1
|
Cheng C. Tissue, cellular, and molecular level determinants for eye lens stiffness and elasticity. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1456474. [PMID: 39176256 PMCID: PMC11339033 DOI: 10.3389/fopht.2024.1456474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024]
Abstract
The eye lens is a transparent, ellipsoid tissue in the anterior chamber that is required for the fine focusing of light onto the retina to transmit a clear image. The focusing function of the lens is tied to tissue transparency, refractive index, and biomechanical properties. The stiffness and elasticity or resilience of the human lens allows for shape changes during accommodation to focus light from objects near and far. It has long been hypothesized that changes in lens biomechanical properties with age lead to the loss of accommodative ability and the need for reading glasses with age. However, the cellular and molecular mechanisms that influence lens biomechanical properties and/or change with age remain unclear. Studies of lens stiffness and resilience in mouse models with genetic defects or at advanced age inform us of the cytoskeletal, structural, and morphometric parameters that are important for biomechanical stability. In this review, we will explore whether: 1) tissue level changes, including the capsule, lens volume, and nucleus volume, 2) cellular level alterations, including cell packing, suture organization, and complex membrane interdigitations, and 3) molecular scale modifications, including the F-actin and intermediate filament networks, protein modifications, lipids in the cell membrane, and hydrostatic pressure, influence overall lens biomechanical properties.
Collapse
Affiliation(s)
- Catherine Cheng
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN, United States
| |
Collapse
|
2
|
Petrova RS, Francis N, Schey KL, Donaldson PJ. Verification of the gene and protein expression of the aquaglyceroporin AQP3 in the mammalian lens. Exp Eye Res 2024; 240:109828. [PMID: 38354944 DOI: 10.1016/j.exer.2024.109828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Transport of water is critical for maintaining the transparency of the avascular lens, and the lens is known to express at least five distinctly different water channels from the Aquaporin (AQP) family of proteins. In this study we report on the identification of a sixth lens AQP, AQP3 an aquaglyceroporin, which in addition to water also transports glycerol and H2O2. AQP3 was identified at the transcript level and protein levels using RT-PCR and Western blotting, respectively, in the mouse, rat, bovine and human lens, showing that its expression is conserved in the mammalian lens. Western blotting showed AQP3 in the lens exists as 25 kDa non-glycosylated and 37 kDa glycosylated monomeric forms in all lens species. To identify the regions in the lens where AQP3 is expressed Western blotting was repeated using epithelial, outer cortical and inner cortical/core fractions isolated from the mouse lens. AQP3 was found in all lens regions, with the highest signal of non-glycosylated AQP3 being found in the epithelium. While in the inner cortex/core region AQP3 signal was not only lower but was predominately from the glycosylated form of AQP3. Immunolabelling of lens sections with AQP3 antibodies confirmed that AQP3 is found in all regions of the adult mouse, and also revealed that the subcellular distribution of AQP3 changes as a function of fiber cell differentiation. In epithelial and peripheral fiber cells of the outer cortex AQP3 labelling was predominately associated with membrane vesicles in the cytoplasm, but in the deeper regions of the lens AQP3 labelling was associated with the plasma membranes of fiber cells located in the inner cortex and core of the lens. To determine how this adult pattern of AQP3 subcellular distribution was established, immunolabelling for AQP3 was performed on embryonic and postnatal lenses. AQP3 expression was first detected on embryonic day (E) 11 in the membranes of primary fiber cells that have started to elongate and fill the lumen of the lens vesicle, while later at E16 the AQP3 labelling in the primary fiber cells had shifted to a predominately cytoplasmic location. In the following postnatal (P) stages of lens growth at P3 and P6, AQP3 labelling remained cytoplasmic across all regions of the lens and it was not until P15 when the pattern of localisation of AQP3 changed to an adult distribution with cytoplasmic labelling detected in the outer cortex and membrane localisation detected in the inner cortex and core of the lens. Comparison of the AQP3 labelling pattern to those obtained previously for AQP0 and AQP5 showed that the subcellular distribution was more similar to AQP5 than AQP0, but there were still significant differences that suggest AQP3 may have unique roles in the maintenance of lens transparency.
Collapse
Affiliation(s)
- Rosica S Petrova
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Nishanth Francis
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kevin L Schey
- Department of Biochemistry, Mass Spectrometry Research Centre, Vanderbilt University, Nashville, 37232, TN, USA
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Regulation of lens water content: Effects on the physiological optics of the lens. Prog Retin Eye Res 2022:101152. [DOI: 10.1016/j.preteyeres.2022.101152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/09/2022]
|
4
|
Hale OJ, Cooper HJ. Native Ambient Mass Spectrometry of an Intact Membrane Protein Assembly and Soluble Protein Assemblies Directly from Lens Tissue. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202201458. [PMID: 38505128 PMCID: PMC10946450 DOI: 10.1002/ange.202201458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 12/16/2022]
Abstract
Membrane proteins constitute around two-thirds of therapeutic targets but present a significant challenge for structural analysis due to their low abundance and solubility. Existing methods for structural analysis rely on over-expression and/or purification of the membrane protein, thus removing any links back to actual physiological environment. Here, we demonstrate mass spectrometry analysis of an intact oligomeric membrane protein directly from tissue. Aquaporin-0 exists as a 113 kDa tetramer, with each subunit featuring six transmembrane helices. We report the characterisation of the intact assembly directly from a section of sheep eye lens without sample pre-treatment. Protein identity was confirmed by mass measurement of the tetramer and subunits, together with top-down mass spectrometry, and the spatial distribution was determined by mass spectrometry imaging. Our approach allows simultaneous analysis of soluble protein assemblies in the tissue.
Collapse
Affiliation(s)
- Oliver J. Hale
- School of BiosciencesUniversity of BirminghamEdgbastonB15 2TTUK
| | - Helen J. Cooper
- School of BiosciencesUniversity of BirminghamEdgbastonB15 2TTUK
| |
Collapse
|
5
|
Hale OJ, Cooper HJ. Native Ambient Mass Spectrometry of an Intact Membrane Protein Assembly and Soluble Protein Assemblies Directly from Lens Tissue. Angew Chem Int Ed Engl 2022; 61:e202201458. [PMID: 35665580 PMCID: PMC9401010 DOI: 10.1002/anie.202201458] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 11/16/2022]
Abstract
Membrane proteins constitute around two-thirds of therapeutic targets but present a significant challenge for structural analysis due to their low abundance and solubility. Existing methods for structural analysis rely on over-expression and/or purification of the membrane protein, thus removing any links back to actual physiological environment. Here, we demonstrate mass spectrometry analysis of an intact oligomeric membrane protein directly from tissue. Aquaporin-0 exists as a 113 kDa tetramer, with each subunit featuring six transmembrane helices. We report the characterisation of the intact assembly directly from a section of sheep eye lens without sample pre-treatment. Protein identity was confirmed by mass measurement of the tetramer and subunits, together with top-down mass spectrometry, and the spatial distribution was determined by mass spectrometry imaging. Our approach allows simultaneous analysis of soluble protein assemblies in the tissue.
Collapse
Affiliation(s)
- Oliver J. Hale
- School of BiosciencesUniversity of BirminghamEdgbastonB15 2TTUK
| | - Helen J. Cooper
- School of BiosciencesUniversity of BirminghamEdgbastonB15 2TTUK
| |
Collapse
|
6
|
Schey KL, Gletten RB, O’Neale CVT, Wang Z, Petrova RS, Donaldson PJ. Lens Aquaporins in Health and Disease: Location is Everything! Front Physiol 2022; 13:882550. [PMID: 35514349 PMCID: PMC9062079 DOI: 10.3389/fphys.2022.882550] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/23/2022] [Indexed: 01/07/2023] Open
Abstract
Cataract and presbyopia are the leading cause of vision loss and impaired vision, respectively, worldwide. Changes in lens biochemistry and physiology with age are responsible for vision impairment, yet the specific molecular changes that underpin such changes are not entirely understood. In order to preserve transparency over decades of life, the lens establishes and maintains a microcirculation system (MCS) that, through spatially localized ion pumps, induces circulation of water and nutrients into (influx) and metabolites out of (outflow and efflux) the lens. Aquaporins (AQPs) are predicted to play important roles in the establishment and maintenance of local and global water flow throughout the lens. This review discusses the structure and function of lens AQPs and, importantly, their spatial localization that is likely key to proper water flow through the MCS. Moreover, age-related changes are detailed and their predicted effects on the MCS are discussed leading to an updated MCS model. Lastly, the potential therapeutic targeting of AQPs for prevention or treatment of cataract and presbyopia is discussed.
