1
|
Walker HN. Identifying organisms directly from BacT/Alert FAN plus blood culture bottles using Vitek MS in a state-wide laboratory network. Pathology 2024; 56:897-903. [PMID: 38876816 DOI: 10.1016/j.pathol.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/12/2024] [Accepted: 03/12/2024] [Indexed: 06/16/2024]
Abstract
Identifying organisms directly from positive blood culture bottles using matrix-assisted laser desorption-ionisation time-of-flight mass spectrometry (MALDI-TOF MS) has many advantages to patients, clinical services, and laboratories. However, few published methods have demonstrated good performance using the current BioMérieux culture bottles and MALDI-TOF system: BacT/Alert FAN plus and Vitek MS. The effect of transporting bottles on test performance has not been assessed for any direct-from-bottle MS method. In this study, 802 positive blood culture bottles were analysed including 234 requiring inter-laboratory transport, using a method involving protein extraction with formic acid and acetonitrile. Correct identification rates were high for Staphylococcus aureus (58/58 of new diagnostic samples), Enterococcus faecalis (27/27), Gram-negative bacilli (160/176, 90.1%), and coagulase-negative Staphylococcus species (108/132, 81.8%). Three false identifications were made, none with clinical significance. For Gram-positive cocci in pairs or chains, more correct identifications were made from bottles analysed immediately compared to transported bottles (67% vs 44%, p=0.016), and longer transport time was associated with slightly lower probability of correct identification (OR 0.984 per additional hour, p=0.040). Transportation was not associated with a difference for other organism types. This technique is a vastly more cost-effective alternative to molecular techniques for rapid identification of bacteraemia isolates, and performance is minimally affected by inter-laboratory transport of bottles at ambient temperature.
Collapse
Affiliation(s)
- Harry N Walker
- Dorevitch Pathology, Footscray, Vic, Australia; Department of Infectious Diseases, Western Health, Footscray, Vic, Australia.
| |
Collapse
|
2
|
Karadağ D, Ergon MC. Investigation of different methods in rapid microbial identification directly from positive blood culture bottles by MALDI-TOF MS. Microbiol Spectr 2024; 12:e0063824. [PMID: 38940589 PMCID: PMC11302275 DOI: 10.1128/spectrum.00638-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
Many methods are being tried for rapid and accurate identification of sepsis-causing microorganisms. We analyzed the performance of three different preparation methods [MBT Sepsityper IVD Kit (Bruker Daltonics GmbH, Germany), sodium dodecyl sulfate (SDS) lysis, and differential centrifugation with protein extraction (Centrifugation +PE)] and compared in standard and Sepsityper modules of the Bruker Biotyper MALDI-TOF MS for direct identification of bacteria from 240 positive blood culture bottles of BACTEC FX (Becton Dickinson, USA). By using the standard module, correct identification at species level (score ≥2) was done in 46.7% of the samples with SDS lysis, 44.2% with centrifugation +PE, and 25.4% with the Sepsityper kit. These ratios at the genus level (score range 1.70-1.99) were 34.6%, 31.3%, and 32.5%, respectively. With SDS lysis (195), more bacteria were identified correctly than centrifugation +PE (181) and the Sepsityper kit (139). A statistically significant difference was found between SDS and the Sepsityper kit and Centrifugation +PE and the Sepsityper kit (P < 0.001, both). By using the Sepsityper module, correct identification at species level (score ≥1.8) was determined in 74.2% of the samples with SDS lysis and centrifugation +PE each and 55% with the Sepsityper kit. These ratios at the genus level (score range 1.60-1.79) were 16.3%, 10%, and 19.2%, respectively. SDS lysis (217) had significantly higher identification rates than centrifugation +PE (202) and the Sepsityper kit (178) (P = 0.028 and P < 0.001). A statistically significant difference was also observed between centrifugation +PE and the Sepsityper kit (P < 0.001). Best performance was obtained with SDS lysis among the methods. Although better performance was achieved by using Sepsityper software module, risk of misidentification should not be ignored. IMPORTANCE Sepsis is a life-threatening condition, and rapid and accurate identification of the causative microorganisms from blood cultures is crucial for timely and effective treatment. Although there are many studies on direct identification from blood cultures with MALDI-TOF MS, further standardization is still needed. In our study, we analyzed the performance of three different preparation methods and compared by using two analysis modules of the Bruker Biotyper MALDI-TOF MS for direct identification of bacteria from numerous positive blood culture bottles. The literature reports a limited number of studies that compare different preparation methods for direct blood culture identification, processing a large number of blood samples concurrently and evaluating the same samples as in our study. Moreover, although SDS is used very frequently in medical laboratories, there are few studies on direct identification from blood culture bottles. In our study, the highest correct identification rate was observed with the SDS method.
Collapse
Affiliation(s)
- Dilan Karadağ
- Department of Medical Microbiology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
- IMD Labor Oderland, Frankfurt (Oder), Germany
| | - Mahmut Cem Ergon
- Department of Medical Microbiology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| |
Collapse
|
3
|
Kim KJ, Yun SG, Cho Y, Nam MH, Ko YJ, Lee CK. Evaluation of a sterile, filter-based, in-house method for rapid direct bacterial identification and antimicrobial susceptibility testing using positive blood culture. Eur J Clin Microbiol Infect Dis 2023; 42:691-700. [PMID: 37012540 DOI: 10.1007/s10096-023-04592-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023]
Abstract
This study aimed to assess the performance of our in-house method for rapid direct bacterial identification (ID) and antimicrobial susceptibility testing (AST) using a positive blood culture (BC) broth. For Gram-negative bacteria, 4 mL of BC broth was aspirated and passed through a Sartorius Minisart syringe filter with a pore size of 5 µm. The filtrate was then centrifuged and washed. A small volume of the pellet was used for ID, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and for AST, using automated broth microdilution. For Gram-positive cocci, 4 mL of BC broth was passed through the Minisart syringe filter. Then, 4 mL of sterile distilled water was injected in the direction opposite to that of the filtration to collect the bacterial residue trapped in the filter. Compared with the conventional method performed with pure colonies on agar plates, 94.0% (234/249) were correctly identified using the in-house method, with rates of 91.4% (127/139) and 97.3% (107/110) for Gram-positive and Gram-negative isolates, respectively. Of 234 correctly identified isolates, 230 were assessed by AST. Categorical agreement and essential agreement were 93.3% and 94.5%, respectively, with a minor error rate of 3.8%, a major error rate of 3.4%, and a very major error rate of 1.6%. Our in-house preparation method showed good performance in rapid direct ID and AST using positive BC broths compared to the conventional method. This simple method can shorten the conventional turnaround time for ID and AST by at least 1 day, potentially contributing to better patient management.
Collapse
Affiliation(s)
- Keun Ju Kim
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Seung Gyu Yun
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Yunjung Cho
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Myung-Hyun Nam
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Young Jin Ko
- Department of Laboratory Medicine, College of Medicine, Chosun University, Gwangju, Korea
| | - Chang Kyu Lee
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, Korea.
| |
Collapse
|
4
|
Pranada AB, Cordovana M, Meyer M, Hubert H, Abdalla M, Ambretti S, Steinmann J. Identification of micro-organism from positive blood cultures: comparison of three different short culturing methods to the Rapid Sepsityper workflow. J Med Microbiol 2022; 71. [PMID: 35930326 DOI: 10.1099/jmm.0.001571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sepsis is one of the leading causes of death worldwide. The rapid identification (ID) of the causative micro-organisms is crucial for the patients' clinical outcome. MALDI-TOF MS has been widely investigated to speed up the time-to-report for ID from positive blood cultures, and many different procedures and protocols were developed, all of them attributable either to the direct separation of microbial cells from the blood cells, or to a short subculture approach. In this study, the Rapid Sepsityper workflow (MBT Sepsityper IVD Kit, Bruker Daltonics GmbH and Co. KG, Bremen, Germany) was compared to three different short subculturing methods, established into the routine practice of three different clinical microbiology laboratories. A total of N=503 routine samples were included in this study and tested in parallel with the two approaches. Results of the rapid procedures were finally compared to routine proceedings with Gram-staining and overnight subculture. Among monomicrobial samples, the Rapid Sepsityper workflow enabled overall the correct identification of 388/443 (87.6 %) micro-organisms, while the short subculturing methods of 267/435 (61.8 %). Except for the performance with Streptococcus pneumoniae, in each one of the three sites the Rapid Sepsityper workflow proved to be superior to the short subculture method, regardless of the protocol applied, and it delivered a result from 1 to 5 h earlier.
Collapse
Affiliation(s)
- Arthur B Pranada
- Department of Medical Microbiology, MVZ Dr. Eberhard & Partner Dortmund, Dortmund, Germany
| | | | | | | | | | - Simone Ambretti
- Operative Unit of Microbiology IRCSS Sant'Orsola, Bologna, Italy
| | - Joerg Steinmann
- Institute for Clinical Hygiene, Medical Microbiology and Infectiology, Klinikum Nürnberg, Paracelsus Medical University, Nürnberg, Germany
| |
Collapse
|
5
|
Tjandra KC, Ram-Mohan N, Abe R, Hashemi MM, Lee JH, Chin SM, Roshardt MA, Liao JC, Wong PK, Yang S. Diagnosis of Bloodstream Infections: An Evolution of Technologies towards Accurate and Rapid Identification and Antibiotic Susceptibility Testing. Antibiotics (Basel) 2022; 11:511. [PMID: 35453262 PMCID: PMC9029869 DOI: 10.3390/antibiotics11040511] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023] Open
Abstract
Bloodstream infections (BSI) are a leading cause of death worldwide. The lack of timely and reliable diagnostic practices is an ongoing issue for managing BSI. The current gold standard blood culture practice for pathogen identification and antibiotic susceptibility testing is time-consuming. Delayed diagnosis warrants the use of empirical antibiotics, which could lead to poor patient outcomes, and risks the development of antibiotic resistance. Hence, novel techniques that could offer accurate and timely diagnosis and susceptibility testing are urgently needed. This review focuses on BSI and highlights both the progress and shortcomings of its current diagnosis. We surveyed clinical workflows that employ recently approved technologies and showed that, while offering improved sensitivity and selectivity, these techniques are still unable to deliver a timely result. We then discuss a number of emerging technologies that have the potential to shorten the overall turnaround time of BSI diagnosis through direct testing from whole blood-while maintaining, if not improving-the current assay's sensitivity and pathogen coverage. We concluded by providing our assessment of potential future directions for accelerating BSI pathogen identification and the antibiotic susceptibility test. While engineering solutions have enabled faster assay turnaround, further progress is still needed to supplant blood culture practice and guide appropriate antibiotic administration for BSI patients.
Collapse
Affiliation(s)
- Kristel C. Tjandra
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (K.C.T.); (N.R.-M.); (R.A.); (M.M.H.)
| | - Nikhil Ram-Mohan
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (K.C.T.); (N.R.-M.); (R.A.); (M.M.H.)
| | - Ryuichiro Abe
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (K.C.T.); (N.R.-M.); (R.A.); (M.M.H.)
| | - Marjan M. Hashemi
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (K.C.T.); (N.R.-M.); (R.A.); (M.M.H.)
| | - Jyong-Huei Lee
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.-H.L.); (S.M.C.); (M.A.R.); (P.K.W.)
| | - Siew Mei Chin
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.-H.L.); (S.M.C.); (M.A.R.); (P.K.W.)
| | - Manuel A. Roshardt
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.-H.L.); (S.M.C.); (M.A.R.); (P.K.W.)
| | - Joseph C. Liao
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA;
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.-H.L.); (S.M.C.); (M.A.R.); (P.K.W.)
