1
|
Rothoeft T, Maier C, Talarico A, Hoffmann A, Schlegtendal A, Lange B, Petersmann A, Denz R, Timmesfeld N, Toepfner N, Vidal-Blanco E, Pfaender S, Lücke T, Brinkmann F. Natural and hybrid immunity after SARS-CoV-2 infection in children and adolescents. Infection 2024; 52:1449-1458. [PMID: 38499828 PMCID: PMC11288991 DOI: 10.1007/s15010-024-02225-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/24/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE In contrast to adults, immune protection against SARS-CoV-2 in children and adolescents with natural or hybrid immunity is still poorly understood. The aim of this study was to analyze different immune compartments in different age groups and whether humoral immune reactions correlate with a cellular immune response. METHODS 72 children and adolescents with a preceding SARS-CoV-2 infection were recruited. 37 were vaccinated with an RNA vaccine (BNT162b2). Humoral immunity was analyzed 3-26 months (median 10 months) after infection by measuring Spike protein (S), nucleocapsid (NCP), and neutralizing antibodies (nAB). Cellular immunity was analyzed using a SARS-CoV-2-specific interferon-γ release assay (IGRA). RESULTS All children and adolescents had S antibodies; titers were higher in those with hybrid immunity (14,900 BAU/ml vs. 2118 BAU/ml). NCP antibodies were detectable in > 90%. Neutralizing antibodies (nAB) were more frequently detected (90%) with higher titers (1914 RLU) in adolescents with hybrid immunity than in children with natural immunity (62.5%, 476 RLU). Children with natural immunity were less likely to have reactive IGRAs (43.8%) than adolescents with hybrid immunity (85%). The amount of interferon-γ released by T cells was comparable in natural and hybrid immunity. CONCLUSION Spike antibodies are the most reliable markers to monitor an immune reaction against SARS-CoV-2. High antibody titers of spike antibodies and nAB correlated with cellular immunity, a phenomenon found only in adolescents with hybrid immunity. Hybrid immunity is associated with markedly higher antibody titers and a higher probability of a cellular immune response than a natural immunity.
Collapse
Affiliation(s)
- T Rothoeft
- University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University, Bochum, Germany.
| | - C Maier
- University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University, Bochum, Germany
| | - A Talarico
- University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University, Bochum, Germany
| | - A Hoffmann
- University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University, Bochum, Germany
| | - A Schlegtendal
- University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University, Bochum, Germany
| | - B Lange
- Department of Epidemiology, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - A Petersmann
- University Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Oldenburg, Oldenburg, Germany
- University Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - R Denz
- Department of Medical Informatics, Biometry and Epidemiology, Ruhr-University Bochum, Bochum, Germany
| | - N Timmesfeld
- Department of Medical Informatics, Biometry and Epidemiology, Ruhr-University Bochum, Bochum, Germany
| | - N Toepfner
- Department of Pediatrics, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - E Vidal-Blanco
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - S Pfaender
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - T Lücke
- University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University, Bochum, Germany
| | - F Brinkmann
- University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University, Bochum, Germany
- University Children's Hospital, Lübeck, Germany
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), Lübeck, Germany
| |
Collapse
|
2
|
Masiá M, de la Rica A, Fernández-González M, García JA, Padilla S, García-Abellán J, Botella Á, Mascarell P, Gutiérrez F. Integrating SARS-CoV-2-specific interferon-γ release assay testing in the evaluation of patients hospitalized with COVID-19. Microbiol Spectr 2023; 11:e0241923. [PMID: 37855635 PMCID: PMC10715100 DOI: 10.1128/spectrum.02419-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/06/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE The cellular immune response is essential in the protection against severe disease in patients with established SARS-CoV-2 infection. The novelty of this study lies in the evaluation of the overall performance of a standardized assay to measure cellular immune response, the SARS-CoV-2-specific interferon-γ release assay (IGRA), in hospitalized patients with severe COVID-19. The SARS-CoV-2 IGRA was shown to accurately classify patients based on disease severity and prognosis, and the study revealed that test performance was not affected by the SARS-CoV-2 variant or control tube results. We identified an assay cut-off point with a high negative predictive value against mortality. The SARS-CoV-2 IGRA in patients hospitalized for COVID-19 may be a useful tool to assess cellular immunity and adopt targeted therapeutic and preventive measures.
Collapse
Affiliation(s)
- Mar Masiá
- Infectious Diseases Unit, Hospital General Universitario de Elche, Alicant, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Clinical Medicine Department, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Alba de la Rica
- Infectious Diseases Unit, Hospital General Universitario de Elche, Alicant, Spain
- Microbiology Service, Hospital General Universitario de Elche, Alicant, Spain
| | - Marta Fernández-González
- Infectious Diseases Unit, Hospital General Universitario de Elche, Alicant, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - José Alberto García
- Infectious Diseases Unit, Hospital General Universitario de Elche, Alicant, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Sergio Padilla
- Infectious Diseases Unit, Hospital General Universitario de Elche, Alicant, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Clinical Medicine Department, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Javier García-Abellán
- Infectious Diseases Unit, Hospital General Universitario de Elche, Alicant, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Clinical Medicine Department, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Ángela Botella
- Infectious Diseases Unit, Hospital General Universitario de Elche, Alicant, Spain
| | - Paula Mascarell
- Infectious Diseases Unit, Hospital General Universitario de Elche, Alicant, Spain
| | - Félix Gutiérrez
- Infectious Diseases Unit, Hospital General Universitario de Elche, Alicant, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Clinical Medicine Department, Universidad Miguel Hernández, San Juan de Alicante, Spain
| |
Collapse
|
3
|
Yoon SW, Widyasari K, Jang J, Lee S, Kang T, Kim S. Kinetics of adaptive immune responses after administering mRNA-Based COVID-19 vaccination in individuals with and without prior SARS-CoV-2 infections. BMC Infect Dis 2023; 23:732. [PMID: 37891503 PMCID: PMC10604405 DOI: 10.1186/s12879-023-08728-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
OBJECTIVE We aimed to compare the adaptive immune response in individuals with or without prior SARS-CoV-2 infections following the administration of mRNA-based COVID-19 vaccines. METHODS A total of 54 participants with ages ranging from 37 to 56 years old, consisting of 23 individuals without a history of SARS-CoV-2 infection (uninfected group) and 31 individuals with prior infection of SARS-CoV-2 (infected group) who have received two doses of mRNA SARS-CoV-2 vaccines were enrolled in this study. We measured the IFN-γ level upon administration of BNT162b2 (PF) or mRNA-1273 (MO) by QuantiFERON SARS-CoV-2. The production of neutralizing antibodies was evaluated by a surrogate virus neutralization assay, and the neutralizing capacity was assessed by a plaque reduction neutralization test (PRNT50). The immune response was compared between the two groups. RESULTS A significantly higher level of IFN-γ (p < 0.001) and neutralization antibodies (p < 0.001) were observed in the infected group than those in the uninfected group following the first administration of vaccines. The infected group demonstrated a significantly higher PRNT50 titer than the uninfected group against the Wuhan strain (p < 0.0001). Still, the two groups were not significantly different against Delta (p = 0.07) and Omicron (p = 0.14) variants. Following the second vaccine dose, T- and B-cell levels were not significantly increased in the infected group. CONCLUSION A single dose of mRNA-based COVID-19 vaccines would boost immune responses in individuals who had previously contracted SARS-CoV-2.
