collected from children and their mothers, and detection of S. mutans and collagen-binding genes (cnm, cbm) was performed by PCR after DNA extraction. The oral status of each child was examined, and their mothers were asked to complete a questionnaire. The isolation rate of Cnm-positive S. mutans was significantly higher in mothers than in children. Notably, the possession rates of CBP-positive strains in children were significantly higher in children whose mothers had CBP-positive strains than in children whose mothers did not have these strains. Furthermore, children with CBP-positive strains had a significantly shorter breastfeeding period than children without these strains. The present results suggest that nutritional feeding habits in infancy are one of the factors involved in the acquisition and colonization of CBP-positive S. mutans strains.
Collapse
Affiliation(s)
- Masatoshi Otsugu
- grid.136593.b0000 0004 0373 3971Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871 Japan
| | - Yusuke Mikasa
- grid.136593.b0000 0004 0373 3971Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871 Japan
| | - Takahiro Kitamura
- grid.136593.b0000 0004 0373 3971Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871 Japan
| | - Yuto Suehiro
- grid.136593.b0000 0004 0373 3971Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871 Japan
| | - Saaya Matayoshi
- grid.136593.b0000 0004 0373 3971Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871 Japan
| | - Ryota Nomura
- grid.136593.b0000 0004 0373 3971Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871 Japan ,grid.257022.00000 0000 8711 3200Department of Pediatric Dentistry, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kazuhiko Nakano
- grid.136593.b0000 0004 0373 3971Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871 Japan
| |
Collapse
|
15
|
Nafarrate-Valdez RA, Martínez-Martínez RE, Zaragoza-Contreras EA, Áyala-Herrera JL, Domínguez-Pérez RA, Reyes-López SY, Donohue-Cornejo A, Cuevas-González JC, Loyola-Rodríguez JP, Espinosa-Cristóbal LF. Anti-Adherence and Antimicrobial Activities of Silver Nanoparticles against Serotypes C and K of Streptococcus mutans on Orthodontic Appliances. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:877. [PMID: 35888596 PMCID: PMC9323808 DOI: 10.3390/medicina58070877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022]
Abstract
Background and Objectives: Streptococcus mutans (S. mutans) is the main microorganism associated with the presence of dental caries and specific serotypes of this bacteria have been related to several systemic diseases limiting general health. In orthodontics, white spot lesions (WSL), represent a great challenge for clinicians due to the great fluctuation of their prevalence and incidence during conventional orthodontic treatments. Although silver nanoparticles (AgNP) have been demonstrated to have great antimicrobial properties in several microorganisms, including S. mutans bacteria, there is no available information about anti adherence and antimicrobial properties of AgNP exposed to two of the most relevant serotypes of S. mutans adhered on orthodontic materials used for conventional therapeutics. The objective of this study was to determine anti-adherence and antimicrobial levels of AgNP against serotypes c and k of S. mutans on conventional orthodontic appliances. Materials and Methods: An AgNP solution was prepared and characterized using dispersion light scattering (DLS) and transmission electron microscopy (TEM). Antimicrobial and anti-adherence activities of AgNP were determined using minimal inhibitory concentrations (MIC) and bacterial adherence testing against serotypes c and k of S. mutans clinically isolated and confirmed by PCR assay. Results: The prepared AgNP had spherical shapes with a good size distribution (29.3 ± 0.7 nm) with negative and well-defined electrical charges (−36.5 ± 5.7 mV). AgNP had good bacterial growth (55.7 ± 19.3 µg/mL for serotype c, and 111.4 ± 38.6 µg/mL for serotype k) and adherence inhibitions for all bacterial strains and orthodontic wires (p < 0.05). The serotype k showed statistically the highest microbial adherence (p < 0.05). The SS wires promoted more bacterial adhesion (149.0 ± 253.6 UFC/mL × 104) than CuNiTi (3.3 ± 6.0 UFC/mL × 104) and NiTi (101.1 ± 108.5 UFC/mL × 104) arches. SEM analysis suggests CuNiTi wires demonstrated better topographical conditions for bacterial adherence while AFM evaluation determined cell wall irregularities in bacterial cells exposed to AgNP. Conclusions: This study suggests the widespread use of AgNP as a potential anti-adherent and antimicrobial agent for the prevention of WSL during conventional orthodontic therapies and, collaterally, other systemic diseases.
Collapse
Affiliation(s)
- Rosa Amalia Nafarrate-Valdez
- Speciality Program in Orthodontics, Department of Dentistry, Biomedical Science Institute, Autonomous University of Ciudad Juarez (UACJ), Envolvente del PRONAF and Estocolmo Avenues, Juarez City 32310, Mexico;
| | - Rita Elizabeth Martínez-Martínez
- Master Program in Advanced Dentistry, Faculty of Dentistry, Autonomous University of San Luis Potosi, Manuel Nava Avenue, Universitary Campus, San Luis Potosí 78290, Mexico;
| | - Erasto Armando Zaragoza-Contreras
- Department of Engineering and Materials Chemistry, Centro de Investigación en Materiales Avanzados, S. C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico;
| | - José Luis Áyala-Herrera
- School of Dentistry, Universidad De La Salle Bajío, Universidad Avenue, Lomas del Campestre, Guanajuato 37150, Mexico;
| | - Rubén Abraham Domínguez-Pérez
- Laboratory of Multidisciplinary Dental Research, Faculty of Medicine, Autonomous University of Queretaro, Clavel Street, Prados de La Capilla, Santiago de Querétaro 76176, Mexico;
| | - Simón Yobanny Reyes-López
- Institute of Biomedical Sciences, Autonomous University of Juarez City (UACJ), Envolvente del PRONAF and Estocolmo s/n, Ciudad Juárez 32310, Mexico;
| | - Alejandro Donohue-Cornejo
- Master Program in Dental Sciences, Stomatology Department, Institute of Biomedical Sciences, Autonomous University of Juarez City (UACJ), Envolvente del PRONAF and Estocolmo s/n, Ciudad Juárez 32310, Mexico; (A.D.-C.); (J.C.C.-G.)
| | - Juan Carlos Cuevas-González
- Master Program in Dental Sciences, Stomatology Department, Institute of Biomedical Sciences, Autonomous University of Juarez City (UACJ), Envolvente del PRONAF and Estocolmo s/n, Ciudad Juárez 32310, Mexico; (A.D.-C.); (J.C.C.-G.)
| | - Juan Pablo Loyola-Rodríguez
- Faculty of Dentistry, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez, Ciudad Universitaria, Universitaria, Culiacán 80013, Mexico;
| | - León Francisco Espinosa-Cristóbal
- Master Program in Dental Sciences, Stomatology Department, Institute of Biomedical Sciences, Autonomous University of Juarez City (UACJ), Envolvente del PRONAF and Estocolmo s/n, Ciudad Juárez 32310, Mexico; (A.D.-C.); (J.C.C.-G.)
| |
Collapse
|
16
|
Schäfer S, Smeets R, Köpf M, Drinic A, Kopp A, Kröger N, Hartjen P, Assaf AT, Aavani F, Beikler T, Peters U, Fiedler I, Busse B, Stürmer EK, Vollkommer T, Gosau M, Fuest S. Antibacterial properties of functionalized silk fibroin and sericin membranes for wound healing applications in oral and maxillofacial surgery. BIOMATERIALS ADVANCES 2022; 135:212740. [PMID: 35929202 DOI: 10.1016/j.bioadv.2022.212740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/13/2022] [Accepted: 02/25/2022] [Indexed: 06/15/2023]
Abstract
Oral wounds are among the most troublesome injuries which easily affect the patients' quality of life. To date, the development of functional antibacterial dressings for oral wound healing remains a challenge. In this regard, we investigated antibacterial silk protein-based membranes for the application as wound dressings in oral and maxillofacial surgery. The present study includes five variants of casted membranes, i.e., i) membranes-silver nanoparticles (CM-Ag), ii) membranes-gentamicin (CM-G), iii) membranes-control (without functionalization) (CM-C), iv) membranes-silk sericin control (CM-SSC), and v) membranes-silk fibroin/silk sericin (CM-SF/SS), and three variants of nonwovens, i.e., i) silver nanoparticles (NW-Ag), ii) gentamicin (NW-G), iii) control (without functionalization) (NW-C). The surface structure of the samples was visualized with scanning electron microscopy. In addition, antibacterial testing was accomplished using agar diffusion assay, colony forming unit (CFU) analysis, and qrt-PCR. Following antibacterial assays, biocompatibility was evaluated by cell proliferation assay (XTT), cytotoxicity assay (LDH), and live-dead assay on L929 mouse fibroblasts. Findings indicated significantly lower bacterial colony growth and DNA counts for CM-Ag with a reduction of bacterial counts by 3log levels (99.9% reduction) in CFU and qrt-PCR assay compared to untreated control membranes (CM-C and CM-SSC) and membranes functionalized with gentamicin (CM-G and NW-G) (p < 0.001). Similarly, NW-G yielded significantly lower DNA and colony growth counts compared to NW-Ag and NW-C (p < 0.001). In conclusion, CM-Ag represented 1log level better antibacterial activity compared to NW-G, whereas NW-G showed better cytocompatibility for L929 cells. As data suggest, these two membranes have the potential of application in the field of bacteria-free oral wound healing. However, provided that loading strategy and cytocompatibility are adjusted according to the antibacterial agents' characteristic and fabrication technique of the membranes.