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Surgery, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Samuel Yang
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (K.C.T.); (N.R.-M.); (R.A.); (M.M.H.)
| |
Collapse
|
6
|
Dai Y, Xu X, Yan X, Li D, Cao W, Tang L, Hu M, Jiang C. Evaluation of a Rapid and Simplified Protocol for Direct Identification of Microorganisms From Positive Blood Cultures by Using Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS). Front Cell Infect Microbiol 2021; 11:632679. [PMID: 33777845 PMCID: PMC7990877 DOI: 10.3389/fcimb.2021.632679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Early and rapid identification of microorganisms is critical for reducing the mortality rate caused by bloodstream infections (BSIs). The accuracy and feasibility of directly identifying pathogens in positive blood cultures by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been intensely confirmed. In this study, we combined density centrifugation and extra chemical lysis-extraction to develop an optimized method in the blood culture process, which significantly improved the effectiveness of direct identification by MALDI-TOF MS. The accuracy was evaluated by 2,032 positive blood culture samples (115 species of microorganism). The overall MALDI-TOF MS based identification rate with scores ≥ 1.700 was 87.60%. 94.06% of gram-negative bacteria were identified consistently to the genus level, followed by anaerobes (93.33%), gram-positive bacteria (84.46%), and fungi (60.87%). This protocol could obtain results within 10–20 min at a cost of less than $0.1 per sample, which saved up to 24 h in identifying 87.60% of the microorganism from positive blood cultures. This rapid and simplified protocol facilitates the direct identification of microorganism in positive blood cultures, and exhibits the advantages of cost-effective, time-saving, and easy-to-use. It could provide the causative organism of the patient to clinicians in time for targeted treatment and reduce mortality.
Collapse
Affiliation(s)
- Yufeng Dai
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xinyi Xu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xue Yan
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Daming Li
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Cao
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lingli Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Clinical Molecular Diagnostic Center of Hunan Province, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Hu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Clinical Molecular Diagnostic Center of Hunan Province, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chuanhao Jiang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Clinical Molecular Diagnostic Center of Hunan Province, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Almuhayawi MS, Wong AYW, Kynning M, Lüthje P, Ullberg M, Özenci V. Identification of microorganisms directly from blood culture bottles with polymicrobial growth: comparison of FilmArray and direct MALDI-TOF MS. APMIS 2021; 129:178-185. [PMID: 33368673 DOI: 10.1111/apm.13107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022]
Abstract
Bloodstream infections (BSIs) are related to high mortality and morbidity. Rapid administration of effective antimicrobial treatment is crucial for patient survival. Recently developed rapid methods to identify pathogens directly from blood culture bottles speed up diagnosis of BSIs. The present study compares the performance of two rapid identification methods, FilmArray and direct MALDI-TOF MS, on identifying microorganisms directly from positive blood culture bottles with polymicrobial growth. FilmArray and direct MALDI-TOF MS were performed directly on positive clinical and simulated polymicrobial blood culture bottles. Assay results were compared with standard culture methods. In total, 110 polymicrobial blood culture samples, of which 96 samples contained two microorganisms while 14 samples contained three microorganisms, were studied. FilmArray was able to identify 215/234 (92.0%) of isolates detected by the standard culture method and successfully identified all microorganisms in 88/110 (80.0%) of blood culture bottles. In contrast, direct MALDI-TOF MS was only able to identify 65/234 (27.8%) of isolates and managed to identify all microoganisms in 2/110 (2.1%) of blood culture bottles. FilmArray is a rapid method for direct identification of polymicrobial blood culture samples that can complement the conventional identification methods. Direct MALDI-TOF MS has low performance with polymicrobial samples.
Collapse
Affiliation(s)
- Mohammed S Almuhayawi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Microbiology and Medical Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alicia Y W Wong
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Max Kynning
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Petra Lüthje
- Staatliches Tierärztliches Untersuchungsamt (STUA) Aulendorf - Diagnostikzentrum, Aulendorf, Germany
| | - Måns Ullberg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Volkan Özenci
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Ponderand L, Pavese P, Maubon D, Giraudon E, Girard T, Landelle C, Maurin M, Caspar Y. Evaluation of Rapid Sepsityper® protocol and specific MBT-Sepsityper module (Bruker Daltonics) for the rapid diagnosis of bacteremia and fungemia by MALDI-TOF-MS. Ann Clin Microbiol Antimicrob 2020; 19:60. [PMID: 33298064 PMCID: PMC7727196 DOI: 10.1186/s12941-020-00403-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
During bloodstream infections, rapid adaptation of empirical treatment according to the microorganism identified is essential to decrease mortality. The aim of the present study was to assess the microbiological performances of a new rapid version of the Sepsityper® kit (Bruker Daltonics) allowing identification of bacteria and yeast by MALDI-TOF mass spectrometry directly from positive blood cultures in 10 min and of the specific MBT-Sepsityper module for spectra analysis, designed to increase identification performance. Identification rates were determined prospectively on 350 bacterial and 29 fungal positive blood cultures, and compared to conventional diagnostic method. Our rapid diagnosis strategy (Rapid Sepsityper® protocol: one spot with and one without formic acid extraction step) combined to MBT-Sepsityper module provided 65.4%, 78.9% and 62% reliable identification to the species level of monomicrobial positive blood cultures growing respectively Gram-positive, Gram-negative bacteria or yeast. Importantly, identification rates of Gram-positive bacteria were higher in anaerobic than in aerobic bottles (77.8% vs 22.2%; p = 0.004), if formic acid extraction step was performed (60.8% vs 39.2%; p = 1.8e−6) and if specific MBT-Sepsityper module was used (76.2% vs 61.9%, p = 0.041) while no significant differences were observed for Gram-negative bacteria. For yeasts identification, formic acid extraction step improved rapid identification rate by 37.9% while the specific MBT-Sepsityper module increased overall performances by 38%, providing up to 89.7% reliable identification if associated with the standard Sepsityper® protocol. These performances, associated with a reduce turnaround time, may help to implement a rapid identification strategy of bloodstream infections in the routine workflow of microbiology laboratories.
Collapse
Affiliation(s)
- Léa Ponderand
- Laboratoire de Bactériologie-Hygiène Hospitalière, Centre Hospitalier Universitaire Grenoble Alpes, 38000, Grenoble, France.,Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, 38000, Grenoble, France
| | - Patricia Pavese
- Service de Médecine Infectieuse et Tropicale, Centre Hospitalier Universitaire Grenoble Alpes, 38000, Grenoble, France
| | - Danièle Maubon
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, 38000, Grenoble, France.,Laboratoire de Parasitologie Mycologie, Centre Hospitalier Universitaire Grenoble Alpes, 38000, Grenoble, France
| | - Emmanuelle Giraudon
- Laboratoire de Parasitologie Mycologie, Centre Hospitalier Universitaire Grenoble Alpes, 38000, Grenoble, France
| | - Thomas Girard
- Laboratoire de Bactériologie-Hygiène Hospitalière, Centre Hospitalier Universitaire Grenoble Alpes, 38000, Grenoble, France
| | - Caroline Landelle
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, 38000, Grenoble, France.,Service d'Hygiène Hospitalière, Centre Hospitalier Universitaire Grenoble Alpes, 38000, Grenoble, France
| | - Max Maurin
- Laboratoire de Bactériologie-Hygiène Hospitalière, Centre Hospitalier Universitaire Grenoble Alpes, 38000, Grenoble, France.,Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, 38000, Grenoble, France
| | - Yvan Caspar
- Laboratoire de Bactériologie-Hygiène Hospitalière, Centre Hospitalier Universitaire Grenoble Alpes, 38000, Grenoble, France. .,Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, 38000, Grenoble, France. .,Laboratoire de Bactériologie-Hygiène Hospitalière, Institut de Biologie et Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, CS10217, 38043, Grenoble Cedex 9, France.
| |
Collapse
|
9
|
Ko YJ, Kook JK, Lee CK. In-house method for direct bacterial identification in positive blood culture broths using microfiltration, bead beating, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Microbiol Methods 2020; 180:106065. [PMID: 32961240 DOI: 10.1016/j.mimet.2020.106065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 10/23/2022]
Abstract
Rapid identification of bacterial pathogens facilitates earlier optimization of antibiotic treatment and reduces morbidity and mortality in sepsis patients. The aim of this research was to design an in-house chemical-free method for direct bacterial identification in positive blood culture (BC) broths and to compare the performance of this method with that of the commercial Sepsityper® kit. The overall species identification rates for the in-house and Sepsityper methods were 88.4% and 85.8%, respectively (n = 190). Among 146 facultative anaerobes, 92.5% and 95.9% were identified to the species level using the in-house and Sepsityper methods, respectively. For 32 anaerobic bacteria, the in-house method showed a higher species identification rate (75.0%) than the Sepsityper method (53.1%). The in-house method correctly identified more Bacteroides species (100.0%) than the Sepsityper method (18.2%). Our novel in-house method and the Sepsityper method showed a high accuracy for direct bacterial identification in positive BC broths using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
Collapse
Affiliation(s)
- Young Jin Ko
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul, Republic of Korea; Department of Laboratory Medicine, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Joong-Ki Kook
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, College of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Chang Kyu Lee
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Abstract
The optimal care of septic patients depends on the successful recovery of clinically relevant microorganisms from blood cultures and the timely reporting of organism identification and antimicrobial susceptibility testing (AST) results. Many preanalytic factors play a critical role in culturing microorganisms, and advancements in blood culture instrument technology have reduced the time to positive results. Additionally, rapid organism identification and AST results directly from positive blood culture broth via new methods help to further shorten the time from empiric to targeted treatment. This article summarizes the current state of blood culture methods, including preanalytic, analytical, and postanalytic factors that are available to clinical microbiology laboratories.
Collapse
Affiliation(s)
- Mark D Gonzalez
- Microbiology, Section Director of Infectious Disease Serology, Children's Healthcare of Atlanta, 1405 Clifton Road, Northeast, Atlanta, GA 30322, USA
| | - Timothy Chao
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University Hospital, 132 South 10th Street, Room 285, Philadelphia, PA 19107, USA. https://twitter.com/tim_hf_chao
| | - Matthew A Pettengill
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, 117 South 11th Street, Pavilion Building Suite 207, Philadelphia, PA 19107-4998, USA.
| |
Collapse
|
11
|
Mizusawa M. Updates on Rapid Diagnostic Tests in Infectious Diseases. MISSOURI MEDICINE 2020; 117:328-337. [PMID: 32848269 PMCID: PMC7431065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the last two decades there have been dramatic advances in development of rapid diagnostic tests. Turnaround time of the assays have significantly been shortened which led to reductions in time to appropriate antimicrobial therapy and improvement of patient clinical outcomes. Molecular-based assays generally have better sensitivity than conventional methods, but the cost is higher. The results need to be interpreted cautiously as detection of colonized organisms, pathogen detection in asymptomatic patients, and false negative/positive can occur. Indications and cost-effectiveness need to be considered for appropriate utilization of rapid diagnostic tests.
Collapse
Affiliation(s)
- Masako Mizusawa
- Section of Infectious Diseases, Department of Internal Medicine, University of Missouri - Kansas City, Kansas City, Missouri
| |
Collapse
|
12
|
Tsuchida S, Murata S, Miyabe A, Satoh M, Takiwaki M, Matsushita K, Nomura F. An in-house centrifugation and membrane filtration technique for identifying microorganisms from positive blood culture bottles with high identification rates using matrix-assisted laser desorption ionization-Time-of-flight mass spectrometry: A preliminary report. J Infect Chemother 2019; 26:266-271. [PMID: 31678054 DOI: 10.1016/j.jiac.2019.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023]
Abstract
Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) is one of the most promising technologies for the identification of microbial pathogens directly from positive blood culture bottles. As blood culture bottle medium contains various nonbacterial proteins, including those derived from blood cells, pretreatment to effectively remove host cells is key for successful proteome-based identification of microorganisms. Although the Sepsityper® kit is the most widely used pretreatment protocol, its performance is not satisfactory, particularly for gram-positive isolates. We developed a new in-house protocol, the centrifugation and membrane filtration technique (CMFT), in which vacuum-filtration is coupled with differential centrifugation. We prospectively evaluated the performance of this novel method compared with that of the Sepsityper®. For gram-negative bacterial isolates, the species-level identification rates obtained with the CMFT and the Sepsityper® were comparable (98.8% vs 92.9%). By contrast, for gram-positive isolates, the performance of the CMFT was significantly better than that of the Sepsityper® (P < 0.05). Using our new protocol, 81 (95.3%) isolates were identified with a score >2.0, and 85 (100%) isolates were identified with a score >1.7, versus 46 (54.1%) and 69 (81.2%), respectively, for the Sepsityper®. These results are preliminary, but considering that this novel protocol provides notably high species-level identification rates for gram-positive isolates, it deserves assessment in a larger-scale study with a variety of platforms for MS-based identification of microorganisms.