Collapse
Affiliation(s)
- Sun-Woo Yoon
- Department of Biological Science and Biotechnology, Andong National University, Andong, 36729, Korea
| | - Kristin Widyasari
- Gyeongsang Institute of Health Sciences, Gyeongsang National University, Jinju, 52727, Korea
| | - Jieun Jang
- Gyeongnam Center for Infectious Disease Control and Prevention, Changwon, 51154, Korea
| | - Seungjun Lee
- Gyeongsang Institute of Health Sciences, Gyeongsang National University, Jinju, 52727, Korea
- Department of Laboratory Medicine, Gyeongsang National University Changwon Hospital, Changwon, 51472, Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
| | - Sunjoo Kim
- Gyeongsang Institute of Health Sciences, Gyeongsang National University, Jinju, 52727, Korea.
- Gyeongnam Center for Infectious Disease Control and Prevention, Changwon, 51154, Korea.
- Department of Laboratory Medicine, Gyeongsang National University Changwon Hospital, Changwon, 51472, Korea.
| |
Collapse
|
4
|
Borko TL, Baxter R, Cabrera-Martinez B, Thiruppathi E, Sabalza M, Venkataraman I, Selva S, Rester C, Sillau S, Pastula DM, Bennett JL, Alvarez E, Gross R, Shah A, Kammeyer R, Corboy JR, Kedl RM, Hsieh EWY, Piquet AL. SARS-CoV-2 mRNA vaccination induces an antigen-specific T cell response correlating with plasma interferon-gamma in B cell depleted patients. J Neuroimmunol 2023; 383:578192. [PMID: 37666038 PMCID: PMC10863651 DOI: 10.1016/j.jneuroim.2023.578192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/06/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
Emerging evidence is encouraging and suggests that a substantial proportion of patients without antibody responses (due to anti-CD20 therapy or other etiologies) to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccines develop T cell responses. However, antigen-specific T cellular responses are notoriously difficult to assess clinically, given the lack of such assays under satisfactory CAP/CLIA regulation, and the laborious nature of the flow cytometric assessment. To evaluate the ability to apply a clinically feasible assay to measure T cellular responses to SARS-CoV-2 mRNA vaccination, we compared flow cytometric and enzyme-linked immunosorbent assay (ELISA) based assays in 24 participants treated with anti-CD20 therapy. T cellular activation (CD69 + CD137+ surface expression, i.e., activation induced markers [AIM]) and intracellular interferon gamma (INFγ) production via flow cytometry was compared to plasma Interferon Gamma Release Assay (IGRA) via ELISA. Plasma INFγ production measured by IGRA correlated with the percent of INFγ-producing AIM positive T cells, supporting the use of IGRA assay as a robust assessment of T cellular response to the SARS-CoV-2 vaccine for B-cell depleted patients that is clinically feasible, time efficient, and cost effective.
Collapse
Affiliation(s)
- Tyler L Borko
- Department of Neurology, University of Colorado Anschutz School of Medicine, United States of America
| | - Ryan Baxter
- Department of Immunology & Microbiology, University of Colorado Anschutz School of Medicine, United States of America
| | - Berenice Cabrera-Martinez
- Department of Immunology & Microbiology, University of Colorado Anschutz School of Medicine, United States of America
| | | | - Maite Sabalza
- Scientific Affairs, EUROIMMUN, United States of America
| | | | - Sean Selva
- Department of Neurology, University of Colorado Anschutz School of Medicine, United States of America
| | - Cody Rester
- Department of Immunology & Microbiology, University of Colorado Anschutz School of Medicine, United States of America
| | - Stefan Sillau
- Department of Neurology, University of Colorado Anschutz School of Medicine, United States of America
| | - Daniel M Pastula
- Department of Neurology, University of Colorado Anschutz School of Medicine, United States of America
| | - Jeffrey L Bennett
- Departments of Neurology and Ophthalmology, Programs in Neuroscience and Immunology, University of Colorado Anschutz School of Medicine, United States of America
| | - Enrique Alvarez
- Department of Neurology, University of Colorado Anschutz School of Medicine, United States of America
| | - Robert Gross
- Department of Neurology, University of Colorado Anschutz School of Medicine, United States of America
| | - Anna Shah
- Department of Neurology, University of Colorado Anschutz School of Medicine, United States of America
| | - Ryan Kammeyer
- Department of Neurology, University of Colorado Anschutz School of Medicine, United States of America
| | - John R Corboy
- Department of Neurology, University of Colorado Anschutz School of Medicine, United States of America
| | - Ross M Kedl
- Department of Immunology & Microbiology, University of Colorado Anschutz School of Medicine, United States of America
| | - Elena W Y Hsieh
- Department of Immunology & Microbiology, University of Colorado Anschutz School of Medicine, United States of America; Department of Pediatrics, Section of Allergy and Immunology, University of Colorado Anschutz School of Medicine, United States of America
| | - Amanda L Piquet
- Department of Neurology, University of Colorado Anschutz School of Medicine, United States of America.
