1
|
Bridges MC, Nair-Menon J, Risner A, Jimenez DW, Daulagala AC, Kingsley C, Davis ME, Kourtidis A. Actin-dependent recruitment of AGO2 to the zonula adherens. Mol Biol Cell 2023; 34:ar129. [PMID: 37819702 PMCID: PMC10848941 DOI: 10.1091/mbc.e22-03-0099-t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/18/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
Adherens junctions are cadherin-based structures critical for cellular architecture. E-cadherin junctions in mature epithelial cell monolayers tether to an apical actomyosin ring to form the zonula adherens (ZA). We have previously shown that the adherens junction protein PLEKHA7 associates with and regulates the function of the core RNA interference (RNAi) component AGO2 specifically at the ZA. However, the mechanism mediating AGO2 recruitment to the ZA remained unexplored. Here, we reveal that this ZA-specific recruitment of AGO2 depends on both the structural and tensile integrity of the actomyosin cytoskeleton. We found that depletion of not only PLEKHA7, but also either of the three PLEKHA7-interacting, LIM-domain family proteins, namely LMO7, LIMCH1, and PDLIM1, results in disruption of actomyosin organization and tension, as well as disruption of AGO2 junctional localization and of its miRNA-binding ability. We also show that AGO2 binds Myosin IIB and that PLEKHA7, LMO7, LIMCH1, and PDLIM1 all disrupt interaction of AGO2 with Myosin IIB at the ZA. These results demonstrate that recruitment of AGO2 to the ZA is sensitive to actomyosin perturbations, introducing the concept of mechanosensitive RNAi machinery, with potential implications in tissue remodeling and in disease.
Collapse
Affiliation(s)
- Mary Catherine Bridges
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Joyce Nair-Menon
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Alyssa Risner
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Douglas W. Jimenez
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Amanda C. Daulagala
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Christina Kingsley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Madison E. Davis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| |
Collapse
|
2
|
Noordstra I, Hermoso MD, Schimmel L, Bonfim-Melo A, Currin-Ross D, Duong CN, Kalappurakkal JM, Morris RG, Vestweber D, Mayor S, Gordon E, Roca-Cusachs P, Yap AS. An E-cadherin-actin clutch translates the mechanical force of cortical flow for cell-cell contact to inhibit epithelial cell locomotion. Dev Cell 2023; 58:1748-1763.e6. [PMID: 37480844 PMCID: PMC7616453 DOI: 10.1016/j.devcel.2023.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/05/2023] [Accepted: 06/30/2023] [Indexed: 07/24/2023]
Abstract
Adherens junctions (AJs) allow cell contact to inhibit epithelial migration yet also permit epithelia to move as coherent sheets. How, then, do cells identify which contacts will inhibit locomotion? Here, we show that in human epithelial cells this arises from the orientation of cortical flows at AJs. When the leader cells from different migrating sheets make head-on contact with one another, they assemble AJs that couple together oppositely directed cortical flows. This applies a tensile signal to the actin-binding domain (ABD) of α-catenin, which provides a clutch to promote lateral adhesion growth and inhibit the lamellipodial activity necessary for migration. In contrast, AJs found between leader cells in the same migrating sheet have cortical flows aligned in the same direction, and no such mechanical inhibition takes place. Therefore, α-catenin mechanosensitivity in the clutch between E-cadherin and cortical F-actin allows cells to interpret the direction of motion via cortical flows and signal for contact to inhibit locomotion.