Collapse
Affiliation(s)
- Sachio Tsuchida
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Syota Murata
- Department of Clinical Laboratory, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Akiko Miyabe
- Department of Clinical Laboratory, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Mamoru Satoh
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Masaki Takiwaki
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Kazuyuki Matsushita
- Department of Clinical Laboratory, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan; Division of Clinical Genetics, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Fumio Nomura
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan; Division of Clinical Genetics, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
13
|
Freimann S, Shapira M, Athamna A. Serum separator tube method for matrix-assisted laser desorption/ionization time-of-flight analysis. Access Microbiol 2019; 1:e000011. [PMID: 32974509 PMCID: PMC7470352 DOI: 10.1099/acmi.0.000011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/08/2019] [Indexed: 01/13/2023] Open
Abstract
Background Without appropriate treatment, bloodstream infections have a high mortality rate. Quicker identification of the microbial pathogen allows the clinician to develop an initial strategy of antimicrobial therapy. Sample preparation protocols for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS; Bruker Daltonics for Microflex LT spectrometer) technology were evaluated in an attempt to identify pathogens directly from positive blood culture bottles and thus shorten the time to identify them. This application requires preparatory processing because blood culture bottles contain undesirable proteins. This study aimed to evaluate two methods for microbial preparation for identification by MALDI-ToF MS. Methods This study evaluated two methods for microbial preparation from 200 positive blood culture samples, half prepared by the differential centrifugation method and half with the serum separator tube method for identification by MALDI-ToF MS. Both methods were compared to conventional methods such as VITEK II and ChromAgar culture plates. Results All Gram-negative bacteria tested were identified correctly by MALDI-ToF MS compared to conventional methods, regardless of the preparation method. However, more Gram-positive bacteria were identified when the serum separator tube method was used (83.3%) compared with the differential centrifugation method (65.3 %). Moreover, the serum separator tube protocol requires 12–15 min, while the differential centrifugation protocol requires 30–45 min. Conclusions Sample preparation using the serum separator tube method is easy to perform, fast and reliable for accurate microbial identification by MALDI-ToF MS technology.
Collapse
Affiliation(s)
- Sarit Freimann
- Clinical Microbiology Laboratory, Hillel Yaffe Medical Center, Hadera, Israel
| | - Maanit Shapira
- Laboratory Division, Hillel Yaffe Medical Center, Hadera, Israel
| | - Abed Athamna
- Clinical Microbiology Laboratory, Hillel Yaffe Medical Center, Hadera, Israel
| |
Collapse
|
14
|
Abstract
Matrix-assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS), adapted for use in clinical microbiology laboratories, challenges current standards of microbial detection and identification. This article summarizes the capabilities of MALDI-TOF MS in diagnostic clinical microbiology laboratories and describes the underpinnings of the technology, highlighting topics such as sample preparation, spectral analysis, and accuracy. The use of MALDI-TOF MS in the clinical microbiology laboratory is growing, and, when properly deployed, can accelerate diagnosis and improve patient care.
Collapse
Affiliation(s)
- Donna M Wolk
- Clinical Microbiology, Department of Laboratory Medicine, Diagnostic Medicine Institute, Geisinger Health, 100 North Academy Avenue, Danville, PA 17822-1930, USA.
| | - Andrew E Clark
- Department of Veterinary Science and Microbiology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
15
|
Accelerated bacterial detection in blood culture by enhanced acoustic flow cytometry (AFC) following peptide nucleic acid fluorescence in situ hybridization (PNA-FISH). PLoS One 2019; 14:e0201332. [PMID: 30735489 PMCID: PMC6368374 DOI: 10.1371/journal.pone.0201332] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/16/2019] [Indexed: 11/23/2022] Open
Abstract
Bacteraemia is a risk factor for subsequent clinical deterioration and death. Current reliance on culture-based methods for detection of bacteraemia delays identification and assessment of this risk until after the optimal period for positively impacting treatment decisions has passed. Therefore, a method for rapid detection and identification of bacterial infection in the peripheral bloodstream in acutely ill patients is crucial for improved patient survival through earlier targeted antibiotic treatment. The turnaround time for current clinical laboratory methods ranges from 12 to 48 hours, emphasizing the need for a faster diagnostic test. Here we describe a novel assay for accelerated generic detection of bacteria in blood culture (BC) using peptide nucleic acid fluorescence in situ hybridization enhanced acoustic flow cytometry (PNA-FISH-AFC). For assay development, we used simulated blood cultures (BCs) spiked with one of three bacterial species at a low starting concentration of 10 CFU/mL: Escherichia coli, Klebsiella pneumoniae or Pseudomonas aeruginosa. Under current clinical settings, it takes a minimum of 12 hours incubation to reach positivity on the BacTEC system, corresponding to a bacterial concentration of 107−109 CFU/mL optimal for further analyses. In contrast, our PNA-FISH-AFC assay detected 103–104 CFU/mL bacteria in BC following a much shorter culture incubation of 5 to 10 hours. Using either PCR-based FilmArray assay or MALDI-TOF for bacterial detection, it took 7–10 and 12–24 hours of incubation, respectively, to reach the positive result. These findings indicate a potential time advantage of PNA-FISH-AFC assay for rapid bacterial detection in BC with significantly improved turnaround time over currently used laboratory techniques.
Collapse
|
16
|
Enroth H, Retz K, Andersson S, Andersson C, Svensson K, Ljungström L, Tilevik D, Pernestig AK. Evaluation of QuickFISH and maldi Sepsityper for identification of bacteria in bloodstream infection. Infect Dis (Lond) 2019; 51:249-258. [PMID: 30729840 DOI: 10.1080/23744235.2018.1554258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Early detection of bacteria and their antibiotic susceptibility patterns are critical to guide therapeutic decision-making for optimal care of septic patients. The current gold standard, blood culturing followed by subculture on agar plates for subsequent identification, is too slow leading to excessive use of broad-spectrum antibiotic with harmful consequences for the patient and, in the long run, the public health. The aim of the present study was to assess the performance of two commercial assays, QuickFISH® (OpGen) and Maldi Sepsityper™ (Bruker Daltonics) for early and accurate identification of microorganisms directly from positive blood cultures. MATERIALS AND METHODS During two substudies of positive blood cultures, the two commercial assays were assessed against the routine method used at the clinical microbiology laboratory, Unilabs AB, at Skaraborg Hospital, Sweden. RESULTS The Maldi Sepsityper™ assay enabled earlier microorganism identification. Using the cut-off for definite species identification according to the reference method (>2.0), sufficiently accurate species identification was achieved, but only among Gram-negative bacteria. The QuickFISH® assay was time-saving and showed high concordance with the reference method, 94.8% (95% CI 88.4-98.3), when the causative agent was covered by the QuickFISH® assay. CONCLUSIONS The use of the commercial assays may shorten the time to identification of causative agents in bloodstream infections and can be a good complement to the current clinical routine diagnostics. Nevertheless, the performance of the commercial assays is considerably affected by the characteristics of the causative agents.
Collapse
Affiliation(s)
- Helena Enroth
- a Systems Biology Research Centre, School of Bioscience, University of Skövde , Skövde , Sweden.,b Department of Clinical Microbiology , Unilabs AB , Skövde , Sweden
| | - Karolina Retz
- a Systems Biology Research Centre, School of Bioscience, University of Skövde , Skövde , Sweden.,b Department of Clinical Microbiology , Unilabs AB , Skövde , Sweden
| | - Sofie Andersson
- b Department of Clinical Microbiology , Unilabs AB , Skövde , Sweden
| | - Carl Andersson
- a Systems Biology Research Centre, School of Bioscience, University of Skövde , Skövde , Sweden.,b Department of Clinical Microbiology , Unilabs AB , Skövde , Sweden
| | - Kristina Svensson
- b Department of Clinical Microbiology , Unilabs AB , Skövde , Sweden
| | - Lars Ljungström
- c Department of Infectious Diseases , Skaraborg Hospital , Skövde , Sweden
| | - Diana Tilevik
- a Systems Biology Research Centre, School of Bioscience, University of Skövde , Skövde , Sweden
| | - Anna-Karin Pernestig
- a Systems Biology Research Centre, School of Bioscience, University of Skövde , Skövde , Sweden
| |
Collapse
|
17
|
Azrad M, Keness Y, Nitzan O, Pastukh N, Tkhawkho L, Freidus V, Peretz A. Cheap and rapid in-house method for direct identification of positive blood cultures by MALDI-TOF MS technology. BMC Infect Dis 2019; 19:72. [PMID: 30658585 PMCID: PMC6339441 DOI: 10.1186/s12879-019-3709-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 01/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rapid and accurate pathogen identification in blood cultures is very important for septic patients and has major consequences on morbidity and mortality rates. In recent years, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS)-based technology has become useful for highly specific and sensitive identification of bacteria and yeasts from clinical samples including sterile body fluids. Additional in-house methods enabled direct identification from blood cultures following various preparation protocols. METHODS Blood culture (5 ml) was harvested from each positive bottle following growth identification by BACTEC™ FX system and transferred into a VACUETTE® Z Serum Sep Clot Activator tube containing an inert gel, which following centrifugation separates microorganisms from the blood cells. We used MALDI-TOF MS analysis for identification of microorganisms collected from the gel surface. RESULTS Positive blood culture bottles (186) were collected. In comparison with the routine method, 99% (184/186) and 90% (168/186) of the isolates were correctly identified by the SepsiTyper kit and the in-house method, respectively. We found high concordance (Pearson coefficient = 0.7, p < 0.0001) between our in-house method and the SepsiTyper kit. Additionally, high correlation was found in sub-groups of identified bacteria, with Pearson coefficients of 0.77 (p < 0.0001), 0.67 (p < 0.0001), and 0.73 (p < 0.007) for Gram negative, Gram positive, and anaerobic bacteria, respectively. CONCLUSIONS Our in-house method was found to be in good agreement with the SepsiTyper kit. Considering the low costs and the rapid and easy implementation of this procedure, we propose our in-house method for the direct identification of bacteria from blood cultures.