Collapse
Affiliation(s)
- Kevin L. Schey
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN, United States,*Correspondence: Kevin L. Schey,
| | - Romell B. Gletten
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Carla V. T. O’Neale
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Zhen Wang
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Rosica S. Petrova
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Paul J. Donaldson
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Li Z, Quan Y, Gu S, Jiang JX. Beyond the Channels: Adhesion Functions of Aquaporin 0 and Connexin 50 in Lens Development. Front Cell Dev Biol 2022; 10:866980. [PMID: 35465319 PMCID: PMC9022433 DOI: 10.3389/fcell.2022.866980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
Lens, an avascular tissue involved in light transmission, generates an internal microcirculatory system to promote ion and fluid circulation, thus providing nutrients to internal lens cells and excreting the waste. This unique system makes up for the lack of vasculature and distinctively maintains lens homeostasis and lens fiber cell survival through channels of connexins and other transporters. Aquaporins (AQP) and connexins (Cx) comprise the majority of channels in the lens microcirculation system and are, thus, essential for lens development and transparency. Mutations of AQPs and Cxs result in abnormal channel function and cataract formation. Interestingly, in the last decade or so, increasing evidence has emerged suggesting that in addition to their well-established channel functions, AQP0 and Cx50 play pivotal roles through channel-independent actions in lens development and transparency. Specifically, AQP0 and Cx50 have been shown to have a unique cell adhesion function that mediates lens development and transparency. Precise regulation of cell-matrix and cell-cell adhesion is necessary for cell migration, a critical process during lens development. This review will provide recent advances in basic research of cell adhesion mediated by AQP0 and Cx50.
Collapse
Affiliation(s)
- Zhen Li
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yumeng Quan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| |
Collapse
|
8
|
Cheng C, Gao J, Sun X, Mathias RT. Eph-ephrin Signaling Affects Eye Lens Fiber Cell Intracellular Voltage and Membrane Conductance. Front Physiol 2021; 12:772276. [PMID: 34899394 PMCID: PMC8656704 DOI: 10.3389/fphys.2021.772276] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/27/2021] [Indexed: 01/07/2023] Open
Abstract
The avascular eye lens generates its own microcirculation that is required for maintaining lifelong lens transparency. The microcirculation relies on sodium ion flux, an extensive network of gap junction (GJ) plaques between lens fiber cells and transmembrane water channels. Disruption of connexin proteins, the building blocks of GJs, or aquaporins, which make up water and adhesion channels, lead to lens opacification or cataracts. Recent studies have revealed that disruption of Eph-ephrin signaling, in particular the receptor EphA2 and the ligand ephrin-A5, in humans and mice lead to congenital and age-related cataracts. We investigated whether changes in lens transparency in EphA2 or ephrin-A5 knockout (–/–) mice is related to changes in GJ coupling and lens fluid and ion homeostasis. Immunostaining revealed changes in connexin 50 (Cx50) subcellular localization in EphA2–/– peripheral lens fibers and alteration in aquaporin 0 (Aqp0) staining patterns in ephrin-A5–/– and EphA2–/– inner mature fiber cells. Surprisingly, there was no obvious change in GJ coupling in knockout lenses. However, there were changes in fiber cell membrane conductance and intracellular voltage in knockout lenses from 3-month-old mice. These knockout lenses displayed decreased conductance of mature fiber membranes and were hyperpolarized compared to control lenses. This is the first demonstration that the membrane conductance of lens fibers can be regulated. Together these data suggest that EphA2 may be needed for normal Cx50 localization to the cell membrane and that conductance of lens fiber cells requires normal Eph-ephrin signaling and water channel localization.
Collapse
Affiliation(s)
- Catherine Cheng
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN, United States
| | - Junyuan Gao
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, NY, United States
| | - Xiurong Sun
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, NY, United States
| | - Richard T Mathias
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, NY, United States
| |
Collapse
|
9
|
Wang Z, Cantrell LS, Schey KL. Spatially Resolved Proteomic Analysis of the Lens Extracellular Diffusion Barrier. Invest Ophthalmol Vis Sci 2021; 62:25. [PMID: 34554179 PMCID: PMC8475287 DOI: 10.1167/iovs.62.12.25] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/05/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose The presence of a physical barrier to molecular diffusion through lenticular extracellular space has been repeatedly detected. This extracellular diffusion barrier has been proposed to restrict the movement of solutes into the lens and to direct nutrients into the lens core via the sutures at both poles. The purpose of this study is to characterize the molecular components that could contribute to the formation of this barrier. Methods Three distinct regions in the bovine lens cortex were captured by laser capture microdissection guided by dye penetration. Proteins were digested by Lys C and trypsin. Mass spectrometry-based proteomic analysis followed by gene ontology and protein interaction network analysis was performed. Results Dye penetration showed that fiber cells first shrink the extracellular spaces of the broad sides followed by closure of the extracellular space between narrow sides at a normalized lens distance (r/a) of 0.9. Accompanying the closure of extracellular space of the broad sides, dramatic proteomic changes were detected, including upregulation of several cell junctional proteins. AQP0 and its interacting partners, Ezrin and Radixin, were among a few proteins that were upregulated, accompanying the closure of extracellular space of the narrow sides, suggesting a particularly important role for AQP0 in controlling the narrowing of the extracellular spaces between fiber cells. The results also provided important information related to biological processes that occur during fiber cell differentiation such as organelle degradation, cytoskeletal remodeling, and glutathione synthesis. Conclusions The formation of a lens extracellular diffusion barrier is accompanied by significant membrane and cytoskeletal protein remodeling.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
| | - Lee S. Cantrell
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
| | - Kevin L. Schey
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
10
|
Wang K, Vorontsova I, Hoshino M, Uesugi K, Yagi N, Hall JE, Schilling TF, Pierscionek BK. Aquaporins Have Regional Functions in Development of Refractive Index in the Zebrafish Eye Lens. Invest Ophthalmol Vis Sci 2021; 62:23. [PMID: 33724295 PMCID: PMC7980049 DOI: 10.1167/iovs.62.3.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose In the eye lens, cytosolic protein concentrations increase progressively from the periphery to the center, contributing to the gradient of refractive index (GRIN). Aquaporins are membrane proteins of lens fiber cells that regulate water transport and adhesion and interact with cytoskeletal proteins. This study investigates how these membrane proteins contribute to proper development of the lens GRIN. Methods Loss-of-function deletions of aqp0a and/or aqp0b in zebrafish were generated using CRISPR/Cas9 gene editing. Lenses of single aqp0a−/− mutants, single aqp0b−/− mutants, and double aqp0a−/−/aqp0b−/− mutants from larval to elderly adult stages were measured using x-ray Talbot interferometry at SPring8 in Japan. The three-dimensional GRIN profiles in two orthogonal cross-sectional planes of each lens were analyzed and compared with in vivo images and previous results obtained from wild-type lenses. Results Single aqp0a−/− mutants tended to show asymmetric GRIN profiles, with the central plateau regions shifted anteriorly. Single aqp0b−/− mutants had smooth, symmetric GRIN profiles throughout development until spoke opacities appeared in several extremely old samples. Double aqp0a−/−/aqp0b−/− mutants showed lower magnitude GRIN profiles, as well as dips in the central plateau region. Conclusions These findings suggest that Aqp0a and Aqp0b have region-specific functions in the lens: Aqp0a is active peripherally, regulating centralization of the plateau region, and this function cannot be compensated for by Aqp0b. In the lens center, either Aqp0a or Aqp0b is required for formation of the plateau region, as well as for the GRIN to reach its maximum magnitude in mature lenses.
