1
|
Koushyar S, Meniel VS, Phesse TJ, Pearson HB. Exploring the Wnt Pathway as a Therapeutic Target for Prostate Cancer. Biomolecules 2022; 12:309. [PMID: 35204808 PMCID: PMC8869457 DOI: 10.3390/biom12020309] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 12/24/2022] Open
Abstract
Aberrant activation of the Wnt pathway is emerging as a frequent event during prostate cancer that can facilitate tumor formation, progression, and therapeutic resistance. Recent discoveries indicate that targeting the Wnt pathway to treat prostate cancer may be efficacious. However, the functional consequence of activating the Wnt pathway during the different stages of prostate cancer progression remains unclear. Preclinical work investigating the efficacy of targeting Wnt signaling for the treatment of prostate cancer, both in primary and metastatic lesions, and improving our molecular understanding of treatment responses is crucial to identifying effective treatment strategies and biomarkers that help guide treatment decisions and improve patient care. In this review, we outline the type of genetic alterations that lead to activated Wnt signaling in prostate cancer, highlight the range of laboratory models used to study the role of Wnt genetic drivers in prostate cancer, and discuss new mechanistic insights into how the Wnt cascade facilitates prostate cancer growth, metastasis, and drug resistance.
Collapse
Affiliation(s)
- Sarah Koushyar
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (S.K.); (V.S.M.)
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston Upon Thames KT1 2EE, UK
| | - Valerie S. Meniel
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (S.K.); (V.S.M.)
| | - Toby J. Phesse
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (S.K.); (V.S.M.)
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne 3000, Australia
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (S.K.); (V.S.M.)
| |
Collapse
|
2
|
Thompson-Elliott B, Johnson R, Khan SA. Alterations in TGFβ signaling during prostate cancer progression. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2021; 9:318-328. [PMID: 34541030 PMCID: PMC8446771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
During prostate cancer progression, TGF-β acts as both a tumor suppressor and tumor promoter. TGF-β inhibits cell proliferation in normal and early-stage prostate cancer cells, but during later stages of the disease the cancer cells develop resistance to inhibitory effects on cell proliferation. In these cells, TGF-β promotes cancer progression due to its effects on epithelial to mesenchymal transition (EMT), cell migration and invasion, and immune suppression. The intracellular mechanisms involved in the development of resistance to TGF-β effects on cell proliferation are largely unknown. In this review, we summarized the roles of several intracellular proteins including PTEN, Id1 and JunD, which may play a role in this transition. The role of Ski/SnoN proteins in inhibition of Smad2/3 signaling is highlighted.
Collapse
Affiliation(s)
| | - Rarnice Johnson
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University Atlanta, Georgia, USA
| | - Shafiq A Khan
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University Atlanta, Georgia, USA
| |
Collapse
|
3
|
Rai S, Alsaidan OA, Yang H, Cai H, Wang L. Heparan sulfate inhibits transforming growth factor β signaling and functions in cis and in trans to regulate prostate stem/progenitor cell activities. Glycobiology 2021; 30:381-395. [PMID: 31829419 DOI: 10.1093/glycob/cwz103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022] Open
Abstract
Prostate stem/progenitor cells (PrSCs) are responsible for adult prostate tissue homeostasis and regeneration. However, the related regulatory mechanisms are not completely understood. In this study, we examined the role of heparan sulfate (HS) in PrSC self-renewal and prostate regeneration. Using an in vitro prostate sphere formation assay, we found that deletion of the glycosyltransferase exostosin 1 (Ext1) abolished HS expression in PrSCs and disrupted their ability to self-renew. In associated studies, we observed that HS loss inhibited p63 and CK5 expression, reduced the number of p63+- or CK5+-expressing stem/progenitor cells, elevated CK8+ expression and the number of differentiated CK8+ luminal cells and arrested the spheroid cells in the G1/G0 phase of cell cycle. Mechanistically, HS expressed by PrSCs (in cis) or by neighboring cells (in trans) could maintain sphere formation. Furthermore, HS deficiency upregulated transforming growth factor β (TGFβ) signaling and inhibiting TGFβ signaling partially restored the sphere-formation activity of the HS-deficient PrSCs. In an in vivo prostate regeneration assay, simultaneous loss of HS in both epithelial cell and stromal cell compartments attenuated prostate tissue regeneration, whereas the retention of HS expression in either of the two cellular compartments was sufficient to sustain prostate tissue regeneration. We conclude that HS preserves self-renewal of adult PrSCs by inhibiting TGFβ signaling and functions both in cis and in trans to maintain prostate homeostasis and to support prostate regeneration.
Collapse
Affiliation(s)
- Sumit Rai
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Omar Awad Alsaidan
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Hua Yang
- Department of Molecular Pharmacology and Physiology, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA
| | - Houjian Cai
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Lianchun Wang
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.,Department of Molecular Pharmacology and Physiology, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA
| |
Collapse
|
4
|
Yu Y, Jiang W. Pluripotent stem cell differentiation as an emerging model to study human prostate development. Stem Cell Res Ther 2020; 11:285. [PMID: 32678004 PMCID: PMC7364497 DOI: 10.1186/s13287-020-01801-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/18/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
Prostate development is a complex process, and knowledge about this process is increasingly required for both basic developmental biology studies and clinical prostate cancer research, as prostate tumorigenesis can be regarded as the restoration of development in the adult prostate. Using rodent animal models, scientists have revealed that the development of the prostate is mainly mediated by androgen receptor (AR) signaling and that some other signaling pathways also play indispensable roles. However, there are still many unknowns in human prostate biology, mainly due to the limited availability of proper fetal materials. Here, we first briefly review prostate development with a focus on the AR, WNT, and BMP signaling pathways is necessary for prostate budding/BMP signaling pathways. Based on the current progress in in vitro prostatic differentiation and organoid techniques, we propose human pluripotent stem cells as an emerging model to study human prostate development.