Collapse
Affiliation(s)
- Maya Azrad
- Clinical Microbiology Laboratory, Baruch Padeh Medical Center, Poriya, Israel
| | - Yoram Keness
- Clinical Microbiology Laboratory, Ziv Medical Center, Zefat, Israel.,Clinical Microbiology Laboratory, Emek Medical Center, Afula, Israel
| | - Orna Nitzan
- Faculty of Medicine, Bar Ilan University, Galilee, Israel.,Unit of Infectious Diseases, Baruch Padeh Medical Center, Poriya, Israel
| | - Nina Pastukh
- Clinical Microbiology Laboratory, Baruch Padeh Medical Center, Poriya, Israel
| | - Linda Tkhawkho
- Clinical Microbiology Laboratory, Baruch Padeh Medical Center, Poriya, Israel
| | - Victoria Freidus
- Clinical Microbiology Laboratory, Baruch Padeh Medical Center, Poriya, Israel
| | - Avi Peretz
- Clinical Microbiology Laboratory, Baruch Padeh Medical Center, Poriya, Israel. .,Faculty of Medicine, Bar Ilan University, Galilee, Israel.
| |
Collapse
|
18
|
Zintgraff J, Irazu L, Lara CS, Rodriguez M, Santos M. The classical Bordetella species and MALDI-TOF technology: a brief experience. J Med Microbiol 2018; 67:1737-1742. [DOI: 10.1099/jmm.0.000860] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jonathan Zintgraff
- Servicio Bacteriología Clínica, INEI-ANLIS 'Dr Carlos G. Malbrán', Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucia Irazu
- Servicio Bacteriología Clínica, INEI-ANLIS 'Dr Carlos G. Malbrán', Ciudad Autónoma de Buenos Aires, Argentina
| | - Claudia S. Lara
- Servicio Bacteriología Clínica, INEI-ANLIS 'Dr Carlos G. Malbrán', Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcelo Rodriguez
- Servicio Bacteriología Clínica, INEI-ANLIS 'Dr Carlos G. Malbrán', Ciudad Autónoma de Buenos Aires, Argentina
| | - Mauricio Santos
- Servicio Bacteriología Clínica, INEI-ANLIS 'Dr Carlos G. Malbrán', Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
19
|
Ruiz-Aragón J, Ballestero-Téllez M, Gutiérrez-Gutiérrez B, de Cueto M, Rodríguez-Baño J, Pascual Á. Direct bacterial identification from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry: A systematic review and meta-analysis. Enferm Infecc Microbiol Clin 2018; 36:484-492. [DOI: 10.1016/j.eimc.2017.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/24/2017] [Accepted: 08/25/2017] [Indexed: 11/16/2022]
|
20
|
Luethy PM, Johnson JK. The Use of Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) for the Identification of Pathogens Causing Sepsis. J Appl Lab Med 2018; 3:675-685. [PMID: 31639735 DOI: 10.1373/jalm.2018.027318] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/09/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Sepsis is a life-threatening condition with high rates of morbidity and mortality; effective and appropriate antibiotic therapy is essential for ensuring patient improvement. To aid in the diagnosis of sepsis, blood cultures are drawn and sent to the microbiology laboratory for pathogen growth, identification, and susceptibility testing. The clinical microbiology laboratory can assist the medical team by providing timely identification of the pathogen(s) causing the bloodstream infection through the use of rapid diagnostic technology. One of these rapid diagnostic technologies, MALDI-TOF MS, has been proven to reduce the time required for appropriate antibiotic therapy when used to identify pathogens grown in culture. This technology has also been used to identify pathogens directly from the positive blood cultures with great success. CONTENT In this minireview, we summarize the different methods that have been developed to directly identify pathogens from positive blood cultures by use of MALDI-TOF MS and the effect of this technology on patient outcomes. Additionally, we touch on current research in the field, including the identification of antimicrobial resistance directly from positive blood cultures by MALDI-TOF MS. SUMMARY Rapid identification of pathogens is important in the survival of patients undergoing a septic event. MALDI-TOF MS technology has played an important role in rapid identification, which has led to a reduction in the time to appropriate antibiotic therapy and contributed to the improvement of patient outcomes. The high sensitivity and specificity of MALDI-TOF MS identification, in combination with MALDI-TOF's rapid function and reduced labor costs, make this technology an attractive choice for clinical laboratories.
Collapse
Affiliation(s)
- Paul M Luethy
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | - J Kristie Johnson
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
21
|
Tsuchida S, Murata S, Miyabe A, Satoh M, Takiwaki M, Ashizawa K, Terada T, Ito D, Matsushita K, Nomura F. Application of the biocopolymer preparation system, rapid BACpro® II kit, for mass-spectrometry-based bacterial identification from positive blood culture bottles by the MALDI Biotyper system. J Microbiol Methods 2018; 152:86-91. [PMID: 30075236 DOI: 10.1016/j.mimet.2018.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/25/2018] [Accepted: 07/29/2018] [Indexed: 12/20/2022]
Abstract
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used for identification of microorganisms from positive blood cultures. Pretreatments to effectively remove non-bacterial components and selectively collect microorganisms are a prerequisite for successful identification, and a variety of home-brew and commercial protocols have been reported. Although commercially available kits, mainly the Sepsityper Kit, are increasingly used, the identification rates reported often are not satisfactory, particularly for Gram-positive isolates. We recently developed a method to collect bacteria from positive blood culture bottles using a polyallylamine-polystyrene copolymer that has been used in wastewater processing. This pretreatment protocol is now commercially available as the rapid BACpro® II kit (Nittobo Medical Co., Tokyo, Japan). The operation time required for processing using this novel kit is approximately 10 min, and the entire procedure can be completed within a biosafety cabinet. Since the performance of the rapid BACpro® II kit has not been tested using the MALDI Biotyper system, we prospectively evaluated the performance of the rapid BACpro® II kit as compared with the Sepsityper® kit. Performance of the rapid BACpro® II kit was evaluated using a total of 193 monomicrobial cases of positive blood culture. Medium from blood culture bottles was pretreated by the rapid BACpro® II kit or the Sepsityper® Kit, and isolated cells were subjected to direct identification by MS fingerprinting in parallel with conventional subculturing for reference identification. The overall MALDI-TOF MS-based identification rates with >1.7 score and >2.0 score obtained using the rapid BACpro® II kit were 99.5% and 80.8%, respectively, whereas those obtained using the Sepsityper® Kit were 89.1% and 68.4%, respectively (P < 0.05 for >1.7 and P < 0.05 for >2.0 by Pearsons's chi-square). In Gram-positive cases, the rapid BACpro® II kit gave identification rate of 100% with >1.7 score and 69.4% with >2.0 score, whereas there were 84.7% and 56.8%, respectively by the Sepsityper® Kit (P < 0.05 for >1.7). These results are preliminary, but considering that this new kit is easy to perform and the identification rates are promising, the rapid BACpro® II kit deserves assessment in a larger-scale study with a variety of platforms for MS-based bacterial identification.
Collapse
Affiliation(s)
- Sachio Tsuchida
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Syota Murata
- Department of Clinical Laboratory, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Akiko Miyabe
- Department of Clinical Laboratory, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Mamoru Satoh
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Masaki Takiwaki
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | - Daisuke Ito
- R&D Department, Nittobo Medical Co., Ltd, Japan
| | - Kazuyuki Matsushita
- Department of Clinical Laboratory, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; Division of Clinical Genetics, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Fumio Nomura
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; Division of Clinical Genetics, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| |
Collapse
|
22
|
Mizrahi A, Amzalag J, Couzigou C, Péan De Ponfilly G, Pilmis B, Le Monnier A. Clinical impact of rapid bacterial identification by MALDI-TOF MS combined with the bêta-LACTA™ test on early antibiotic adaptation by an antimicrobial stewardship team in bloodstream infections. Infect Dis (Lond) 2018; 50:668-677. [DOI: 10.1080/23744235.2018.1458147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- A. Mizrahi
- Laboratoire de Microbiologie clinique, Groupe Hospitalier Paris Saint-Joseph, Paris, France
| | - J. Amzalag
- Laboratoire de Microbiologie clinique, Groupe Hospitalier Paris Saint-Joseph, Paris, France
| | - C. Couzigou
- Equipe mobile de Microbiologie clinique, Groupe Hospitalier Paris Saint-Joseph, Paris, France
| | - G. Péan De Ponfilly
- Laboratoire de Microbiologie clinique, Groupe Hospitalier Paris Saint-Joseph, Paris, France
| | - B. Pilmis
- Equipe mobile de Microbiologie clinique, Groupe Hospitalier Paris Saint-Joseph, Paris, France
| | - A. Le Monnier
- Laboratoire de Microbiologie clinique, Groupe Hospitalier Paris Saint-Joseph, Paris, France
| |
Collapse
|
23
|
Tsuchida S, Murata S, Miyabe A, Satoh M, Takiwaki M, Matsushita K, Nomura F. An improved in-house lysis-filtration protocol for bacterial identification from positive blood culture bottles with high identification rates by MALDI-TOF MS. J Microbiol Methods 2018; 148:40-45. [PMID: 29608928 DOI: 10.1016/j.mimet.2018.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/26/2018] [Indexed: 01/04/2023]
Abstract
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is now a well-established method for identification of microorganisms from positive blood cultures. Pretreatments to effectively remove non-bacterial proteins are a prerequisite for successful identification, and a variety of protocols have been reported. Although commercially available kits, mainly the Sepsityper Kit, are increasingly used, the identification rates reported often are not satisfactory, particularly for Gram-positive isolates. We developed a new, in-house lysis-filtration protocol and prospectively evaluated its performance compared to the Sepsityper kit. The in-house protocol consists of three simple steps: lysis by ammonium chloride, aspiration with a syringe fitted with a 0.45-μm membrane, and centrifugation to collect microbes. The novel protocol requires only 20 min. Performance of the in-house protocol was evaluated using a total of 117 monomicrobial cases of positive blood culture. Medium from blood culture bottles was pretreated by the in-house protocol or the commercial kit, and isolated cells were subjected to direct identification by mass spectrometry fingerprinting in parallel with conventional subculturing for reference identification. The overall MALDI-TOF MS-based identification rates with score > 1.7 and > 2.0 obtained using the in-house protocol were 99.2% and 85.5%, respectively, whereas those obtained using the Sepsityper Kit were 85.4% and 61.5%, respectively. For Gram-positive cases, the in-house protocol yielded scores >1.7 and > 2.0 at 98.5% and 76.1%, respectively, whereas the commercial kit yielded these scores at 76.1% and 43.3%, respectively. Although these are preliminary results, these values suggest that this easy lysis-filtration protocol deserves assessment in a larger-scale test.
Collapse
Affiliation(s)
- Sachio Tsuchida
- Division of Clinical Mass Spectrometry, Chiba University Hospital, Chiba, Japan; Department of Clinical Laboratory, Chiba University Hospital, Chiba, Japan
| | - Syota Murata
- Department of Clinical Laboratory, Chiba University Hospital, Chiba, Japan
| | - Akiko Miyabe
- Department of Clinical Laboratory, Chiba University Hospital, Chiba, Japan
| | - Mamoru Satoh
- Division of Clinical Mass Spectrometry, Chiba University Hospital, Chiba, Japan
| | - Masaki Takiwaki
- Division of Clinical Mass Spectrometry, Chiba University Hospital, Chiba, Japan
| | - Kazuyuki Matsushita
- Department of Clinical Laboratory, Chiba University Hospital, Chiba, Japan; Division of Clinical Genetics, Chiba University Hospital, Chiba, Japan
| | - Fumio Nomura
- Division of Clinical Mass Spectrometry, Chiba University Hospital, Chiba, Japan; Division of Clinical Genetics, Chiba University Hospital, Chiba, Japan.
| |
Collapse
|
24
|
Dubourg G, Lamy B, Ruimy R. Rapid phenotypic methods to improve the diagnosis of bacterial bloodstream infections: meeting the challenge to reduce the time to result. Clin Microbiol Infect 2018; 24:935-943. [PMID: 29605563 DOI: 10.1016/j.cmi.2018.03.031] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/17/2018] [Accepted: 03/20/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Administration of appropriate antimicrobial therapy is one of the key factors in surviving bloodstream infections. Blood culture is currently the reference standard for diagnosis, but conventional practices have long turnaround times while diagnosis needs to be faster to improve patient care. Phenotypic methods offer an advantage over genotypic methods in that they can identify a wide range of taxa, detect the resistance currently expressed, and resist genetic variability in resistance detection. AIMS We aimed to discuss the wide array of phenotypic methods that have recently been developed to substantially reduce the time to result from identification to antibiotic susceptibility testing. SOURCES A literature review focusing on rapid phenotypic methods for improving the diagnosis of bloodstream infection was the source. CONTENT Rapid phenotypic bacterial identification corresponds to Matrix-assisted laser-desorption/ionization time of flight mass spectrometry (MALDI-TOF), and rapid antimicrobial susceptibility testing methods comprised of numerous different approaches, are considered and critically assessed. Particular attention is also paid to emerging technologies knocking at the door of routine microbiology laboratories. Finally, workflow integration of these methods is considered. IMPLICATIONS The broad panel of phenotypic methods currently available enables healthcare institutions to draw up their own individual approach to improve bloodstream infection diagnosis but requires a thorough evaluation of their workflow integration. Clinical microbiology will probably move towards faster methods while maintaining a complex multi-method approach as there is no all-in-one method.