| |
Collapse
|
5
|
Mizera D, Dziedzic R, Drynda A, Gradzikiewicz A, Jakieła B, Celińska-Löwenhoff M, Padjas A, Matyja-Bednarczyk A, Zaręba L, Bazan-Socha S. Cellular immune response to SARS-CoV-2 in patients with primary antibody deficiencies. Front Immunol 2023; 14:1275892. [PMID: 37901210 PMCID: PMC10602693 DOI: 10.3389/fimmu.2023.1275892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Primary antibody deficiencies (PAD) are inborn defects of the immune system that result in increased susceptibility to infections. Despite the reduced response to vaccination, PAD patients still benefit from it by reducing the risk of severe infections and complications. SARS-CoV-2 vaccines are recommended in PAD patients, but their immune effects are poorly studied. Here, we analyze virus-specific T-cell responses in PAD patients after booster vaccination against SARS-CoV-2. Patients and methods The study included 57 adult PAD patients on long-term immunoglobulin replacement therapy (IgRT) diagnosed with X-linked agammaglobulinemia (XLA; n = 4), common variable immunodeficiency (CVID; n = 33), isotype defects or IgG subclass deficiency (n = 6), and unclassified IgG deficiency (n = 14). Of those, 49 patients (86%) received vaccination against SARS-CoV-2 using mRNA vaccine (Pfizer-BioNTech). T-cell responses were assessed at a median of 21 (13 - 30) weeks after the booster dose (mainly the third dose) using commercially available interferon-gamma release assay (IGRA) with recombinant SARS-CoV-2 spike S1 protein. Results Vaccinated PAD patients showed an increased (3.8-fold, p = 0.004) release of IFN-γ upon S1 stimulation. In this group, we also documented higher serum levels of anti-SARS-CoV-2 IgG (4.1-fold, p = 0.01), although they were not associated with IGRA results. Further subgroup analysis revealed very similar IGRA responses in CVID and unclassified IgG deficiencies that were 2.4-fold increased compared to XLA and 5.4-fold increased compared to patients with isotype defects or IgG subclass deficiencies (e.g., vs. CVID: p = 0.016). As expected, CVID and XLA patients showed decreased serum titers of anti-SARS-CoV-2 antibodies compared to other studied groups (e.g., CVID vs. unclassified IgG deficiency: 4.4-fold, p = 0.006). The results did not depend directly on IgRT mode or dose, number of vaccine doses and time from the last booster dose, and clinical manifestations of PAD. Interestingly, anti-SARS-CoV-2 titers were positively correlated with serum immunoglobulin levels before IgRT (e.g., for IgA: r = 0.45, p<0.001; for IgG: r = 0.34, p = 0.009) and the percentage of peripheral blood NK cells (r = 0.48, p<0.001). Conclusions Our results documented satisfactory in vitro cellular immune response in PAD patients after booster SARS-CoV-2 vaccination. Therefore, even patients with agammaglobulinemia should benefit from vaccination due to the apparent induction of cell-mediated immunity, which, together with IgRT, grants comprehensive protection against the pathogen.
Collapse
Affiliation(s)
- Dorota Mizera
- Center for Innovative Medical Education, Jagiellonian University Medical College, Kraków, Poland
| | - Radosław Dziedzic
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, Kraków, Poland
- Students’ Scientific Group of Immune Diseases and Hypercoagulation, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Drynda
- Students’ Scientific Group of Immune Diseases and Hypercoagulation, Jagiellonian University Medical College, Kraków, Poland
| | - Ada Gradzikiewicz
- Students’ Scientific Group of Immune Diseases and Hypercoagulation, Jagiellonian University Medical College, Kraków, Poland
| | - Bogdan Jakieła
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | | | - Agnieszka Padjas
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | | | - Lech Zaręba
- College of Natural Sciences, Institute of Computer Science, University of Rzeszow, Rzeszów, Poland
| | - Stanisława Bazan-Socha
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
6
|
Souan L, Abdel-Razeq H, Al Zughbieh M, Al Badr S, Sughayer MA. Comparative Assessment of the Kinetics of Cellular and Humoral Immune Responses to COVID-19 Vaccination in Cancer Patients. Viruses 2023; 15:1439. [PMID: 37515127 PMCID: PMC10383486 DOI: 10.3390/v15071439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVE The kinetics of immune responses to various SARS-CoV-2 vaccines in cancer patients were investigated. METHODS In total, 57 cancer patients who received BNT162b2-RNA or BBIBP-CorV vaccines were enrolled. Cellular and humoral immunity were assessed at three-time points, before the first vaccine dose and 14-21 days after the first and second doses. Chemiluminescent microparticle immunoassay was used to evaluate SARS-CoV-2 anti-spike IgG response, and QuantiFERON® SARS-CoV-2 kit assessed T-cell response. RESULTS Data showed that cancer patients' CD4+ and CD8+ T cell-median IFN-γ secretion of SARS-CoV-2 antigens increased after the first and second vaccine doses (p = 0.027 and p = 0.042). BNT162b2 vaccinees had significantly higher IFN-γ levels to CD4+ and CD8+ T cell epitopes than BBIBP-CorV vaccinees (p = 0.028). There was a positive correlation between IgG antibody titer and T cell response regardless of vaccine type (p < 0.05). CONCLUSIONS This study is one of the first to investigate cellular and humoral immune responses to SARS-CoV-2 immunization in cancer patients on active therapy after each vaccine dose. COVID-19 immunizations helped cancer patients develop an effective immune response. Understanding the cellular and humoral immune response to COVID-19 in cancer patients undergoing active treatment is necessary to improve vaccines and avoid future SARS pandemics.
Collapse
Affiliation(s)
- Lina Souan
- Laboratory Medicine, Department of Pathology, King Hussein Cancer Center, Amman 11941, Jordan
| | | | - Muna Al Zughbieh
- Laboratory Medicine, Department of Pathology, King Hussein Cancer Center, Amman 11941, Jordan
| | - Sara Al Badr
- Laboratory Medicine, Department of Pathology, King Hussein Cancer Center, Amman 11941, Jordan
| | - Maher A Sughayer
- Laboratory Medicine, Department of Pathology, King Hussein Cancer Center, Amman 11941, Jordan
| |
Collapse
|
7
|
Lucane Z, Slisere B, Gersone G, Papirte S, Gailite L, Tretjakovs P, Kurjane N. Cytokine Response Following SARS-CoV-2 Antigen Stimulation in Patients with Predominantly Antibody Deficiencies. Viruses 2023; 15:v15051146. [PMID: 37243231 DOI: 10.3390/v15051146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Predominantly antibody deficiencies (PADs) are inborn disorders characterized by immune dysregulation and increased susceptibility to infections. Response to vaccination, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), may be impaired in these patients, and studies on responsiveness correlates, including cytokine signatures to antigen stimulation, are sparse. In this study, we aimed to describe the spike-specific cytokine response following whole-blood stimulation with SARS-CoV-2 spike peptides in patients with PAD (n = 16 with common variable immunodeficiency and n = 15 with selective IgA deficiency) and its relationship with the occurrence of coronavirus disease 2019 (COVID-19) during up to 10-month follow-up period. Spike-induced antibody and cytokine production was measured using ELISA (anti-spike IgG, IFN-γ) and xMAP technology (interleukin-1β (IL-1β), IL-4, IL-6, IL-10, IL-15, IL-17A, IL-21, TNF-α, TGF-β1). No difference was found in the production of cytokines between patients with PAD and controls. Anti-spike IgG and cytokine levels did not predict contraction of COVID-19. The only cytokine that distinguished between vaccinated and naturally infected unvaccinated PAD patients was IFN-γ (median 0.64 (IQR = 1.08) in vaccinated vs. 0.10 (IQR = 0.28) in unvaccinated). This study describes the spike-specific cytokine response to SARS-CoV-2 antigens, which is not predictive of contracting COVID-19 during the follow-up.