Collapse
Affiliation(s)
- Yangyang Yu
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, 116 East-Lake Road, District of Wuchang, Wuhan, 430071, Hubei Province, China
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, 116 East-Lake Road, District of Wuchang, Wuhan, 430071, Hubei Province, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
5
|
Harris KL, Myers MB, McKim KL, Elespuru RK, Parsons BL. Rationale and Roadmap for Developing Panels of Hotspot Cancer Driver Gene Mutations as Biomarkers of Cancer Risk. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:152-175. [PMID: 31469467 PMCID: PMC6973253 DOI: 10.1002/em.22326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 05/24/2023]
Abstract
Cancer driver mutations (CDMs) are necessary and causal for carcinogenesis and have advantages as reporters of carcinogenic risk. However, little progress has been made toward developing measurements of CDMs as biomarkers for use in cancer risk assessment. Impediments for using a CDM-based metric to inform cancer risk include the complexity and stochastic nature of carcinogenesis, technical difficulty in quantifying low-frequency CDMs, and lack of established relationships between cancer driver mutant fractions and tumor incidence. Through literature review and database analyses, this review identifies the most promising targets to investigate as biomarkers of cancer risk. Mutational hotspots were discerned within the 20 most mutated genes across the 10 deadliest cancers. Forty genes were identified that encompass 108 mutational hotspot codons overrepresented in the COSMIC database; 424 different mutations within these hotspot codons account for approximately 63,000 tumors and their prevalence across tumor types is described. The review summarizes literature on the prevalence of CDMs in normal tissues and suggests such mutations are direct and indirect substrates for chemical carcinogenesis, which occurs in a spatially stochastic manner. Evidence that hotspot CDMs (hCDMs) frequently occur as tumor subpopulations is presented, indicating COSMIC data may underestimate mutation prevalence. Analyses of online databases show that genes containing hCDMs are enriched in functions related to intercellular communication. In its totality, the review provides a roadmap for the development of tissue-specific, CDM-based biomarkers of carcinogenic potential, comprised of batteries of hCDMs and can be measured by error-correct next-generation sequencing. Environ. Mol. Mutagen. 61:152-175, 2020. Published 2019. This article is a U.S. Government work and is in the public domain in the USA. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Kelly L. Harris
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research, US Food and Drug AdministrationJeffersonArkansas
| | - Meagan B. Myers
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research, US Food and Drug AdministrationJeffersonArkansas
| | - Karen L. McKim
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research, US Food and Drug AdministrationJeffersonArkansas
| | - Rosalie K. Elespuru
- Division of Biology, Chemistry and Materials ScienceCDRH/OSEL, US Food and Drug AdministrationSilver SpringMaryland
| | - Barbara L. Parsons
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research, US Food and Drug AdministrationJeffersonArkansas
| |
Collapse
|
6
|
TGF-β Family Signaling in Ductal Differentiation and Branching Morphogenesis. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a031997. [PMID: 28289061 DOI: 10.1101/cshperspect.a031997] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelial cells contribute to the development of various vital organs by generating tubular and/or glandular architectures. The fully developed forms of ductal organs depend on processes of branching morphogenesis, whereby frequency, total number, and complexity of the branching tissue define the final architecture in the organ. Some ductal tissues, like the mammary gland during pregnancy and lactation, disintegrate and regenerate through periodic cycles. Differentiation of branched epithelia is driven by antagonistic actions of parallel growth factor systems that mediate epithelial-mesenchymal communication. Transforming growth factor-β (TGF-β) family members and their extracellular antagonists are prominently involved in both normal and disease-associated (e.g., malignant or fibrotic) ductal tissue patterning. Here, we discuss collective knowledge that permeates the roles of TGF-β family members in the control of the ductal tissues in the vertebrate body.
Collapse
|
7
|
Fan G, Xu Z, Hu X, Li M, Zhou J, Zeng Y, Xie Y. miR-33a hinders the differentiation of adipose mesenchymal stem cells towards urothelial cells in an inductive condition by targeting β‑catenin and TGFR. Mol Med Rep 2017; 17:2341-2348. [PMID: 29207162 PMCID: PMC5783476 DOI: 10.3892/mmr.2017.8168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/16/2017] [Indexed: 11/08/2022] Open
Abstract
Tissue engineering technology offers an appealing approach for tissue reconstruction of the urothelium. Adipose-derived mesenchymal stem cells (ADSCs) represent an abundant source for tissue engineering applications. However, ASCs primarily possess mesoderm lineage differentiation potential. It is difficult to induce differentiation of ASCs towards urothelial cells that are derived from the endoderm, although a recent findings have reported that a conditioned medium may drive ADSCs towards differentiation into the urothelium phenotype. In the present study, human ADSCs were isolated from abdominal adipose tissues and incubated in this conditioned medium for indicated time periods. Western blotting showed that protein expression levels of urothelial specific marks, including CK7, CK20 and UPIII, were increased after seven days' incubation, but immunofluorescence microscopy determined that cells with CK7 and UPIII staining were scarce, which suggested a low-efficiency for the differentiation. Prolonging the incubation time did not further increase CK20 and UPIII expression. Furthermore, miR-33a expression was increased with ADSC differentiation. Using synthetic miRNAs to mimic or inhibit the action of miR-33a revealed that miR-33a hinders the differentiation of ADSCs towards urothelial cells. Furthermore, luciferase reporter assay confirmed that β-catenin and transforming growth factor-β receptor (TGFR) are targets of miR-33a. Inhibition of miR-33a expression increased β-catenin and TGFR expression and improved the efficiency of ADSCs towards differentiation into the urothelium phenotype. The present novel finding suggests that miR-33 may be an important target in tissue engineering and regenerative medicine for urothelium repair.
Collapse
Affiliation(s)
- Gang Fan
- Department of Urology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya Medical College, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhenzhou Xu
- Department of Urology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya Medical College, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xiang Hu
- School of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Mingfeng Li
- Department of Urology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya Medical College, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jie Zhou
- Department of Urology, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Yong Zeng
- Department of Clinical Translational Research Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya Medical College, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yu Xie
- Department of Urology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya Medical College, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
8
|
Park HJ, Bolton EC. RET-mediated glial cell line-derived neurotrophic factor signaling inhibits mouse prostate development. Development 2017; 144:2282-2293. [PMID: 28506996 DOI: 10.1242/dev.145086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 05/10/2017] [Indexed: 01/15/2023]
Abstract
In humans and rodents, the prostate gland develops from the embryonic urogenital sinus (UGS). The androgen receptor (AR) is thought to control the expression of morphogenetic genes in inductive UGS mesenchyme, which promotes proliferation and cytodifferentiation of the prostatic epithelium. However, the nature of the AR-regulated morphogenetic genes and the mechanisms whereby AR controls prostate development are not understood. Glial cell line-derived neurotrophic factor (GDNF) binds GDNF family receptor α1 (GFRα1) and signals through activation of RET tyrosine kinase. Gene disruption studies in mice have revealed essential roles for GDNF signaling in development; however, its role in prostate development is unexplored. Here, we establish novel roles of GDNF signaling in mouse prostate development. Using an organ culture system for prostate development and Ret mutant mice, we demonstrate that RET-mediated GDNF signaling in UGS increases proliferation of mesenchyme cells and suppresses androgen-induced proliferation and differentiation of prostate epithelial cells, inhibiting prostate development. We also identify Ar as a GDNF-repressed gene and Gdnf and Gfrα1 as androgen-repressed genes in UGS, thus establishing reciprocal regulatory crosstalk between AR and GDNF signaling in prostate development.
Collapse
Affiliation(s)
- Hyun-Jung Park
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Eric C Bolton
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Berger PL, Winn ME, Miranti CK. Miz1, a Novel Target of ING4, Can Drive Prostate Luminal Epithelial Cell Differentiation. Prostate 2017; 77:49-59. [PMID: 27527891 PMCID: PMC6739073 DOI: 10.1002/pros.23249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/03/2016] [Indexed: 01/28/2023]
Abstract
BACKGROUND How prostate epithelial cells differentiate and how dysregulation of this process contributes to prostate tumorigenesis remain unclear. We recently identified a Myc target and chromatin reader protein, ING4, as a necessary component of human prostate luminal epithelial cell differentiation, which is often lost in primary prostate tumors. Furthermore, loss of ING4 in the context of oncogenic mutations is required for prostate tumorigenesis. Identifying the gene targets of ING4 can provide insight into how its loss disrupts differentiation and leads to prostate cancer. METHODS Using a combination of RNA-Seq, a best candidate approach, and chromatin immunoprecipitation (ChIP), we identified Miz1 as a new ING4 target. ING4 or Miz1 overexpression, shRNA knock-down, and a Myc-binding mutant were used in a human in vitro differentiation assay to assess the role of Miz1 in luminal cell differentiation. RESULTS ING4 directly binds the Miz1 promoter and is required to induce Miz1 mRNA and protein expression during luminal cell differentiation. Miz1 mRNA was not induced in shING4 expressing cells or tumorigenic cells in which ING4 is not expressed. Miz1 dependency on ING4 was unique to differentiating luminal cells; Miz1 mRNA expression was not induced in basal cells. Although Miz1 is a direct target of ING4, and its overexpression can drive luminal cell differentiation, Miz1 was not required for differentiation. CONCLUSIONS Miz1 is a newly identified ING4-induced target gene which can drive prostate luminal epithelial cell differentiation although it is not absolutely required. Prostate 77:49-59, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Penny L. Berger
- laboratory of Integrin Signaling, Van Andel Research Institute, Grand Rapids, Michigan
| | - Mary E. Winn
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan
| | - Cindy K. Miranti
- laboratory of Integrin Signaling, Van Andel Research Institute, Grand Rapids, Michigan
- Correspondence to: Cindy K. Miranti, Laboratory of Integrin Signaling, Van Andel Research Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503.