Collapse
Affiliation(s)
- G Dubourg
- Aix Marseille Université, IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Marseille, France.
| | - B Lamy
- Laboratoire de Bactériologie, Hôpital L'archet 2, CHU de Nice, Nice, France; INSERM U1065, Centre Méditerranéen de Médecine Moléculaire, Equipe 6, Nice, France; Faculté de Médecine, Université Côte d'Azur, Nice, France
| | - R Ruimy
- Laboratoire de Bactériologie, Hôpital L'archet 2, CHU de Nice, Nice, France; INSERM U1065, Centre Méditerranéen de Médecine Moléculaire, Equipe 6, Nice, France; Faculté de Médecine, Université Côte d'Azur, Nice, France.
| |
Collapse
|
25
|
Pan HW, Li W, Li RG, Li Y, Zhang Y, Sun EH. Simple Sample Preparation Method for Direct Microbial Identification and Susceptibility Testing From Positive Blood Cultures. Front Microbiol 2018; 9:481. [PMID: 29616003 PMCID: PMC5869256 DOI: 10.3389/fmicb.2018.00481] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/28/2018] [Indexed: 11/13/2022] Open
Abstract
Rapid identification and determination of the antibiotic susceptibility profiles of the infectious agents in patients with bloodstream infections are critical steps in choosing an effective targeted antibiotic for treatment. However, there has been minimal effort focused on developing combined methods for the simultaneous direct identification and antibiotic susceptibility determination of bacteria in positive blood cultures. In this study, we constructed a lysis-centrifugation-wash procedure to prepare a bacterial pellet from positive blood cultures, which can be used directly for identification by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and antibiotic susceptibility testing by the Vitek 2 system. The method was evaluated using a total of 129 clinical bacteria-positive blood cultures. The whole sample preparation process could be completed in <15 min. The correct rate of direct MALDI-TOF MS identification was 96.49% for gram-negative bacteria and 97.22% for gram-positive bacteria. Vitek 2 antimicrobial susceptibility testing of gram-negative bacteria showed an agreement rate of antimicrobial categories of 96.89% with a minor error, major error, and very major error rate of 2.63, 0.24, and 0.24%, respectively. Category agreement of antimicrobials against gram-positive bacteria was 92.81%, with a minor error, major error, and very major error rate of 4.51, 1.22, and 1.46%, respectively. These results indicated that our direct antibiotic susceptibility analysis method worked well compared to the conventional culture-dependent laboratory method. Overall, this fast, easy, and accurate method can facilitate the direct identification and antibiotic susceptibility testing of bacteria in positive blood cultures.
Collapse
Affiliation(s)
- Hong-Wei Pan
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Wei Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Rong-Guo Li
- Department of Clinical Laboratory, Jinan Maternal and Child Care Hospital, Jinan, China
| | - Yong Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - En-Hua Sun
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
26
|
Florio W, Morici P, Ghelardi E, Barnini S, Lupetti A. Recent advances in the microbiological diagnosis of bloodstream infections. Crit Rev Microbiol 2017; 44:351-370. [PMID: 29185372 DOI: 10.1080/1040841x.2017.1407745] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rapid identification (ID) and antimicrobial susceptibility testing (AST) of the causative agent(s) of bloodstream infections (BSIs) are essential for the prompt administration of an effective antimicrobial therapy, which can result in clinical and financial benefits. Immediately after blood sampling, empirical antimicrobial therapy, chosen on clinical and epidemiological data, is administered. When ID and AST results are available, the clinician decides whether to continue or streamline the antimicrobial therapy, based on the results of the in vitro antimicrobial susceptibility profile of the pathogen. The aim of the present study is to review and discuss the experimental data, advantages, and drawbacks of recently developed technological advances of culture-based and molecular methods for the diagnosis of BSI (including mass spectrometry, magnetic resonance, PCR-based methods, direct inoculation methods, and peptide nucleic acid fluorescence in situ hybridization), the understanding of which could provide new perspectives to improve and fasten the diagnosis and treatment of septic patients. Although blood culture remains the gold standard to diagnose BSIs, newly developed methods can significantly shorten the turnaround time of reliable microbial ID and AST, thus substantially improving the diagnostic yield.
Collapse
Affiliation(s)
- Walter Florio
- a Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia , Università di Pisa , Pisa , Italy
| | - Paola Morici
- a Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia , Università di Pisa , Pisa , Italy
| | - Emilia Ghelardi
- a Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia , Università di Pisa , Pisa , Italy
| | - Simona Barnini
- b U.O. Microbiologia Universitaria Azienda Ospedaliero-Universitaria Pisana , Pisa , Italy
| | - Antonella Lupetti
- a Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia , Università di Pisa , Pisa , Italy
| |
Collapse
|
27
|
Abstract
The recent development of commercial panel-based molecular diagnostics for the rapid detection of pathogens in positive blood culture bottles, respiratory specimens, stool, and cerebrospinal fluid has resulted in a paradigm shift in clinical microbiology and clinical practice. This review focuses on U.S. Food and Drug Administration (FDA)-approved/cleared multiplex molecular panels with more than five targets designed to assist in the diagnosis of bloodstream, respiratory tract, gastrointestinal, or central nervous system infections. While these panel-based assays have the clear advantages of a rapid turnaround time and the detection of a large number of microorganisms and promise to improve health care, they present certain challenges, including cost and the definition of ideal test utilization strategies (i.e., optimal ordering) and test interpretation.
Collapse
|
28
|
Tanner H, Evans JT, Gossain S, Hussain A. Evaluation of three sample preparation methods for the direct identification of bacteria in positive blood cultures by MALDI-TOF. BMC Res Notes 2017; 10:48. [PMID: 28100271 PMCID: PMC5241956 DOI: 10.1186/s13104-016-2366-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 12/28/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Patient mortality is significantly reduced by rapid identification of bacteria from sterile sites. MALDI-TOF can identify bacteria directly from positive blood cultures and multiple sample preparation methods are available. We evaluated three sample preparation methods and two MALDI-TOF score cut-off values. Positive blood culture bottles with organisms present in Gram stains were prospectively analysed by MALDI-TOF. Three lysis reagents (Saponin, SDS, and SepsiTyper lysis bufer) were applied to each positive culture followed by centrifugation, washing and protein extraction steps. Methods were compared using the McNemar test and 16S rDNA sequencing was used to assess discordant results. RESULTS In 144 monomicrobial cultures, using ≥2.000 as the cut-off value, species level identifications were obtained from 69/144 (48%) samples using Saponin, 86/144 (60%) using SDS, and 91/144 (63%) using SepsiTyper. The difference between SDS and SepsiTyper was not statistically significant (P = 0.228). Differences between Saponin and the other two reagents were significant (P < 0.01). Using ≥1.700 plus top three results matching as the cut-off value, species level identifications were obtained from 100/144 (69%) samples using Saponin, 103/144 (72%) using SDS, and 106/144 (74%) using SepsiTyper and there was no statistical difference between the methods. No true discordances between culture and direct MALDI-TOF identification were observed in monomicrobial cultures. In 32 polymicrobial cultures, MALDI-TOF identified one organism in 34-75% of samples depending on the method. CONCLUSIONS This study demonstrates two inexpensive in-house detergent lysis methods are non-inferior to a commercial kit for analysis of positive blood cultures by direct MALDI-TOF in a clinical diagnostic microbiology laboratory.
Collapse
Affiliation(s)
- Hannah Tanner
- Public Health England, Public Health Laboratory Birmingham, Heartlands Hospital, Bordesley Green East, Birmingham, B9 5SS, UK.
| | - Jason T Evans
- Public Health England, Public Health Laboratory Birmingham, Heartlands Hospital, Bordesley Green East, Birmingham, B9 5SS, UK.,Wales Centre for Mycobacteria, Public Health Wales, University Hospital Llandough, Penarth, CF64 2XX, UK
| | - Savita Gossain
- Public Health England, Public Health Laboratory Birmingham, Heartlands Hospital, Bordesley Green East, Birmingham, B9 5SS, UK
| | - Abid Hussain
- Public Health England, Public Health Laboratory Birmingham, Heartlands Hospital, Bordesley Green East, Birmingham, B9 5SS, UK
| |
Collapse
|
29
|
Caspar Y, Garnaud C, Raykova M, Bailly S, Bidart M, Maubon D. Superiority of SDS lysis over saponin lysis for direct bacterial identification from positive blood culture bottle by MALDI-TOF MS. Proteomics Clin Appl 2016; 11. [PMID: 27921389 DOI: 10.1002/prca.201600131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/07/2016] [Accepted: 11/28/2016] [Indexed: 11/07/2022]
Abstract
PURPOSE Fast species diagnosis has an important health care impact, as rapid and specific antibacterial therapy is of clear benefit for patient's outcome. Here, a new protocol for species identification directly from positive blood cultures is proposed. EXPERIMENTAL DESIGN Four in-house protocols for bacterial identification by MS directly from clinical positive blood cultures evaluating two lytic agents, SDS and saponin, and two protein extraction schemes, fast (FP) and long (LP) are compared. One hundred and sixty-eight identification tests are carried out on 42 strains. RESULTS Overall, there are correct identifications to the species level in 90% samples for the SDS-LP, 60% for the SDS-FP, 48% for the saponin LP, and 43% for the saponin FP. Adapted scores allowed 92, 86, 72, and 53% identification for SDS-LP, SDS-FP, saponin LP, and saponin FP, respectively. Saponin lysis is associated with a significantly lower score compared to SDS (0.87 [0.83-0.92], p-value < 0.001). CONCLUSIONS AND CLINICAL RELEVANCE This study supports the use of SDS lysis instead of saponin lysis and the application of this rapid and cost-effective protocol in daily routine for microbiological agents implicated in septicemia.
Collapse
Affiliation(s)
- Yvan Caspar
- Laboratoire de Bactériologie-Hygiène Hospitalière, Département des Agents Infectieux, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France.,Laboratoire TIMC-IMAG-TheREx, UMR 5525 CNRS-UGA, Université Grenoble Alpes, La Tronche Cedex, France
| | - Cécile Garnaud
- Laboratoire TIMC-IMAG-TheREx, UMR 5525 CNRS-UGA, Université Grenoble Alpes, La Tronche Cedex, France.,Laboratoire de Parasitologie-Mycologie, Département des Agents Infectieux, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Mariya Raykova
- Laboratoire de Parasitologie-Mycologie, Département des Agents Infectieux, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Sébastien Bailly
- Laboratoire de Parasitologie-Mycologie, Département des Agents Infectieux, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France.,INSERM UMR 1137 IAME Team 5-DeSCID, Inserm/Paris Diderot, Sorbonne Paris Cité University, Paris, France
| | - Marie Bidart
- Plateforme Protéomique et Transcriptomique Clinique, Pôle Recherche, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France.,INSERM UMR 1205, Université Grenoble Alpes, Grenoble, France.,Laboratoire de Biochimie génétique et Moléculaire, Département de Biochimie, Toxicologie et Pharmacologie Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Danièle Maubon
- Laboratoire TIMC-IMAG-TheREx, UMR 5525 CNRS-UGA, Université Grenoble Alpes, La Tronche Cedex, France.,Laboratoire de Parasitologie-Mycologie, Département des Agents Infectieux, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| |
Collapse
|
30
|
Chien JY, Lee TF, Du SH, Teng SH, Liao CH, Sheng WH, Teng LJ, Hsueh PR. Applicability of an in-House Saponin-Based Extraction Method in Bruker Biotyper Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry System for Identification of Bacterial and Fungal Species in Positively Flagged Blood Cultures. Front Microbiol 2016; 7:1432. [PMID: 27695442 PMCID: PMC5024563 DOI: 10.3389/fmicb.2016.01432] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/29/2016] [Indexed: 11/25/2022] Open
Abstract
We used an in-house saponin-based extraction method to evaluate the performance of the Bruker Biotyper matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) system for the identification of bacteria and fungi in 405 positively flagged blood culture bottles. Results obtained from MALDI-TOF/MS were compared with those obtained using conventional phenotypic identification methods. Of the 405 positively flagged blood culture bottles, 365 showed monomicrobal growth and were correctly identified to the species (72.1%) or genus (89.6%) level using the Bruker Biotyper system. The remaining 40 positively flagged blood culture bottles showed polymicrobial growth. Of them, 82.5% (n = 33) of the isolates were correctly identified to the species level and 92.5% (n = 37) to the genus level using the Bruker Biotyper system. The overall accuracy of identification to the genus level in flagged blood cultures was 89.5% for Gram-positive organisms, 93.5% for Gram-negative pathogens and 71.9% for fungi. Confidence scores were ≥1.500 for 307 (75.8%) bottles, ≥1.700 for 249 (61.5%) bottles and ≥2.000 for 142 (35.1%) bottles. None of the yeast cultures yielded scores ≥1.700. Using an identification-score cutoff of ≥1.500, the MALDI Biotyper correctly identified 99.2% of Gram-positive bacteria, 97.6% of Gram-negative bacteria and 100% of yeast isolates to the genus level and 77.6% of Gram-positive bacteria, 87.1% of Gram-negative bacteria and 100.0% of yeast isolates to the species level. The overall rate of identification using our protocol was 89.9% (364/405) for genus level identification and 73.1% (296/405) for species level identification. Yeast isolates yielded the lowest confidence scores, which compromised the accuracy of identification. Further optimization of the protein extraction procedure in positive blood cultures is needed to improve the rate of identification.