Collapse
Affiliation(s)
- Kehao Wang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Irene Vorontsova
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California, United States.,Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States
| | - Masato Hoshino
- Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Kentaro Uesugi
- Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Naoto Yagi
- Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - James Ewbank Hall
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California, United States
| | - Thomas Friedrich Schilling
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States
| | - Barbara Krystyna Pierscionek
- School of Life Sciences and Education, Staffordshire University, Stoke-on-Trent, United Kingdom.,Faculty of Health, Education, Medicine and Social Care, Chelmsford Campus, Anglia Ruskin University, United Kingdom
| |
Collapse
|
11
|
Petrova RS, Bavana N, Zhao R, Schey KL, Donaldson PJ. Changes to Zonular Tension Alters the Subcellular Distribution of AQP5 in Regions of Influx and Efflux of Water in the Rat Lens. Invest Ophthalmol Vis Sci 2020; 61:36. [PMID: 32945844 PMCID: PMC7509773 DOI: 10.1167/iovs.61.11.36] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/20/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose The lens uses circulating fluxes of ions and water that enter the lens at both poles and exit at the equator to maintain its optical properties. We have mapped the subcellular distribution of the lens aquaporins (AQP0, AQP1, and AQP5) in these water influx and efflux zones and investigated how their membrane location is affected by changes in tension applied to the lens by the zonules. Methods Immunohistochemistry using AQP antibodies was performed on axial sections obtained from rat lenses that had been removed from the eye and then fixed or were fixed in situ to maintain zonular tension. Zonular tension was pharmacologically modulated by applying either tropicamide (increased) or pilocarpine (decreased). AQP labeling was visualized using confocal microscopy. Results Modulation of zonular tension had no effect on AQP1 or AQP0 labeling in either the water efflux or influx zones. In contrast, AQP5 labeling changed from membranous to cytoplasmic in response to both mechanical and pharmacologically induced reductions in zonular tension in both the efflux zone and anterior (but not posterior) influx zone associated with the lens sutures. Conclusions Altering zonular tension dynamically regulates the membrane trafficking of AQP5 in the efflux and anterior influx zones to potentially change the magnitude of circulating water fluxes in the lens.
Collapse
Affiliation(s)
- Rosica S. Petrova
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Nandini Bavana
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Rusin Zhao
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Kevin L. Schey
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, United States
| | - Paul J. Donaldson
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Wang Z, Ryan DJ, Schey KL. Localization of the lens intermediate filament switch by imaging mass spectrometry. Exp Eye Res 2020; 198:108134. [PMID: 32682822 PMCID: PMC7508834 DOI: 10.1016/j.exer.2020.108134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/07/2020] [Accepted: 06/29/2020] [Indexed: 01/18/2023]
Abstract
Imaging mass spectrometry (IMS) enables targeted and untargeted visualization of the spatial localization of molecules in tissues with great specificity. The lens is a unique tissue that contains fiber cells corresponding to various stages of differentiation that are packed in a highly spatial order. The application of IMS to lens tissue localizes molecular features that are spatially related to the fiber cell organization. Such spatially resolved molecular information assists our understanding of lens structure and physiology; however, protein IMS studies are typically limited to abundant, soluble, low molecular weight proteins. In this study, a method was developed for imaging low solubility cytoskeletal proteins in the lens; a tissue that is filled with high concentrations of soluble crystallins. Optimized tissue washes combined with on-tissue enzymatic digestion allowed successful imaging of peptides corresponding to known lens cytoskeletal proteins. The resulting peptide signals facilitated segmentation of the bovine lens into molecularly distinct regions. A sharp intermediate filament transition from vimentin to lens-specific beaded filament proteins was detected in the lens cortex. MALDI IMS also revealed the region where posttranslational myristoylation of filensin occurs and the results indicate that truncation and myristoylation of filensin starts soon after filensin expression increased in the inner cortex. From intermediate filament switch to filensin truncation and myristoylation, multiple remarkable changes occur in the narrow region of lens cortex. MALDI images delineated the boundaries of distinct lens regions that will guide further proteomic and interactomic studies.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Daniel J Ryan
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
13
|
Gu S, Biswas S, Rodriguez L, Li Z, Li Y, Riquelme MA, Shi W, Wang K, White TW, Reilly M, Lo WK, Jiang JX. Connexin 50 and AQP0 are Essential in Maintaining Organization and Integrity of Lens Fibers. Invest Ophthalmol Vis Sci 2020; 60:4021-4032. [PMID: 31560767 PMCID: PMC6779290 DOI: 10.1167/iovs.18-26270] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Purpose Connexins and aquaporins play essential roles in maintaining lens homeostasis and transparency and there is a close physical and functional relationship between these two proteins. Aquaporin 0 (AQP0), in addition to its role in water transport in the lens, acts as a cell-cell adhesion molecule. Recently, we showed a new role of connexin (Cx) 50 in mediating cell-cell adhesion. However, the cooperative roles of these two proteins in the lens in vivo have not been reported. Methods We generated an AQP0/Cx50 double knockout (dKO) mouse model. Light, fluorescence, transmission thin section, and freeze-fracture electron microscopy, as well as wheat germ agglutinin and phalloidin labeling were used to evaluate lens structure. Mechanical properties of lenses were determined by mechanical compression testing. Results DKO mice exhibited small eyes and lenses with severe cataracts, along with lens posterior defects, including posterior capsule rupture. The dKO mouse lenses had severe structural disruption associated with increased spaces between lens fiber cells when compared with wild-type lenses or lenses deficient in either Cx50 or AQP0. DKO mice also exhibited greater reduction in lens size compared with Cx50 KO mice. Gap-junction plaque size was greatly decreased in cortical fiber cells in dKO mice. Moreover, lens stiffness and elasticity were completely diminished, exhibiting a gelatinous texture in adult dKO mice. Conclusions This novel mouse model reveals that Cx50 and AQP0 play an important role in mediating cell-cell adhesion function in the lens fiber cells and their deficiency impairs lens fiber organization, integrity, mechanical properties, and lens development.
Collapse
Affiliation(s)
- Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, United States
| | - Sondip Biswas
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States
| | - Luis Rodriguez
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, United States
| | - Zhen Li
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, United States
| | - Yuting Li
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, United States
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, United States
| | - Wen Shi
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, United States.,The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ke Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, United States
| | - Thomas W White
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, United States
| | - Matthew Reilly
- Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus, Ohio, United States
| | - Woo-Kuen Lo
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, United States
| |
Collapse
|
14
|
Black JM, Jacobs RJ, Phillips JR, Acosta ML. The changing scope of Optometry in New Zealand: historical perspectives, current practice and research advances. J R Soc N Z 2019. [DOI: 10.1080/03036758.2019.1587476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Joanna M. Black
- School of Optometry and Vision Science, The University of Auckland, Auckland, New Zealand
| | - Robert J. Jacobs
- School of Optometry and Vision Science, The University of Auckland, Auckland, New Zealand
| | - John R. Phillips
- School of Optometry and Vision Science, The University of Auckland, Auckland, New Zealand
| | - Monica L. Acosta
- School of Optometry and Vision Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Vorontsova I, Gehring I, Hall JE, Schilling TF. Aqp0a Regulates Suture Stability in the Zebrafish Lens. Invest Ophthalmol Vis Sci 2019; 59:2869-2879. [PMID: 30025131 PMCID: PMC5987579 DOI: 10.1167/iovs.18-24044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose To investigate the roles of Aquaporin 0a (Aqp0a) and Aqp0b in zebrafish lens development and transparency. Methods CRISPR/Cas9 gene editing was used to generate loss-of-function deletions in zebrafish aqp0a and/or aqp0b. Wild type (WT), single mutant, and double mutant lenses were analyzed from embryonic to adult stages. Lens transparency, morphology, and growth were assessed. Immunohistochemistry was used to map protein localization as well as to assess tissue organization and distribution of cell nuclei. Results aqp0a−/− and/or aqp0b−/− cause embryonic cataracts with variable penetrance. While lenses of single mutants of either gene recover transparency in juveniles, double mutants consistently form dense cataracts that persist in adults, indicating partially redundant functions. Double mutants also reveal redundant Aqp0 functions in lens growth. The nucleus of WT lenses moves from the anterior pole to the lens center with age. In aqp0a−/− mutants, the nucleus fails to centralize as it does in WT or aqp0b−/− lenses, and in double mutant lenses there is no consistent lens nuclear position. In addition, the anterior sutures of aqp0a−/−, but not aqp0b−/− mutants, are unstable resulting in failure of suture maintenance at older stages and anterior polar opacity. Conclusions. Zebrafish Aqp0s have partially redundant functions, but only Aqp0a promotes suture stability, which directs the lens nucleus to centralize, failure of which results in anterior polar opacity. These studies support the hypothesis that the two Aqp0s subfunctionalized during fish evolution and that Aqp0-dependent maintenance of the anterior suture is essential for lens transparency.