Collapse
Affiliation(s)
- Zane Lucane
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia
| | - Baiba Slisere
- The Joint Laboratory, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
- Department of Internal Diseases, Riga Stradins University, LV-1007 Riga, Latvia
| | - Gita Gersone
- Department of Human Physiology and Biochemistry, Riga Stradins University, LV-1007 Riga, Latvia
| | - Sindija Papirte
- Faculty of Medicine, Riga Stradins University, LV-1007 Riga, Latvia
| | - Linda Gailite
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, LV-1007 Riga, Latvia
| | - Peteris Tretjakovs
- Department of Human Physiology and Biochemistry, Riga Stradins University, LV-1007 Riga, Latvia
| | - Natalja Kurjane
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia
- Outpatient Clinic, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
- Outpatient Clinic, Children's Clinical University Hospital, LV-1004 Riga, Latvia
| |
Collapse
|
8
|
Lim YK, Kweon OJ, Choi Y, Yoon S, Kim TH, Lee MK. Exploring the vaccine-induced immunity against severe acute respiratory syndrome coronavirus 2 in healthcare workers. Sci Rep 2023; 13:6830. [PMID: 37100845 PMCID: PMC10131514 DOI: 10.1038/s41598-023-33397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
We aimed to analyze the kinetics of T-cell-mediated and B-cell-mediated humoral immune responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) before and after booster vaccination, as well as the impacts of the in vitro test results the type of vaccination on the prediction of SARS-CoV-2 infection. A total of 240 healthcare workers vaccinated twice were serially tested using an interferon gamma release assay (IGRA) and a neutralizing antibody (nAb). At the end of the study, we investigated the history of SARS-CoV-2 infection of all the enrolled participants to analyze the effects of the test results and the type of vaccination on SARS-CoV-2 infection. Overall, the positive rates were 52.3% and 80.0% for IGRA and 84.6% and 100% for the nAb test before and after booster vaccination, respectively. However, the positive rates were 52.8% for IGRA and 100% for nAb 3 months after booster vaccination. The in vitro test results and the type of vaccination were not associated with SARS-CoV-2 infection. The antibody response caused by the SARS-CoV-2 vaccination lasted more than 6 months, although the response of the T-cells disappeared rapidly after 3 months. However, these in vitro results and the type of vaccination cannot be used for predicting the risk of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yong Kwan Lim
- Department of Laboratory Medicine, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, Seoul, 06973, South Korea
| | - Oh Joo Kweon
- Department of Laboratory Medicine, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, Seoul, 06973, South Korea
| | - Yoojeong Choi
- Department of Laboratory Medicine, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, Seoul, 06973, South Korea
| | - Sumi Yoon
- Department of Laboratory Medicine, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, Seoul, 06973, South Korea
| | - Tae-Hyoung Kim
- Department of Urology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Mi-Kyung Lee
- Department of Laboratory Medicine, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, Seoul, 06973, South Korea.
| |
Collapse
|
9
|
Evaluation of T cell responses with the QuantiFERON SARS-CoV-2 assay in individuals with 3 doses of BNT162b2 vaccine, SARS-CoV-2 infection, or hybrid immunity. Diagn Microbiol Infect Dis 2023; 106:115948. [PMID: 37094435 PMCID: PMC10060202 DOI: 10.1016/j.diagmicrobio.2023.115948] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/14/2023] [Accepted: 03/26/2023] [Indexed: 04/01/2023]
Abstract
Cellular immunity after SARS-CoV-2 infection or immunization may be important for long-lasting protection against severe COVID-19 disease. We investigated cellular immune responses after SARS-CoV-2 infection and/or vaccination with an interferon-γ release assay (QuantiFERON, QFN), in parallel, with humoral immunity assessment. We recruited 41 participants: unvaccinated convalescent children and adults and vaccinated uninfected or vaccinated convalescent adults. All vaccinated adults had received three doses of the BNT162b2 COVID-19 vaccine at 6.2-10.9 months prior to their inclusion to the study. All the unvaccinated participants were tested negative with QFN. Regarding the vaccinated population, 50%(8/16) of the vaccinated uninfected adults and 57.1%(8/14) of the vaccinated convalescent adults were tested positive. QFN did not detect T cellular responses in unvaccinated individuals and in a significant number of vaccinated individuals. Further comparative studies with different immunoassays are required to elucidate whether this is the result of waning immunity or low sensitivity of the assay.
Collapse
|
10
|
Sabetta E, Noviello M, Sciorati C, Viganò M, De Lorenzo R, Beretta V, Valtolina V, Di Resta C, Banfi G, Ferrari D, Locatelli M, Ciceri F, Bonini C, Rovere-Querini P, Tomaiuolo R. A longitudinal analysis of humoral, T cellular response and influencing factors in a cohort of healthcare workers: Implications for personalized SARS-CoV-2 vaccination strategies. Front Immunol 2023; 14:1130802. [PMID: 36999012 PMCID: PMC10043299 DOI: 10.3389/fimmu.2023.1130802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/22/2023] [Indexed: 03/15/2023] Open
Abstract
IntroductionSARS-CoV-2 mRNA vaccinations elicit both virus-specific humoral and T-cell responses, but a complex interplay of different influencing factors, such as natural immunity, gender, and age, guarantees host protection. The present study aims to assess the immune dynamics of humoral, T-cell response, and influencing factors to stratify individual immunization status up to 10 months after Comirnaty-vaccine administration.MethodsTo this aim, we longitudinally evaluated the magnitude and kinetics of both humoral and T-cell responses by serological tests and enzyme-linked immunospot assay at 5 time points. Furthermore, we compared the course over time of the two branches of adaptive immunity to establish an eventual correlation between adaptive responses. Lastly, we evaluated putative influencing factors collected by an anonymized survey administered to all participants through multiparametric analysis. Among 984 healthcare workers evaluated for humoral immunity, 107 individuals were further analyzed to describe SARS-CoV-2-specific T-cell responses. Participants were divided into 4 age groups: <40 and ≥40 years for men, <48 and ≥48 years for women. Furthermore, results were segregated according to SARS-CoV-2-specific serostatus at baseline.ResultsThe disaggregated evaluation of humoral responses highlighted antibody levels decreased in older subjects. The humoral responses were higher in females than in males (p=0.002) and previously virus-exposed subjects compared to naïve subjects (p<0.001). The vaccination induced a robust SARS-CoV-2 specific T-cell response at early time points in seronegative subjects compared to baseline levels (p<0.0001). However, a contraction was observed 6 months after vaccination in this group (p<0.01). On the other hand, the pre-existing specific T-cell response detected in natural seropositive individuals was longer-lasting than the response of the seronegative subjects, decreasing only 10 months after vaccination. Our data suggest that T-cell reactiveness is poorly impacted by sex and age. Of note, SARS-CoV-2-specific T-cell response was not correlated to the humoral response at any time point.DiscussionThese findings suggest prospects for rescheduling vaccination strategies by considering individual immunization status, personal characteristics, and the appropriate laboratory tests to portray immunity against SARS-CoV-2 accurately. Deepening our knowledge about T and B cell dynamics might optimize the decision-making process in vaccination campaigns, tailoring it to each specific immune response.