Collapse
Affiliation(s)
- Jung-Yien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan UniversityTaipei, Taiwan; Departments of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Tai-Fen Lee
- Departments of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei, Taiwan; Departments of Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan UniversityTaipei, Taiwan
| | - Shin-Hei Du
- Departments of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University Taipei, Taiwan
| | - Shih-Hua Teng
- Department of Graduate Institute of Biomedical Sciences, Chang Gung UniversityTao-Yuan, Taiwan; Bruker Taiwan Co., Ltd.Taipei, Taiwan
| | - Chun-Hsing Liao
- Department of Internal Medicine, Far Eastern Memorial Hospital Taipei, Taiwan
| | - Wang-Hui Sheng
- Departments of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University Taipei, Taiwan
| | - Lee-Jene Teng
- Departments of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei, Taiwan; Departments of Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan UniversityTaipei, Taiwan
| | - Po-Ren Hsueh
- Departments of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei, Taiwan; Departments of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| |
Collapse
|
31
|
Banerjee R, Özenci V, Patel R. Individualized Approaches Are Needed for Optimized Blood Cultures. Clin Infect Dis 2016; 63:1332-1339. [PMID: 27558570 DOI: 10.1093/cid/ciw573] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/14/2016] [Indexed: 01/12/2023] Open
Abstract
Many strategies and technologies are available to improve blood culture (BC)-based diagnostics. The ideal approach to BCs varies between healthcare institutions. Institutions need to examine clinical needs and practices in order to optimize BC-based diagnostics for their site. Before laboratories consider offering rapid matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS) or expensive rapid panel-based molecular BC diagnostics, they should optimize preanalytical, analytical, and postanalytical processes and procedures surrounding BC systems. Several factors need to be considered, including local resistance rates, antibiotic prescribing patterns, patient- and provider-types, laboratory staffing, and personnel available to liaise with clinicians to optimize antibiotic use. While there is much excitement surrounding new high-technology diagnostics, cost-neutral benefits can be realized by optimizing existing strategies and using available tools in creative ways. Rapid BC diagnostics should be implemented in a manner that optimizes impact. Strategies to optimize these BC diagnostics in individual laboratories are presented here.
Collapse
Affiliation(s)
- Ritu Banerjee
- Department of Pediatric Infections Diseases, Vanderbilt University, Nashville, Tennessee
| | - Volkan Özenci
- Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology.,Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
32
|
Barnini S, Brucculeri V, Morici P, Ghelardi E, Florio W, Lupetti A. A new rapid method for direct antimicrobial susceptibility testing of bacteria from positive blood cultures. BMC Microbiol 2016; 16:185. [PMID: 27520338 PMCID: PMC4982226 DOI: 10.1186/s12866-016-0805-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/04/2016] [Indexed: 11/29/2022] Open
Abstract
Background Rapid identification and antimicrobial susceptibility testing (AST) of the causative agent(s) of bloodstream infections can lead to prompt appropriate antimicrobial therapy. To shorten species identification, in this study bacteria were recovered from monomicrobial blood cultures by serum separator tubes and spotted onto the target plate for direct MALDI-TOF MS identification. Proper antibiotics were selected for direct AST based on species identification. In order to obtain rapid AST results, bacteria were recovered from positive blood cultures by two different protocols: by serum separator tubes (further referred to as PR1), or after a short-term subculture in liquid medium (further referred to as PR2). The results were compared with those obtained by the method currently used in our laboratory consisting in identification by MALDI-TOF and AST by Vitek 2 or Sensititre on isolated colonies. Results The direct MALDI-TOF method concordantly identified with the current method 97.5 % of the Gram-negative bacteria and 96.1 % of the Gram-positive cocci contained in monomicrobial blood cultures. The direct AST by PR1 and PR2 for all isolate/antimicrobial agent combinations was concordant/correct with the current method for 87.8 and 90.5 % of Gram-negative bacteria and for 93.1 and 93.8 % of Gram-positive cocci, respectively. In particular, 100 % categorical agreement was found with levofloxacin for Enterobacteriaceae by both PR1 and PR2, and 99.0 and 100 % categorical agreement was observed with linezolid for Gram-positive cocci by PR1 and PR2, respectively. There was no significant difference in accuracy between PR1 and PR2 for Gram-negative bacteria and Gram-positive cocci. Conclusions This newly described method seems promising for providing accurate AST results. Most importantly, these results would be available in a few hours from blood culture positivity, which would help clinicians to promptly confirm or streamline an effective antibiotic therapy in patients with bloodstream infections. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0805-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Paola Morici
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Emilia Ghelardi
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Walter Florio
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Antonella Lupetti
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy.
| |
Collapse
|
33
|
Jeddi F, Yapo-Kouadio GC, Normand AC, Cassagne C, Marty P, Piarroux R. Performance assessment of two lysis methods for direct identification of yeasts from clinical blood cultures using MALDI-TOF mass spectrometry. Med Mycol 2016; 55:185-192. [PMID: 27281814 DOI: 10.1093/mmy/myw038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 02/25/2016] [Accepted: 04/25/2016] [Indexed: 11/14/2022] Open
Abstract
In cases of fungal infection of the bloodstream, rapid species identification is crucial to provide adapted therapy and thereby ameliorate patient outcome. Currently, the commercial Sepsityper kit and the sodium-dodecyl sulfate (SDS) method coupled with MALDI-TOF mass spectrometry are the most commonly reported lysis protocols for direct identification of fungi from positive blood culture vials. However, the performance of these two protocols has never been compared on clinical samples. Accordingly, we performed a two-step survey on two distinct panels of clinical positive blood culture vials to identify the most efficient protocol, establish an appropriate log score (LS) cut-off, and validate the best method. We first compared the performance of the Sepsityper and the SDS protocols on 71 clinical samples. For 69 monomicrobial samples, mass spectrometry LS values were significantly higher with the SDS protocol than with the Sepsityper method (P < .0001), especially when the best score of four deposited spots was considered. Next, we established the LS cut-off for accurate identification at 1.7, based on specimen DNA sequence data. Using this LS cut-off, 66 (95.6%) and 46 (66.6%) isolates were correctly identified at the species level with the SDS and the Sepsityper protocols, respectively. In the second arm of the survey, we validated the SDS protocol on an additional panel of 94 clinical samples. Ninety-two (98.9%) of 93 monomicrobial samples were correctly identified at the species level (median LS = 2.061). Overall, our data suggest that the SDS method yields more accurate species identification of yeasts, than the Sepsityper protocol.
Collapse
Affiliation(s)
- Fakhri Jeddi
- Laboratoire de Parasitologie-Mycologie, CHU Timone, UMR MD3 Aix-Marseille Université, Marseille, France
| | - Gisèle Cha Yapo-Kouadio
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire l'Archet, CS 23079 06202 Nice Cedex 3, France
| | - Anne-Cécile Normand
- Laboratoire de Parasitologie-Mycologie, CHU Timone, UMR MD3 Aix-Marseille Université, Marseille, France
| | - Carole Cassagne
- Laboratoire de Parasitologie-Mycologie, CHU Timone, UMR MD3 Aix-Marseille Université, Marseille, France
| | - Pierre Marty
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire l'Archet, CS 23079 06202 Nice Cedex 3, France.,INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire, C3M, Toxines Microbiennes dans la Relation Hôte-Pathogènes, Nice F-06204 Cedex 3, France.,Université de Nice Sophia Antipolis, Faculté de Médecine, Nice F-06107 Cedex 2, France
| | - Renaud Piarroux
- Laboratoire de Parasitologie-Mycologie, CHU Timone, UMR MD3 Aix-Marseille Université, Marseille, France
| |
Collapse
|
34
|
Evaluation of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Mycobacterium species, Nocardia species, and Other Aerobic Actinomycetes. J Clin Microbiol 2015; 54:376-84. [PMID: 26637381 DOI: 10.1128/jcm.02128-15] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/25/2015] [Indexed: 01/08/2023] Open
Abstract
The value of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for the identification of bacteria and yeasts is well documented in the literature. Its utility for the identification of mycobacteria and Nocardia spp. has also been reported in a limited scope. In this work, we report the specificity of MALDI-TOF MS for the identification of 162 Mycobacterium species and subspecies, 53 Nocardia species, and 13 genera (totaling 43 species) of other aerobic actinomycetes using both the MALDI-TOF MS manufacturer's supplied database(s) and a custom database generated in our laboratory. The performance of a simplified processing and extraction procedure was also evaluated, and, similar to the results in an earlier literature report, our viability studies confirmed the ability of this process to inactivate Mycobacterium tuberculosis prior to analysis. Following library construction and the specificity study, the performance of MALDI-TOF MS was directly compared with that of 16S rRNA gene sequencing for the evaluation of 297 mycobacteria isolates, 148 Nocardia species isolates, and 61 other aerobic actinomycetes isolates under routine clinical laboratory working conditions over a 6-month period. MALDI-TOF MS is a valuable tool for the identification of these groups of organisms. Limitations in the databases and in the ability of MALDI-TOF MS to rapidly identify slowly growing mycobacteria are discussed.
Collapse
|
35
|
Jakovljev A, Bergh K. Development of a rapid and simplified protocol for direct bacterial identification from positive blood cultures by using matrix assisted laser desorption ionization time-of- flight mass spectrometry. BMC Microbiol 2015; 15:258. [PMID: 26546000 PMCID: PMC4636780 DOI: 10.1186/s12866-015-0594-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 10/29/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bloodstream infections represent serious conditions carrying a high mortality and morbidity rate. Rapid identification of microorganisms and prompt institution of adequate antimicrobial therapy is of utmost importance for a successful outcome. Aiming at the development of a rapid, simplified and efficient protocol, we developed and compared two in-house preparatory methods for the direct identification of bacteria from positive blood culture flasks (BD BACTEC FX system) by using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI TOF MS). Both methods employed saponin and distilled water for erythrocyte lysis. In method A the cellular pellet was overlaid with formic acid on the MALDI TOF target plate for protein extraction, whereas in method B the pellet was exposed to formic acid followed by acetonitrile prior to placing on the target plate. RESULTS Best results were obtained by method A. Direct identification was achieved for 81.9 % and 65.8 % (50.3 % and 26.2 % with scores >2.0) of organisms by method A and method B, respectively. Overall concordance with final identification was 100 % to genus and 97.9 % to species level. By applying a lower cut-off score value, the levels of identification obtained by method A and method B increased to 89.3 % and 77.8 % of organisms (81.9 % and 65.8 % identified with scores >1.7), respectively. Using the lowered score criteria, concordance with final results was obtained for 99.3 % of genus and 96.6 % of species identifications. CONCLUSION The reliability of results, rapid performance (approximately 25 min) and applicability of in-house method A have contributed to implementation of this robust and cost-effective method in our laboratory.