Collapse
Affiliation(s)
- Irene Vorontsova
- Department of Physiology and Biophysics, University of California, Irvine, California, United States.,Department of Developmental and Cell Biology, University of California, Irvine, California, United States
| | - Ines Gehring
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States
| | - James E Hall
- Department of Physiology and Biophysics, University of California, Irvine, California, United States
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States
| |
Collapse
|
16
|
Schey KL, Petrova RS, Gletten RB, Donaldson PJ. The Role of Aquaporins in Ocular Lens Homeostasis. Int J Mol Sci 2017; 18:E2693. [PMID: 29231874 PMCID: PMC5751294 DOI: 10.3390/ijms18122693] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 12/13/2022] Open
Abstract
Abstract: Aquaporins (AQPs), by playing essential roles in the maintenance of ocular lens homeostasis, contribute to the establishment and maintenance of the overall optical properties of the lens over many decades of life. Three aquaporins, AQP0, AQP1 and AQP5, each with distinctly different functional properties, are abundantly and differentially expressed in the different regions of the ocular lens. Furthermore, the diversity of AQP functionality is increased in the absence of protein turnover by age-related modifications to lens AQPs that are proposed to alter AQP function in the different regions of the lens. These regional differences in AQP functionality are proposed to contribute to the generation and directionality of the lens internal microcirculation; a system of circulating ionic and fluid fluxes that delivers nutrients to and removes wastes from the lens faster than could be achieved by passive diffusion alone. In this review, we present how regional differences in lens AQP isoforms potentially contribute to this microcirculation system by highlighting current areas of investigation and emphasizing areas where future work is required.
Collapse
Affiliation(s)
- Kevin L Schey
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA.
| | - Rosica S Petrova
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand.
| | - Romell B Gletten
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA.
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand.
- School of Optometry and Vison Sciences, New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand.
| |
Collapse
|
17
|
Petrova RS, Webb KF, Vaghefi E, Walker K, Schey KL, Donaldson PJ. Dynamic functional contribution of the water channel AQP5 to the water permeability of peripheral lens fiber cells. Am J Physiol Cell Physiol 2017; 314:C191-C201. [PMID: 29118028 DOI: 10.1152/ajpcell.00214.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Although the functionality of the lens water channels aquaporin 1 (AQP1; epithelium) and AQP0 (fiber cells) is well established, less is known about the role of AQP5 in the lens. Since in other tissues AQP5 functions as a regulated water channel with a water permeability (PH2O) some 20 times higher than AQP0, AQP5 could function to modulate PH2O in lens fiber cells. To test this possibility, a fluorescence dye dilution assay was used to calculate the relative PH2O of epithelial cells and fiber membrane vesicles isolated from either the mouse or rat lens, in the absence and presence of HgCl2, an inhibitor of AQP1 and AQP5. Immunolabeling of lens sections and fiber membrane vesicles from mouse and rat lenses revealed differences in the subcellular distributions of AQP5 in the outer cortex between species, with AQP5 being predominantly membranous in the mouse but predominantly cytoplasmic in the rat. In contrast, AQP0 labeling was always membranous in both species. This species-specific heterogeneity in AQP5 membrane localization was mirrored in measurements of PH2O, with only fiber membrane vesicles isolated from the mouse lens, exhibiting a significant Hg2+-sensitive contribution to PH2O. When rat lenses were first organ cultured, immunolabeling revealed an insertion of AQP5 into cortical fiber cells, and a significant increase in Hg2+-sensitive PH2O was detected in membrane vesicles. Our results show that AQP5 forms functional water channels in the rodent lens, and they suggest that dynamic membrane insertion of AQP5 may regulate water fluxes in the lens by modulating PH2O in the outer cortex.
Collapse
Affiliation(s)
- Rosica S Petrova
- Department of Physiology, School of Medical Sciences, University of Auckland , Auckland , New Zealand
| | - Kevin F Webb
- Department of Physiology, School of Medical Sciences, University of Auckland , Auckland , New Zealand.,Optics and Photonics Research Group, Department of Electrical and Electronic Engineering, University of Nottingham , Nottingham , United Kingdom
| | - Ehsan Vaghefi
- School of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland , Auckland , New Zealand
| | - Kerry Walker
- Department of Physiology, School of Medical Sciences, University of Auckland , Auckland , New Zealand
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University , Nashville, Tennessee
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, University of Auckland , Auckland , New Zealand.,School of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland , Auckland , New Zealand
| |
Collapse
|
18
|
Wang Z, Schey KL. Identification of a direct Aquaporin-0 binding site in the lens-specific cytoskeletal protein filensin. Exp Eye Res 2017; 159:23-29. [PMID: 28259670 DOI: 10.1016/j.exer.2017.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 10/20/2022]
Abstract
An interaction between the C-terminus of aquaporin-0 (AQP0) and lens beaded filament protein filensin has been reported previously; however, the region of filensin that is involved in the interaction has not been determined. This study is designed to identify the region of filensin that interacts with AQP0. Chemical crosslinking coupled with mass spectrometry was used to identify the site of interaction. The protein complex was crosslinked with zero-length crosslinker: 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide Hydrochloride (EDC). The crosslinked membrane fraction was digested by trypsin and crosslinked peptides were identified by liquid chromatography-tandem mass spectrometry. A crosslinked peptide between bovine filensin 450-465 (VKGPKEPEPPADLYTK) and bovine AQP0 239-259 (GSRPSESNGQPEVTGEPVELK) was detected. AQP0/filensin crosslinking was not detected in superficial young fiber cells, but increased with fiber cell age in the lens cortex. AQP0/filensin crosslinking and filensin truncation were observed in the same regions of the lens. This crosslinked peptide can be detected in 75 kDa gel band confirming that AQP0/filensin crosslinking can occur between AQP0 and the filensin C-terminal fragment. These results suggest that the AQP0 C-terminus directly interacts with the region of filensin that is adjacent to the major truncation site and the polybasic cluster of residues in the filensin C-terminal tail. This interaction occurs in a specific region of the lens and could only occur between AQP0 and filensin C-terminal fragment in vivo. This interaction supports the dual roles of filensin in the lens; roles that could be important during lens development.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
19
|
Gutierrez DB, Garland DL, Schwacke JH, Hachey DL, Schey KL. Spatial distributions of phosphorylated membrane proteins aquaporin 0 and MP20 across young and aged human lenses. Exp Eye Res 2016; 149:59-65. [PMID: 27339748 DOI: 10.1016/j.exer.2016.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 11/26/2022]
Abstract
In the human ocular lens it is now realized that post-translational modifications can alter protein function and/or localization in fiber cells that no longer synthesize proteins. The specific sites of post-translational modification to the abundant ocular lens membrane proteins AQP0 and MP20 have been previously identified and their functional effects are emerging. To further understand how changes in protein function and/or localization induced by these modifications alter lens homeostasis, it is necessary to determine the spatial distributions of these modifications across the lens. In this study, a quantitative LC-MS approach was used to determine the spatial distributions of phosphorylated AQP0 and MP20 peptides from manually dissected, concentric layers of fiber cells from young and aged human lenses. The absolute amounts of phosphorylation were determined for AQP0 Ser235 and Ser229 and for MP20 Ser170 in fiber cells from the lens periphery to the lens center. Phosphorylation of AQP0 Ser229 represented a minor portion of the total phosphorylated AQP0. Changes in spatial distributions of phosphorylated APQ0 Ser235 and MP20 Ser170 correlated with regions of physiological interest in aged lenses, specifically, where barriers to water transport and extracellular diffusion form.