Collapse
Affiliation(s)
| | - Maddalena Noviello
- Experimental Hematology Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Cell Therapy Immunomonitoring Laboratory (MITiCi), Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Clara Sciorati
- Innate Immunity and Tissue Remodeling Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Viganò
- Scientific Direction, IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| | | | - Valeria Beretta
- Experimental Hematology Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Cell Therapy Immunomonitoring Laboratory (MITiCi), Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Veronica Valtolina
- Experimental Hematology Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Cell Therapy Immunomonitoring Laboratory (MITiCi), Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Giuseppe Banfi
- Vita-Salute San Raffaele University, Milan, Italy
- Scientific Direction, IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| | | | - Massimo Locatelli
- Laboratory Medicine Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Hematology Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Cell Therapy Immunomonitoring Laboratory (MITiCi), Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Patrizia Rovere-Querini
- Vita-Salute San Raffaele University, Milan, Italy
- Innate Immunity and Tissue Remodeling Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- *Correspondence: Patrizia Rovere-Querini,
| | | |
Collapse
|
11
|
Lim YK, Kweon OJ, Choi Y, Kim TH, Lee MK. Evaluation of ichroma™ COVID-19 interferon gamma release assay for detection of vaccine-induced immunity in healthcare workers. Clin Chem Lab Med 2023; 61:503-509. [PMID: 36476381 DOI: 10.1515/cclm-2022-0914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVES We compared the performance of a new interferon gamma release assay (IGRA) format assay, the ichroma™ COVID-19 IGRA (IGRA-SARS), with that of the widely used QuantiFERON SARS-CoV-2 ELISA kit (QFN-SARS) in vaccinated healthcare workers (HCWs). Additionally, we analyzed the long-term changes in IGRA results after the final vaccine dose. METHODS A total of 383 specimens from 281 HCWs were enrolled in this study, and the results of SARS-IGRA and QFN-SARS assays were compared. In addition, we performed the receive operator curve analysis to estimate the optimal cut-off value for IGRA-SARS. RESULTS For all specimens, IGRA-SARS and QFN-SARS showed 75.7% and 64.2% of the positive results, respectively. The absolute agreement between IGRA-SARS and QFN-SARS was 80.0%, and the Fleiss' κ value was 0.525, indicating moderate agreement. ROC curve analysis of the IGRA-SARS results showed a cut-off value of >0.254 IU/mL, which was consistent with the manufacturer's specifications. The positive rates of both IGRA assays decreased significantly after a postvaccination period of 6 months. CONCLUSIONS IGRA-SARS showed acceptable performance in the detection of vaccine-induced immunity against COVID-19; however, harmonization of IGRA assays has not yet been achieved. Additionally, the significant decline of positive rates of IGRA after the last vaccination would support the necessity of booster vaccination after a postvaccination period of 6 months.
Collapse
Affiliation(s)
- Yong Kwan Lim
- Department of Laboratory Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Oh Joo Kweon
- Department of Laboratory Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Yoojeong Choi
- Department of Laboratory Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Tae-Hyoung Kim
- Department of Urology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Mi-Kyung Lee
- Department of Laboratory Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| |
Collapse
|
12
|
Long-Term Immunological Memory of SARS-CoV-2 Is Present in Patients with Primary Antibody Deficiencies for up to a Year after Vaccination. Vaccines (Basel) 2023; 11:vaccines11020354. [PMID: 36851231 PMCID: PMC9959530 DOI: 10.3390/vaccines11020354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Some studies have found increased coronavirus disease-19 (COVID-19)-related morbidity and mortality in patients with primary antibody deficiencies. Immunization against COVID-19 may, therefore, be particularly important in these patients. However, the durability of the immune response remains unclear in such patients. In this study, we evaluated the cellular and humoral response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens in a cross-sectional study of 32 patients with primary antibody deficiency (n = 17 with common variable immunodeficiency (CVID) and n = 15 with selective IgA deficiency) and 15 healthy controls. Serological and cellular responses were determined using enzyme-linked immunosorbent assay and interferon-gamma release assays. The subsets of B and T lymphocytes were measured using flow cytometry. Of the 32 patients, 28 had completed the vaccination regimen with a median time after vaccination of 173 days (IQR = 142): 27 patients showed a positive spike-peptide-specific antibody response, and 26 patients showed a positive spike-peptide-specific T-cell response. The median level of antibody response in CVID patients (5.47 ratio (IQR = 4.08)) was lower compared to healthy controls (9.43 ratio (IQR = 2.13)). No difference in anti-spike T-cell response was found between the groups. The results of this study indicate that markers of the sustained SARS-CoV-2 spike-specific immune response are detectable several months after vaccination in patients with primary antibody deficiencies comparable to controls.
Collapse
|
13
|
Ning B, Chandra S, Rosen J, Multala E, Argrave M, Pierson L, Trinh I, Simone B, Escarra MD, Drury S, Zwezdaryk KJ, Norton E, Lyon CJ, Hu T. Evaluation of SARS-CoV-2-Specific T-Cell Activation with a Rapid On-Chip IGRA. ACS NANO 2023; 17:1206-1216. [PMID: 36595218 PMCID: PMC9878992 DOI: 10.1021/acsnano.2c09018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Interferon-gamma release assays (IGRAs) that measure pathogen-specific T-cell response rates can provide a more reliable estimate of protection than specific antibody levels but have limited potential for widespread use due to their workflow, personnel, and instrumentation demands. The major vaccines for SARS-CoV-2 have demonstrated substantial efficacy against all of its current variants, but approaches are needed to determine how these vaccines will perform against future variants, as they arise, to inform vaccine and public health policies. Here we describe a rapid, sensitive, nanolayer polylysine-integrated microfluidic chip IGRA read by a fluorescent microscope that has a 5 h sample-to-answer time and uses ∼25 μL of a fingerstick whole blood sample. Results from this assay correlated with those of a comparable clinical IGRA when used to evaluate the T-cell response to SARS-CoV-2 peptides in a population of vaccinated and/or infected individuals. Notably, this streamlined and inexpensive assay is suitable for high-throughput analyses in resource-limited settings for other infectious diseases.