| |
Collapse
|
10
|
Cunha GR, Baskin L. Mesenchymal-epithelial interaction techniques. Differentiation 2016; 91:20-7. [PMID: 26610327 PMCID: PMC4874915 DOI: 10.1016/j.diff.2015.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/24/2015] [Indexed: 11/18/2022]
Abstract
This paper reviews the importance of mesenchymal-epithelial interactions in development and gives detailed technical protocols for investigating these interactions. Successful analysis of mesenchymal-epithelial interactions requires knowing the ages in which embryonic, neonatal and adult organs can be separated into mesenchymal and epithelial tissues. Methods for separation of mesenchymal and epithelial tissues and preparation of tissue recombinants are described.
Collapse
Affiliation(s)
- Gerald R Cunha
- Department of Urology, University of California, Box 0738, San Francisco, CA 94143, United States.
| | - Lawrence Baskin
- Department of Urology, University of California, Box 0738, San Francisco, CA 94143, United States
| |
Collapse
|
11
|
Abstract
As bladder reconstruction strategies evolve, a feasible and safe source of transplantable urothelium becomes a major consideration for patients with advanced bladder disease, particularly cancer. Pluripotent stem cells, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are attractive candidates from which to derive urothelium as they renew and proliferate indefinitely in vitro and fulfill the non-autologous and/or non-urologic criteria, respectively, that is required for many patients. This review presents the latest advancements in differentiating urothelium from pluripotent stem cells in vitro in the context of current bladder tissue engineering strategies.
Collapse
|
12
|
Park HJ, Bolton EC. Glial cell line-derived neurotrophic factor induces cell proliferation in the mouse urogenital sinus. Mol Endocrinol 2014; 29:289-306. [PMID: 25549043 DOI: 10.1210/me.2014-1312] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is a TGFβ family member, and GDNF signals through a glycosyl-phosphatidylinositol-linked cell surface receptor (GFRα1) and RET receptor tyrosine kinase. GDNF signaling plays crucial roles in urogenital processes, ranging from cell fate decisions in germline progenitors to ureteric bud outgrowth and renal branching morphogenesis. Gene ablation studies in mice have revealed essential roles for GDNF signaling in urogenital development, although its role in prostate development is unclear. We investigated the functional role of GDNF signaling in the urogenital sinus (UGS) and the developing prostate of mice. GDNF, GFRα1, and RET show time-specific and cell-specific expression during prostate development in vivo. In the UGS, GDNF and GFRα1 are expressed in the urethral mesenchyme (UrM) and epithelium (UrE), whereas RET is restricted to the UrM. In each lobe of the developing prostate, GDNF and GFRα1 expression declines in the epithelium and becomes restricted to the stroma. Using a well-established organ culture system, we determined that exogenous GDNF increases proliferation of UrM and UrE cells, altering UGS morphology. With regard to mechanism, GDNF signaling in the UrM increased RET expression and phosphorylation of ERK1/2. Furthermore, inhibition of RET kinase activity or ERK kinases suppressed GDNF-induced proliferation of UrM cells but not UrE cells. We therefore propose that GDNF signaling in the UGS increases proliferation of UrM and UrE cells by different mechanisms, which are distinguished by the role of RET receptor tyrosine kinase and ERK kinase signaling, thus implicating GDNF signaling in prostate development and growth.
Collapse
Affiliation(s)
- Hyun-Jung Park
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | | |
Collapse
|
13
|
Xuan Y, Yang H, Zhao L, Lau WB, Lau B, Ren N, Hu Y, Yi T, Zhao X, Zhou S, Wei Y. MicroRNAs in colorectal cancer: small molecules with big functions. Cancer Lett 2014; 360:89-105. [PMID: 25524553 DOI: 10.1016/j.canlet.2014.11.051] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 02/05/2023]
Abstract
Colorectal cancer (CRC) is the third most lethal malignancy, with pathogenesis intricately dependent upon microRNAs (miRNAs). miRNAs are short, non-protein coding RNAs, targeting the 3'-untranslated regions (3'-UTR) of certain mRNAs. They usually serve as tumor suppressors or oncogenes, and participate in tumor phenotype maintenance. Therefore, miRNAs consequently regulate CRC carcinogenesis and other biological functions, including apoptosis, development, angiogenesis, migration, and proliferation. Due to its differential expression and distinct stability, miRNAs are regarded as molecular biomarkers (for diagnosis/prognosis) and therapeutic targets for CRC. Recently, a remarkable number of miRNAs have been discovered with implications via incompletely understood mechanisms in CRC. As further study of relevant miRNAs continues, it is hopeful that novel miRNA-based therapeutic strategies may be available for CRC patients in the future.
Collapse
Affiliation(s)
- Yu Xuan
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, China; The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huiliang Yang
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linjie Zhao
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University Hospital, USA
| | - Bonnie Lau
- Department of Surgery, Emergency Medicine, Kaiser Santa Clara Medial Center, Affiliate of Stanford University, USA
| | - Ning Ren
- College of Biological Sciences, Sichuan University, Chengdu 610041, China
| | - Yuehong Hu
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Yi
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Shengtao Zhou
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, China.
| | - Yuquan Wei
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Kang HH, Kang JJ, Kang HG, Chung SS. Urothelial differentiation of human amniotic fluid stem cells by urothelium specific conditioned medium. Cell Biol Int 2014; 38:531-7. [PMID: 24375948 DOI: 10.1002/cbin.10232] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/22/2013] [Indexed: 01/27/2023]
Abstract
Human amniotic fluid stem cells (HAFSCs) have a high proliferative capacity and a good differentiation potential, and may thus be suitable for regenerative medicine. To date, urothelial differentiation mechanisms of HAFSCs are poorly understood. We have investigated the urothelial differentiation potential of HAFSCs so that they can be therapeutically applied to cure defective diseases of bladder. To induce the stem cell differentiation, HAFSCs were cultured in a bladder cancer-derived conditioned medium. After 2 weeks of culture, HAFSCs began to express the urothelial lineage-specific markers (UPII, CK8 and FGF10). Meanwhile, pluripotency markers (Oct-4, Sox-2 and Nanog) were downregulated at both RNA and protein levels in the differentiated HAFSCs. Immunocytochemistry data revealed that differentiated HAFSCs expressed urothelial markers of UPII and CK8. We have screened the receptor tyrosine kinase arrays with the differentiated HAFSCs. The screening showed that MuSK, Tie-1 and EphA4 receptor tyrosine kinases were upregulated, whereas EphA7 and FGF R1 kinases were downregulated in HAFSCs. The data suggest that HAFSCs can be an important urothelium cell source, which can be used for urinary tract engineering.