Collapse
Affiliation(s)
- Danielle B Gutierrez
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, BSB 358 MSC 509, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Donita L Garland
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John H Schwacke
- Department of Biostatistics and Epidemiology, Medical University of South Carolina, Cannon Place 303C, 135 Cannon St., Charleston, SC 29425, USA
| | - David L Hachey
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Suite 9160 MRBIII, 465 21st Ave. So., Nashville, TN 37240-7916, USA
| | - Kevin L Schey
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Suite 9160 MRBIII, 465 21st Ave. So., Nashville, TN 37240-7916, USA.
| |
Collapse
|
20
|
Wenke JL, Rose KL, Spraggins JM, Schey KL. MALDI Imaging Mass Spectrometry Spatially Maps Age-Related Deamidation and Truncation of Human Lens Aquaporin-0. Invest Ophthalmol Vis Sci 2016; 56:7398-405. [PMID: 26574799 DOI: 10.1167/iovs.15-18117] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To spatially map human lens Aquaporin-0 (AQP0) protein modifications, including lipidation, truncation, and deamidation, from birth through middle age using matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS). METHODS Human lens sections were water-washed to facilitate detection of membrane protein AQP0. We acquired MALDI images from eight human lenses ranging in age from 2 months to 63 years. In situ tryptic digestion was used to generate peptides of AQP0 and peptide images were acquired on a 15T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Peptide extracts were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and database searched to identify peptides observed in MALDI imaging experiments. RESULTS Unmodified, truncated, and fatty acid-acylated forms of AQP0 were detected in protein imaging experiments. Full-length AQP0 was fatty acid acylated in the core and cortex of young (2- and 4-month) lenses. Acylated and unmodified AQP0 were C-terminally truncated in older lens cores. Deamidated tryptic peptides (+0.9847 Da) were mass resolved from unmodified peptides by FTICR MS. Peptide images revealed differential localization of un-, singly-, and doubly-deamidated AQP0 C-terminal peptide (239-263). Deamidation was present at 4 months and increases with age. Liquid chromatography-MS/MS results indicated N246 undergoes deamidation more rapidly than N259. CONCLUSIONS Results indicated AQP0 fatty acid acylation and deamidation occur during early development. Progressive age-related AQP0 processing, including deamidation and truncation, was mapped in human lenses as a function of age. The localization of these modified AQP0 forms suggests where AQP0 functions may change throughout lens development and aging.
Collapse
|
21
|
Petrova RS, Schey KL, Donaldson PJ, Grey AC. Spatial distributions of AQP5 and AQP0 in embryonic and postnatal mouse lens development. Exp Eye Res 2015; 132:124-35. [PMID: 25595964 DOI: 10.1016/j.exer.2015.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 12/19/2014] [Accepted: 01/12/2015] [Indexed: 12/11/2022]
Abstract
The expression of the water channel protein aquaporin (AQP)-5 in adult rodent and human lenses was recently reported using immunohistochemistry, molecular biology, and mass spectrometry techniques, confirming a second transmembrane water channel that is present in lens fibre cells in addition to the abundant AQP0 protein. Interestingly, the sub-cellular distribution and level of post-translational modification of both proteins changes with fibre cell differentiation and location in the adult rodent lens. This study compares the sub-cellular distribution of AQP0 and AQP5 during embryonic and postnatal fibre cell development in the mouse lens to understand how the immunolabelling patterns for both AQPs observed in adult lens are first established. Immunohistochemistry was used to map the cellular and sub-cellular distribution of AQP5 and AQP0 throughout the lens in cryosections from adult (6 weeks-8 months) and postnatal (0-2 weeks) mouse lenses and in sections from paraffin embedded mouse embryos (E10-E19). All sections were imaged by fluorescence confocal microscopy. Using antibodies directed against the C-terminus of each AQP, AQP5 was abundantly expressed early in development, being found in the cytoplasm of cells of the lens vesicle and surrounding tissues (E10), while AQP0 was detected later (E11), and only in the membranes of elongating primary fibre cells. During the course of subsequent embryonic and postnatal development the pattern of cytoplasmic AQP5 and membranous AQP0 labelling was maintained until postnatal day 6 (P6). From P6 AQP5 labelling became progressively more membranous initially in the lens nucleus and then later in all regions of the lens, while AQP0 labelling was abruptly lost in the lens nucleus due to C-terminal truncation. Our results show that the spatial distribution patterns of AQP0 and AQP5 observed in the adult lens are established during a narrow window of postnatal development (P6-P15) that precedes eye opening and coincides with regression of the hyaloid vascular system. Our results support the hypothesis that, in the older fibre cells, insertion of AQP5 into the fibre cell membrane may compensate for any change in the functionality of AQP0 induced by truncation of its C-terminal tail.
Collapse
Affiliation(s)
- Rosica S Petrova
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Kevin L Schey
- Departments of Biochemistry and Ophthalmology, Vanderbilt University, Nashville, TN, USA
| | - Paul J Donaldson
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Angus C Grey
- School of Medical Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
22
|
Hegde SM, Srivastava K, Tiwary E, Srivastava OP. Molecular mechanism of formation of cortical opacity in CRYAAN101D transgenic mice. Invest Ophthalmol Vis Sci 2014; 55:6398-408. [PMID: 25146988 DOI: 10.1167/iovs.14-14623] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PURPOSE The CRYAAN101D transgenic mouse model expressing deamidated αA-crystallin (deamidation at N101 position to D) develops cortical cataract at the age of 7 to 9 months. The present study was carried out to explore the molecular mechanism that leads to the development of cortical opacity in CRYAAN101D lenses. METHODS RNA sequence analysis was carried out on 2- and 4-month-old αA-N101D and wild type (WT) lenses. To understand the biologic relevance and function of significantly altered genes, Ingenuity Pathway Analysis (IPA) was done. To elucidate terminal differentiation defects, immunohistochemical, and Western blot analyses were carried out. RESULTS RNA sequence and IPA data suggested that the genes belonging to gene expression, cellular assembly and organization, and cell cycle and apoptosis networks were altered in N101D lenses. In addition, the tight junction signaling and Rho A signaling were among the top three canonical pathways that were affected in N101D mutant. Immunohistochemical analysis identified a series of terminal differentiation defects in N101D lenses, specifically, increased proliferation and decreased differentiation of lens epithelial cells (LEC) and decreased denucleation of lens fiber cells (LFC). The expression of Rho A was reduced in different-aged N101D lenses, and, conversely, Cdc42 and Rac1 expressions were increased in the N101D mutants. Moreover, earlier in development, the expression of major membrane-bound molecular transporter Na,K-ATPase was drastically reduced in N101D lenses. CONCLUSIONS The results suggest that the terminal differentiation defects, specifically, increased proliferation and decreased denucleation are responsible for the development of lens opacity in N101D lenses.
Collapse
Affiliation(s)
- Shylaja M Hegde
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kiran Srivastava
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Ekta Tiwary
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Om P Srivastava
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
23
|
Scheiblin DA, Gao J, Caplan JL, Simirskii VN, Czymmek KJ, Mathias RT, Duncan MK. Beta-1 integrin is important for the structural maintenance and homeostasis of differentiating fiber cells. Int J Biochem Cell Biol 2014; 50:132-45. [PMID: 24607497 DOI: 10.1016/j.biocel.2014.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 02/04/2014] [Accepted: 02/21/2014] [Indexed: 11/19/2022]
Abstract
β1-Integrin is a heterodimeric transmembrane protein that has roles in both cell-extra-cellular matrix and cell-cell interactions. Conditional deletion of β1-integrin from all lens cells during embryonic development results in profound lens defects, however, it is less clear whether this reflects functions in the lens epithelium alone or whether this protein plays a role in lens fibers. Thus, a conditional approach was used to delete β1-integrin solely from the lens fiber cells. This deletion resulted in two distinct phenotypes with some lenses exhibiting cataracts while others were clear, albeit with refractive defects. Analysis of "clear" conditional knockout lenses revealed that they had profound defects in fiber cell morphology associated with the loss of the F-actin network. Physiological measurements found that the lens fiber cells had a twofold increase in gap junctional coupling, perhaps due to differential localization of connexins 46 and 50, as well as increased water permeability. This would presumably facilitate transport of ions and nutrients through the lens, and may partially explain how lenses with profound structural abnormalities can maintain transparency. In summary, β1-integrin plays a role in maintaining the cellular morphology and homeostasis of the lens fiber cells.