Collapse
Affiliation(s)
- Bo Ning
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Sutapa Chandra
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Juniper Rosen
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Evan Multala
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Melvin Argrave
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Lane Pierson
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Ivy Trinh
- Department
of Microbiology & Immunology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Brittany Simone
- Department
of Physics and Engineering Physics, Tulane
University, New Orleans, Louisiana 70118, United States
| | - Matthew David Escarra
- Department
of Physics and Engineering Physics, Tulane
University, New Orleans, Louisiana 70118, United States
| | - Stacy Drury
- Department
of Psychiatry, Tulane University, New Orleans, Louisiana 70112, United States
- Tulane
Brain
Institute, Tulane University, New Orleans, Louisiana 70112, United States
| | - Kevin J. Zwezdaryk
- Department
of Microbiology & Immunology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Elizabeth Norton
- Department
of Microbiology & Immunology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Christopher J. Lyon
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Tony Hu
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
14
|
Hossain MI, Sarker P, Raqib R, Rahman MZ, Hasan R, Svezia CK, Rahman M, Amin N. Antibody response to different COVID-19 vaccines among the migrant workers of Bangladesh. Front Immunol 2023; 14:1128330. [PMID: 36969162 PMCID: PMC10034009 DOI: 10.3389/fimmu.2023.1128330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/23/2023] [Indexed: 03/29/2023] Open
Abstract
Background Due to the ongoing COVID-19 pandemic, various host countries such as Singapore, imposed entry requirements for migrant workers including pre-departure COVID-19 seroconversion proof. To combat COVID-19 worldwide, several vaccines have acquired conditional approval. This study sought to assess antibody levels after immunization with different COVID-19 vaccines among the migrant workers of Bangladesh. Methods Venous blood samples were collected from migrant workers who were vaccinated with different COVID-19 vaccines (n=675). Antibodies to SARS-CoV-2 spike protein (S) and nucleocapsid protein (N) were determined using Roche Elecsys® Anti-SARS-CoV-2 S and N immunoassay, respectively. Results All participants receiving COVID-19 vaccines showed antibodies to S-protein, while 91.36% were positive for N-specific antibodies. The highest anti-S antibody titers were found among the workers who completed booster doses (13327 U/mL), received mRNA vaccines Moderna/Spikevax (9459 U/mL) or Pfizer-BioNTech/Comirnaty (9181 U/mL), and reported SARS-CoV-2 infection in the last six months (8849 U/mL). The median anti-S antibody titers in the first month since the last vaccination was 8184 U/mL, which declined to 5094 U/mL at the end of six months. A strong correlation of anti-S antibodies was found with past SARS-CoV-2 infection (p < 0.001) and the type of vaccines received (p <0.001) in the workers.Conclusion: Bangladeshi migrant workers receiving booster doses of vaccine, vaccinated with mRNA vaccines, and having past SARS-CoV-2 infection, mounted higher antibody responses. However, antibody levels waned with time. These findings suggest a need for further booster doses, preferably with mRNA vaccines for migrant workers before reaching host countries.
Collapse
Affiliation(s)
- Md. Imam Hossain
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Protim Sarker
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Rubhana Raqib
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Md Ziaur Rahman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Rezaul Hasan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Chloe K. Svezia
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Mahbubur Rahman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Nuhu Amin
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
- Institute for Sustainable Futures, University of Technology Sydney, Ultimo, NSW, Australia
- *Correspondence: Nuhu Amin,
| |
Collapse
|
15
|
Wakui M, Uwamino Y, Yatabe Y, Nakagawa T, Sakai A, Kurafuji T, Shibata A, Tomita Y, Noguchi M, Tanabe A, Arai T, Ohno A, Yokota H, Uno S, Yamasawa W, Sato Y, Ikeda M, Yoshimura A, Hasegawa N, Saya H, Murata M. Assessing anti-SARS-CoV-2 cellular immunity in 571 vaccines by using an IFN-γ release assay. Eur J Immunol 2022; 52:1961-1971. [PMID: 36250411 PMCID: PMC9874394 DOI: 10.1002/eji.202249794] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/23/2022] [Accepted: 10/12/2022] [Indexed: 01/27/2023]
Abstract
Memory T cell responses have been analyzed only in small cohorts of COVID-19 vaccines. Herein, we aimed to assess anti-SARS-CoV-2 cellular immunity in a large cohort using QuantiFERON assays, which are IFN-γ release assays (IGRAs) based on short-term whole blood culture. The study included 571 individuals receiving the viral spike (S) protein-expressing BNT162b2 mRNA vaccine. QuantiFERON assays revealed antigen-specific IFN-γ production in most individuals 8 weeks after the second dose. Simultaneous flow cytometric assays to detect T cells expressing activation-induced markers (AIMs) performed for 28 randomly selected individuals provided data correlating with the QuantiFERON data. Simultaneous IFN-γ enzyme-linked immunospot and AIM assays for another subset of 31 individuals, based on short-term peripheral blood mononuclear cell culture, also indicated a correlation between IFN-γ production and AIM positivity. These observations indicated the acquisition of T cell memory responses and supported the usability of IGRAs to assess cellular immunity. The QuantiFERON results were weakly correlated with serum IgG titers against the receptor-binding domain of the S protein and were associated with pre-vaccination infection and adverse reactions after the second dose. The present study revealed cellular immunity after COVID-19 vaccination, providing insights into the effects and adverse reactions of vaccination.