Collapse
Affiliation(s)
- Sogand Schäfer
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany; Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | | | | | | | - Nadja Kröger
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital of Cologne, 50937 Cologne, Germany
| | - Philip Hartjen
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Alexandre Thomas Assaf
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Farzaneh Aavani
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Thomas Beikler
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Ulrike Peters
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Imke Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Ewa K Stürmer
- Department of Vascular Medicine, University Heart Center, Translational Wound Research, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Tobias Vollkommer
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Sandra Fuest
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany.
| |
Collapse
|
17
|
Oral hygiene and oral microbiota in children and young people with neurological impairment and oropharyngeal dysphagia. Sci Rep 2021; 11:18090. [PMID: 34508135 PMCID: PMC8433174 DOI: 10.1038/s41598-021-97425-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/25/2021] [Indexed: 12/28/2022] Open
Abstract
This study compared the oral hygiene and oral microbiota in children and young people with neurological impairment and oropharyngeal dysphagia with and without gastrostomy. Forty children and young people participated in this study: 19 females and 21 males, aged 2 to 22 years (mean age 8.6 years). Participants were divided into two groups: group I (GI = 20) with gastrostomy and group II (GII = 20) without gastrostomy (with oral feeding). Oral hygiene was assessed using the Simplified Oral Hygiene Index (SOHI). Analysis of two bacteria, Streptococcus mutans and Streptococcus sobrinus, was performed by collecting saliva using an oral swab, then mRNA expression was evaluated using the polymerase chain reaction (PCR) technique. The oral hygiene index had a general median of 2.2, and the two groups were statistically different (Group I: median 2.9 and Group II: median 2.0) (p = 0.01751). Bacterial analysis indicated 13 individuals with S. mutans and none with S. sobrinus. Of the 13 individuals with S. mutans, 6 were from Group I and 7 from Group II. Those with gastrostomy had worse oral hygiene, and both groups harbored the bacterium S. mutans.
Collapse
|
18
|
Gehrke P, Burg S, Peters U, Beikler T, Fischer C, Rupp F, Schweizer E, Weigl P, Sader R, Smeets R, Schäfer S. Bacterial translocation and microgap formation at a novel conical indexed implant abutment system for single crowns. Clin Oral Investig 2021; 26:1375-1389. [PMID: 34401947 PMCID: PMC8816325 DOI: 10.1007/s00784-021-04112-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/27/2021] [Indexed: 10/26/2022]
Abstract
OBJECTIVES A conometric concept was recently introduced in which conical implant abutments hold the matching crown copings by friction alone, eliminating the need for cement or screws. The aim of this in vitro study was to assess the presence of microgap formation and bacterial leakage at the Acuris conometric restorative interface of three different implant abutment systems. MATERIAL AND METHODS A total of 75 Acuris samples of three implant-abutment systems (Ankylos, Astra Tech EV, Xive) were subjected to microbiological (n = 60) and scanning electron microscopic (SEM) investigation (n = 15). Bacterial migration into and out of the conical coupling system were analyzed in an anaerobic workstation for 48, 96, 144, and 192 h. Bacterial DNA quantification using qrt-PCR was performed at each time point. The precision of the conometric coupling and internal fit of cemented CAD/CAM crowns on corresponding Acuris TiN copings were determined by means of SEM. RESULTS qrt-PCR results failed to demonstrate microbial leakage from or into the Acuris system. SEM analysis revealed minute punctate microgaps at the apical aspect of the conometric junction (2.04 to 2.64 µm), while mean cement gaps of 12 to 145 µm were observed at the crown-coping interface. CONCLUSIONS The prosthetic morse taper connection of all systems examined does not allow bacterial passage. Marginal integrity and internal luting gap between the ceramic crown and the coping remained within the clinically acceptable limits. CLINICAL RELEVANCE Conometrically seated single crowns provide sufficient sealing efficiency, relocating potential misfits from the crown-abutment interface to the crown-coping interface.
Collapse
Affiliation(s)
- Peter Gehrke
- Department of Postgraduate Education, Center for Dentistry and Oral Medicine (Carolinum), University Hospital, Goethe University Frankfurt, 60528, Frankfurt am Main, Germany. .,Private Practice for Oral Surgery and Implant Dentistry, Bismarckstraße 27, 67059, Ludwigshafen, Germany.
| | - Simon Burg
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20251Hamburg, Germany
| | - Ulrike Peters
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Thomas Beikler
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Carsten Fischer
- Dental Laboratory, Sirius Ceramics, 60528, Frankfurt am Main, Germany
| | - Frank Rupp
- Section Medical Materials Science and Technology, University Hospital Tuebingen, 72076, Tuebingen, Germany
| | - Ernst Schweizer
- Section Medical Materials Science and Technology, University Hospital Tuebingen, 72076, Tuebingen, Germany
| | - Paul Weigl
- Department of Postgraduate Education, Center for Dentistry and Oral Medicine (Carolinum), University Hospital, Goethe University Frankfurt, 60528, Frankfurt am Main, Germany
| | - Robert Sader
- Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center, University Hospital, Goethe University Frankfurt, 60528, Frankfurt am Main, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20251Hamburg, Germany.,Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Sogand Schäfer
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20251Hamburg, Germany
| |
Collapse
|
19
|
Antibiotic Resistance Decreases the Efficacy of Endodontic Filling Pastes for Root Canal Treatment in Children's Teeth. CHILDREN-BASEL 2021; 8:children8080692. [PMID: 34438583 PMCID: PMC8391351 DOI: 10.3390/children8080692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/25/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022]
Abstract
The antibacterial efficacy of antimicrobial filling pastes (AFP) used in the root canal treatment of primary teeth has been widely reported. However, antibiotic resistance as an emerging global problem could impact their current efficacy. This study aimed to evaluate the efficacy of two common AFP on susceptible or resistant bacteria isolated from primary necrotic molars. Microbiological samples were obtained and cultured from the root canals of 34 children. In total, 96 colony-forming units were obtained to determine their resistance to tetracycline, rifampicin, and chloramphenicol. They were identified as S. mutans or E. faecalis using polymerase chain reaction. The antimicrobial activity of CTZ paste (chloramphenicol, tetracycline, zinc oxide, and eugenol) and Guedes-Pinto modified (GPM) paste (rifampicin, prednisolone, iodoform, and camphorated paramonochlorophenol) were tested against the identified and selected microorganisms. Larger size inhibition zones were observed in both species when the tested strains were susceptible to the antibiotics in the AFP preparation. The efficacy of AFP containing antibiotics depends on the antibiotic resistance profile of the strain. Antibiotic resistance and its effect on the AFP were shown, which calls into question the use of simplified endodontic techniques that depend on antibiotics, since in these cases these techniques could not clinically eliminate resistant bacteria from the root canal.
Collapse
|
20
|
Antimicrobial and Antibiofilm Activity of the Probiotic Strain Streptococcus salivarius K12 against Oral Potential Pathogens. Antibiotics (Basel) 2021; 10:antibiotics10070793. [PMID: 34209988 PMCID: PMC8300812 DOI: 10.3390/antibiotics10070793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
Oral probiotics are increasingly used in the harmonization of the oral microbiota in the prevention or therapy of various oral diseases. Investigation of the antimicrobial activity of the bacteriocinogenic strain Streptococcus salivarius K12 against oral pathogens shows promising results, not only in suppressing growth, but also in eliminating biofilm formation. Based on these findings, we decided to investigate the antimicrobial and antibiofilm activity of the neutralized cell-free supernatant (nCFS) of S. salivarius K12 at various concentrations against selected potential oral pathogens under in vitro conditions on polystyrene microtiter plates. The nCFS of S. salivarius K12 significantly reduced growth (p < 0.01) in Streptococcus mutans Clarke with increasing concentration from 15 to 60 mg/mL and also in Staphylococcus hominis 41/6 at a concentration of 60 mg/mL (p < 0.001). Biofilm formation significantly decreased (p < 0.001) in Schaalia odontolytica P10 at nCFS concentrations of 60 and 30 mg/mL. Biofilm inhibition (p < 0.001) was also observed in Enterobacter cloacae 4/2 at a concentration of 60 mg/mL. In Schaalia odontolytica P10 and Enterobacter cloacae 4/2, the nCFS had no effect on their growth.
Collapse
|
21
|
Li Y, Shao F, Zheng S, Tan Z, He Y. Alteration of Streptococcus salivarius in Buccal Mucosa of Oral Lichen Planus and Controlled Clinical Trial in OLP Treatment. Probiotics Antimicrob Proteins 2021; 12:1340-1348. [PMID: 32506228 DOI: 10.1007/s12602-020-09664-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oral lichen planus (OLP) is a T cell-mediated common chronic inflammatory mucosal disease, with limited therapies available for long-term use. Previous study showed that ratio of genus Streptococcus decreased significantly in OLP patients when compared with controls. Buccal cotton swab samples of 43 OLP patients and 48 healthy individuals were collected for real-time quantitative polymerase chain reaction (RT-PCR) to investigate relative abundance alteration of Streptococcus salivarius in OLP lesions. Bacterial supernatants of S. salivarius ATCC® BAA-2593™ were collected by centrifugation and added to HSC-3 cells, and quantitative analysis of expression of IL-1β, IL-6, IL-8, and TNF-α in the HSC-3 cells was determined by RT-PCR. Then, a randomized, non-blinded, controlled study was conducted. Forty patients with symptomatic OLP were randomly allocated into two groups and received topical treatment of 0.1% triamcinolone acetonide dental paste (group A) and S. salivarius K12 lozenge (group B), respectively, for 4 weeks. Sign scores, visual analogue scale (VAS), and adverse reactions were recorded. Relative abundance of S. salivarius in the OLP group was lower than that of control group (P < 0.05). After treated with 0.1% supernatants of S. salivarius ATCC® BAA-2593™, the expression level of IL-6 in the HSC-3 cells significantly reduced (P < 0.001), while IL-1β, IL-8, and TNF- α showed a decreasing tendency (P > 0.05). There was significant reduction in sign scores and VAS scores in both groups after the 4-week treatment, with no significant difference between two groups. No adverse reaction was observed. S. salivarius might maintain local immune balance by inhibiting the NF-κB pathway. Topical application of Streptococcus salivarius K12 seemed to be effective in treatment of symptomatic OLP, especially with promising potential in long-term use. More detailed clinical studies with long follow-up period and standardized usage/dosage are expected to acquire definite conclusions.