Collapse
Affiliation(s)
- Ivar Noordstra
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Mario Díez Hermoso
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), 08028 Barcelona, Spain
| | - Lilian Schimmel
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Alexis Bonfim-Melo
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Denni Currin-Ross
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; School of Physics & EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Cao Nguyen Duong
- Department of Vascular Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | | | - Richard G Morris
- School of Physics & EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dietmar Vestweber
- Department of Vascular Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Satyajit Mayor
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India
| | - Emma Gordon
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), 08028 Barcelona, Spain; Universitat de Barcelona, 08036 Barcelona, Spain.
| | - Alpha S Yap
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
3
|
Nandy N, Roy JK. Rab11 negatively regulates wingless preventing JNK-mediated apoptosis in Drosophila epithelium during embryonic dorsal closure. Cell Tissue Res 2023; 391:485-504. [PMID: 36705747 DOI: 10.1007/s00441-023-03740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/12/2023] [Indexed: 01/28/2023]
Abstract
Rab11, a small Ras like GTPase marking the recycling endosomes, plays instrumental roles in Drosophila embryonic epithelial morphogenesis where an array of reports testify its importance in the maintenance of cyto-architectural as well as functional attributes of the concerned cells. Proper Rab11 functions ensure a precise regulation of developmentally active cell signaling pathways which in turn promote the expression of morphogens and other physico-chemical cues which finally forge an embryo out of a single layer of cells. Earlier reports have established that Rab11 functions are vital for fly embryonic development where amorphic mutants such as EP3017 homozygotes show a fair degree of epithelial defects along with incomplete dorsal closure. Here, we present a detailed account of the effects of Rab11 loss of function in the dorso-lateral epithelium which resulted in severe dorsal closure defects along with an elevated JNK-Dpp expression. We further observed that the dorso-lateral epithelial cells undergo epithelial to mesenchymal transition as well as apoptosis in Rab11 mutants with elevated expression levels of MMP1 and Caspase-3, where Caspase-3 contributes to the Rab11 knockout phenotype contrary to the knockdown mutants or hypomorphs. Interestingly, the elevated expressions of the core JNK-Dpp signaling could be rescued with a simultaneous knockdown of wingless in the Rab11 knockout mutants suggesting a genetic interaction of Rab11 with the Wingless pathway during dorsal closure, an ideal model of epithelial wound healing.
Collapse
Affiliation(s)
- Nabarun Nandy
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Jagat Kumar Roy
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
4
|
Crellin HA, Buckley CE. Using Optogenetics to Investigate the Shared Mechanisms of Apical-Basal Polarity and Mitosis. Cells Tissues Organs 2023; 213:161-180. [PMID: 36599311 DOI: 10.1159/000528796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/18/2022] [Indexed: 01/05/2023] Open
Abstract
The initiation of apical-basal (AB) polarity and the process of mitotic cell division are both characterised by the generation of specialised plasma membrane and cortical domains. These are generated using shared mechanisms, such as asymmetric protein accumulation, Rho GTPase signalling, cytoskeletal reorganisation, vesicle trafficking, and asymmetric phosphoinositide distribution. In epithelial tissue, the coordination of AB polarity and mitosis in space and time is important both during initial epithelial development and to maintain tissue integrity and ensure appropriate cell differentiation at later stages. Whilst significant progress has been made in understanding the mechanisms underlying cell division and AB polarity, it has so far been challenging to fully unpick the complex interrelationship between polarity, signalling, morphogenesis, and cell division. However, the recent emergence of optogenetic protein localisation techniques is now allowing researchers to reversibly control protein activation, localisation, and signalling with high spatiotemporal resolution. This has the potential to revolutionise our understanding of how subcellular processes such as AB polarity are integrated with cell behaviours such as mitosis and how these processes impact whole tissue morphogenesis. So far, these techniques have been used to investigate processes such as cleavage furrow ingression, mitotic spindle positioning, and in vivo epithelial morphogenesis. This review describes some of the key shared mechanisms of cell division and AB polarity establishment, how they are coordinated during development and how the advance of optogenetic techniques is furthering this research field.