Collapse
Affiliation(s)
- Masatoshi Wakui
- Department of Laboratory MedicineKeio University School of MedicineShinjuku‐kuTokyoJapan
| | - Yoshifumi Uwamino
- Department of Laboratory MedicineKeio University School of MedicineShinjuku‐kuTokyoJapan,Department of Infectious DiseasesKeio University School of MedicineShinjuku‐kuTokyoJapan
| | - Yoko Yatabe
- Clinical LaboratoryKeio University HospitalShinjuku‐kuTokyoJapan
| | | | - Akiko Sakai
- Clinical LaboratoryKeio University HospitalShinjuku‐kuTokyoJapan
| | | | - Ayako Shibata
- Department of Laboratory MedicineKeio University School of MedicineShinjuku‐kuTokyoJapan
| | - Yukari Tomita
- Department of Laboratory MedicineKeio University School of MedicineShinjuku‐kuTokyoJapan
| | - Masayo Noguchi
- Clinical LaboratoryKeio University HospitalShinjuku‐kuTokyoJapan
| | - Akiko Tanabe
- Clinical LaboratoryKeio University HospitalShinjuku‐kuTokyoJapan
| | - Tomoko Arai
- Clinical LaboratoryKeio University HospitalShinjuku‐kuTokyoJapan
| | - Akemi Ohno
- Clinical LaboratoryKeio University HospitalShinjuku‐kuTokyoJapan
| | - Hiromitsu Yokota
- Clinical LaboratoryKeio University HospitalShinjuku‐kuTokyoJapan
| | - Shunsuke Uno
- Department of Infectious DiseasesKeio University School of MedicineShinjuku‐kuTokyoJapan
| | - Wakako Yamasawa
- Department of Laboratory MedicineKeio University School of MedicineShinjuku‐kuTokyoJapan
| | - Yasunori Sato
- Department of Epidemiology and Preventive MedicineKeio University School of MedicineShinjuku‐kuTokyoJapan
| | - Mari Ikeda
- Department of Microbiology and ImmunologyKeio University School of MedicineShinjuku‐kuTokyoJapan
| | - Akihiko Yoshimura
- Department of Microbiology and ImmunologyKeio University School of MedicineShinjuku‐kuTokyoJapan
| | - Naoki Hasegawa
- Department of Infectious DiseasesKeio University School of MedicineShinjuku‐kuTokyoJapan
| | - Hideyuki Saya
- Division of Gene RegulationInstitute for Advanced Medical ResearchKeio University School of MedicineShinjuku‐kuTokyoJapan
| | - Mitsuru Murata
- Department of Laboratory MedicineKeio University School of MedicineShinjuku‐kuTokyoJapan
| |
Collapse
|
16
|
Comparison of the Immune Responses to COVID-19 Vaccines in Bangladeshi Population. Vaccines (Basel) 2022; 10:vaccines10091498. [PMID: 36146576 PMCID: PMC9504987 DOI: 10.3390/vaccines10091498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The adaptive immune response is a crucial component of the protective immunity against SARS-CoV-2, generated after infection or vaccination. Methods: We studied antibody titers, neutralizing antibodies and cellular immune responses to four different COVID-19 vaccines, namely Pfizer-BioNTech, Moderna Spikevax, AstraZeneca and Sinopharm vaccines in the Bangladeshi population (n = 1780). Results: mRNA vaccines Moderna (14,655 ± 11.3) and Pfizer (13,772 ± 11.5) elicited significantly higher anti-Spike (S) antibody titers compared to the Adenovector vaccine AstraZeneca (2443 ± 12.8) and inactivated vaccine Sinopharm (1150 ± 11.2). SARS-CoV-2-specific neutralizing antibodies as well as IFN-γ-secreting lymphocytes were more abundant in Pfizer and Moderna vaccine recipients compared to AstraZeneca and Sinopharm vaccine recipients. Participants previously infected with SARS-CoV-2 exhibited higher post-vaccine immune responses (S-specific and neutralizing antibodies, IFN-γ-secreting cells) compared to uninfected participants. Memory B (BMEM), total CD8+T, CD4+ central memory (CD4+CM) and T-regulatory (TREG) cells were more numerous in AstraZeneca vaccine recipients compared to other vaccine recipients. Plasmablasts, B-regulatory (BREG) and CD4+ effector (CD4+EFF) cells were more numerous in mRNA vaccine recipients. Conclusions: mRNA vaccines generated a higher antibody response, while a differential cellular response was observed for different vaccine types, suggesting that both cellular and humoral responses are important in immune monitoring of different types of vaccines.
Collapse
|
17
|
Nam M, Yun SG, Kim SW, Kim CG, Cha JH, Lee C, Kang S, Park SG, Kim SB, Lee KB, Chung YS, Nam MH, Lee CK, Cho Y. Humoral and Cellular Immune Responses to Vector, Mix-and-Match, or mRNA Vaccines against SARS-CoV-2 and the Relationship between the Two Immune Responses. Microbiol Spectr 2022; 10:e0249521. [PMID: 35946811 PMCID: PMC9431224 DOI: 10.1128/spectrum.02495-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/17/2022] [Indexed: 01/11/2023] Open
Abstract
We investigated how differences in age, sex, or vaccine type can affect humoral and cellular immune responses after vaccination with vector (ChAdOx1 nCoV-19), mix-and-match (first, ChAdOx1 nCoV-19, and second, BNT162b2), or mRNA (BNT162b2 or mRNA-1273) vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Venous blood was collected from 573 subjects (vector, 396; mix-and-match, 96; and mRNA, 81) before the first vaccination (T0), 7 to 8 weeks (vector) or 3 to 4 weeks (mRNA) after the first vaccination (T1), and 3 to 4 weeks after the second vaccination (T2). The humoral and cellular immune responses were evaluated using Elecsys anti-SARS-CoV-2 (Roche), Alinity SARS-CoV-2 IgG II Quant (Abbott), cPass SARS-CoV-2 neutralization antibody detection (GenScript), and QuantiFERON SARS-CoV-2 (Qiagen) kits. At T1, the levels of the receptor-binding domain antibodies (RBD Ab) and neutralizing antibodies (NAb) decreased with aging, but interferon gamma release (IGR) levels increased. The RBD Ab, NAb, and IGR levels were higher in females than in males at T1 and T2. The NAb levels were higher in the mix-and-match and mRNA vaccine groups than in the vector vaccine group at T2. The RBD Ab and IGR levels were higher in the mRNA vaccine group than in the vector or mix-and-match vaccine groups at T2. The optimal cutoffs for RBD Ab and NAb, which were used to determine the presence of T cell responses, were 5.7 binding antibody units per milliliter (BAU mL-1) and 12.0 IU mL-1, respectively. Age, sex, and vaccine type affected the humoral and cellular immune responses, and T cell responses could be estimated from RBD Ab and NAb levels. IMPORTANCE There have been few studies that comprehensively evaluated factors affecting immune responses and the correlation between humoral and cellular immune responses after vector, mix-and-match, and mRNA vaccines against SARS-CoV-2. Therefore, we analyzed the effects of age, sex, and the different vaccine regimens on the immune responses to vaccination against SARS-CoV-2. The correlation between humoral and cellular immune responses and the cutoffs were derived for RBD antibodies and neutralizing antibodies to predict the presence of the cellular immune responses. In this comprehensive study, we demonstrated that there were differences in the immune responses induced after vaccination depending on the age and sex of an individual. Among the three vaccine regimens, the mix-and-match and mRNA vaccines induced the most robust immune responses. Finally, the proposed optimal cutoffs for RBD and neutralizing antibodies may be useful for predicting cellular immune responses when assays for cellular immune responses are not available.