Collapse
Affiliation(s)
- Yuting Li
- Department of Oral Medicine, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School & Hospital of Stomatology, Tongji University, Middle Yanchang Road 399, Shanghai, People's Republic of China, 200072
| | - Fangyang Shao
- Department of Oral Medicine, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School & Hospital of Stomatology, Tongji University, Middle Yanchang Road 399, Shanghai, People's Republic of China, 200072
| | - Saiwei Zheng
- Department of Oral Medicine, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School & Hospital of Stomatology, Tongji University, Middle Yanchang Road 399, Shanghai, People's Republic of China, 200072
| | - Zhengwu Tan
- Department of Oral Medicine, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School & Hospital of Stomatology, Tongji University, Middle Yanchang Road 399, Shanghai, People's Republic of China, 200072
| | - Yuan He
- Department of Oral Medicine, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School & Hospital of Stomatology, Tongji University, Middle Yanchang Road 399, Shanghai, People's Republic of China, 200072.
| |
Collapse
|
22
|
Isolation of the Bacteriophages Inhibiting the Expression of the Genes Involved in Biofilm Formation by Streptococcus mutans. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.113206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background: The potential of Streptococcus mutans for biofilm formation makes it one of the main organisms causing dental caries. Various preventive strategies have been applied to reduce tooth decay. Objectives: In the current study, we aimed to isolate S. mutans bacteriophages from sewage and to investigate their effects on the expression of the genes involved in bacterial biofilm formation in dental caries. Methods: Eighty-one dental plaque samples were collected. Then to isolate and identify S. mutans, bacterial culture media and molecular tests were used. Moreover, the biofilm formation capability of the isolated S. mutans was determined. Also, lytic bacteriophages were isolated from raw urban sewage, and phage morphology was determined by transmission electron microscopy (TEM). Real-time PCR was used to assess the effects of the isolated bacteriophages on the expression of the genes involved in biofilm formation. Results: Overall, 32 (39.5%) samples were positive for the presence of S. mutans. All of the isolates contained the gtfD gene. The frequencies of other genes were as follows: gtfB (17, 53.12%), gtfC (19, 53.37%), SpaP (13, 40.62%), and luxS (23, 17.87%). The isolated S. mutans bacteria presented different ranges of biofilm formation ability. Based on TEM results, two sewage-isolated bacteriophages, belonging to Siphoviridae and Tectiviridae families, were able to prevent biofilm formation up to 97%. Conclusions: Our findings indicate that phage therapy can be an optional way for controlling biofilm development and reducing the colonization of teeth surface by S. mutans.
Collapse
|
23
|
Nomura R, Ohata J, Otsugu M, Okawa R, Naka S, Matsumoto-Nakano M, Nakano K. Inhibitory effects of flavedo, albedo, fruits, and leaves of Citrus unshiu extracts on Streptococcus mutans. Arch Oral Biol 2021; 124:105056. [PMID: 33517170 DOI: 10.1016/j.archoralbio.2021.105056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
OBJECTVES Citrus unshiu has been shown to exhibit antimicrobial effects against citrus diseases. In the present study, C. unshiu was divided into flavedo, albedo, fruits, and leaves; the inhibitory effects of these extracts on Streptococcus mutans, a major pathogen of dental caries, were investigated. DESIGN C. unshiu specimens were separated into flavedo, albedo, fruits, and leaves. First, pH values and polyphenol amounts in Citrus extracts were measured. In addition, Citrus extract was added to the bacterial suspensions of S. mutans MT8148, and inhibitory effects of C. unshiu extracts on MT8148 for antimicrobial activity, bacterial growth, and biofilm formation were analyzed. These assays were also performed using C. sinensis extracts. RESULTS Among these extracts, albedo exhibited a pH value closest to neutral, while the fruits exhibited the most acidic pH value; the pH values significantly differed between these extracts (P < 0.05). In addition, the amounts of polyphenols were significantly higher in albedo than in other extracts (P < 0.001). All extracts showed inhibitory effects on MT8148 for antimicrobial activity, bacterial growth and biofilm formation. These inhibitory effects were significantly stronger in flavedo, albedo, and fruits, compared with leaves (P < 0.05). Furthermore, extracts of Citrus sinensis also showed inhibitory effects on S. mutans, although these effects were weaker than the effects of C. unshiu. CONCLUSION These results suggest that extracts from C. unshiu fruits exhibit inhibitory effects on S. mutans, among which albedo may be especially useful for dental caries prevention due to its neutral pH and abundant polyphenols, in addition to its inhibitory effects.
Collapse
Affiliation(s)
- Ryota Nomura
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan.
| | - Jumpei Ohata
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Masatoshi Otsugu
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Rena Okawa
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Shuhei Naka
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
24
|
Marginal Adaptation and Microbial Leakage at Conometric Prosthetic Connections for Implant-Supported Single Crowns: An In Vitro Investigation. Int J Mol Sci 2021; 22:ijms22020881. [PMID: 33477311 PMCID: PMC7830972 DOI: 10.3390/ijms22020881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/21/2020] [Accepted: 01/14/2021] [Indexed: 01/02/2023] Open
Abstract
Encouraging clinical results were reported on a novel cone-in-cone coupling for the fixation of dental implant-supported crowns (Acuris, Dentsply Sirona Implants, Mölndal, Sweden). However, the presence or absence of a microgap and a potential bacterial leakage at the conometric joint has not yet been investigated. A misfit and a resulting gap between the conometric components could potentially serve as a bacterial reservoir that promotes plaque formation, which in turn may lead to inflammation of the peri-implant tissues. Thus, a two-fold study set-up was designed in order to evaluate the bidirectional translocation of bacteria along conometrically seated single crowns. On conometric abutments filled with a culture suspension of anaerobic bacteria, the corresponding titanium nitride-coated (TiN) caps were fixed by friction. Each system was sterilized and immersed in culture medium to provide an optimal environment for microbial growth. Positive and negative controls were prepared. Specimens were stored in an anaerobic workstation, and total and viable bacterial counts were determined. Every 48 h, samples were taken from the reaction tubes to inoculate blood agar plates and to isolate bacterial DNA for quantification using qrt-PCR. In addition, one Acuris test system was subjected to scanning electron microscopy (SEM) to evaluate the precision of fit of the conometric coupling and marginal crown opening. Throughout the observational period of one week, blood agar plates of the specimens showed no viable bacterial growth. qrt-PCR, likewise, yielded a result approaching zero with an amount of about 0.53 × 10−4 µg/mL DNA. While the luting gap/marginal opening between the TiN-cap and the ceramic crown was within the clinically acceptable range, the SEM analysis failed to identify a measurable microgap at the cone-in-cone junction. Within the limits of the in-vitro study it can be concluded that the Acuris conometric interface does not allow for bacterial translocation under non-dynamic loading conditions.
Collapse
|
25
|
Usefulness of matrix-assisted laser desorption ionization/time of flight mass spectrometry for the identification of Streptococcus mutans. Appl Microbiol Biotechnol 2020; 104:10601-10612. [PMID: 33141297 DOI: 10.1007/s00253-020-10980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
This study evaluated the reliability of MALDI-TOF MS coupled with statistical tools for the identification of Streptococcus mutans in comparison with PCR-based techniques. Bacterial isolates were identified and serotyped by conventional PCR, using S. mutans species and serotype-specific primers. For bacterial identification, mass spectra data from S. mutans and other streptococci were compared with Biotyper V 3.1 database and the mass peak lists were examined by cluster and principal component (PCA) analysis. Identification of potential biomarkers was performed using UniProtKB/Swiss-Prot and UniProtKB/TrEMBL databases and BLAST tool of the NCBI database. PCR identified 100% of the isolates as S. mutans. S. mutans strains were typed as serotypes c (85.6%), e (8.6%), k (4.8%), and f (0.9%). Although only the 70% of the strains tested were identified at species level by the Biotyper database, PCA and cluster analysis of mass peaks allowed the identification of 100% S. mutans isolates and its differentiation from the other oral and non-oral streptococci. One mass peak at m/z value of 9572.73 was identified as species-specific biomarker for S. mutans. No biomarkers were identified for S. mutans serotypes. KEY POINTS: • MALDI-TOF MS coupled with statistical tools for the identification of S. mutans. • Detection of species identifying biomarkers by MALDI-TOF MS. • PCR identification and serotyping of S. mutans from saliva samples.