Collapse
Affiliation(s)
- Helena A Crellin
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Clare E Buckley
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Gupta S, Duszyc K, Verma S, Budnar S, Liang X, Gomez GA, Marcq P, Noordstra I, Yap AS. Enhanced RhoA signalling stabilizes E-cadherin in migrating epithelial monolayers. J Cell Sci 2021; 134:272015. [PMID: 34368835 DOI: 10.1242/jcs.258767] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelia migrate as physically coherent populations of cells. Previous studies have revealed that mechanical stress accumulates in these cellular layers as they move. These stresses are characteristically tensile in nature and have often been inferred to arise when moving cells pull upon the cell-cell adhesions that hold them together. We now report that epithelial tension at adherens junctions between migrating cells also increases due to an increase in RhoA-mediated junctional contractility. We found that active RhoA levels were stimulated by p114 RhoGEF (also known as ARHGEF18) at the junctions between migrating MCF-7 monolayers, and this was accompanied by increased levels of actomyosin and mechanical tension. Applying a strategy to restore active RhoA specifically at adherens junctions by manipulating its scaffold, anillin, we found that this junctional RhoA signal was necessary to stabilize junctional E-cadherin (CDH1) during epithelial migration and promoted orderly collective movement. We suggest that stabilization of E-cadherin by RhoA serves to increase cell-cell adhesion to protect against the mechanical stresses of migration. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Shafali Gupta
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Kinga Duszyc
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Suzie Verma
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Srikanth Budnar
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Xuan Liang
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Guillermo A Gomez
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Philippe Marcq
- Physique et Mécanique des Milieux Hétérogènes, CNRS, ESPCI Paris, PSL University, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Ivar Noordstra
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Alpha S Yap
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| |
Collapse
|
6
|
Characterization of the strain-rate-dependent mechanical response of single cell-cell junctions. Proc Natl Acad Sci U S A 2021; 118:2019347118. [PMID: 33531347 DOI: 10.1073/pnas.2019347118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cell-cell adhesions are often subjected to mechanical strains of different rates and magnitudes in normal tissue function. However, the rate-dependent mechanical behavior of individual cell-cell adhesions has not been fully characterized due to the lack of proper experimental techniques and therefore remains elusive. This is particularly true under large strain conditions, which may potentially lead to cell-cell adhesion dissociation and ultimately tissue fracture. In this study, we designed and fabricated a single-cell adhesion micro tensile tester (SCAµTT) using two-photon polymerization and performed displacement-controlled tensile tests of individual pairs of adherent epithelial cells with a mature cell-cell adhesion. Straining the cytoskeleton-cell adhesion complex system reveals a passive shear-thinning viscoelastic behavior and a rate-dependent active stress-relaxation mechanism mediated by cytoskeleton growth. Under low strain rates, stress relaxation mediated by the cytoskeleton can effectively relax junctional stress buildup and prevent adhesion bond rupture. Cadherin bond dissociation also exhibits rate-dependent strengthening, in which increased strain rate results in elevated stress levels at which cadherin bonds fail. This bond dissociation becomes a synchronized catastrophic event that leads to junction fracture at high strain rates. Even at high strain rates, a single cell-cell junction displays a remarkable tensile strength to sustain a strain as much as 200% before complete junction rupture. Collectively, the platform and the biophysical understandings in this study are expected to build a foundation for the mechanistic investigation of the adaptive viscoelasticity of the cell-cell junction.
Collapse
|
7
|
Abstract
Mechanical forces have emerged as essential regulators of cell organization, proliferation, migration, and polarity to regulate cellular and tissue homeostasis. Changes in forces or loss of the cellular response to them can result in abnormal embryonic development and diseases. Over the past two decades, many efforts have been put in deciphering the molecular mechanisms that convert forces into biochemical signals, allowing for the identification of many mechanotransducer proteins. Here we discuss how PDZ proteins are emerging as new mechanotransducer proteins by altering their conformations or localizations upon force loads, leading to the formation of macromolecular modules tethering the cell membrane to the actin cytoskeleton.