Collapse
Affiliation(s)
- Henry H Kang
- Hamilton College, 198 College Hill Rd, Clinton, NY 13323, U.S.A
| | | | | | | |
Collapse
|
15
|
Carstens JL, Shahi P, Van Tsang S, Smith B, Creighton CJ, Zhang Y, Seamans A, Seethammagari M, Vedula I, Levitt JM, Ittmann MM, Rowley DR, Spencer DM. FGFR1-WNT-TGF-β signaling in prostate cancer mouse models recapitulates human reactive stroma. Cancer Res 2013; 74:609-20. [PMID: 24305876 DOI: 10.1158/0008-5472.can-13-1093] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The reactive stroma surrounding tumor lesions performs critical roles ranging from supporting tumor cell proliferation to inducing tumorigenesis and metastasis. Therefore, it is critical to understand the cellular components and signaling control mechanisms that underlie the etiology of reactive stroma. Previous studies have individually implicated fibroblast growth factor receptor 1 (FGFR1) and canonical WNT/β-catenin signaling in prostate cancer progression and the initiation and maintenance of a reactive stroma; however, both pathways are frequently found to be coactivated in cancer tissue. Using autochthonous transgenic mouse models for inducible FGFR1 (JOCK1) and prostate-specific and ubiquitously expressed inducible β-catenin (Pro-Cat and Ubi-Cat, respectively) and bigenic crosses between these lines (Pro-Cat × JOCK1 and Ubi-Cat × JOCK1), we describe WNT-induced synergistic acceleration of FGFR1-driven adenocarcinoma, associated with a pronounced fibroblastic reactive stroma activation surrounding prostatic intraepithelial neoplasia (mPIN) lesions found both in in situ and reconstitution assays. Both mouse and human reactive stroma exhibited increased transforming growth factor-β (TGF-β) signaling adjacent to pathologic lesions likely contributing to invasion. Furthermore, elevated stromal TGF-β signaling was associated with higher Gleason scores in archived human biopsies, mirroring murine patterns. Our findings establish the importance of the FGFR1-WNT-TGF-β signaling axes as driving forces behind reactive stroma in aggressive prostate adenocarcinomas, deepening their relevance as therapeutic targets.
Collapse
Affiliation(s)
- Julienne L Carstens
- Authors' Affiliations: Departments of Pathology and Immunology and Molecular and Cellular Biology; and Dan L Duncan Cancer Center, Baylor College of Medicine, Houston; M.E. DeBakey, Department of Veterans Affairs Medical Center, Houston, Texas
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Fiñones RR, Yeargin J, Lee M, Kaur AP, Cheng C, Sun P, Wu C, Nguyen C, Wang-Rodriguez J, Meyer AN, Baird SM, Donoghue DJ, Haas M. Early human prostate adenocarcinomas harbor androgen-independent cancer cells. PLoS One 2013; 8:e74438. [PMID: 24086346 PMCID: PMC3783414 DOI: 10.1371/journal.pone.0074438] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/01/2013] [Indexed: 12/23/2022] Open
Abstract
Although blockade of androgen receptor (AR) signaling represents the main treatment for advanced prostate cancer (PrCa), many patients progress to a lethal phenotype of "Castration-Resistant" prostate cancer (CR-PrCa). With the hypothesis that early PrCa may harbor a population of androgen-unresponsive cancer cells as precursors to CR-recurrent disease, we undertook the propagation of androgen-independent cells from PrCa-prostatectomy samples of early, localized (Stage-I) cases. A collection of 120 surgical specimens from prostatectomy cases was established, among which 54 were adenocarcinomas. Hormone-free cell culture conditions were developed allowing routine propagation of cells expressing prostate basal cell markers and stem/progenitor cell markers, and which proliferated as spheres/spheroids in suspension cultures. Colonies of androgen-independent epithelial cells grew out from 30/43 (70%) of the adenocarcinoma cases studied in detail. Fluorescence microscopy and flow cytometry showed that CR-PrCa cells were positive for CD44, CD133, CK5/14, c-kit, integrin α2β1, SSEA4, E-Cadherin and Aldehyde Dehydrogenase (ALDH). All 30 CR-PrCa cell cultures were also TERT-positive, but negative for TMPRSS2-ERG. Additionally, a subset of 22 of these CR-PrCa cell cultures was examined by orthotopic xenografting in intact and castrated SCID mice, generating histologically typical locally-invasive human PrCa or undifferentiated cancers, respectively, in 6-8 weeks. Cultured PrCa cells and orthotopically-induced in vivo cancers lacked PSA expression. We report here the propagation of Cancer Initiating Cells (CIC) directly from Stage I human PrCa tissue without selection or genetic manipulation. The propagation of stem/progenitor-like CR-PrCa cells derived from early human prostate carcinomas suggests the existence of a subpopulation of cells resistant to androgen-deprivation therapy and which may drive the subsequent emergence of disseminated CR-PrCa.
Collapse
Affiliation(s)
- Rita R. Fiñones
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Jo Yeargin
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Melissa Lee
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Aman Preet Kaur
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Clari Cheng
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Paulina Sun
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Christopher Wu
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Catherine Nguyen
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Jessica Wang-Rodriguez
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| | - April N. Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Stephen M. Baird
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| | - Daniel J. Donoghue
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, United States of America
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| | - Martin Haas
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, United States of America
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
17
|
Xing C, Fu X, Sun X, Guo P, Li M, Dong JT. Different expression patterns and functions of acetylated and unacetylated Klf5 in the proliferation and differentiation of prostatic epithelial cells. PLoS One 2013; 8:e65538. [PMID: 23755247 PMCID: PMC3673967 DOI: 10.1371/journal.pone.0065538] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/25/2013] [Indexed: 12/18/2022] Open
Abstract
KLF5 is a basic transcription factor that regulates multiple biological processes. While it was identified as a putative tumor suppressor in prostate cancer, likely due to its function as an effector of TGF-β in the inhibition of cell proliferation, KLF5 is unacetylated and promotes cell proliferation in the absence of TGF-β. In this study, we evaluated the expression and function of KLF5 in prostatic epithelial homeostasis and tumorigenesis using mouse prostates and human prostate epithelial cells in 3-D culture. Histological and molecular analyses demonstrated that unacetylated-Klf5 was expressed in basal or undifferentiated cells, whereas acetylated-Klf5 was expressed primarily in luminal and/or differentiated cells. Androgen depletion via castration increased both the level of Klf5 expression and the number of Klf5-positive cells in the remaining prostate. Functionally, knockdown of KLF5 in the human RWPE-1 prostate cell line decreased the number of spheres formed in 3-D culture. In addition, knockout of Klf5 in prostate epithelial cells, mediated by probasin promoter-driven Cre expression, did not cause neoplasia but promoted cell proliferation and induced hyperplasia when one Klf5 allele was knocked out. Knockout of both Klf5 alleles however, caused apoptosis rather than cell proliferation in the epithelium. In castrated mice, knockout of Klf5 resulted in more severe shrinkage of the prostate. These results suggest that KLF5 plays a role in the proliferation and differentiation of prostatic epithelial cells, yet loss of KLF5 alone is insufficient to induce malignant transformation in epithelial cells.