Collapse
|
26
|
Salah R, Abdulbaqi HR, Mohammed A, Abdulkareem AA. Four-day randomized controlled crossover trial evaluating the antiplaque effect of a combination of green tea and Salvadora persica L. mouthwash. J Herb Med 2020. [DOI: 10.1016/j.hermed.2020.100357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Nagai N, Homma H, Sakurai A, Takahashi N, Shintani S. Microbiomes of colored dental biofilms in children with or without severe caries experience. Clin Exp Dent Res 2020; 6:659-668. [PMID: 32767520 PMCID: PMC7745070 DOI: 10.1002/cre2.317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Biofilm coloration can compromise maturation and increase the risk of oral disease in adulthood, though children with colored biofilm do not always demonstrate a poor oral health status. AIM The microbial compositions of colored and white biofilms in children were compared. DESIGN Thirty-two dental biofilm samples from 16 children (age < 13 years) were analyzed using 16S rRNA pyrosequencing, then the subjects were divided into severe caries and healthy (caries-free) groups. Correlations between microbiomes and oral health status were also examined. RESULTS Phylogenetic analysis revealed no distinctly different patterns between colored and white biofilms. In the severe caries group, genus Actinomyces, Cardiobacterium, Kingella, Lautropia, and Veillonella, and family Neisseriaceae were detected, though abundance was significantly different between colored and white biofilm specimens, in contrast to the healthy group. In addition, five colored biofilm samples from the severe caries group contained greater than 15% Actinomyces, which led us to consider that genus to be possibly associated with formation of colored biofilm in children. CONCLUSIONS Our findings indicate that differences in bacterial composition between colored and white biofilms are higher in individuals with severe caries. Additional research may reveal the significance of colored dental biofilm in children.
Collapse
Affiliation(s)
- Nobuko Nagai
- Department of Pediatric Dentistry, Tokyo Dental College, Tokyo, Japan
| | - Hiromi Homma
- Department of Pediatric Dentistry, Tokyo Dental College, Tokyo, Japan
| | - Atsuo Sakurai
- Department of Pediatric Dentistry, Tokyo Dental College, Tokyo, Japan
| | - Naoko Takahashi
- Department of Pediatric Dentistry, Tokyo Dental College, Tokyo, Japan
| | - Seikou Shintani
- Department of Pediatric Dentistry, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
28
|
Contribution of Streptococcus mutans to Helicobacter pylori colonisation in oral cavity and gastric tissue. Sci Rep 2020; 10:12540. [PMID: 32719470 PMCID: PMC7385622 DOI: 10.1038/s41598-020-69368-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/07/2020] [Indexed: 01/31/2023] Open
Abstract
Helicobacter pylori is presumed to infect gastric tissue via the oral cavity in childhood, whereas risk factors for H. pylori infection in the oral cavity are unknown. In this study, we analysed the effects of Streptococcus mutans, a major cariogenic bacterial species, on H. pylori colonisation in the oral cavity, as well as gastric tissue. Rats in the weaning period were infected with S. mutans in the oral cavity, then fed a caries-inducing diet to facilitate S. mutans colonisation. One month after S. mutans infection, rats were infected with H. pylori in the oral cavity; rats were then euthanised at 1 month after H. pylori infection. H. pylori was detected in the oral cavities of rats infected with both S. mutans and H. pylori, but not in rats infected with H. pylori alone. In addition, H. pylori colonisation in the gastric tissue and typical gastrointestinal damage were observed in rats infected with both S. mutans and H. pylori. When H. pylori was co-cultured with in vitro biofilm formed by S. mutans, a large number of H. pylori bacteria invaded the biofilm formed by S. mutans. Our results suggest that S. mutans is involved in the establishment of H. pylori infection.
Collapse
|
29
|
Saltos Rosero N, Seoane Prado R, Aguilera Guirao A, Santos Y. Molecular and serological typing of Streptococcus mutans strains isolated from young Galician population: relationship with the oral health status. Int Microbiol 2020; 23:589-596. [PMID: 32445163 DOI: 10.1007/s10123-020-00132-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/15/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022]
Abstract
The aim of this study was to determine the prevalence of Streptococcus mutans and its serotypes in samples from oral cavity of young Galician population and their relationship with the oral health state. The variables generally associated with dental caries, such as salivary flow rate, buffering capacity, eating habits, and lifestyle, were also analysed. No relationship was found between the variables studied and the presence of S. mutans in the oral cavity or the existence of dental caries. Presumptive strains of S. mutans were isolated from saliva samples from 48% of the analysed population. The use of conventional microbiological methods, API 20 Strep system, and species-specific polymerase chain reaction (PCR) allowed to substantiate the identity of the strains as S. mutans. Multiplex PCR protocols, developed in this study for the simultaneous detection of S. mutans and serotypes c, e, and f and for detection of S. mutans and serotype k, also confirmed this result and demonstrated that serotype c was predominant in the studied young Galician population (86%). Serotypes e (8%), k (3%), and f (2%) were also detected. Serotype c was detected in carious and caries-free subjects, while the remaining serotypes were only found in subjects with caries.
Collapse
Affiliation(s)
- Nancy Saltos Rosero
- Departamento de Microbiología y Parasitología, Instituto de Análisis Químicos y Biológicos (IAQBUS), Universidade de Santiago de Compostela, Institutos Universitarios Bloque B, C/ Constantino Candeira 5, 15705, Santiago de Compostela, Spain
| | - Rafael Seoane Prado
- Departamento de Microbiología y Parasitología, Facultad de Medicina y Odontología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antonio Aguilera Guirao
- Departamento de Microbiología y Parasitología, Facultad de Medicina y Odontología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ysabel Santos
- Departamento de Microbiología y Parasitología, Instituto de Análisis Químicos y Biológicos (IAQBUS), Universidade de Santiago de Compostela, Institutos Universitarios Bloque B, C/ Constantino Candeira 5, 15705, Santiago de Compostela, Spain.
| |
Collapse
|
30
|
Al-Melh MA, Bhardwaj RG, Pauline EM, Karched M. Real-time polymerase chain reaction quantification of the salivary levels of cariogenic bacteria in patients with orthodontic fixed appliances. Clin Exp Dent Res 2020; 6:328-335. [PMID: 32185907 PMCID: PMC7301396 DOI: 10.1002/cre2.285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/24/2022] Open
Abstract
Aim The aim was to investigate the salivary detection frequencies and quantities of caries‐associated bacteria from patients with orthodontic brackets. Methods Patients wearing orthodontic brackets (n = 40, mean age = 26 years) and healthy controls without brackets (n = 40, mean age = 17 years) were enrolled in the study. Saliva samples from each patient was collected. After DNA purification, target species comprising streptococci and a Lactobacillus species were detected and quantified from the samples using polymerase chain reaction (PCR) and real‐time quantitative PCR. Results Detection frequencies did not differ between the orthodontic patients and the control subjects for any target species except for Streptococcus sobrinus, which showed significantly lower detection rates in orthodontic patients (p < .05). Lactobacillus casei and Streptococcus gordonii were found at the highest detection frequencies with both species being detected in 38 (95%) of the saliva samples of orthodontic patients. Similarly, L. casei and Streptococcus salivarius were the species with highest detection frequencies (35, 87.5%) in the control subjects. Real‐time PCR revealed that Streptococcus mutans and S. salivarius quantities were significantly higher in orthodontic patients than in the control subjects (p < .05). Conclusions Application of orthodontic brackets for 12 months leads to increased salivary levels of cariogenic bacteria and may serve as a potential risk factor for caries initiation.
Collapse
Affiliation(s)
- Manal A Al-Melh
- Department of Developmental and Preventive Sciences, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| | - Radhika G Bhardwaj
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| | - Eunice M Pauline
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| | - Maribasappa Karched
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
31
|
Nomura R, Inaba H, Matayoshi S, Yoshida S, Matsumi Y, Matsumoto-Nakano M, Nakano K. Inhibitory effect of a mouth rinse formulated with chlorhexidine gluconate, ethanol, and green tea extract against major oral bacterial species. J Oral Sci 2020; 62:206-211. [PMID: 32161231 DOI: 10.2334/josnusd.18-0483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Mouth rinses are a useful supplementary tool for the prevention of oral infectious diseases. Although the antimicrobial effects of mouth rinses have been investigated, there are few studies focusing on the comparison of the effects among various oral bacterial species. In the present study, the inhibitory effect of a commercial mouth rinse, "ConCoolF," and each of its major components, chlorhexidine gluconate, ethanol, and green tea extract, on multiple species of oral bacteria were investigated. Inhibition of bacterial growth was observed in all cariogenic streptococcal species with different genera, serotypes, and strains isolated from different countries when either the complete mouth rinse or chlorhexidine gluconate were used. However, no growth inhibition was observed when the bacteria were exposed to ethanol or green tea extract. Interestingly, growth inhibition was greatly reduced in non-cariogenic streptococci compared with cariogenic streptococci. In addition, both the mouth rinse and chlorhexidine gluconate inhibited the biofilms formed by both Streptococcus mutans (S. mutans) and Porphyromonas gingivalis (P. gingivalis), among which the inhibitory effect against S. mutans was higher than that against P. gingivalis. These results suggest that a mouth rinse containing chlorhexidine gluconate, ethanol, and green tea extract, or chlorhexidine gluconate alone, exhibits antimicrobial activity against several oral bacteria species, having greater activity against pathogenic bacteria.