Collapse
|
8
|
Moe A, Holmes W, Golding AE, Zola J, Swider ZT, Edelstein-Keshet L, Bement W. Cross-talk-dependent cortical patterning of Rho GTPases during cell repair. Mol Biol Cell 2021; 32:1417-1432. [PMID: 34133216 PMCID: PMC8351735 DOI: 10.1091/mbc.e20-07-0481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rho GTPases such as Rho, Rac, and Cdc42 are important regulators of the cortical cytoskeleton in processes including cell division, locomotion, and repair. In these processes, Rho GTPases assume characteristic patterns wherein the active GTPases occupy mutually exclusive "zones" in the cell cortex. During cell wound repair, for example, a Rho zone encircles the wound edge and is in turn encircled by a Cdc42 zone. Here we evaluated the contributions of cross-talk between Rho and Cdc42 to the patterning of their respective zones in wounded Xenopus oocytes using experimental manipulations in combination with mathematical modeling. The results show that the position of the Cdc42 zone relative to the Rho zone and relative to the wound edge is controlled by the level of Rho activity. In contrast, the outer boundary of the Rho zone is limited by the level of Cdc42 activity. Models based on positive feedback within zones and negative feedback from Rho to the GEF-GAP Abr to Cdc42 capture some, but not all, of the observed behaviors. We conclude that GTPase zone positioning is controlled at the level of Rho activity and we speculate that the Cdc42 zone or something associated with it limits the spread of Rho activity.
Collapse
Affiliation(s)
- Alison Moe
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706.,Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706
| | - William Holmes
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37212
| | - Adriana E Golding
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706.,Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706
| | - Jessica Zola
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706
| | - Zachary T Swider
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706.,Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706
| | - Leah Edelstein-Keshet
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - William Bement
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706.,Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706.,Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
9
|
Greig J, Bulgakova NA. Interplay between actomyosin and E-cadherin dynamics regulates cell shape in the Drosophila embryonic epidermis. J Cell Sci 2020; 133:jcs242321. [PMID: 32665321 DOI: 10.1242/jcs.242321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 07/01/2020] [Indexed: 01/03/2023] Open
Abstract
Precise regulation of cell shape is vital for building functional tissues. Here, we study the mechanisms that lead to the formation of highly elongated anisotropic epithelial cells in the Drosophila epidermis. We demonstrate that this cell shape is the result of two counteracting mechanisms at the cell surface that regulate the degree of elongation: actomyosin, which inhibits cell elongation downstream of RhoA (Rho1 in Drosophila) and intercellular adhesion, modulated via clathrin-mediated endocytosis of E-cadherin (encoded by shotgun in flies), which promotes cell elongation downstream of the GTPase Arf1 (Arf79F in Drosophila). We show that these two mechanisms do not act independently but are interconnected, with RhoA signalling reducing Arf1 recruitment to the plasma membrane. Additionally, cell adhesion itself regulates both mechanisms - p120-catenin, a regulator of intercellular adhesion, promotes the activity of both Arf1 and RhoA. Altogether, we uncover a complex network of interactions between cell-cell adhesion, the endocytic machinery and the actomyosin cortex, and demonstrate how this network regulates cell shape in an epithelial tissue in vivo.
Collapse
Affiliation(s)
- Joshua Greig
- Department of Biomedical Science and Bateson Centre, The University of Sheffield, Sheffield S10 2TN, UK
| | - Natalia A Bulgakova
- Department of Biomedical Science and Bateson Centre, The University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
10
|
Abstract
Epithelial cells form highly organized polarized sheets with characteristic cell morphologies and tissue architecture. Cell–cell adhesion and intercellular communication are prerequisites of such cohesive sheets of cells, and cell connectivity is mediated through several junctional assemblies, namely desmosomes, adherens, tight and gap junctions. These cell–cell junctions form signalling hubs that not only mediate cell–cell adhesion but impact on multiple aspects of cell behaviour, helping to coordinate epithelial cell shape, polarity and function. This review will focus on the tight and adherens junctions, constituents of the apical junctional complex, and aims to provide a comprehensive overview of the complex signalling that underlies junction assembly, integrity and plasticity.