Collapse
Affiliation(s)
- Changsheng Xing
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Xiaoying Fu
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Pathology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaodong Sun
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Peng Guo
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Mei Li
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jin-Tang Dong
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
18
|
DeGraff DJ, Robinson VL, Shah JB, Brandt WD, Sonpavde G, Kang Y, Liebert M, Wu XR, Taylor JA. Current preclinical models for the advancement of translational bladder cancer research. Mol Cancer Ther 2012; 12:121-30. [PMID: 23269072 DOI: 10.1158/1535-7163.mct-12-0508] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bladder cancer is a common disease representing the fifth most diagnosed solid tumor in the United States. Despite this, advances in our understanding of the molecular etiology and treatment of bladder cancer have been relatively lacking. This is especially apparent when recent advances in other cancers, such as breast and prostate, are taken into consideration. The field of bladder cancer research is ready and poised for a series of paradigm-shifting discoveries that will greatly impact the way this disease is clinically managed. Future preclinical discoveries with translational potential will require investigators to take full advantage of recent advances in molecular and animal modeling methodologies. We present an overview of current preclinical models and their potential roles in advancing our understanding of this deadly disease and for advancing care.
Collapse
Affiliation(s)
- David J DeGraff
- 1Vanderbilt University Medical Center, Nashville,Tennessee, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sheng X, Li Z, Wang DEL, Li WB, Luo Z, Chen KH, Cao JJ, Yu C, Liu WJ. Isolation and enrichment of PC-3 prostate cancer stem-like cells using MACS and serum-free medium. Oncol Lett 2012; 5:787-792. [PMID: 23426586 PMCID: PMC3576206 DOI: 10.3892/ol.2012.1090] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/10/2012] [Indexed: 11/24/2022] Open
Abstract
Prostate cancer stem-like cells (PCSLCs) are considered to be the ‘seed’ of prostate cancer. The aim of this study was to confirm that the PC-3 cells, which we isolated and enriched from PC-3 cells through magnetic bead cell sorting (MACS) and serum-free medium (SFM) culture, were PCSLCs. Combinations of MACS, flow cytometry (FCM), SFM and immunocytochemistry (ICC) were used to ensure the positive expression of CD133 and CD44 on PC-3 and sphere-forming cell membranes. Self-renewal, multi-potential differentiation, unlimited proliferation and permanency assays were also applied to indentify whether the PC-3 cells exhibited the characteristics of cancer stem cells (CSCs). As a result, there was a low proportion of PCSLCs in the PC-3 cells. In the FCM assay, the proportion of cells expressing CD133 or CD44 in the PC-3 cells was 0.51 and 0.31%, respectively. In addition, we found that the proportion of PC-3 cells sorted by MACS that expressed CD133 was significantly increased compared with that of the sphere-forming cells cultured in SFM (99.09 vs. 84.80%, P<0.05), while no difference was observed in the proportion of cells expressing CD44 between them (99.88 vs. 99.82%, P>0.05). The expression of PAP and AR as detected by western blot analysis of induced PCSLCs was significantly increased compared with that of uninduced PCSLCs (P<0.05); the proliferation capacity of PCSLCs was significantly higher than that of both the PC-3 cells (P<0.05) and induced PCSLCs (P<0.05). Furthermore, the PCSLCs that were isolated from SFM and MACS both demonstrated certain characteristics of stem cells and should be considered as stem cell-like. These data may hold potential for further exploring the role of PCSLCs.
Collapse
Affiliation(s)
- Xia Sheng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University; Chongqing 400016
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Keil KP, Mehta V, Branam AM, Abler LL, Buresh-Stiemke RA, Joshi PS, Schmitz CT, Marker PC, Vezina CM. Wnt inhibitory factor 1 (Wif1) is regulated by androgens and enhances androgen-dependent prostate development. Endocrinology 2012; 153:6091-103. [PMID: 23087175 PMCID: PMC3512059 DOI: 10.1210/en.2012-1564] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fetal prostate development from urogenital sinus (UGS) epithelium requires androgen receptor (AR) activation in UGS mesenchyme (UGM). Despite growing awareness of sexually dimorphic gene expression in the UGS, we are still limited in our knowledge of androgen-responsive genes in UGM that initiate prostate ductal development. We found that WNT inhibitory factor 1 (Wif1) mRNA is more abundant in male vs. female mouse UGM in which its expression temporally and spatially overlaps androgen-responsive steroid 5α-reductase 2 (Srd5a2). Wif1 mRNA is also present in prostatic buds during their elongation and branching morphogenesis. Androgens are necessary and sufficient for Wif1 expression in mouse UGS explant mesenchyme, and testicular androgens remain necessary for normal Wif1 expression in adult mouse prostate stroma. WIF1 contributes functionally to prostatic bud formation. In the presence of androgens, exogenous WIF1 protein increases prostatic bud number and UGS basal epithelial cell proliferation without noticeably altering the pattern of WNT/β-catenin-responsive Axin2 or lymphoid enhancer binding factor 1 (Lef1) mRNA. Wif1 mutant male UGSs exhibit increased (Sfrp)2 and (Sfrp)3 expression and form the same number of prostatic buds as the wild-type control males. Collectively our results reveal Wif1 as one of the few known androgen-responsive genes in the fetal mouse UGM and support the hypothesis that androgen-dependent Wif1 expression is linked to the mechanism of androgen-induced prostatic bud formation.
Collapse
Affiliation(s)
- Kimberly P Keil
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Simons BW, Hurley PJ, Huang Z, Ross AE, Miller R, Marchionni L, Berman DM, Schaeffer EM. Wnt signaling though beta-catenin is required for prostate lineage specification. Dev Biol 2012; 371:246-55. [PMID: 22960283 DOI: 10.1016/j.ydbio.2012.08.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/30/2012] [Accepted: 08/21/2012] [Indexed: 02/05/2023]
Abstract
Androgens initiate a complex network of signals within the UGS that trigger prostate lineage commitment and bud formation. Given its contributions to organogenesis in other systems, we investigated a role for canonical Wnt signaling in prostate development. We developed a new method to achieve complete deletion of beta-catenin, the transcriptional coactivator required for canonical Wnt signaling, in early prostate development. Beta-catenin deletion abrogated canonical Wnt signaling and yielded prostate rudiments that exhibited dramatically decreased budding and failed to adopt prostatic identity. This requirement for canonical Wnt signaling was limited to a brief critical period during the initial molecular phase of prostate identity specification. Deletion of beta-catenin in the adult prostate did not significantly affect organ homeostasis. Collectively, these data establish that beta-catenin and Wnt signaling play key roles in prostate lineage specification and bud outgrowth.
Collapse
Affiliation(s)
- Brian W Simons
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Mechanisms of prostate atrophy after LHRH antagonist cetrorelix injection: an experimental study in a rat model of benign prostatic hyperplasia. ACTA ACUST UNITED AC 2012; 32:389-395. [PMID: 22684563 DOI: 10.1007/s11596-012-0067-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Indexed: 12/17/2022]
Abstract
In the present study, we investigated the roles of TGF-β signaling pathway in a rat benign prostatic hyperplasia (BPH) model treated with cetrorelix. TGF-β1 and c-Myc expression were measured by qRT-PCR and Western blotting in the proximal and distal region of ventral prostatic lobes, respectively. We observed that treatment with cetrorelix led to a significant reduction of ventral prostate weight in a dose-dependent manner. In the proximal region, after cetrorelix treatment, the expression of TGF-β1 was dramatically increased (P<0.05), while the expression of c-Myc was significantly decreased (P<0.05). In comparison with the control group, the cetrorelix groups had more TUNEL-positive cells. Our findings strongly suggest that the TGF-β signaling pathway may be one of the major causes responsible for prostate volume reduction in BPH rats after cetrorelix treatment.