Collapse
Affiliation(s)
- Aleksandra Jakovljev
- Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Olav Kyrres gate 17, 7006, Trondheim, Norway. .,Department of Laboratory Medicine, Children's and Women's Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Kåre Bergh
- Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Olav Kyrres gate 17, 7006, Trondheim, Norway. .,Department of Laboratory Medicine, Children's and Women's Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
36
|
Han HW, Chang HC, Hunag AH, Chang TC. Optimization of the score cutoff value for routine identification of Staphylococcus species by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Diagn Microbiol Infect Dis 2015; 83:349-54. [PMID: 26423657 DOI: 10.1016/j.diagmicrobio.2015.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/07/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022]
Abstract
Staphylococcus species are important pathogens. We evaluated 2 score cutoffs (2.0 and 1.7) and the replicate number (a single or a duplicate test) on the identification of staphylococci using the Bruker matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS). A collection of 440 clinical isolates (11 species) and 144 reference strains (36 species) was evaluated. For clinical isolates using a cutoff of 2.0 and duplicate tests, the rates of species, genus, and unreliable identifications were 93.4%, 5.7%, and 0.9% respectively, while the respective values were 99.3%, 0.2%, and 0.5% when the cutoff was 1.7. The species identification rates were significantly higher (P<0.01) when a cutoff of 1.7 or a duplicate test was used. Similar results were obtained for reference strains. In conclusion, a cutoff of 1.7 and duplicate tests are recommended for identification of staphylococci using MALDI-TOF MS.
Collapse
Affiliation(s)
- Huan Wen Han
- Institute of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hsien Chang Chang
- Institute of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Ay Huei Hunag
- Division of Clinical Microbiology, Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Tsung Chain Chang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
37
|
Barnini S, Ghelardi E, Brucculeri V, Morici P, Lupetti A. Rapid and reliable identification of Gram-negative bacteria and Gram-positive cocci by deposition of bacteria harvested from blood cultures onto the MALDI-TOF plate. BMC Microbiol 2015; 15:124. [PMID: 26084329 PMCID: PMC4471905 DOI: 10.1186/s12866-015-0459-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/01/2015] [Indexed: 01/14/2023] Open
Abstract
Background Rapid identification of the causative agent(s) of bloodstream infections using the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) methodology can lead to increased empirical antimicrobial therapy appropriateness. Herein, we aimed at establishing an easier and simpler method, further referred to as the direct method, using bacteria harvested by serum separator tubes from positive blood cultures and placed onto the polished steel target plate for rapid identification by MALDI-TOF. The results by the direct method were compared with those obtained by MALDI-TOF on bacteria isolated on solid media. Results Identification of Gram-negative bacilli was 100 % concordant using the direct method or MALDI-TOF on isolated bacteria (96 % with score > 2.0). These two methods were 90 % concordant on Gram-positive cocci (32 % with score > 2.0). Identification by the SepsiTyper method of Gram-positive cocci gave concordant results with MALDI-TOF on isolated bacteria in 87 % of cases (37 % with score > 2.0). Conclusions The direct method herein developed allows rapid identification (within 30 min) of Gram-negative bacteria and Gram-positive cocci from positive blood cultures and can be used to rapidly report reliable and accurate results, without requiring skilled personnel or the use of expensive kits.
Collapse
Affiliation(s)
- Simona Barnini
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via San Zeno 35-39, 56127, Pisa, Italy.
| | - Emilia Ghelardi
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via San Zeno 35-39, 56127, Pisa, Italy.
| | - Veronica Brucculeri
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via San Zeno 35-39, 56127, Pisa, Italy.
| | - Paola Morici
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via San Zeno 35-39, 56127, Pisa, Italy.
| | - Antonella Lupetti
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via San Zeno 35-39, 56127, Pisa, Italy.
| |
Collapse
|
38
|
Egli A, Osthoff M, Goldenberger D, Halter J, Schaub S, Steiger J, Weisser M, Frei R. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) directly from positive blood culture flasks allows rapid identification of bloodstream infections in immunosuppressed hosts. Transpl Infect Dis 2015; 17:481-7. [PMID: 25704776 DOI: 10.1111/tid.12373] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/31/2014] [Accepted: 01/28/2015] [Indexed: 12/29/2022]
Abstract
INTRODUCTION In immunosuppressed hosts, rapid identification of microorganisms of bloodstream infections is crucial to ensuring effective antimicrobial therapy. Conventional culture requires up to 72 h from sample collection to pathogen identification. METHODS We used the SepsiTyper Kit and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF; Microflex, Bruker) directly from positive blood culture (BacT/ALERT 3D, FN/FA vials; bioMérieux) in comparison to standard culture methodology (VITEK 2; bioMérieux) for species identification. RESULTS A total of 62 consecutive positive blood cultures from immunosuppressed patients (solid organ or hematopoietic transplant recipients, or with febrile neutropenia) were analyzed. Culture yielded gram-negative bacteria (GNB) in 27/62 (43.5%) and gram-positive (GPB) in 35/62 (56.5%) vials. For GNB, the predominant species identified by MALDI-TOF and confirmed by VITEK were Escherichia coli (16/16 correctly identified) and Enterobacter cloacae (4/4), with a sensitivity and specificity of 92.6% and 100%, respectively. For GPB, predominant species were Staphylococcus aureus (3/3), coagulase-negative staphylococci (12/24), and Enterococcus faecium (6/6) with a sensitivity of 100%, 60%, and 100%, respectively. The median time from blood collection to species identification was 27.4 h with MALDI-TOF identification and 46.6 h with conventional methodology. CONCLUSION Using MALDI-TOF directly from positive blood cultures allowed a shorter time to identification with high sensitivity and specificity in immunosuppressed patients.
Collapse
Affiliation(s)
- A Egli
- Division of Clinical Microbiology, University Hospital Basel, Basel, Switzerland.,Vaccine Research Infection Biology Lab, Department Biomedicine, University of Basel, Basel, Switzerland
| | - M Osthoff
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - D Goldenberger
- Division of Clinical Microbiology, University Hospital Basel, Basel, Switzerland
| | - J Halter
- Hematology, University Hospital Basel, Basel, Switzerland
| | - S Schaub
- Division of Nephrology and Transplant Immunology, University Hospital Basel, Basel, Switzerland
| | - J Steiger
- Division of Nephrology and Transplant Immunology, University Hospital Basel, Basel, Switzerland
| | - M Weisser
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - R Frei
- Division of Clinical Microbiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
39
|
Kohlmann R, Hoffmann A, Geis G, Gatermann S. MALDI-TOF mass spectrometry following short incubation on a solid medium is a valuable tool for rapid pathogen identification from positive blood cultures. Int J Med Microbiol 2015; 305:469-79. [PMID: 25953498 DOI: 10.1016/j.ijmm.2015.04.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/09/2015] [Accepted: 04/20/2015] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Rapid identification of the causative microorganism is a key element in appropriate antimicrobial therapy of bloodstream infections. Whereas traditional analysis of positive blood cultures requires subculture over at least 16-24h prior to pathogen identification by, e.g. matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), sample preparation procedures enabling direct MALDI-TOF MS, i.e. without preceding subculture, are associated with additional effort and costs. Hence, we integrated an alternative MALDI-TOF MS approach in diagnostic routine using a short incubation on a solid medium. MATERIALS AND METHODS Positive blood cultures were routinely plated on chocolate agar plates and incubated for 4h (37 °C, 5% CO2). Subsequently, MALDI-TOF MS using a Microflex LT instrument (Bruker Daltonics) and direct smear method was performed once per sample. For successful identification of bacteria at species level, score cut-off values were used as proposed by the manufacturer (≥ 2.0) and in a modified form (≥ 1.5 for MALDI-TOF MS results referring to Gram-positive cocci and ≥ 1.7 for MALDI-TOF MS results referring to bacteria other than Gram-positive cocci). Further data analysis also included an assessment of the clinical impact of the MALDI-TOF MS result. RESULTS Applying the modified score cut-off values, our approach led to an overall correct species identification in 69.5% with misidentification in 3.4% (original cut-offs: 49.2% and 1.8%, respectively); for Gram-positive cocci, correct identification in 68.4% (100% for Staphylococcus aureus and enterococci, 80% for beta-hemolytic streptococci), for Gram-negative bacteria, correct identification in 97.6%. In polymicrobial blood cultures, in 72.7% one of the pathogens was correctly identified. Results were not reliable for Gram-positive rods and yeasts. The approach was easy to implement in diagnostic routine. In cases with available clinical data and successful pathogen identification, in 51.1% our approach allowed an optimized treatment recommendation. CONCLUSION MALDI-TOF MS following 4h pre-culture is a valuable tool for rapid pathogen identification from positive blood cultures, allowing easy integration in diagnostic routine and the opportunity of considerably earlier treatment adaptation.
Collapse
Affiliation(s)
- Rebekka Kohlmann
- Department of Medical Microbiology, Ruhr-University Bochum, Universitaetsstrasse 150, Bochum, Germany; Institute of Medical Laboratory Diagnostics (IML) Bochum GmbH, Castroper Strasse 45, Bochum, Germany.
| | - Alexander Hoffmann
- Institute of Medical Laboratory Diagnostics (IML) Bochum GmbH, Castroper Strasse 45, Bochum, Germany
| | - Gabriele Geis
- Institute of Medical Laboratory Diagnostics (IML) Bochum GmbH, Castroper Strasse 45, Bochum, Germany
| | - Sören Gatermann
- Department of Medical Microbiology, Ruhr-University Bochum, Universitaetsstrasse 150, Bochum, Germany; Institute of Medical Laboratory Diagnostics (IML) Bochum GmbH, Castroper Strasse 45, Bochum, Germany
| |
Collapse
|
40
|
Rapid identification of pathogens in positive blood culture of patients with sepsis: review and meta-analysis of the performance of the sepsityper kit. Int J Microbiol 2015; 2015:827416. [PMID: 26000017 PMCID: PMC4426779 DOI: 10.1155/2015/827416] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 01/16/2023] Open
Abstract
Sepsis is one of the leading causes of deaths, and rapid identification (ID) of blood stream infection is mandatory to perform adequate antibiotic therapy. The advent of MALDI-TOF Mass Spectrometry for the rapid ID of pathogens was a major breakthrough in microbiology. Recently, this method was combined with extraction methods for pathogens directly from positive blood cultures. This review summarizes the results obtained so far with the commercial Sepsityper sample preparation kit, which is now approved for in vitro diagnostic use. Summarizing data from 21 reports, the Sepsityper kit allowed a reliable ID on the species level of 80% of 3320 positive blood culture bottles. Gram negative bacteria resulted consistently in higher ID rates (90%) compared to Gram positive bacteria (76%) or yeast (66%). No relevant misidentifications on the genus level were reported at a log(score)cut-off of 1.6. The Sepsityper kit is a simple and reproducible method which extends the MALDI-TOF technology to positive blood culture specimens and shortens the time to result by several hours or even days. In combination with antibiotic stewardship programs, this rapid ID allows a much faster optimization of antibiotic therapy in patients with sepsis compared to conventional workflows.
Collapse
|
41
|
The fast route to microbe identification: matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Pediatr Infect Dis J 2015; 34:97-9. [PMID: 25741802 DOI: 10.1097/inf.0000000000000601] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rapid identification of bacterial and fungal microorganisms is critical for early and targeted antimicrobial therapy. Conventional methods for bacterial identification are time consuming. Matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has revolutionized the daily process of identification in modern microbiological laboratories. The technique and its multiple current and future applications will be discussed.
Collapse
|
42
|
Mestas J, Felsenstein S, Bard JD. Direct identification of bacteria from positive BacT/ALERT blood culture bottles using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Diagn Microbiol Infect Dis 2014; 80:193-6. [PMID: 25139844 DOI: 10.1016/j.diagmicrobio.2014.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/01/2014] [Accepted: 07/23/2014] [Indexed: 11/29/2022]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry is a fast and robust method for the identification of bacteria. In this study, we evaluate the performance of a laboratory-developed lysis method (LDT) for the rapid identification of bacteria from positive BacT/ALERT blood culture bottles. Of the 168 positive bottles tested, 159 were monomicrobial, the majority of which were Gram-positive organisms (61.0% versus 39.0%). Using a cut-off score of ≥1.7, 80.4% of the organisms were correctly identified to the species level, and the identification rate of Gram-negative organisms (90.3%) was found to be significantly greater than that of Gram-positive organisms (78.4%). The simplicity and cost-effectiveness of the LDT enable it to be fully integrated into the routine workflow of the clinical microbiology laboratory, allowing for rapid identification of Gram-positive and Gram-negative bacteria within an hour of blood culture positivity.