Collapse
Affiliation(s)
- Ryota Nomura
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry
| | - Hiroaki Inaba
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Saaya Matayoshi
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry
| | - Sho Yoshida
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Yuki Matsumi
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry
| |
Collapse
|
32
|
The Contribution of Photodynamic Inactivation vs. Corsodyl Mouthwash to the Control of Streptococcus mutans Biofilms. Curr Microbiol 2020; 77:988-996. [PMID: 31997000 DOI: 10.1007/s00284-020-01901-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/21/2020] [Indexed: 02/05/2023]
Abstract
This work compared the inhibition effect of the commercially available mouthwash Corsodyl, containing 0.1% chlorhexidine digluconate, and photodynamic inactivation (PDI) employing methylene blue (MB) with irradiation from a red laser on 24-h biofilms formed by Streptococcus mutans strains on hydroxyapatite surfaces. The cytotoxicity of Corsodyl and MB was evaluated by Galleria mellonella surviving assay. The viability of biofilm cells after exposure to mouthwash and PDI was determined by counting colony-forming units. The inhibitory effect of antimicrobial agents was confirmed by confocal scanning laser microscopy. MB did not exhibit a cytotoxic effect on larval survival. Non-diluted Corsodyl slightly decreased the survival of larvae. Using our PDI parameters achieved better inhibition than with non-PDI, proving a significant effect on the eradication of S. mutans biofilms and therefore could be an appropriate supplement for the eradication of dental caries.
Collapse
|
33
|
Specific strains of Streptococcus mutans, a pathogen of dental caries, in the tonsils, are associated with IgA nephropathy. Sci Rep 2019; 9:20130. [PMID: 31882880 PMCID: PMC6934739 DOI: 10.1038/s41598-019-56679-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
Streptococcus mutans is known to be a major causative agent of dental caries, and strains expressing the cell surface collagen-binding Cnm protein contribute to the development of several systemic diseases. A relationship between tonsillar immunity and glomerulonephritis has been recognized in IgA nephropathy (IgAN), and specific pathogens may have effects on tonsillar immunity (mucosal immunity). Here, we present findings showing a relationship between the presence of Cnm-positive S. mutans strains in the tonsils of IgAN patients and IgAN condition/pathogenesis. Analyses of tonsillar specimens obtained from patients with IgAN (n = 61) and chronic tonsillitis (controls; n = 40) showed that the Cnm protein-positive rate was significantly higher in IgAN patients. Among IgAN patients, the tonsillar Cnm-positive group (n = 15) had a significantly higher proportion of patients with high urinary protein (>1.5 g/gCr) and lower serum albumin level than the Cnm-negative group (n = 46). Additionally, Cnm protein and CD68, a common human macrophage marker, were shown to be merged in the tonsils of IgAN patients. These findings suggest that Cnm-positive S. mutans strains in the tonsils may be associated with severe IgAN.
Collapse
|
34
|
Beheshti-Maal K, Shafiee N. Isolation and Identification of A Novel Strain of Acetobacter ghanensis KBMNS-IAUF-6 from Banana Fruit, Resistant to High Temperature and Ethanol Concentration. IRANIAN JOURNAL OF MEDICAL MICROBIOLOGY 2019. [DOI: 10.30699/ijmm.13.4.251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Sun J, Eberhard J, Glage S, Held N, Voigt H, Schwabe K, Winkel A, Stiesch M. Development of a peri‐implantitis model in the rat. Clin Oral Implants Res 2019; 31:203-214. [DOI: 10.1111/clr.13556] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Jingqing Sun
- Affiliated Hospital of Stomatology School of Medicine Zhejiang University Hangzhou China
- Department of Prosthetic Dentistry and Biomedical Materials Science Hannover Medical School Hannover Germany
| | - Joerg Eberhard
- Department of Prosthetic Dentistry and Biomedical Materials Science Hannover Medical School Hannover Germany
- Faculty of Dentistry University of Sydney Sydney NSW Australia
| | - Silke Glage
- Institution for Laboratory Animal Science Hannover Medical School Hannover Germany
| | - Nadine Held
- Institution for Laboratory Animal Science Hannover Medical School Hannover Germany
| | - Henning Voigt
- Department of Otorhinolaryngology Hannover Medical School Hannover Germany
| | - Kerstin Schwabe
- Department of Neurosurgery Hannover Medical School Hannover Germany
| | - Andreas Winkel
- Department of Prosthetic Dentistry and Biomedical Materials Science Hannover Medical School Hannover Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science Hannover Medical School Hannover Germany
| |
Collapse
|
36
|
Tonomura S, Naka S, Tabata K, Hara T, Mori K, Tanaka S, Sumida Y, Kanemasa K, Nomura R, Matsumoto-Nakano M, Ihara M, Takahashi N, Nakano K. Relationship between Streptococcus mutans expressing Cnm in the oral cavity and non-alcoholic steatohepatitis: a pilot study. BMJ Open Gastroenterol 2019; 6:e000329. [PMID: 31645988 PMCID: PMC6781959 DOI: 10.1136/bmjgast-2019-000329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/03/2019] [Accepted: 09/14/2019] [Indexed: 12/26/2022] Open
Abstract
Background Non-alcoholic steatohepatitis (NASH) is a severe state of non-alcoholic fatty liver disease (NAFLD), which is pathologically characterised by steatosis, hepatocyte ballooning, and lobular inflammation. Host–microbial interaction has gained attention as one of the risk factors for NASH. Recently, cnm-gene positive Streptococcus mutans expressing cell surface collagen-binding protein, Cnm (cnm-positive S. mutans), was shown to aggravate NASH in model mice. Here, we assessed the detection rate of cnm-positive S. mutans in oral samples from patients with NASH among NAFLD. Methods This single hospital cohort study included 41 patients with NAFLD. NASH was diagnosed histologically or by clinical score. The prevalence of cnm-positive S. mutans, oral hygiene and blood tests, including liver enzymes, adipocytokines and inflammatory and fibrosis markers, were assessed in biopsy-proven or clinically suspected NASH among NAFLD. Results Prevalence of cnm-positive S. mutans was significantly higher in patients with NASH than patients without NASH (OR 3.8; 95% CI 1.02 to 15.5). The cnm-positive S. mutans was related to decreased numbers of naturally remaining teeth and increased type IV collagen 7S level (median (IQR) 10.0 (5.0–17.5) vs 20.0 (5.0–25.0), p=0.06; 5.1 (4.0–7.9) vs 4.4 (3.7–5.3), p=0.13, respectively). Conclusions Prevalence of cnm-positive S. mutans in the oral cavity could be related to fibrosis of NASH among NAFLD.
Collapse
Affiliation(s)
| | - Shuhei Naka
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keiko Tabata
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tasuku Hara
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kojiro Mori
- Department of Gastroenterology and Hepatology, Nara City Hospital, Nara, Japan
| | - Saiyu Tanaka
- Department of Gastroenterology and Hepatology, Nara City Hospital, Nara, Japan
| | - Yoshio Sumida
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University, Aichi-gun, Japan
| | - Kazuyuki Kanemasa
- Department of Gastroenterology and Hepatology, Nara City Hospital, Nara, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University School of Dentistry Graduate School of Dentistry, Suita, Japan
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center Hospital, Suita, Japan
| | | | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University School of Dentistry Graduate School of Dentistry, Suita, Japan
| |
Collapse
|
37
|
Kondo Y, Hoshino T, Ogawa M, Hidaka K, Hasuwa T, Moriuchi H, Fujiwara T. Streptococcus mutans isolated from a 4-year-old girl diagnosed with infective endocarditis. Clin Exp Dent Res 2019; 5:534-540. [PMID: 31687188 PMCID: PMC6820803 DOI: 10.1002/cre2.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 12/03/2022] Open
Abstract
Objectives Infective endocarditis (IE) has an extremely high fatality rate. In this study, we isolated a strain of Streptococcus mutans, which we called HM, from the blood drawn from a 4-year-old girl diagnosed with IE. We aimed to fully type the HM strain and investigate its biological properties, including its virulence with respect to IE. Material and methods A 16S rRNA phylogenetic tree and glucosyltransferase gene sequences were used to type HM. Serotyping was performed using the Ouchterlony method. Morphological observations were made using phase contrast and electron microscopy. Fibrinogen adhesion and biofilm formation were investigated to examine the tissue colonization properties of HM, whereas its bodily origin was determined from its fingerprinting pattern. Results The isolated strain was S. mutans serotype e. However, its morphology was observed to be short chains, unlike that of the NCTC 10449 reference strain. Fibrinogen adhesion and biofilm formation were more apparent than in NCTC 10449. The fingerprinting pattern showed that HM came from the patient's saliva. Conclusions HM differs from NCTC 10449 in its higher fibrinogen affinity. HM was also found to be derived from the oral cavity. These results highlight the importance of good oral hygiene for the prevention of IE in children.