Collapse
Affiliation(s)
- David A Scheiblin
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | - Junyuan Gao
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, New York, NY 11794-8661, United States
| | - Jeffrey L Caplan
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, United States
| | - Vladimir N Simirskii
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | - Kirk J Czymmek
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | - Richard T Mathias
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, New York, NY 11794-8661, United States
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
24
|
Lo WK, Biswas SK, Brako L, Shiels A, Gu S, Jiang JX. Aquaporin-0 targets interlocking domains to control the integrity and transparency of the eye lens. Invest Ophthalmol Vis Sci 2014; 55:1202-12. [PMID: 24458158 DOI: 10.1167/iovs.13-13379] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Lens fiber cell membranes contain aquaporin-0 (AQP0), which constitutes approximately 50% of the total fiber cell membrane proteins and has a dual function as a water channel protein and an adhesion molecule. Fiber cell membranes also develop an elaborate interlocking system that is required for maintaining structural order, stability, and lens transparency. Herein, we used an AQP0-deficient mouse model to investigate an unconventional adhesion role of AQP0 in maintaining a normal structure of lens interlocking protrusions. METHODS The loss of AQP0 in AQP0(-/-) lens fibers was verified by Western blot and immunofluorescence analyses. Changes in membrane surface structures of wild-type and AQP0(-/-) lenses at age 3 to 12 weeks were examined with scanning electron microscopy. Preferential distribution of AQP0 in wild-type fiber cell membranes was analyzed with immunofluorescence and immunogold labeling using freeze-fracturing transmission electron microscopy. RESULTS Interlocking protrusions in young differentiating fiber cells developed normally but showed minor abnormalities at approximately 50 μm deep in the absence of AQP0 in all ages studied. Strikingly, protrusions in maturing fiber cells specifically underwent uncontrolled elongation, deformation, and fragmentation, while cells still retained their overall shape. Later in the process, these changes eventually resulted in fiber cell separation, breakdown, and cataract formation in the lens core. Immunolabeling at the light microscopy and transmission electron microscopy levels demonstrated that AQP0 was particularly enriched in interlocking protrusions in wild-type lenses. CONCLUSIONS This study suggests that AQP0 exerts its primary adhesion or suppression role specifically to maintain the normal structure of interlocking protrusions that is critical to the integrity and transparency of the lens.
Collapse
Affiliation(s)
- Woo-Kuen Lo
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia
| | | | | | | | | | | |
Collapse
|
25
|
Németh-Cahalan KL, Clemens DM, Hall JE. Regulation of AQP0 water permeability is enhanced by cooperativity. ACTA ACUST UNITED AC 2013; 141:287-95. [PMID: 23440275 PMCID: PMC3581697 DOI: 10.1085/jgp.201210884] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aquaporin 0 (AQP0), essential for lens clarity, is a tetrameric protein composed of four identical monomers, each of which has its own water pore. The water permeability of AQP0 expressed in Xenopus laevis oocytes can be approximately doubled by changes in calcium concentration or pH. Although each monomer pore functions as a water channel, under certain conditions the pores act cooperatively. In other words, the tetramer is the functional unit. In this paper, we show that changes in external pH and calcium can induce an increase in water permeability that exhibits either a positive cooperativity switch-like increase in water permeability or an increase in water permeability in which each monomer acts independently and additively. Because the concentrations of calcium and hydrogen ions increase toward the center of the lens, a concentration signal could trigger a regulatory change in AQP0 water permeability. It thus seems plausible that the cooperative modes of water permeability regulation by AQP0 tetramers mediated by decreased pH and elevated calcium are the physiologically important ones in the living lens.
Collapse
Affiliation(s)
- Karin L Németh-Cahalan
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | | | | |
Collapse
|
26
|
Schey KL, Wang Z, L Wenke J, Qi Y. Aquaporins in the eye: expression, function, and roles in ocular disease. Biochim Biophys Acta Gen Subj 2013; 1840:1513-23. [PMID: 24184915 DOI: 10.1016/j.bbagen.2013.10.037] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND All thirteen known mammalian aquaporins have been detected in the eye. Moreover, aquaporins have been identified as playing essential roles in ocular functions ranging from maintenance of lens and corneal transparency to production of aqueous humor to maintenance of cellular homeostasis and regulation of signal transduction in the retina. SCOPE OF REVIEW This review summarizes the expression and known functions of ocular aquaporins and discusses their known and potential roles in ocular diseases. MAJOR CONCLUSIONS Aquaporins play essential roles in all ocular tissues. Remarkably, not all aquaporin function as a water permeable channel and the functions of many aquaporins in ocular tissues remain unknown. Given their vital roles in maintaining ocular function and their roles in disease, aquaporins represent potential targets for future therapeutic development. GENERAL SIGNIFICANCE Since aquaporins play key roles in ocular physiology, an understanding of these functions is important to improving ocular health and treating diseases of the eye. It is likely that future therapies for ocular diseases will rely on modulation of aquaporin expression and/or function. This article is part of a Special Issue entitled Aquaporins.
Collapse
Affiliation(s)
- Kevin L Schey
- Department of Biochemistry, Vanderbilt School of Medicine, Vanderbilt University, Nashville, TN 37232, USA.
| | - Zhen Wang
- Department of Biochemistry, Vanderbilt School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Jamie L Wenke
- Department of Biochemistry, Vanderbilt School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Ying Qi
- Department of Biochemistry, Vanderbilt School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
27
|
Grey AC, Walker KL, Petrova RS, Han J, Wilmarth PA, David LL, Donaldson PJ, Schey KL. Verification and spatial localization of aquaporin-5 in the ocular lens. Exp Eye Res 2013; 108:94-102. [PMID: 23313152 DOI: 10.1016/j.exer.2012.12.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 12/25/2022]
Abstract
Until recently, the lens was thought to express only two aquaporin (AQP) water channels, AQP1 and AQP0. In this study we confirm lenticular AQP5 protein expression by Western blotting and mass spectrometry in lenses from a variety of species. In addition, confocal microscopy was used to map cellular distributions of AQP5 in mouse, rat and human lenses. Tandem mass spectrometry of a human lens membrane preparation revealed extensive sequence coverage (56.2%) of AQP5. Western blotting performed on total fiber cell membranes from mouse, rat, bovine and human lenses confirmed AQP5 protein expression is conserved amongst species. Western blotting of dissected lens fractions suggests that AQP5 is processed in the lens core by C-terminal truncation. Immunohistochemistry showed that AQP5 signal was most abundant in the lens outer cortex and decreased in intensity in the lens core. Furthermore, AQP5 undergoes differentiation-dependent changes in subcellular location from an intracellular localization in differentiating fiber cells to the plasma membrane of mature fiber cells upon the loss of fiber cell nuclei. Our results show that AQP5 is a significant component of lens fiber cell membranes, representing the second most abundant water channel in these cells. Together, the changes to AQP5 distribution and structure are likely to modulate the functional role of AQP5 in different regions of the lens.
Collapse
Affiliation(s)
- Angus C Grey
- Department of Optometry and Vision Science, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Nakazawa Y, Oka M, Furuki K, Mitsuishi A, Nakashima E, Takehana M. The effect of the interaction between aquaporin 0 (AQP0) and the filensin tail region on AQP0 water permeability. Mol Vis 2011; 17:3191-9. [PMID: 22194645 PMCID: PMC3244488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 12/06/2011] [Indexed: 10/27/2022] Open
Abstract
PURPOSE To study the interaction between the lens-specific water channel protein, aquaporin 0 (AQP0) and the lens-specific intermediate filament protein, filensin, and the effect of this interaction on the water permeability of AQP0. The effect of other factors on the interaction was also investigated. METHODS Expression plasmids were constructed in which glutathione-S-transferase (GST) was fused to the AQP0 COOH-terminal region (GST-AQP0-C), which contains the major phosphorylation sites of the protein. Plasmids for AQP0 COOH-terminal mutants were also constructed in which one, three or five sites were pseudophosphorylated, and the proteins expressed from these GST-fusion plasmids were assayed for their interaction with lens proteins. Expressed recombinant GST-fusion proteins were purified using glutathione beads and incubated with rat lens extract. Western blotting was used to identify the lens proteins that interacted with the GST-fusion proteins. Filensin tail and rod domains were also expressed as GST-fusion proteins and their interactions with AQPO were analyzed. Additionally, the water permeability of AQP0 was calculated by expressing AQP0 with or without the filensin peptide on the cell membrane of Xenopus oocytes by injecting cRNAs for AQP0 and filensin. RESULTS The GST-AQP0-C construct interacted with the tail region of lens filensin and the GST-filensin-tail construct interacted with lens AQP0, but the GST-filensin-rod construct did not interact with AQP0. GST-AQP0-C also interacted with a purified recombinant filensin-tail peptide after cleavage from GST. The AQP0/filensin-tail interaction was not affected by pseudophosphorylation of the AQP0 COOH-terminal tail, nor was it affected by changes in pH. Xenopus oocytes expressing AQP0 on the plasma membrane showed increased water permeability, which was lowered when the filensin COOH-terminal peptide cRNA was coinjected with the cRNA for AQP0. CONCLUSIONS The filensin COOH-terminal tail region interacted with the AQP0 COOH-terminal region and the results strongly suggested that the interaction was direct. It appears that interactions between AQP0 and filensin helps to regulate the water permeability of AQP0 and to organize the structure of lens fiber cells, and may also help to maintain the transparency of the lens.