Collapse
Affiliation(s)
- Alexandra D Rusu
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Marios Georgiou
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
11
|
Monemian Esfahani A, Rosenbohm J, Reddy K, Jin X, Bouzid T, Riehl B, Kim E, Lim JY, Yang R. Tissue Regeneration from Mechanical Stretching of Cell-Cell Adhesion. Tissue Eng Part C Methods 2019; 25:631-640. [PMID: 31407627 PMCID: PMC6859692 DOI: 10.1089/ten.tec.2019.0098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/05/2019] [Indexed: 01/09/2023] Open
Abstract
Cell-cell adhesion complexes are macromolecular adhesive organelles that integrate cells into tissues. This mechanochemical coupling in cell-cell adhesion is required for a large number of cell behaviors, and perturbations of the cell-cell adhesion structure or related mechanotransduction pathways can lead to critical pathological conditions such as skin and heart diseases, arthritis, and cancer. Mechanical stretching has been a widely used method to stimulate the mechanotransduction process originating from the cell-cell adhesion and cell-extracellular matrix (ECM) complexes. These studies aimed to reveal the biophysical processes governing cell proliferation, wound healing, gene expression regulation, and cell differentiation in various tissues, including cardiac, muscle, vascular, and bone. This review explores techniques in mechanical stretching in two-dimensional settings with different stretching regimens on different cell types. The mechanotransduction responses from these different cell types will be discussed with an emphasis on their biophysical transformations during mechanical stretching and the cross talk between the cell-cell and cell-ECM adhesion complexes. Therapeutic aspects of mechanical stretching are reviewed considering these cellular responses after the application of mechanical forces, with a focus on wound healing and tissue regeneration. Impact Statement Mechanical stretching has been proposed as a therapeutic option for tissue regeneration and wound healing. It has been accepted that mechanotransduction processes elicited by mechanical stretching govern cellular response and behavior, and these studies have predominantly focused on the cell-extracellular matrix (ECM) sites. This review serves the mechanobiology community by shifting the focus of mechanical stretching effects from cell-ECM adhesions to the less examined cell-cell adhesions, which we believe play an equally important role in orchestrating the response pathways.
Collapse
Affiliation(s)
- Amir Monemian Esfahani
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Jordan Rosenbohm
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Keerthana Reddy
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Xiaowei Jin
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Tasneem Bouzid
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Brandon Riehl
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Eunju Kim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
12
|
Abstract
Cell-cell junctions are specializations of the plasma membrane responsible for physically integrating cells into tissues. We are now beginning to appreciate the diverse impacts that mechanical forces exert upon the integrity and function of these junctions. Currently, this is best understood for cadherin-based adherens junctions in epithelia and endothelia, where cell-cell adhesion couples the contractile cytoskeletons of cells together to generate tissue-scale tension. Junctional tension participates in morphogenesis and tissue homeostasis. Changes in tension can also be detected by mechanotransduction pathways that allow cells to communicate with each other. In this review, we discuss progress in characterising the forces present at junctions in physiological conditions; the cellular mechanisms that generate intrinsic tension and detect changes in tension; and, finally, we consider how tissue integrity is maintained in the face of junctional stresses.
Collapse
|
13
|
E-cadherin loss in RMG-1 cells inhibits cell migration and its regulation by Rho GTPases. Biochem Biophys Rep 2019; 18:100650. [PMID: 31193165 PMCID: PMC6520553 DOI: 10.1016/j.bbrep.2019.100650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 11/23/2022] Open
Abstract
E-cadherin is an adherens junction protein that forms intercellular contacts in epithelial cells. Downregulation of E-cadherin is frequently observed in epithelial tumors and it is a hallmark of epithelial–mesenchymal transition (EMT). However, recent findings suggest that E-cadherin plays a more complex role in certain types of cancers. Previous studies investigating the role of E-cadherin mainly used gene-knockdown systems; therefore, we used the CRISPR/Cas9n system to develop E-cadherin-knockout (EcadKO) ovarian cancer RMG-1 cell to clarify the role of E-cadherin in RMG-1 cells. EcadKO RMG-1 cells demonstrated a complete loss of the adherens junctions and failed to form cell clusters. Cell–extracellular matrix (ECM) interactions were increased in EcadKO RMG-1 cells. Upregulation of integrin beta1 and downregulation of collagen 4 were confirmed. EcadKO RMG-1 cells showed decreased β-catenin levels and decreased expression of its transcriptional target cyclin D1. Surprisingly, a marked decrease in the migratory ability of EcadKO RMG-1 cells was observed and the cellular response to Rho GTPase inhibitors was diminished. Thus, we demonstrated that E-cadherin in RMG-1 cells is indispensable for β-catenin expression and β-catenin mediated transcription and Rho GTPase-regulated directionally persistent cell migration. E-cadherin loss diminished the formation of cell clusters in RMG-1 cells. E-cadherin loss depleted β-catenin expression in RMG-1 cells. E-cadherin loss markedly decreased cell migration and response to RhoGTPase inhibitors during cell migration in RMG-1 cells.