Collapse
Affiliation(s)
- Javier Mestas
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Susanna Felsenstein
- Division of Infectious Diseases, Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Jennifer Dien Bard
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California and Children's Hospital Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
43
|
Konnerth S, Rademacher G, Suerbaum S, Ziesing S, Sedlacek L, Vonberg RP. Identification of pathogens from blood culture bottles in spiked and clinical samples using matrix-assisted laser desorption ionization time-of-flight mass-spectrometry analysis. BMC Res Notes 2014; 7:405. [PMID: 24972877 PMCID: PMC4091744 DOI: 10.1186/1756-0500-7-405] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/23/2014] [Indexed: 12/21/2022] Open
Abstract
Background Blood stream infections significantly contribute to mortality. An early most appropriate antimicrobial therapy is crucial for a favourable outcome of the patient. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) may speed up the diagnostic of causative micro organisms. Findings MALDI-TOF MS using the SARAMIS database was applied to 37 spiked blood culture samples. Identification rates of spiked samples were as follows: The species level was determined in 16 of 21 (76.2%) Gram negative bacteria and in 11 of 13 (84.6%) Gram positive bacteria. Genus level only was determined in additional 2 Gram negative and for the 2 Gram positive strains. Yeast species could not be identified. MALDI-TOF MS was also compared to cultured-based results in standard routine diagnostic. Identification rates of patient samples were as follows: The species level was determined in 41 of 47 (87.2%) Gram negative bacteria and in 63 of 123 (51.2%) Gram positive bacteria. Genus level only was determined in additional 2 Gram negative bacteria. Once again no yeasts were identified. A prolonged incubation of BC bottles for 16 hours after primary positive alert did not influence the concentration of bacteria and identification rates. Conclusions The SARAMIS database used in our experiments mainly confirms previous findings that were obtained with the MALDI-TOF MS BRUKER system by others.
Collapse
Affiliation(s)
| | | | | | | | | | - Ralf-Peter Vonberg
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Str, 1, D-30625 Hannover, Germany.
| |
Collapse
|
44
|
Identification of microorganisms by FilmArray and matrix-assisted laser desorption ionization-time of flight mass spectrometry prior to positivity in the blood culture system. J Clin Microbiol 2014; 52:3230-6. [PMID: 24951811 DOI: 10.1128/jcm.01084-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In this study, we investigated the performance of the FilmArray and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) in identifying microorganisms from blood culture (BC) bottles prior to positivity. First, we used simulated BacT/Alert FA Plus BC bottles with five each for Escherichia coli and Staphylococcus aureus isolates. The FilmArray identified all 10 isolates before BC positivity with 9/10 at 5 h and 1 at 7.5 h after incubation in the BC system. MALDI-TOF MS failed to identify the isolates prior to positivity. When the bottles were incubated for 2.5 h at room temperature (RT) before we put them into the BC system, the FilmArray identified 6/10 at 2.5 h and the remaining 4 at 5 h. Finally, we tested simulated BC bottles after incubation at RT. Interestingly, 9/10 isolates were identified with the FilmArray after 8 h of incubation at RT. Second, we studied clinical BC bottles in quadruplicate. When three-fourths of the parallel bottles signaled positive, the FilmArray was run on the fourth nonsignaled bottle and was found to be positive in 14/15 such cases. Third, we analyzed the performance of the FilmArray in the identification of microorganisms from clinical BC bottles before incubation in the system. Two milliliters of broth from 400 BC bottles was collected after arrival at the laboratory and stored at -70°C. Sixteen bottles later signaled positive in the system. When the frozen broth from these bottles was analyzed, the FilmArray identified all the microorganisms in 8/16 bottles prior to incubation in the BC system. This study shows that the FilmArray can identify microorganisms from BC bottles prior to positivity and in some cases even prior to incubation in the BC system.
Collapse
|
45
|
Gray TJ, Thomas L, Olma T, Mitchell DH, Iredell JR, Chen SCA. Rapid identification of gram negative bacteria from blood culture broth using MALDI-TOF mass spectrometry. J Vis Exp 2014. [PMID: 24893924 DOI: 10.3791/51663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
An important role of the clinical microbiology laboratory is to provide rapid identification of bacteria causing bloodstream infection. Traditional identification requires the sub-culture of signaled blood culture broth with identification available only after colonies on solid agar have matured. MALDI-TOF MS is a reliable, rapid method for identification of the majority of clinically relevant bacteria when applied to colonies on solid media. The application of MALDI-TOF MS directly to blood culture broth is an attractive approach as it has potential to accelerate species identification of bacteria and improve clinical management. However, an important problem to overcome is the pre-analysis removal of interfering resins, proteins and hemoglobin contained in blood culture specimens which, if not removed, interfere with the MS spectra and can result in insufficient or low discrimination identification scores. In addition it is necessary to concentrate bacteria to develop spectra of sufficient quality. The presented method describes the concentration, purification, and extraction of Gram negative bacteria allowing for the early identification of bacteria from a signaled blood culture broth.
Collapse
Affiliation(s)
- Timothy J Gray
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital;
| | - Lee Thomas
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital
| | - Tom Olma
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital
| | - David H Mitchell
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital
| | - Jon R Iredell
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital; Centre for Research Excellence in Critical Infection, Westmead Millennium Institute, Westmead Hospital; Sydney Emerging Infectious Diseases Institute, University of Sydney, Westmead Hospital
| | - Sharon C A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital; Sydney Emerging Infectious Diseases Institute, University of Sydney, Westmead Hospital
| |
Collapse
|
46
|
Evaluation of three rapid diagnostic methods for direct identification of microorganisms in positive blood cultures. J Clin Microbiol 2014; 52:2521-9. [PMID: 24808235 DOI: 10.1128/jcm.00529-14] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The identification of organisms from positive blood cultures generally takes several days. However, recently developed rapid diagnostic methods offer the potential for organism identification within only a few hours of blood culture positivity. In this study, we evaluated the performance of three commercial methods to rapidly identify organisms directly from positive blood cultures: QuickFISH (AdvanDx, Wolburn, MA), Verigene Gram-Positive Blood Culture (BC-GP; Nanosphere, Northbrook, IL), and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) with Sepsityper processing (Bruker Daltonics, Billerica, MA). A total of 159 blood cultures (VersaTREK Trek Diagnostic Systems, Cleveland, OH) positive for Gram-positive and Gram-negative bacteria as well as yeast were analyzed with QuickFISH and MALDI-TOF MS. In all, 102 blood cultures were analyzed using the BC-GP assay. For monomicrobial cultures, we observed 98.0% concordance with routine methods for both QuickFISH (143/146) and the BC-GP assay (93/95). MALDI-TOF MS demonstrated 80.1% (117/146) and 87.7% (128/146) concordance with routine methods to the genus and species levels, respectively. None of the methods tested were capable of consistently identifying polymicrobial cultures in their entirety or reliably differentiating Streptococcus pneumoniae from viridans streptococci. Nevertheless, the methods evaluated in this study are convenient and accurate for the most commonly encountered pathogens and have the potential to dramatically reduce turnaround time for the provision of results to the treating physician.
Collapse
|
47
|
Schieffer K, Tan K, Stamper P, Somogyi A, Andrea S, Wakefield T, Romagnoli M, Chapin K, Wolk D, Carroll K. Multicenter evaluation of the Sepsityper™ extraction kit and MALDI-TOF MS for direct identification of positive blood culture isolates using the BD BACTEC™ FX and VersaTREK®
diagnostic blood culture systems. J Appl Microbiol 2014; 116:934-41. [DOI: 10.1111/jam.12434] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/17/2013] [Accepted: 12/31/2013] [Indexed: 12/22/2022]
Affiliation(s)
| | - K.E. Tan
- Johns Hopkins University; Baltimore MD USA
| | | | | | | | | | | | - K.C. Chapin
- Rhode Island Hospital; Providence RI USA
- Brown University; Providence RI USA
| | - D.M. Wolk
- University of Arizona; Tucson AZ USA
- Geisinger Health System; Danville PA USA
| | - K.C. Carroll
- The Johns Hopkins Hospital; Baltimore MD USA
- Johns Hopkins University; Baltimore MD USA
| |
Collapse
|
48
|
Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev 2014; 26:547-603. [PMID: 23824373 DOI: 10.1128/cmr.00072-12] [Citation(s) in RCA: 548] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Within the past decade, clinical microbiology laboratories experienced revolutionary changes in the way in which microorganisms are identified, moving away from slow, traditional microbial identification algorithms toward rapid molecular methods and mass spectrometry (MS). Historically, MS was clinically utilized as a high-complexity method adapted for protein-centered analysis of samples in chemistry and hematology laboratories. Today, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) MS is adapted for use in microbiology laboratories, where it serves as a paradigm-shifting, rapid, and robust method for accurate microbial identification. Multiple instrument platforms, marketed by well-established manufacturers, are beginning to displace automated phenotypic identification instruments and in some cases genetic sequence-based identification practices. This review summarizes the current position of MALDI-TOF MS in clinical research and in diagnostic clinical microbiology laboratories and serves as a primer to examine the "nuts and bolts" of MALDI-TOF MS, highlighting research associated with sample preparation, spectral analysis, and accuracy. Currently available MALDI-TOF MS hardware and software platforms that support the use of MALDI-TOF with direct and precultured specimens and integration of the technology into the laboratory workflow are also discussed. Finally, this review closes with a prospective view of the future of MALDI-TOF MS in the clinical microbiology laboratory to accelerate diagnosis and microbial identification to improve patient care.
Collapse
|
49
|
Pretreatment of urine samples with SDS improves direct identification of urinary tract pathogens with matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2013; 52:335-8. [PMID: 24226916 DOI: 10.1128/jcm.01881-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We pretreated with SDS 71 urine samples with bacterial counts of >10(5) CFU/ml and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) identification scores of <2, in order to minimize failure rates. Identification improved in 46.5% of samples, remained unchanged in 49.3%, and worsened in 4.2%. The improvement was more evident for Gram-negative (54.3%) than for Gram-positive (32%) bacteria.
Collapse
|
50
|
Lau SKP, Tang BSF, Teng JLL, Chan TM, Curreem SOT, Fan RYY, Ng RHY, Chan JFW, Yuen KY, Woo PCY. Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry for identification of clinically significant bacteria that are difficult to identify in clinical laboratories. J Clin Pathol 2013; 67:361-6. [PMID: 24143023 DOI: 10.1136/jclinpath-2013-201818] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIMS Although the revolutionary matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) has been evaluated for identification of various groups of bacteria, its application in bacteria that are 'difficult-to-identify' by phenotypic tests has been less well studied. We aim to evaluate the usefulness of MALDI-TOF MS for identification of 'difficult-to-identify' bacterial isolates. METHODS We evaluated the performance of the Bruker MALDI-TOF MS system for a collection of 67 diverse clinically important bacterial isolates that were less commonly encountered, possessed ambiguous biochemical profiles or belonged to newly discovered species. The results were compared with 16S rRNA gene sequencing as a reference method for species identification. RESULTS Using 16S rRNA gene sequencing as the reference method, 30 (45%) isolates were identified correctly to species level (score ≥2.0), 20 (30%) were only identified to genus level (score ≥1.7), four (6%) were misidentified (incorrect species with score ≥2.0 or incorrect genus with score ≥1.7) and 13 (19%) showed 'no identification' (score <1.7). Aerobic Gram-positive bacteria showed the highest percentage of correct species identification, followed by aerobic Gram-negative, anaerobic Gram-positive and anaerobic Gram-negative bacteria. Sixteen isolates identified to genus level actually showed the correct species but with scores below the threshold for species identification. Most isolates which showed 'no identification' were due to the absence of the corresponding species in the Bruker database. CONCLUSIONS Expansion of commercial databases to include reference spectra of less commonly encountered and newly discovered species and to increase available spectra for each species is required to improve the accuracy of MALDI-TOF MS for identifying 'difficult-to-identify' bacteria.
Collapse
Affiliation(s)
- Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, , Hong Kong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|