Collapse
Affiliation(s)
- Yoshio Kondo
- Department of Paediatric DentistryNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Tomonori Hoshino
- Department of Paediatric DentistryNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
- Department of Paediatric DentistryMeikai University School of DentistrySaitamaJapan
| | - Midori Ogawa
- Department of Microbiology, School of MedicineUniversity of Occupational and Environmental Health JapanKitakyushuJapan
| | - Kiyoshi Hidaka
- Department of Paediatric DentistryNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Tomoyuki Hasuwa
- Department of PaediatricsNagasaki University Graduate School of Biochemical SciencesNagasakiJapan
| | - Hiroyuki Moriuchi
- Department of PaediatricsNagasaki University Graduate School of Biochemical SciencesNagasakiJapan
| | - Taku Fujiwara
- Department of Paediatric DentistryNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| |
Collapse
|
38
|
Kammoun R, Zmantar T, Labidi A, Abbes I, Mansour L, Ghoul-Mazgar S. Dental caries and hypoplastic amelogenesis imperfecta: Clinical, structural, biochemical and molecular approaches. Microb Pathog 2019; 135:103615. [PMID: 31254603 DOI: 10.1016/j.micpath.2019.103615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 01/24/2023]
Abstract
AIM The aim of this study was to explore the caries features in hypoplastic Amelogenesis Imperfecta (AI) patients. MATERIALS AND METHODS A cross-sectional study was performed including 28 patients, 14 with hypoplastic AI and 14 controls for whom Decayed (D), Missed (M) and Filled (F) Teeth (T) were checked for a DMFT index evaluation. Twenty-eight saliva samples, 4 bacterial plaques and 19 teeth were used. Decayed teeth were observed under polarized light and scanning electron microscopy. Salivary pH was measured and saliva bacterial strains were biochemically identified and confirmed by PCR. Bacterial adhesions to tooth surfaces were observed by Scanning Electron Microscopy (SEM) and evaluated by colony enumeration after in vitro culture of Streptococcus mutans and Lactobacillus casei with dental fragments. RESULTS DMFT indexes were significantly lower in AI patients (mean DMFT = 0.8) compared to controls (mean DMFT = 2.9). Decayed teeth revealed sclerotic, demineralized, invaded and disintegrated zones in dentine. Dental plaques were rich with filamentous bacteria in AI patients. Oral microbiotome of the saliva showed a low rate of Streptococci and a significant high level of Bacillus spp, Enterococcus faecalis and Enterococcus faecium in AI patients. In vitro study showed a significant high adhesion of Lactobacillus casei and a weak adhesion of Streptococcus mutans on AI dental hard tissues. CONCLUSION Our study showed that hypoplastic AI patients have (i) a low DMFT index, (ii) an alkaline pH of saliva enriched with Bacillus spp, Enterococcus faecalis and Enterococcus faecium and (iii) dental tissues more easily invaded by Lactobacilli than Streptococci. The combination of these bacteria seems to give AI patients protection against dental caries.
Collapse
Affiliation(s)
- Rym Kammoun
- Laboratory of Histology and Embryology, Laboratory of Dento-Facial, Clinical and Biological Approach (ABCDF), Faculty of Dental Medicine, University of Monastir, Tunisia.
| | - Tarek Zmantar
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, Avicenna Avenue, University of Monastir, Tunisia
| | - Amel Labidi
- Removable Prosthodontics Department, Faculty of Dental Medicine, University of Monastir, Tunisia
| | - Israa Abbes
- Laboratory of Histology and Embryology, Laboratory of Dento-Facial, Clinical and Biological Approach (ABCDF), Faculty of Dental Medicine, University of Monastir, Tunisia
| | - Lamia Mansour
- Removable Prosthodontics Department, Faculty of Dental Medicine, University of Monastir, Tunisia
| | - Sonia Ghoul-Mazgar
- Laboratory of Histology and Embryology, Laboratory of Dento-Facial, Clinical and Biological Approach (ABCDF), Faculty of Dental Medicine, University of Monastir, Tunisia
| |
Collapse
|
39
|
Comparison of oral flora before and after triple therapy for Helicobacter pylori eradication in patient with gastric disease. Odontology 2018; 107:261-267. [DOI: 10.1007/s10266-018-0393-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/17/2018] [Indexed: 01/22/2023]
|
40
|
Almoudi MM, Hussein AS, Abu Hassan MI, Mohamad Zain N. A systematic review on antibacterial activity of zinc against Streptococcus mutans. Saudi Dent J 2018; 30:283-291. [PMID: 30202164 PMCID: PMC6128804 DOI: 10.1016/j.sdentj.2018.06.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES The aim of this study was to systematically review the growth inhibition effectiveness of zinc against Streptococcus mutans. The main question was, "Does the zinc inhibit the growth of oral Streptococcus mutans in vitro? METHODS Literature search on PubMed, Medline, and science direct databases was carried out for in vitro studies published in English from 1990 to 2016, and the reported outcomes of minimum inhibitory concentration (MIC), minimum bactericidal concentrations (MBC), zone of inhibition (ZOI) and bacterial count method using colony forming unit (CFU) were used to assess the antibacterial effectiveness of zinc. RESULTS Seventeen studies were included in this review. Seven studies reported MIC and MBC. Four studies reported ZOI, and eight studies reported CFU. MIC values using zinc chloride and zinc oxide nanoparticles were ranged from 0.025 to 0.2 mM and 0.390 to 500 ± 306.18 µg/ml respectively. MBC values using zinc oxide nanoparticles have ranged from 3.125 to 500 µg/ml. ZOI ranged from no inhibition zone to 21 ± 1.4 mm using 23.1% zinc oxide. A considerable reduction in the bacterial count was reported after adding zinc. However, only two studies have reported no inhibitory effect of zinc. CONCLUSION This review indicated a significant growth inhibition effectiveness of zinc even at lower concentrations which indicate it's safely to be used in oral health products.
Collapse
Affiliation(s)
- Manal Mohamed Almoudi
- Centre of Paediatric Dentistry and Orthodontics Studies, Faculty of Dentistry, Universiti Teknologi MARA, Selangor, Malaysia
| | - Alaa Sabah Hussein
- Centre of Paediatric Dentistry and Orthodontics Studies, Faculty of Dentistry, Universiti Teknologi MARA, Selangor, Malaysia
| | - Mohamed Ibrahim Abu Hassan
- Centre of Restorative Dentistry Studies, Faculty of Dentistry, Universiti Teknologi MARA, Selangor, Malaysia
| | - Nurhayati Mohamad Zain
- Centre of PreClinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Selangor, Malaysia
| |
Collapse
|
41
|
Jung JY, Yoon HK, An S, Lee JW, Ahn ER, Kim YJ, Park HC, Lee K, Hwang JH, Lim SK. Rapid oral bacteria detection based on real-time PCR for the forensic identification of saliva. Sci Rep 2018; 8:10852. [PMID: 30022122 PMCID: PMC6052055 DOI: 10.1038/s41598-018-29264-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 07/09/2018] [Indexed: 11/09/2022] Open
Abstract
This study developed a new method for forensic saliva identification using three oral bacteria, Streptococcus salivarius, Streptococcus sanguinis, and Neisseria subflava, combined with a real-time polymerase chain reaction (RT-PCR) system we called OB mRT-PCR. Analytical sensitivity results showed that the target bacteria were amplified at 102-107 copies/reaction, and analytical specificity was assessed using 24 other viruses, bacteria, and protozoa. To evaluate the OB mRT-PCR kit for forensic applications, saliva from 140 Korean individuals was tested, and at least two target bacteria were detected in all the samples. Additional studies on non-saliva samples demonstrated the specificity of the kit. Comparison of the kit with two conventional saliva test methods, the SALIgAE and RSID-Saliva assays, indicated that it was more sensitive and applicable to saliva samples in long-term storage (up to 14 weeks). Additionally, through amplification of mock forensic items and old DNA samples (isolated without lysis of the bacterial cells, regardless of their Gram-positivity), we found that the kit was applicable to not only saliva swabs, but also DNA samples. We suggest that this simple RT-PCR-based experimental method is feasible for rapid on-site analysis, and we expect this kit to be useful for saliva detection in old forensic DNA samples.
Collapse
Affiliation(s)
- Ju Yeon Jung
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju-si, Gangwon-do, 26460, Republic of Korea
| | - Hyun Kyu Yoon
- JS Biotech, Business Incubation Center, Kyungbok University, 425 Kyungbokdae-ro, Jinjeop-eup, Namyangju-si, Gyeonggi-do, 12051, Republic of Korea
| | - Sanghyun An
- DNA Analysis Division, Seoul Institute, National Forensic Service, 139, Jiyang-ro, Yangcheon-gu, Seoul, 08036, Republic of Korea
| | - Jee Won Lee
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju-si, Gangwon-do, 26460, Republic of Korea
| | - Eu-Ree Ahn
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju-si, Gangwon-do, 26460, Republic of Korea
| | - Yeon-Ji Kim
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju-si, Gangwon-do, 26460, Republic of Korea
| | - Hyun-Chul Park
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju-si, Gangwon-do, 26460, Republic of Korea
| | - Kyungmyung Lee
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju-si, Gangwon-do, 26460, Republic of Korea
| | - Jung Ho Hwang
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju-si, Gangwon-do, 26460, Republic of Korea
| | - Si-Keun Lim
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju-si, Gangwon-do, 26460, Republic of Korea.
| |
Collapse
|
42
|
Loyola-Rodriguez JP, Ponce-Diaz ME, Loyola-Leyva A, Garcia-Cortes JO, Medina-Solis CE, Contreras-Ramire AA, Serena-Gomez E. Determination and identification of antibiotic-resistant oral streptococci isolated from active dental infections in adults. Acta Odontol Scand 2018; 76:229-235. [PMID: 29160117 DOI: 10.1080/00016357.2017.1405463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To determine and identify antibiotic-resistant bacteria (ARB) of oral streptococci from active dental infections in adults and its association with age and gender. MATERIAL AND METHODS This cross-sectional study included 59 subjects from 18 to 62 years old. Ninety-eighth samples obtained from the subjects were cultivated in agar plates containing antibiotics amoxicillin/clavulanic acid (A-CA), clindamycin, and moxifloxacin (concentrations of 16, 32 or 64 µg/ml). PCR assay was performed to identify bacterial species. RESULTS The bacterial species that showed more antibiotic-resistance (AR) was S. mutans (45.9%), followed by S. gordonii (21.6%), S. oralis (17.6%), S. sanguinis (9.5%), S. salivarius (5.4%) and S. sobrinus (0%). Moreover, clindamycin (59.4%) showed the highest frequency of AR. Moxifloxacin and A-CA showed an susceptibility >99.1%, while clindamycin showed the lowest efficacy (93.3%); there was a significant statistically difference (p < .01). The age group between 26 and 50 years old (32.2%) and females (28.8%) showed more multiresistance. Clindamycin showed a statistical difference (p < .05) when comparing groups by gender. CONCLUSIONS Clindamycin was the antibiotic with the highest frequency of ARB and lower bactericidal effect. Moxifloxacin and A-CA showed the highest efficacy and the lowest ARB frequency. Streptococcus mutans was the bacterial specie that showed an increased frequency of AR.