Collapse
|
14
|
Poland SP, Chan GK, Levitt JA, Krstajić N, Erdogan AT, Henderson RK, Parsons M, Ameer-Beg SM. Multifocal multiphoton volumetric imaging approach for high-speed time-resolved Förster resonance energy transfer imaging in vivo. OPTICS LETTERS 2018; 43:6057-6060. [PMID: 30548010 PMCID: PMC6410918 DOI: 10.1364/ol.43.006057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 05/29/2023]
Abstract
In this Letter, we will discuss the development of a multifocal multiphoton fluorescent lifetime imaging system where four individual fluorescent intensity and lifetime planes are acquired simultaneously, allowing us to obtain volumetric data without the need for sequential scanning at different axial depths. Using a phase-only spatial light modulator (SLM) with an appropriate algorithm to generate a holographic pattern, we project a beamlet array within a sample volume of a size, which can be preprogrammed by the user. We demonstrate the capabilities of the system to image live-cell interactions. While only four planes are shown, this technique can be rescaled to a large number of focal planes, enabling full 3D acquisition and reconstruction.
Collapse
Affiliation(s)
- Simon P. Poland
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Guy's Campus, King's College London, UK
| | - Grace K. Chan
- Randall Centre for Cell and Molecular Biophysics, Guy’s Campus, Kings College, UK
| | - James A. Levitt
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Guy's Campus, King's College London, UK
- Randall Centre for Cell and Molecular Biophysics, Guy’s Campus, Kings College, UK
| | - Nikola Krstajić
- Institute for Integrated Micro and Nano Systems, School of Engineering, University of Edinburgh, Edinburgh, UK
- EPSRC IRC “Hub” in Optical Molecular Sensing & Imaging, Centre for Inflammation Research, Queen’s Medical Research Institute, 47 Little France Crescent, University of Edinburgh, Edinburgh, UK
| | - Ahmet T. Erdogan
- Institute for Integrated Micro and Nano Systems, School of Engineering, University of Edinburgh, Edinburgh, UK
| | - Robert K. Henderson
- Institute for Integrated Micro and Nano Systems, School of Engineering, University of Edinburgh, Edinburgh, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, Guy’s Campus, Kings College, UK
| | - Simon M. Ameer-Beg
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Guy's Campus, King's College London, UK
- Randall Centre for Cell and Molecular Biophysics, Guy’s Campus, Kings College, UK
| |
Collapse
|
15
|
Yap AS, Duszyc K, Viasnoff V. Mechanosensing and Mechanotransduction at Cell-Cell Junctions. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028761. [PMID: 28778874 DOI: 10.1101/cshperspect.a028761] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cell adhesion systems are defined by their ability to resist detachment force. Our understanding of the biology of cell-cell adhesions has recently been transformed by the realization that many of the forces that act on those adhesions are generated by the cells that they couple together; and that force at adhesive junctions can be sensed to regulate cell behavior. Here, we consider the mechanisms responsible for applying force to cell-cell junctions and the mechanosensory pathways that detect those forces. We focus on cadherins, as these are the best-studied examples to date, but it is likely that similar principles will apply to other molecular systems that can engage with force-generators within cells and physically couple those cells together.