Collapse
Affiliation(s)
- Yosuke Nakazawa
- Department of Molecular Function and Physiology, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Mikako Oka
- Department of Molecular Function and Physiology, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Katsuya Furuki
- Department of Molecular Function and Physiology, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Akiko Mitsuishi
- Department of Molecular Function and Physiology, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Emi Nakashima
- Department of Parmaceutics, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Makoto Takehana
- Department of Molecular Function and Physiology, Faculty of Pharmacy, Keio University, Tokyo, Japan
| |
Collapse
|
29
|
Gutierrez DB, Garland D, Schey KL. Spatial analysis of human lens aquaporin-0 post-translational modifications by MALDI mass spectrometry tissue profiling. Exp Eye Res 2011; 93:912-20. [PMID: 22036630 DOI: 10.1016/j.exer.2011.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 10/17/2011] [Accepted: 10/17/2011] [Indexed: 10/16/2022]
Abstract
Aquaporin-0 (AQP0), the major integral membrane protein in lens fiber cells, becomes highly modified with increasing age. The functional consequences of these modifications are being revealed, and the next step is to determine how these modifications affect the ocular lens, which is directly related to their abundances and spatial distributions. The aim of this study was to utilize matrix-assisted laser desorption ionization (MALDI) direct tissue profiling methods, which produce spatially-resolved protein profiles, to map and quantify AQP0 post-translational modifications (PTMs). Direct tissue profiling was performed using frozen, equatorial human lens sections of various ages prepared by conditions optimized for MALDI mass spectrometry profiling of membrane proteins. Modified forms of AQP0 were identified and further investigated using liquid chromatography tandem mass spectrometry (LC-MS/MS). The distributions of unmodified, truncated, and oleoylated forms of AQP0 were examined with a maximum spatial resolution of 500 μm. Direct tissue profiling of intact human lens sections provided high quality, spatially-resolved, relative quantitative information of AQP0 and its modified forms indicating that 50% of AQP0 is truncated at a fiber cell age of 24 ± 1 year in all lenses examined. Furthermore, direct tissue profiling also revealed previously unidentified AQP0 modifications including N-terminal acetylation and carbamylation. N-terminal acetylation appears to provide a protective effect against N-terminal truncation.
Collapse
Affiliation(s)
- Danielle B Gutierrez
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, MD, USA
| | | | | |
Collapse
|
30
|
Kumari SS, Eswaramoorthy S, Mathias RT, Varadaraj K. Unique and analogous functions of aquaporin 0 for fiber cell architecture and ocular lens transparency. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1812:1089-97. [PMID: 21511033 PMCID: PMC3143309 DOI: 10.1016/j.bbadis.2011.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 03/24/2011] [Accepted: 04/01/2011] [Indexed: 11/20/2022]
Abstract
Aquaporin (AQP) 1 and AQP0 water channels are expressed in lens epithelial and fiber cells, respectively, facilitating fluid circulation for nourishing the avascular lens to maintain transparency. Even though AQP0 water permeability is 40-fold less than AQP1, AQP0 is selectively expressed in the fibers. Delimited AQP0 fiber expression is attributed to a unique structural role as an adhesion protein. To validate this notion, we determined if wild type (WT) lens ultrastructure and fiber cell adhesion are different in AQP0(-/-), and TgAQP1(+/+)/AQP0(-/-) mice that transgenically express AQP1 (TgAQP1) in fiber cells without AQP0 (AQP0(-/-)). In WT, lenses were transparent with 'Y' sutures. Fibers contained opposite end curvature, lateral interdigitations, hexagonal shape, and were arranged as concentric growth shells. AQP0(-/-) lenses were cataractous, lacked 'Y' sutures, ordered packing and well-defined lateral interdigitations. TgAQP1(+/+)/AQP0(-/-) lenses showed improvement in transparency and lateral interdigitations in the outer cortex while inner cortex and nuclear fibers were severely disintegrated. Transmission electron micrographs exhibited tightly packed fiber cells in WT whereas AQP0(-/-) and TgAQP1(+/+)/AQP0(-/-) lenses had wide extracellular spaces. Fibers were easily separable by teasing in AQP0(-/-) and TgAQP1(+/+)/AQP0(-/-) lenses compared to WT. Our data suggest that the increased water permeability through AQP1 does not compensate for loss of AQP0 expression in TgAQP1(+/+)/AQP0(-/-) mice. Fiber cell AQP0 expression is required to maintain their organization, which is a requisite for lens transparency. AQP0 appears necessary for cell-to-cell adhesion and thereby to minimize light scattering since in the AQP0(-/-) and TgAQP1(+/+)/AQP0(-/-) lenses, fiber cell disorganization was evident.
Collapse
Affiliation(s)
- S. Sindhu Kumari
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, NY 11794-8661, USA
| | | | - Richard T. Mathias
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, NY 11794-8661, USA
| | - Kulandaiappan Varadaraj
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, NY 11794-8661, USA
| |
Collapse
|
31
|
Maddala R, Skiba NP, Lalane R, Sherman DL, Brophy PJ, Rao PV. Periaxin is required for hexagonal geometry and membrane organization of mature lens fibers. Dev Biol 2011; 357:179-90. [PMID: 21745462 PMCID: PMC3164832 DOI: 10.1016/j.ydbio.2011.06.036] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 06/14/2011] [Accepted: 06/14/2011] [Indexed: 01/06/2023]
Abstract
Transparency of the ocular lens depends on symmetric packing and membrane organization of highly elongated hexagonal fiber cells. These cells possess an extensive, well-ordered cortical cytoskeleton to maintain cell shape and to anchor membrane components. Periaxin (Prx), a PDZ domain protein involved in myelin sheath stabilization, is also a component of adhaerens plaques in lens fiber cells. Here we show that Prx is expressed in lens fibers and exhibits maturation dependent redistribution, clustering discretely at the tricellular junctions in mature fiber cells. Prx exists in a macromolecular complex with proteins involved in membrane organization including ankyrin-B, spectrin, NrCAM, filensin, ezrin and desmoyokin. Importantly, Prx knockout mouse lenses were found to be softer and more easily deformed than normal lenses, revealing disruptions in fiber cell hexagonal packing, membrane skeleton and membrane stability. These observations suggest a key role for Prx in maturation, packing, and membrane organization of lens fiber cells. Hence, there may be functional parallels between the roles of Prx in membrane stabilization of the myelin sheath and the lens fiber cell.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, NC. USA
| | - Nikolai P. Skiba
- Department of Ophthalmology, Duke University School of Medicine, NC. USA
| | - Robert Lalane
- Department of Ophthalmology, Duke University School of Medicine, NC. USA
| | - Diane L. Sherman
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK
| | - Peter J. Brophy
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK
| | - Ponugoti V. Rao
- Department of Ophthalmology, Duke University School of Medicine, NC. USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, NC. USA
| |
Collapse
|
32
|
Schey KL, Gutierrez DB, Wang Z, Wei J, Grey AC. Novel fatty acid acylation of lens integral membrane protein aquaporin-0. Biochemistry 2010; 49:9858-65. [PMID: 20942504 DOI: 10.1021/bi101415w] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fatty acid acylation of proteins is a well-studied co- or posttranslational modification typically conferring membrane trafficking signals or membrane anchoring properties to proteins. Commonly observed examples of protein acylation include N-terminal myristoylation and palmitoylation of cysteine residues. In the present study, direct tissue profiling mass spectrometry of bovine and human lens sections revealed an abundant signal tentatively assigned as a lipid-modified form of aquaporin-0. LC/MS/MS proteomic analysis of hydrophobic tryptic peptides from lens membrane proteins revealed both N-terminal and C-terminal peptides modified by 238 and 264 Da which were subsequently assigned by accurate mass measurement as palmitoylation and oleoylation, respectively. Specific sites of modification were the N-terminal methionine residue and lysine 238 revealing, for the first time, an oleic acid modification via an amide linkage to a lysine residue. The specific fatty acids involved reflect their abundance in the lens fiber cell plasma membrane. Imaging mass spectrometry indicated abundant acylated AQP0 in the inner cortical region of both bovine and human lenses and acylated truncation products in the lens nucleus. Additional analyses revealed that the lipid-modified forms partitioned exclusively to a detergent-resistant membrane fraction, suggesting a role in membrane domain targeting.