Collapse
Affiliation(s)
| | - Maria Elena Ponce-Diaz
- Area of Dentistry of the Institute of Health´s Sciences, Autonomous University of the State of Hidalgo, Pachuca, Mexico
| | - Alejandra Loyola-Leyva
- Doctorado en Ciencias Biomédicas Básicas, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Jose O. Garcia-Cortes
- Facultad de Estomatología, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Carlo E. Medina-Solis
- Area of Dentistry of the Institute of Health´s Sciences, Autonomous University of the State of Hidalgo, Pachuca, Mexico
| | - Azael A. Contreras-Ramire
- Area of Dentistry of the Institute of Health´s Sciences, Autonomous University of the State of Hidalgo, Pachuca, Mexico
| | - Eduardo Serena-Gomez
- CISALUD Valle de las Palmas, Universidad Autónoma de Baja California, Tijuana, México
| |
Collapse
|
43
|
Lee JW, Jung JY, Lim SK. Simple and rapid identification of saliva by detection of oral streptococci using direct polymerase chain reaction combined with an immunochromatographic strip. Forensic Sci Int Genet 2018; 33:155-160. [DOI: 10.1016/j.fsigen.2017.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/14/2017] [Accepted: 12/19/2017] [Indexed: 01/25/2023]
|
44
|
Villhauer AL, Lynch DJ, Drake DR. Improved method for rapid and accurate isolation and identification of Streptococcus mutans and Streptococcus sobrinus from human plaque samples. J Microbiol Methods 2017; 139:205-209. [PMID: 28606792 PMCID: PMC5988259 DOI: 10.1016/j.mimet.2017.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/30/2017] [Accepted: 06/08/2017] [Indexed: 10/19/2022]
Abstract
Mutans streptococci (MS), specifically Streptococcus mutans (SM) and Streptococcus sobrinus (SS), are bacterial species frequently targeted for investigation due to their role in the etiology of dental caries. Differentiation of S. mutans and S. sobrinus is an essential part of exploring the role of these organisms in disease progression and the impact of the presence of either/both on a subject's caries experience. Of vital importance to the study of these organisms is an identification protocol that allows us to distinguish between the two species in an easy, accurate, and timely manner. While conducting a 5-year birth cohort study in a Northern Plains American Indian tribe, the need for a more rapid procedure for isolating and identifying high volumes of MS was recognized. We report here on the development of an accurate and rapid method for MS identification. Accuracy, ease of use, and material and time requirements for morphological differentiation on selective agar, biochemical tests, and various combinations of PCR primers were compared. The final protocol included preliminary identification based on colony morphology followed by PCR confirmation of species identification using primers targeting regions of the glucosyltransferase (gtf) genes of SM and SS. This method of isolation and identification was found to be highly accurate, more rapid than the previous methodology used, and easily learned. It resulted in more efficient use of both time and material resources.
Collapse
Affiliation(s)
- Alissa L Villhauer
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry and Dental Clinics, 801 Newton Rd, Iowa City, IA, USA
| | - David J Lynch
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry and Dental Clinics, 801 Newton Rd, Iowa City, IA, USA
| | - David R Drake
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry and Dental Clinics, 801 Newton Rd, Iowa City, IA, USA.
| |
Collapse
|
45
|
Oral Cnm-positive Streptococcus Mutans Expressing Collagen Binding Activity is a Risk Factor for Cerebral Microbleeds and Cognitive Impairment. Sci Rep 2016; 6:38561. [PMID: 27934941 PMCID: PMC5146923 DOI: 10.1038/srep38561] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/10/2016] [Indexed: 12/23/2022] Open
Abstract
Cerebral microbleeds (CMBs) are an important risk factor for stroke and dementia. We have shown that the collagen binding surface Cnm protein expressed on cnm-positive Streptococcus mutans is involved in the development of CMBs. However, whether the collagen binding activity of cnm-positive S. mutans is related to the nature of the CMBs or to cognitive impairment is unclear. Two-hundred seventy nine community residents (70.0 years) were examined for the presence or absence of cnm-positive S. mutans in the saliva by PCR and collagen binding activity, CMBs, and cognitive function were evaluated. Cnm-positive S. mutans was detected more often among subjects with CMBs (p < 0.01) than those without. The risk of CMBs was significantly higher (odds ratio = 14.3) in the group with S. mutans expressing collagen binding activity, as compared to the group without that finding. Deep CMBs were more frequent (67%) and cognitive function was lower among subjects with cnm-positive S. mutans expressing collagen binding activity. This work supports the role of oral health in stroke and dementia and proposes a molecular mechanism for the interaction.
Collapse
|
46
|
Naka S, Hatakeyama R, Takashima Y, Matsumoto-Nakano M, Nomura R, Nakano K. Contributions of Streptococcus mutans Cnm and PA antigens to aggravation of non-alcoholic steatohepatitis in mice. Sci Rep 2016; 6:36886. [PMID: 27833139 PMCID: PMC5105074 DOI: 10.1038/srep36886] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 10/24/2016] [Indexed: 12/15/2022] Open
Abstract
Streptococcus mutans, a major pathogen of dental caries, can cause infective endocarditis after invading the bloodstream. Recently, intravenous administration of specific S. mutans strains was shown to aggravate non-alcoholic steatohepatitis (NASH) in a mouse model fed a high-fat diet. Here, we investigated the mechanism of this aggravation in a NASH mouse model by focusing on the S. mutans cell surface collagen-binding protein (Cnm) and the 190-kDa protein antigen (PA). Mice that were intravenously administered a S. mutans strain with a defect in Cnm (TW871CND) or PA (TW871PD) did not show clinical or histopathological signs of NASH aggravation, in contrast to those administered the parent strain TW871. The immunochemical analyses demonstrated higher levels of interferon-γ and metallothionein expression in the TW871 group than in the TW871CND and TW871PD groups. Analysis of bacterial affinity to cultured hepatic cells in the presence of unsaturated fatty acids revealed that the incorporation rate of TW871 was significantly higher than those of TW871CND and TW871PD. Together, our results suggest that Cnm and PA are important cell surface proteins for the NASH aggravation caused by S. mutans adhesion and affinity for hepatic cells.
Collapse
Affiliation(s)
- Shuhei Naka
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Rina Hatakeyama
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Yukiko Takashima
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
47
|
Zou KN, Ren LJ, Ping Y, Ma K, Li H, Cao Y, Zhou HG, Wei YL. Identification of vaginal fluid, saliva, and feces using microbial signatures in a Han Chinese population. J Forensic Leg Med 2016; 43:126-131. [PMID: 27570236 DOI: 10.1016/j.jflm.2016.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/14/2016] [Accepted: 08/11/2016] [Indexed: 10/21/2022]
Abstract
In recent years, forensic scientists have focused on the discrimination of body fluids using microbial signatures. In this study, we performed PCR-based detection of microbial signatures of vaginal fluid, saliva, and feces in a Han Chinese population. We investigated the 16S rRNA genes of Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus iners, and Atopobium vaginae in vaginal fluid, the 16S rRNA and the glucosyltransferase enzyme genes of Streptococcus salivarius and Streptococcus mutans in saliva, and the 16S rRNA genes of Enterococcus species, the RNA polymerase β-subunit gene of Bacteroides uniformis and Bacteroides vulgatus, and the α-1-6 mannanase gene of Bacteroides thetaiotaomicron in feces. As a result, the detection proportions of L. crispatus, L. gasseri, L. jensenii, L. iners, and A. vaginae were 15/16, 5/16, 8/16, 14/16, and 3/16 in 16 vaginal fluid donors, respectively. L. crispatus and L. jensenii were specifically detected in vaginal fluid; L. gasseri, L. iners, and A. vaginae were also detected in non-vaginal fluid. S. salivarius and S. mutans were not specifically detected in saliva. The detection proportions of Enterococcus species, B. uniformis, B. vulgatus, and B. thetaiotaomicron in 16 feces samples were 16/16, 12/16, 15/16, and 11/16, respectively. B. uniformis and B. thetaiotaomicron were specifically detected in feces. In addition, DNA samples prepared for the identification of body fluid can also be used for individual identification by short tandem repeat typing. The mean detection sensitivities of L. crispatus and L. jensenii were 0.362 and 0.249 pg/uL, respectively. In conclusion, L. crispatus, L. jensenii, B. uniformis, and B. thetaiotaomicron can be used as effective markers for forensic identification of vaginal fluid and feces.