Collapse
Affiliation(s)
- Alpha S Yap
- Institute for Molecular Bioscience, Division of Cell Biology and Molecular Medicine, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Kinga Duszyc
- Institute for Molecular Bioscience, Division of Cell Biology and Molecular Medicine, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, Singapore 117411.,CNRS, Singapore 117411
| |
Collapse
|
16
|
Zenker J, White MD, Gasnier M, Alvarez YD, Lim HYG, Bissiere S, Biro M, Plachta N. Expanding Actin Rings Zipper the Mouse Embryo for Blastocyst Formation. Cell 2018; 173:776-791.e17. [DOI: 10.1016/j.cell.2018.02.035] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/20/2017] [Accepted: 02/15/2018] [Indexed: 01/08/2023]
|
17
|
Kreitzer G, Myat MM. Microtubule Motors in Establishment of Epithelial Cell Polarity. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a027896. [PMID: 28264820 DOI: 10.1101/cshperspect.a027896] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epithelial cells play a key role in insuring physiological homeostasis by acting as a barrier between the outside environment and internal organs. They are also responsible for the vectorial transport of ions and fluid essential to the function of many organs. To accomplish these tasks, epithelial cells must generate an asymmetrically organized plasma membrane comprised of structurally and functionally distinct apical and basolateral membranes. Adherent and occluding junctions, respectively, anchor cells within a layer and prevent lateral diffusion of proteins in the outer leaflet of the plasma membrane and restrict passage of proteins and solutes through intercellular spaces. At a fundamental level, the establishment and maintenance of epithelial polarity requires that signals initiated at cell-substratum and cell-cell adhesions are transmitted appropriately and dynamically to the cytoskeleton, to the membrane-trafficking machinery, and to the regulation of occluding and adherent junctions. Rigorous descriptive and mechanistic studies published over the last 50 years have provided great detail to our understanding of epithelial polarization. Yet still, critical early steps in morphogenesis are not yet fully appreciated. In this review, we discuss how cytoskeletal motor proteins, primarily kinesins, contribute to coordinated modification of microtubule and actin arrays, formation and remodeling of cell adhesions to targeted membrane trafficking, and to initiating the formation and expansion of an apical lumen.
Collapse
Affiliation(s)
- Geri Kreitzer
- Department of Pathobiology, Sophie Davis School of Biomedical Education, City College of New York, The City University of New York School of Medicine, New York, New York 10031
| | - Monn Monn Myat
- Department of Biology, Medgar Evers College, Brooklyn, New York 11225.,The Graduate Center, The City University of New York, New York, New York 10016
| |
Collapse
|
18
|
Liang X, Kiru S, Gomez GA, Yap AS. Regulated recruitment of SRGAP1 modulates RhoA signaling for contractility during epithelial junction maturation. Cytoskeleton (Hoboken) 2017; 75:61-69. [PMID: 29160905 DOI: 10.1002/cm.21420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 11/06/2022]
Abstract
Adherens junctions in epithelia are contractile structures, where coupling of adhesion to the actomyosin cytoskeleton generates mechanical tension for morphogenesis and homeostasis. In established monolayers, junctional contractility is supported by the interplay between cell signals and scaffolding proteins. However, less is known about how contractile junctions develop, especially during the establishment of epithelial monolayers. Here, we show that junctional tension increases concomitant with accumulation of actomyosin networks as Caco-2 epithelia become confluent. This is associated with development of a zone of RhoA signaling at junctions. Further, we find that the low levels of RhoA signaling and contractility found in subconfluent cultures reflect a mechanism for their active suppression. Specifically, the RhoA antagonist, SRGAP1, is present at subconfluent junctions to a greater extent than in confluent cultures and SRGAP1 RNAi restores RhoA signaling and contractility in subconfluent cultures to levels seen in confluent cells. Overall, these observations suggest that regulated changes in junctional contractility mediated by modulation of RhoA signaling occur as epithelial monolayers mature.