Collapse
|
23
|
DeGraff DJ, Clark PE, Cates JM, Yamashita H, Robinson VL, Yu X, Smolkin ME, Chang SS, Cookson MS, Herrick MK, Shariat SF, Steinberg GD, Frierson HF, Wu XR, Theodorescu D, Matusik RJ. Loss of the urothelial differentiation marker FOXA1 is associated with high grade, late stage bladder cancer and increased tumor proliferation. PLoS One 2012; 7:e36669. [PMID: 22590586 PMCID: PMC3349679 DOI: 10.1371/journal.pone.0036669] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 04/09/2012] [Indexed: 12/31/2022] Open
Abstract
Approximately 50% of patients with muscle-invasive bladder cancer (MIBC) develop metastatic disease, which is almost invariably lethal. However, our understanding of pathways that drive aggressive behavior of MIBC is incomplete. Members of the FOXA subfamily of transcription factors are implicated in normal urogenital development and urologic malignancies. FOXA proteins are implicated in normal urothelial differentiation, but their role in bladder cancer is unknown. We examined FOXA expression in commonly used in vitro models of bladder cancer and in human bladder cancer specimens, and used a novel in vivo tissue recombination system to determine the functional significance of FOXA1 expression in bladder cancer. Logistic regression analysis showed decreased FOXA1 expression is associated with increasing tumor stage (p<0.001), and loss of FOXA1 is associated with high histologic grade (p<0.001). Also, we found that bladder urothelium that has undergone keratinizing squamous metaplasia, a precursor to the development of squamous cell carcinoma (SCC) exhibited loss of FOXA1 expression. Furthermore, 81% of cases of SCC of the bladder were negative for FOXA1 staining compared to only 40% of urothelial cell carcinomas. In addition, we showed that a subpopulation of FOXA1 negative urothelial tumor cells are highly proliferative. Knockdown of FOXA1 in RT4 bladder cancer cells resulted in increased expression of UPK1B, UPK2, UPK3A, and UPK3B, decreased E-cadherin expression and significantly increased cell proliferation, while overexpression of FOXA1 in T24 cells increased E-cadherin expression and significantly decreased cell growth and invasion. In vivo recombination of bladder cancer cells engineered to exhibit reduced FOXA1 expression with embryonic rat bladder mesenchyme and subsequent renal capsule engraftment resulted in enhanced tumor proliferation. These findings provide the first evidence linking loss of FOXA1 expression with histological subtypes of MIBC and urothelial cell proliferation, and suggest an important role for FOXA1 in the malignant phenotype of MIBC.
Collapse
Affiliation(s)
- David J DeGraff
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Transdifferentiation of human adipose-derived stem cells into urothelial cells: potential for urinary tract tissue engineering. Cell Tissue Res 2012; 347:737-746. [PMID: 22290635 DOI: 10.1007/s00441-011-1317-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 12/21/2011] [Indexed: 12/19/2022]
Abstract
Autologous urothelial cells (UCs) provide a cell source for urinary tissue engineering because they can be used safely due to their lack of immunogenicity. However, these cells cannot be harvested under the following circumstances: malignancy, infection and organ loss, etc. Human adipose-derived stem cells (HADSCs) possess the traits of high differentiation potential and ease of isolation, representing a promising resource for tissue engineering and regenerative medicine. Nevertheless, HADSCs have been poorly investigated in urology and the optimal approaches to induce HADSCs into urothelium are still under investigation. In this study, we hypothesized that the change of microenvironment by a conditioned medium was essential for the transdifferentiation of HADSCs into UCs. We then used a conditioned medium derived from urothelium to alternate the microenvironment of HADSCs. After 14 days of culture in a conditioned medium, about 25-50% HADSCs changed their morphology into polygonal epithelium-like shapes. In addition, these cells expressed up-regulating of urothelial lineage-specific markers (uroplakin 2and cytokeratin-18) and down-regulating of mesenchymal marker (vimentin) in RNA and protein level, respectively, which confirmed that HADSCs were induced into urothelial lineage cells. We also measured the growth factors in the conditioned medium in order to analyze the molecular mechanisms regulating transdifferentiation. We observed that the expression levels of PDGF-BB and VEGF were significantly higher than those of the control group after 14 days induction, suggesting they were abundantly secreted into the medium during the culturing period. In conclusion, HADSCs showed in vitro the upregulation of markers for differentiation towards urothelial cells by culturing in an urothelial-conditioned medium, which provides an alternative cell source for potential use in urinary tract tissue engineering.
Collapse
|
25
|
Li X, Sterling JA, Fan KH, Vessella RL, Shyr Y, Hayward SW, Matrisian LM, Bhowmick NA. Loss of TGF-β responsiveness in prostate stromal cells alters chemokine levels and facilitates the development of mixed osteoblastic/osteolytic bone lesions. Mol Cancer Res 2012; 10:494-503. [PMID: 22290877 DOI: 10.1158/1541-7786.mcr-11-0506] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Loss of TGF-β type II receptor (TβRII, encoded by Tgfbr2) expression in the prostate stroma contributes to prostate cancer initiation, progression, and invasion. We evaluated whether TβRII loss also affected prostate cancer bone metastatic growth. Immunohistologic analysis revealed that TβRII expression was lost in cancer-associated fibroblasts in human prostate cancer bone metastatic tissues. We recapitulated the human situation with a conditional stromal Tgfbr2 knockout (Tgfbr2-KO) mouse model. Conditioned media from primary cultured Tgfbr2-KO or control Tgfbr2-flox prostatic fibroblasts (koPFCM or wtPFCM, respectively) were applied to C4-2B prostate cancer cells before grafting the cells tibially. We found that koPFCM promoted prostate cancer cell growth in the bone and development of early mixed osteoblastic/osteolytic bone lesions. Furthermore, the koPFCM promoted greater C4-2B adhesion to type-I collagen, the major component of bone matrix, compared to wtPFCM-treated C4-2B. Cytokine antibody array analysis revealed that koPFCM had more than two-fold elevation in granulocyte colony-stimulating factor and CXCL1, CXCL16, and CXCL5 expression relative to wtPFCM. Interestingly, neutralizing antibodies of CXCL16 or CXCL1 were able to reduce koPFCM-associated C4-2B type-I collagen adhesion to that comparable with wtPFCM-mediated adhesion. Collectively, our data indicate that loss of TGF-β responsiveness in prostatic fibroblasts results in upregulation of CXCL16 and CXCL1 and that these paracrine signals increase prostate cancer cell adhesion in the bone matrix. These microenvironment changes at the primary tumor site can mediate early establishment of prostate cancer cells in the bone and support subsequent tumor development at the metastatic site.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Nashville, TN 37203, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Yu Y, Kanwar SS, Patel BB, Oh PS, Nautiyal J, Sarkar FH, Majumdar APN. MicroRNA-21 induces stemness by downregulating transforming growth factor beta receptor 2 (TGFβR2) in colon cancer cells. Carcinogenesis 2011; 33:68-76. [PMID: 22072622 DOI: 10.1093/carcin/bgr246] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although microRNA-21 (miR-21) is emerging as an oncogene and has been shown to target several tumor suppressor genes, including programmed cell death 4 (PDCD4), its precise mechanism of action on cancer stem cells (CSCs) is unclear. Herein, we report that FOLFOX-resistant HCT-116 and HT-29 cells that are enriched in CSCs show a 3- to 7-fold upregulation of pre- and mature miR-21 and downregulation of PDCD4. Likewise, overexpression of miR-21 in HCT-116 cells, achieved through stable transfection, led to the downregulation of PDCD4 and transforming growth factor beta receptor 2 (TGFβR2). In contrast, the levels of β-catenin, TCF/LEF activity and the expression of c-Myc, Cyclin-D, which are increased in CSCs, are also augmented in miR-21 overexpressing colon cancer cells, accompanied by an increased sphere forming ability in vitro and tumor formation in SCID mice. Downregulation of TGFβR2 could be attributed to decreased expression of the receptor as evidenced by reduction in the activity of the luciferase gene construct comprising TGFβR2-3' untranslated region (UTR) sequence that binds to miR-21. Moreover, we observed that downregulation of miR-21 enhances luciferase-TGFβR2-3' UTR activity suggesting TGFβR2 as being one of the direct targets of miR-21. Further support is provided by the observation that transfection of TGFβR2 in HCT-116 cells attenuates TCF/LEF luciferase activity, accompanied by decreased expression of β-catenin, c-Myc and Cyclin-D1. Our current data suggest that miR-21 plays an important role in regulating stemness by modulating TGFβR2 signaling in colon cancer cells.