Collapse
Affiliation(s)
- Kai-Nan Zou
- Key Laboratory of Forensic Evidence and Science Technology, Ministry of Public Security, Institute of Forensic Science, Shanghai Public Security Bureau, Shanghai, 200083, People's Republic of China; Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, People's Republic of China; Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, People's Republic of China
| | - Li-Jie Ren
- The 519th Hospital of the People's Liberation Army, Wenchang, 300457, Hainan, People's Republic of China
| | - Yuan Ping
- Key Laboratory of Forensic Evidence and Science Technology, Ministry of Public Security, Institute of Forensic Science, Shanghai Public Security Bureau, Shanghai, 200083, People's Republic of China
| | - Ke Ma
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, 200083, People's Republic of China
| | - Hui Li
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, 200083, People's Republic of China
| | - Yu Cao
- Key Laboratory of Forensic Evidence and Science Technology, Ministry of Public Security, Institute of Forensic Science, Shanghai Public Security Bureau, Shanghai, 200083, People's Republic of China
| | - Huai-Gu Zhou
- Key Laboratory of Forensic Evidence and Science Technology, Ministry of Public Security, Institute of Forensic Science, Shanghai Public Security Bureau, Shanghai, 200083, People's Republic of China.
| | - Yi-Liang Wei
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, People's Republic of China; Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, People's Republic of China.
| |
Collapse
|
48
|
Martínez-Robles ÁM, Loyola-Rodríguez JP, Zavala-Alonso NV, Martinez-Martinez RE, Ruiz F, Lara-Castro RH, Donohué-Cornejo A, Reyes-López SY, Espinosa-Cristóbal LF. Antimicrobial Properties of Biofunctionalized Silver Nanoparticles on Clinical Isolates of Streptococcus mutans and Its Serotypes. NANOMATERIALS (BASEL, SWITZERLAND) 2016; 6:E136. [PMID: 28335264 PMCID: PMC5224612 DOI: 10.3390/nano6070136] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/29/2016] [Accepted: 07/18/2016] [Indexed: 01/04/2023]
Abstract
(1) Background: Streptococcus mutans (S. mutans) is the principal pathogen involved in the formation of dental caries. Other systemic diseases have also been associated with specific S. mutans serotypes (c, e, f, and k). Silver nanoparticles (SNP) have been demonstrated to have good antibacterial effects against S. mutans; therefore, limited studies have evaluated the antimicrobial activity of biofunctionalized SNP on S. mutans serotypes. The purpose of this work was to prepare and characterize coated SNP using two different organic components and to evaluate the antimicrobial activity of SNP in clinical isolates of S. mutans strains and serotypes; (2) Methods: SNP with bovine serum albumin (BSA) or chitosan (CS) coatings were prepared and the physical, chemical and microbiological properties of SNP were evaluated; (3) Results: Both types of coated SNP showed antimicrobial activity against S. mutans bacteria and serotypes. Better inhibition was associated with smaller particles and BSA coatings; however, no significant differences were found between the different serotypes, indicating a similar sensitivity to the coated SNP; (4) Conclusion: This study concludes that BSA and CS coated SNP had good antimicrobial activity against S. mutans strains and the four serotypes, and this study suggest the widespread use of SNP as an antimicrobial agent for the inhibition of S. mutans bacteria.
Collapse
Affiliation(s)
- Ángel Manuel Martínez-Robles
- Graduate Program in Orthodontics, Faculty of Dentistry, Mexicali Campus, Autonomous University of Baja California, Alvaro Obregon and Julian Carrillo Avenue, Nueva, 21100 Mexicali, Baja California, México.
| | - Juan Pablo Loyola-Rodríguez
- Master Program in Advanced Dentistry, Faculty of Dentistry, Autonomous University of San Luis Potosi, Manuel Nava Avenue, Universitary Campus, 78290 San Luis Potosí, S. L. P., México.
| | - Norma Verónica Zavala-Alonso
- Doctoral Program in Dental Sciences, Faculty of Dentistry, Autonomous University of San Luis Potosi, Manuel Nava Avenue, Universitary Campus 78290 San Luis Potosí, S. L. P., México.
| | - Rita Elizabeth Martinez-Martinez
- Master Program in Advanced Dentistry, Faculty of Dentistry, Autonomous University of San Luis Potosi, Manuel Nava Avenue, Universitary Campus, 78290 San Luis Potosí, S. L. P., México.
| | - Facundo Ruiz
- Faculty of Science, Autonomous University of San Luis Potosi, Salvador Nava Avenue, 78290 San Luis Potosí, S. L. P., México.
| | - René Homero Lara-Castro
- Faculty of Chemistry, Juarez University of Durango State, Chihuahua Avenue, 34120 Durango, Dgo., México.
| | - Alejandro Donohué-Cornejo
- Department of Dentistry, Biomedical Science Institute, Autonomous University of Juarez City, Envolvente del PRONAF and Estocolmo Avenues, 32310 Juárez, Chihuahua, México.
| | - Simón Yobanny Reyes-López
- Biomedical Science Institute, Autonomous University of Juarez City, Envolvente del PRONAF and Estocolmo Avenues, 32310 Juárez, Chihuahua, México.
| | - León Francisco Espinosa-Cristóbal
- Department of Dentistry, Biomedical Science Institute, Autonomous University of Juarez City, Envolvente del PRONAF and Estocolmo Avenues, 32310 Juárez, Chihuahua, México.
| |
Collapse
|
49
|
Contribution of the Collagen-Binding Proteins of Streptococcus mutans to Bacterial Colonization of Inflamed Dental Pulp. PLoS One 2016; 11:e0159613. [PMID: 27442266 PMCID: PMC4956251 DOI: 10.1371/journal.pone.0159613] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/06/2016] [Indexed: 01/22/2023] Open
Abstract
Streptococcus mutans is a major pathogen of dental caries. Collagen-binding proteins (CBPs) (approximately 120 kDa), termed Cnm and Cbm, are regarded as important cell surface antigens related to the adherence of S. mutans to collagenous tissue. Furthermore, CBP-positive S. mutans strains are associated with various systemic diseases involving bacteremia, such as infective endocarditis. Endodontic infection is considered to be an important cause of bacteremia, but little is known regarding the presence of S. mutans in dental pulp tissue. In the present study, the distribution and virulence of S. mutans in dental pulp tissues were investigated by focusing on CBPs. Adhesion and invasion properties of various S. mutans strains were analyzed using human dental pulp fibroblasts (HDPFs). CBP-positive strains had a significantly higher rate of adhesion to HDPFs compared with CBP-defective isogenic mutant strains (P<0.001). In addition, CBP-positive strains induced HDPF proliferation, which is a possible mechanism related to development of hyperplastic pulpitis. The distribution of S. mutans strains isolated from infected root canal specimens was then analyzed by PCR. We found that approximately 50% of the root canal specimens were positive for S. mutans. Approximately 20% of these strains were Cnm-positive, while no Cbm-positive strains were isolated. The Cnm-positive strains isolated from the specimens showed adhesion to HDPFs. Our results suggest that CBP-positive S. mutans strains exhibit high colonization in dental pulp. This could be a possible virulence factor for various systemic diseases.
Collapse
|
50
|
Gayathri CH, Mayuri P, Sankaran K, Kumar AS. An electrochemical immunosensor for efficient detection of uropathogenic E. coli based on thionine dye immobilized chitosan/functionalized-MWCNT modified electrode. Biosens Bioelectron 2016; 82:71-7. [PMID: 27040944 DOI: 10.1016/j.bios.2016.03.062] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/15/2016] [Accepted: 03/23/2016] [Indexed: 12/17/2022]
Abstract
Uropathogenic Escherichia coli (UPEC) is the major cause of 150 million Urinary Tract Infections (UTI) reported annually world-wide. High prevalence of multi-drug-resistance makes it dangerous and difficult to cure. Therefore simple, quick and early diagnostic tools are essential for effective treatment and control. We report an electrochemical immunosensor based on thionine dye (Th) immobilized on functionalized-multiwalled carbon nanotube+chitosan composite coated on glassy carbon electrode (GCE/f-MWCNT-Chit@Th) for quick and sensitive detection of UPEC in aqueous solution. This immunosensor was constructed by sequential immobilization of UPEC, bovine serum albumin, primary antibody and Horse Radish Peroxidase (HRP) tagged secondary antibody on the surface of GCE/f-MWCNT-Chit@Th. When analyzed using 2.5mM of hydrogen peroxide reduction reaction using cyclic voltammetry in phosphate buffer, pH 7.0, the immunosensor showed excellent linearity in a range of 10(2)-10(9)cfu of UPEC mL(-1) with a current sensitivity of 7.162μA {log(cfumL(-1))}(-1). The specificity of this immunosensor was tested using other UTI and non-UTI bacteria, Staphylococcus, Klebsiella, Proteus and Shigella. The clinical applicability of the immunosensor was also successfully tested directly in UPEC spiked urine samples (simulated sample).
Collapse
Affiliation(s)
| | - Pinapeddavari Mayuri
- Environmental and Analytical Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology University, Vellore 632014, Tamil Nadu, India; Nano and Bioelectrochemistry Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology University, Vellore 632014, Tamil Nadu, India
| | - Krishnan Sankaran
- Centre for Biotechnology, Anna University, Guindy, Chennai 600025, Tamil Nadu, India.
| | - Annamalai Senthil Kumar
- Environmental and Analytical Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology University, Vellore 632014, Tamil Nadu, India; Nano and Bioelectrochemistry Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology University, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|