Collapse
Affiliation(s)
- Minjeong Nam
- Department of Laboratory Medicine, Korea University College of Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - Seung Gyu Yun
- Department of Laboratory Medicine, Korea University College of Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - Sang-wook Kim
- Gyeryong City Health, Gyeryong-si, Chungcheongnam-do, South Korea
| | - Chris Gunwoo Kim
- Department of Laboratory Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - Jae Hyun Cha
- Department of Laboratory Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - Cheonghwa Lee
- Department of Laboratory Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - Seunghyuk Kang
- Department of Laboratory Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - Seul Gi Park
- Department of Laboratory Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - Sun Bean Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - Ki-Byung Lee
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - You-Seung Chung
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - Myung-Hyun Nam
- Department of Laboratory Medicine, Korea University College of Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - Chang Kyu Lee
- Department of Laboratory Medicine, Korea University College of Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - Yunjung Cho
- Department of Laboratory Medicine, Korea University College of Medicine, Korea University Anam Hospital, Seoul, South Korea
| |
Collapse
|
18
|
T-Cell Assay after COVID-19 Vaccination Could Be a Useful Tool? A Pilot Study on Interferon-Gamma Release Assay in Healthcare Workers. Diseases 2022; 10:diseases10030049. [PMID: 35997354 PMCID: PMC9396988 DOI: 10.3390/diseases10030049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
Background: SARS-CoV-2 T-cells are crucial for long-term protection against reinfection. The aim was to demonstrate the Interferon-gamma Release Assay (IGRA) test could be useful for vaccination monitoring. Methods: In a prospective cohort of 98 vaccinated healthcare workers for SARS-CoV-2, we selected 23 people in low-antibodies (Group 1, N = 8), high-antibodies (Group 2, N = 9), and negative control groups (Group 3, N = 6). SARS-CoV-2-specific humoral and cellular responses were analyzed at 8 months after two doses of Pfizer BioNTech, evaluating anti-RBD (Receptor Binding Domain) and RBD-ACE2 (Angiotensin Converting Enzyme-2) blocking antibodies in sera through a Chemiluminescence Immunoassay (CLIA) and T-cells through the IGRA test in heparinized plasma. Moreover, lymphocyte subtyping was executed by a flow cytometer. Statistical analysis was performed. Results: The data confirmed that RBD and RBD-ACE2 blocking ACE2 antibody levels of Group 1 were significantly lower than Group 2; p < 0.001. However, T-cells showed no significant difference between Group 1 and Group 2. Conclusions: This work suggests the need for new strategies for booster doses administration.
Collapse
|
19
|
Yu ED, Wang E, Garrigan E, Goodwin B, Sutherland A, Tarke A, Chang J, Gálvez RI, Mateus J, Ramirez SI, Rawlings SA, Smith DM, Filaci G, Frazier A, Weiskopf D, Dan JM, Crotty S, Grifoni A, Sette A, da Silva Antunes R. Development of a T cell-based immunodiagnostic system to effectively distinguish SARS-CoV-2 infection and COVID-19 vaccination status. Cell Host Microbe 2022; 30:388-399.e3. [PMID: 35172129 PMCID: PMC8824221 DOI: 10.1016/j.chom.2022.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/16/2022] [Accepted: 02/02/2022] [Indexed: 11/18/2022]
Abstract
Both SARS-CoV-2 infections and COVID-19 vaccines elicit memory T cell responses. Here, we report the development of 2 pools of experimentally defined SARS-CoV-2 T cell epitopes that, in combination with spike, were used to discriminate 4 groups of subjects with different SARS-CoV-2 infection and COVID-19 vaccine status. The overall T cell-based classification accuracy was 89.2% and 88.5% in the experimental and validation cohorts. This scheme was applicable to different mRNA vaccines and different lengths of time post infection/post vaccination and yielded increased accuracy when compared to serological readouts. T cell responses from breakthrough infections were also studied and effectively segregated from vaccine responses, with a combined performance of 86.6% across all 239 subjects from the 5 groups. We anticipate that a T cell-based immunodiagnostic scheme to classify subjects based on their vaccination and natural infection history will be an important tool for longitudinal monitoring of vaccinations and for establishing SARS-CoV-2 correlates of protection.
Collapse
Affiliation(s)
- Esther Dawen Yu
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Eric Wang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Emily Garrigan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Benjamin Goodwin
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Aaron Sutherland
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Alison Tarke
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Internal Medicine and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa 16132, Italy
| | - James Chang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Rosa Isela Gálvez
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Jose Mateus
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Sydney I Ramirez
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA UC92037, USA
| | - Stephen A Rawlings
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA UC92037, USA
| | - Davey M Smith
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA UC92037, USA
| | - Gilberto Filaci
- Department of Internal Medicine and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa 16132, Italy; Bioterapy Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - April Frazier
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Jennifer M Dan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA UC92037, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA UC92037, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA UC92037, USA.
| | - Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.
| |
Collapse
|
20
|
Performance comparison of a flow cytometry immunoassay for intracellular cytokine staining and the QuantiFERON® SARS-CoV-2 test for detection and quantification of SARS-CoV-2-Spike-reactive-IFN-γ-producing T cells after COVID-19 vaccination. Eur J Clin Microbiol Infect Dis 2022; 41:657-662. [PMID: 35165804 PMCID: PMC8853233 DOI: 10.1007/s10096-022-04422-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/08/2022] [Indexed: 11/20/2022]
Abstract
Purpose We compared the performance of an in-house-developed flow cytometry assay for intracellular cytokine staining (FC-ICS) and a commercially-available cytokine release assay (the QuantiFERON® SARS-CoV-2 Test [QF]) for detection and quantification of SARS-CoV-2-Spike (S)-reactive-IFN-γ-producing T cells after COVID-19 vaccination. Patients and methods The sample included 141 individuals (all male; median age, 42 years; 20–72) who had been fully vaccinated with the Comirnaty® COVID-19 vaccine (at a median of 114 days; 34–145). Prior to vaccination, 91 were categorized as being SARS-CoV-2-naïve and 50 as SARS-CoV-2-experienced. A whole blood-based FC-ICS using 15-mer overlapping peptides encompassing the entire SARS-CoV-2 S protein was used for enumeration of virus-specific IFN-γ-producing CD4+ and CD8+ T cells. The QF test (Ag1 for CD4+ T cells and Ag2 for CD4+ and CD8+ T cells in combination) was carried out following the manufacturer’s instructions. Results The FC-ICS and the QF assays returned significantly discordant qualitative results in both the entire cohort (P<0.001 with QF Ag1 and QF Ag2) and in SARS-CoV-2-naïve participants alone (P=0.005 and P=0.01, respectively). Discrepant results mostly involved FC-ICS positive/QF negative specimens. Overall, no correlation was found either between SARS-CoV-2 IFN-γ- CD4+ T-cell frequencies and IFN-γ levels measured in the QF Ag1 tube (P=0.78) or between the sum of SARS-CoV-2 IFN-γ CD4+ and CD8+ T-cell frequencies and IFN-γ levels quantified in the QF Ag2 tube. Conclusion The data suggest a greater sensitivity for the FC-ICS assay than the QF test, and urge caution when comparing SARS-CoV-2 T-cell immune responses assessed using different analytical platforms. Supplementary Information The online version contains supplementary material available at 10.1007/s10096-022-04422-7.
Collapse
|
21
|
Hassan R, Mohammed S. Impact of previous infection and body mass index on interferon-gamma and immunoglobulin G level generated against three types of vaccines available in Iraq. BIOMEDICAL AND BIOTECHNOLOGY RESEARCH JOURNAL (BBRJ) 2022. [DOI: 10.4103/bbrj.bbrj_291_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|