Collapse
Affiliation(s)
- Yingjie Yu
- Department of Veterans Affairs Medical Center, Detroit, MI 48201, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Nicholson TM, Ricke WA. Androgens and estrogens in benign prostatic hyperplasia: past, present and future. Differentiation 2011; 82:184-99. [PMID: 21620560 PMCID: PMC3179830 DOI: 10.1016/j.diff.2011.04.006] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 04/19/2011] [Accepted: 04/26/2011] [Indexed: 01/28/2023]
Abstract
Benign prostatic hyperplasia (BPH) and associated lower urinary tract symptoms (LUTS) are common clinical problems in urology. While the precise molecular etiology remains unclear, sex steroids have been implicated in the development and maintenance of BPH. Sufficient data exists linking androgens and androgen receptor pathways to BPH and use of androgen reducing compounds, such as 5α-reductase inhibitors which block the conversion of testosterone into dihydrotestosterone, are a component of the standard of care for men with LUTS attributed to an enlarged prostate. However, BPH is a multifactorial disease and not all men respond well to currently available treatments, suggesting factors other than androgens are involved. Testosterone, the primary circulating androgen in men, can also be metabolized via CYP19/aromatase into the potent estrogen, estradiol-17β. The prostate is an estrogen target tissue and estrogens directly and indirectly affect growth and differentiation of prostate. The precise role of endogenous and exogenous estrogens in directly affecting prostate growth and differentiation in the context of BPH is an understudied area. Estrogens and selective estrogen receptor modulators (SERMs) have been shown to promote or inhibit prostate proliferation signifying potential roles in BPH. Recent research has demonstrated that estrogen receptor signaling pathways may be important in the development and maintenance of BPH and LUTS; however, new models are needed to genetically dissect estrogen regulated molecular mechanisms involved in BPH. More work is needed to identify estrogens and associated signaling pathways in BPH in order to target BPH with dietary and therapeutic SERMs.
Collapse
Affiliation(s)
| | - William A. Ricke
- Department of Urology, Carbone Cancer Center, University of Wisconsin, Madison, WI
| |
Collapse
|
28
|
Massoner P, Ladurner Rennau M, Heidegger I, Kloss-Brandstätter A, Summerer M, Reichhart E, Schäfer G, Klocker H. Expression of the IGF axis is decreased in local prostate cancer but enhanced after benign prostate epithelial differentiation and TGF-β treatment. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2905-19. [PMID: 21983635 PMCID: PMC3260840 DOI: 10.1016/j.ajpath.2011.08.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 08/01/2011] [Accepted: 08/24/2011] [Indexed: 01/16/2023]
Abstract
The insulin-like growth factor (IGF) axis is a molecular pathway intensively investigated in cancer research. Clinical trials targeting the IGF1 receptor (IGF1R) in different tumors, including prostate cancer, are under way. Although studies on the IGF axis in prostate cancer have already entered into clinical trials, the expression and functional role of the IGF axis in benign prostate and in prostate cancer needs to be better defined. We determined mRNA expression levels of the IGF axis in microdissected tissue specimens of local prostate cancer using quantitative PCR. All members of the IGF axis, including IGF1, IGF2, IGF binding proteins 1 through 6, and insulin receptor, were measured in both the stromal and epithelial compartments of the prostate. IGF1, IGF2, IGF1R, and insulin receptor were down-regulated in local prostate cancer tissue compared with matched benign tissue, suggesting that the IGF axis is not induced during prostate cancer development. Using a new prostate epithelial differentiation model, we demonstrate that the expression of the IGF axis is enhanced during normal prostate epithelial differentiation and regulated by tumor growth factor (TGF)-β. Our data reveal a functional role of the IGF axis in prostate differentiation, underscoring the importance of the IGF axis in normal development and emphasizing the importance of accurate target validation before moving to advanced clinical trials.
Collapse
Affiliation(s)
- Petra Massoner
- Division of Experimental Urology, Department of Urology, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abler LL, Keil KP, Mehta V, Joshi PS, Schmitz CT, Vezina CM. A high-resolution molecular atlas of the fetal mouse lower urogenital tract. Dev Dyn 2011; 240:2364-77. [PMID: 21905163 DOI: 10.1002/dvdy.22730] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2011] [Indexed: 12/15/2022] Open
Abstract
Epithelial-stromal interactions in the lower urogenital tract (LUT) are integral to prostatic and seminal vesicle development in males, vaginal and uterine development in females, and urethral development in both sexes. Gene expression profiling of isolated LUT stroma and epithelium has unraveled mechanisms of LUT development, but such studies are confounded by heterogeneous and ill-defined cell sub-populations contained within each tissue compartment. We used in situ hybridization to synthesize a high-resolution molecular atlas of 17-day post-coitus fetal mouse LUT. We identified mRNAs that mark selective cell populations of the seminal vesicle, ejaculatory duct, prostate, urethra, and vagina, subdividing these tissues into 16 stromal and 8 epithelial sub-compartments. These results provide a powerful tool for mapping LUT gene expression patterns and also reveal previously uncharacterized sub-compartments that may play mechanistic roles in LUT development of which we were previously unaware.
Collapse
Affiliation(s)
- Lisa L Abler
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison Wisconsin, USA
| | | | | | | | | | | |
Collapse
|
30
|
Kharaishvili G, Simkova D, Makharoblidze E, Trtkova K, Kolar Z, Bouchal J. Wnt signaling in prostate development and carcinogenesis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2011; 155:11-8. [PMID: 21475372 DOI: 10.5507/bp.2011.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The Wnt signaling pathway is crucial for cell fate decisions, stem cell renewal, regulation of cell proliferation and differentiation. Deregulated Wnt signaling is also implicated in a number of hereditary and degenerative diseases and cancer. METHODS AND RESULTS This review highlights the role of the Wnt pathway in the regulation of stem/progenitor cell renewal and prostate gland development and how this signaling is altered in prostate cancer. Recent evidence suggests that Wnt signaling regulates androgen activity in prostate cancer cells, enhances androgen receptor expression and promotes the growth of prostate cancer even after androgen ablation therapy. There is also strong evidence that Wnt signaling is enhanced in androgen-ablation resistant tumors and bone metastases. CONCLUSIONS Further study of the modulators of this pathway will be of therapeutic relevance as inhibition of Wnt signaling may have the potential to reduce the self-renewal and aggressive behaviour of prostate cancer while Wnt signaling activation might enhance stem cell activity when tissue regeneration is required.