Collapse
Affiliation(s)
- Kevin L Schey
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States.
| | | | | | | | | |
Collapse
|
33
|
Pendergrass W, Zitnik G, Tsai R, Wolf N. X-ray induced cataract is preceded by LEC loss, and coincident with accumulation of cortical DNA, and ROS; similarities with age-related cataracts. Mol Vis 2010; 16:1496-513. [PMID: 20806081 PMCID: PMC2925908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/30/2010] [Indexed: 10/26/2022] Open
Abstract
PURPOSE To compare age-related cataractous (ARC) changes in unirradiated mice lenses to those induced by head-only X-irradiation of 3 month-old mice. METHODS lens epithelial cells (LECs) as well as partially degraded cortical DNA were visualized in fixed sections using 4',6-diamidino-2-phenylindole (DAPI) staining, and in fresh lenses using the vital stain Hoechst 33342. reactive oxygen species (ROS) activity was also visualized directly in fresh lenses using the vital dye Dihydrorhodamine (DHR). In fixed lenses an antibody specific for 8-OH Guanosine (8-OH-G) lesions was used to visualize DNA oxidative adducts from ROS damage. Alpha smooth muscle actin was visualized using specific antibodies to determine if myofibroblasts were present. Fluorescence was quantified using Laser Scanning Confocal Microscopy (LSCM). The degree of lens opacity and cataract formation was determined by slit lamp, or from digitalized images of light reflections taken with a low magnification light microscope. RESULTS Using DNA- and ROS-specific vital fluorescent dyes, and laser scanning confocal microscopy we have previously described 4 changes in the aging rodent lenses: 1) a significantly decreased density of surface LECs in lenses from old compared to younger mice and rats; 2) a very large increase in retained cortical nuclei and DNA fragments in the secondary lens fibers of old rodent lenses; 3) increased cortical ROS in old rodent lenses; 4) increased cataract concomitantly with the cortical DNA and ROS increases. In the current study we report that these same 4 changes also occur in an accelerated fashion in mice given head-only X-irradiation at 3 months of age. In addition to vital staining of fresh lenses, we also examined sections from fixed eyes stained with DAPI or hematoxylin and eosin (H&E) and found the same loss of surface LECs and accumulation of undigested nuclei and debris in secondary lens fibers occur with age or following X-irradiation. In addition sections from fixed-eyes were examined for ROS damage to DNA with antibodies specific for 8-OH-G lesions. The frequency of 8-OH-G lesions increased dramatically in lenses from old unirradiated mice over 24 months of age, and similarly in X-irradiated lenses by 9-11 months post irradiation. The accumulation of cortical nuclei was not the result of conversion or invasion by myofibroblasts as tested by antibodies to a marker for such cells, alpha smooth muscle actin. CONCLUSIONS X-irradiation damage induces a large decrease in surface LECs over a period of 3-11 months post X-irradiation of young mice. These changes are similar in extent to those seen in 24-29 months-old control mouse lenses with age-related cataracts. In 24+ month-old unirradiated mice the secondary lens fibers are not able to degrade nuclei or nuclear DNA efficiently and accumulate large numbers of cortical nuclei and nuclear fragments as well as ROS and 8-OHG lesions. X-irradiated lenses develop the same abnormalities in a more accelerated fashion. The extensive loss of LECS and accumulation of undegraded nuclei, ROS, and ROS damage may play a causal role in cataract generation in both unirradiated old mice and in previously irradiated young adult mice.
Collapse
|
34
|
Grey AC, Chaurand P, Caprioli RM, Schey KL. MALDI imaging mass spectrometry of integral membrane proteins from ocular lens and retinal tissue. J Proteome Res 2009; 8:3278-83. [PMID: 19326924 PMCID: PMC2715141 DOI: 10.1021/pr800956y] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A tissue preparation protocol for MALDI (matrix-assisted laser desorption/ionization) imaging mass spectrometry of integral membrane proteins was developed using ocular lens and retinal tissues as model samples. Frozen bovine and human lenses were cryosectioned equatorially or axially at -20 degrees C into 20 mum-thick tissue sections. Lens sections were mounted onto gold-coated MALDI targets by methanol soft-landing to maintain tissue integrity. Tissue sections underwent extensive water washing to deplete the samples of highly abundant water-soluble proteins. Automated matrix deposition was achieved using an acoustic reagent multispotter, with sinapinic acid as matrix and high percentage acetonitrile as solvent, with a center-to-center spot spacing of 200-300 mum. Molecular images of full-length Aquaporin-0 (AQP0) and its most abundant truncation products were obtained from mass spectral data acquired across whole bovine and human lens sections. In equatorial and axial sections of bovine lenses, full-length AQP0 was detected throughout the lens. A truncation product corresponding to AQP0 (1-260) was detected in the bovine lens core at low abundance. In axial lens sections, no antero-posterior variation was detected. In 11 year-old human lens sections, full-length AQP0 was most abundant in the lens periphery, but was detected throughout the lens. The major truncation product, consisting of AQP0 residues 1-246, was absent from the lens periphery and increased in abundance in the lens core. This tissue preparation protocol was then applied to image the distribution of the G-protein coupled receptor, opsin, in the rabbit retina. This protocol has expanded the variety of target analytes which can be detected by MALDI imaging mass spectrometry to include intact integral membrane proteins.
Collapse
Affiliation(s)
- Angus C Grey
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232-8575, USA
| | | | | | | |
Collapse
|
35
|
Lim JC, Walker KL, Sherwin T, Schey KL, Donaldson PJ. Confocal microscopy reveals zones of membrane remodeling in the outer cortex of the human lens. Invest Ophthalmol Vis Sci 2009; 50:4304-10. [PMID: 19357350 DOI: 10.1167/iovs.09-3435] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To optimize fixation, sectioning, and immunolabeling protocols to map the morphology of the human lens with confocal microscopy. METHODS Transparent human lenses were fixed in 0.75% paraformaldehyde for 24 hours, cut in half, and fixed for another 24 hours. Lenses were cryoprotected, sectioned, and labeled with wheat germ agglutinin, aquaporin-0 antibodies, Hoechst, or toluidine blue. Before fixation, some lenses were incubated in an extracellular marker dye, Texas Red-dextran. Labeled sections were imaged with a confocal microscope. Overlapping images were tiled together to form a continuous image montage of fiber cell morphology from the periphery to the lens center. RESULTS Fiber cell morphologies were identical with those previously described by electron microscopy and allowed immunohistochemistry to be performed for a representative membrane protein, aquaporin-0. Sectioning protocols enabled the epithelium and outer cortex to be retained, leading to the identification of two unique morphologic zones. In the first zone, an age-independent compaction of nucleated fiber cells and the initiation of extensive membrane remodeling occur. In the second zone, fiber cells retain their interdigitations but lose their nuclei, exhibit a distorted shape, and are less compressed. These zones are followed by the adult nucleus, which is marked by extensive compaction and a restriction of the extracellular space to the diffusion of Texas Red-dextran. CONCLUSIONS The authors have developed sectioning and imaging protocols to capture differentiation-dependent changes in fiber cell morphology and protein expression throughout the human lens. Results reveal that differentiating fiber cells undergo extensive membrane remodeling before their internalization into the adult nucleus.
Collapse
Affiliation(s)
- Julie C Lim
- Department of Physiology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | | | | | | | | |
Collapse
|