Collapse
Affiliation(s)
- Gvantsa Kharaishvili
- Laboratory of Molecular Pathology of Institute of Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | | | | | | | | | | |
Collapse
|
31
|
Omori A, Harada M, Ohta S, Villacorte M, Sugimura Y, Shiraishi T, Suzuki K, Nakagata N, Ito T, Yamada G. Epithelial Bmp (Bone morphogenetic protein) signaling for bulbourethral gland development: a mouse model for congenital cystic dilation. Congenit Anom (Kyoto) 2011; 51:102-9. [PMID: 21848994 DOI: 10.1111/j.1741-4520.2011.00318.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The bulbourethral gland (BUG) is a male-specific organ, which secretes part of the semen fluid. As the BUG is located in the deep pelvic floor, its developmental process is still unclear. Bone morphogenetic protein (Bmp) signaling plays pivotal roles in various organs. However, the function of Bmp signaling for BUG development is still unclear. The present study aimed to elucidate the role of Bmp signaling in the development of the BUG. We observed the prominent nuclear accumulation of phosphorylated (p) SMAD1/5/8, the downstream molecules of Bmp signaling, during BUG epithelial development. These results suggest that Bmp signaling contributes to BUG development. Bmp receptor1a (Bmpr1a) is known as the major type 1 signal transducer in some organogeneses. To analyze the Bmp signaling function for BUG development, we examined epithelial cell-specific Bmpr1a gene conditional mutant mice utilizing the tamoxifen-inducible Cre recombinase system. We observed cystic dilation and epithelial hyperplasia of the BUG in the Bmpr1a conditional knockout mice. The mutant cystic BUG specimens also showed inflammatory lesions. These BUG abnormalities resembled some of the BUG malformations observed in human congenital syndromes. The current study suggests that Bmp signaling possesses an essential role in BUG development and homeostasis. This would be the first report showing that the mutation of the Bmpr1a gene in the BUG epithelia phenocopied some abnormalities of human congenital syndromes affecting the BUG duct.
Collapse
Affiliation(s)
- Akiko Omori
- Department of Organ Formation, Institute of Molecular Embryology and Genetics (IMEG) and Graduate School of Medical and Pharmaceutical Sciences, Kumanmoto University, Honjo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cunha GR, Ricke WA. A historical perspective on the role of stroma in the pathogenesis of benign prostatic hyperplasia. Differentiation 2011; 82:168-72. [PMID: 21723032 DOI: 10.1016/j.diff.2011.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/03/2011] [Accepted: 04/03/2011] [Indexed: 11/19/2022]
Abstract
This review summarizes the concept that the neo-formation of ductal-acinar architecture in the pathogenesis of benign prostatic hyperplasia (BPH) is due to the reactivation of embryonic inductive activity by BPH stroma, an idea enunciated by John McNeal. The concept is the synthesis of McNeal's astute pathological inference based upon developmental biology and supported by the mesenchymal-epithelial interaction studies. In a broader context, McNeal's concept of framing epithelial pathogenesis in terms of developmental biological principals has been extended more recently into the field of carcinogenesis under the umbrella of tumor microenvironment.
Collapse
Affiliation(s)
- Gerald R Cunha
- Department of Urology, University of California, San Francisco, CA 94143, USA.
| | | |
Collapse
|
33
|
Yee DS, Tang Y, Li X, Liu Z, Guo Y, Ghaffar S, McQueen P, Atreya D, Xie J, Simoneau AR, Hoang BH, Zi X. The Wnt inhibitory factor 1 restoration in prostate cancer cells was associated with reduced tumor growth, decreased capacity of cell migration and invasion and a reversal of epithelial to mesenchymal transition. Mol Cancer 2010. [PMID: 20573255 DOI: 10.1186/1476-4598-9-162.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aberrations in the Wnt pathway have been reported to be involved in the metastasis of prostate cancer (PCa) to bone. We investigated the effect and underlying mechanism of a naturally-occurring Wnt inhibitor, WIF1, on the growth and cellular invasiveness of a bone metastatic PCa cell line, PC3. RESULTS The WIF1 gene promoter was hypermethylated and its expression down-regulated in the majority (7 of 8) of PCa cell lines. Restoration of WIF1 expression in PC-3 cells resulted in a decreased cell motility and invasiveness via up-regulation of epithelial markers (E-cadherin, Keratin-8 and-18), down-regulation of mesenchymal markers (N-cadherin, Fibronectin and Vimentin) and decreased activity of MMP-2 and -9. PC3 cells transfected with WIF1 consistently demonstrated reduced expression of Epithelial-to-Mesenchymal Transition (EMT) transcription factors, Slug and Twist, and a change in morphology from mesenchymal to epithelial. Moreover, WIF1 expression significantly reduced tumor growth by approximately 63% in a xenograft mouse model. This was accompanied by an increased expression of E-cadherin and Keratin-18 and a decreased expression of vimentin in tumor tissues. CONCLUSION These data suggest that WIF1 regulates tumor invasion through EMT process and thus, may play an important role in controlling metastatic disease in PCa patients. Blocking Wnt signaling in PCa by WIF1 may represent a novel strategy in the future to reduce metastatic disease burden in PCa patients.
Collapse
Affiliation(s)
- David S Yee
- Department of Urology and Chao Family Comprehensive Cancer Center, University of California at Irvine Orange, CA 92868, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yee DS, Tang Y, Li X, Liu Z, Guo Y, Ghaffar S, McQueen P, Atreya D, Xie J, Simoneau AR, Hoang BH, Zi X. The Wnt inhibitory factor 1 restoration in prostate cancer cells was associated with reduced tumor growth, decreased capacity of cell migration and invasion and a reversal of epithelial to mesenchymal transition. Mol Cancer 2010; 9:162. [PMID: 20573255 PMCID: PMC2907330 DOI: 10.1186/1476-4598-9-162] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Accepted: 06/23/2010] [Indexed: 12/30/2022] Open
Abstract
Background Aberrations in the Wnt pathway have been reported to be involved in the metastasis of prostate cancer (PCa) to bone. We investigated the effect and underlying mechanism of a naturally-occurring Wnt inhibitor, WIF1, on the growth and cellular invasiveness of a bone metastatic PCa cell line, PC3. Results The WIF1 gene promoter was hypermethylated and its expression down-regulated in the majority (7 of 8) of PCa cell lines. Restoration of WIF1 expression in PC-3 cells resulted in a decreased cell motility and invasiveness via up-regulation of epithelial markers (E-cadherin, Keratin-8 and-18), down-regulation of mesenchymal markers (N-cadherin, Fibronectin and Vimentin) and decreased activity of MMP-2 and -9. PC3 cells transfected with WIF1 consistently demonstrated reduced expression of Epithelial-to-Mesenchymal Transition (EMT) transcription factors, Slug and Twist, and a change in morphology from mesenchymal to epithelial. Moreover, WIF1 expression significantly reduced tumor growth by approximately 63% in a xenograft mouse model. This was accompanied by an increased expression of E-cadherin and Keratin-18 and a decreased expression of vimentin in tumor tissues. Conclusion These data suggest that WIF1 regulates tumor invasion through EMT process and thus, may play an important role in controlling metastatic disease in PCa patients. Blocking Wnt signaling in PCa by WIF1 may represent a novel strategy in the future to reduce metastatic disease burden in PCa patients.
Collapse
Affiliation(s)
- David S Yee
- Department of Urology and Chao Family Comprehensive Cancer Center, University of California at Irvine Orange, CA 92868, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|