Collapse
Affiliation(s)
- Xuan Liang
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Sajini Kiru
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Guillermo A Gomez
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia.,Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia
| | - Alpha S Yap
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
19
|
Tyrosine dephosphorylated cortactin downregulates contractility at the epithelial zonula adherens through SRGAP1. Nat Commun 2017; 8:790. [PMID: 28983097 PMCID: PMC5629210 DOI: 10.1038/s41467-017-00797-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 07/20/2017] [Indexed: 11/25/2022] Open
Abstract
Contractile adherens junctions support cell−cell adhesion, epithelial integrity, and morphogenesis. Much effort has been devoted to understanding how contractility is established; however, less is known about whether contractility can be actively downregulated at junctions nor what function this might serve. We now identify such an inhibitory pathway that is mediated by the cytoskeletal scaffold, cortactin. Mutations of cortactin that prevent its tyrosine phosphorylation downregulate RhoA signaling and compromise the ability of epithelial cells to generate a contractile zonula adherens. This is mediated by the RhoA antagonist, SRGAP1. We further demonstrate that this mechanism is co-opted by hepatocyte growth factor to promote junctional relaxation and motility in epithelial collectives. Together, our findings identify a novel function of cortactin as a regulator of RhoA signaling that can be utilized by morphogenetic regulators for the active downregulation of junctional contractility. Epithelial cell-cell adhesions are contractile junctions, but whether contractility can be down-regulated is not known. Here the authors report how tyrosine dephosphorylation of the cytoskeletal scaffold, cortactin, recruits the RhoA antagonist SRGAP1 to relax adherens junctions in response to HGF.
Collapse
|
20
|
Naganathan SR, Oates AC. Mechanochemical coupling and developmental pattern formation. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2017.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Chan EH, Chavadimane Shivakumar P, Clément R, Laugier E, Lenne PF. Patterned cortical tension mediated by N-cadherin controls cell geometric order in the Drosophila eye. eLife 2017; 6. [PMID: 28537220 PMCID: PMC5443664 DOI: 10.7554/elife.22796] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
Adhesion molecules hold cells together but also couple cell membranes to a contractile actomyosin network, which limits the expansion of cell contacts. Despite their fundamental role in tissue morphogenesis and tissue homeostasis, how adhesion molecules control cell shapes and cell patterns in tissues remains unclear. Here we address this question in vivo using the Drosophila eye. We show that cone cell shapes depend little on adhesion bonds and mostly on contractile forces. However, N-cadherin has an indirect control on cell shape. At homotypic contacts, junctional N-cadherin bonds downregulate Myosin-II contractility. At heterotypic contacts with E-cadherin, unbound N-cadherin induces an asymmetric accumulation of Myosin-II, which leads to a highly contractile cell interface. Such differential regulation of contractility is essential for morphogenesis as loss of N-cadherin disrupts cell rearrangements. Our results establish a quantitative link between adhesion and contractility and reveal an unprecedented role of N-cadherin on cell shapes and cell arrangements. DOI:http://dx.doi.org/10.7554/eLife.22796.001
Collapse
|
22
|
Chanet S, Miller CJ, Vaishnav ED, Ermentrout B, Davidson LA, Martin AC. Actomyosin meshwork mechanosensing enables tissue shape to orient cell force. Nat Commun 2017; 8:15014. [PMID: 28504247 PMCID: PMC5440693 DOI: 10.1038/ncomms15014] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/17/2017] [Indexed: 12/23/2022] Open
Abstract
Sculpting organism shape requires that cells produce forces with proper directionality. Thus, it is critical to understand how cells orient the cytoskeleton to produce forces that deform tissues. During Drosophila gastrulation, actomyosin contraction in ventral cells generates a long, narrow epithelial furrow, termed the ventral furrow, in which actomyosin fibres and tension are directed along the length of the furrow. Using a combination of genetic and mechanical perturbations that alter tissue shape, we demonstrate that geometrical and mechanical constraints act as cues to orient the cytoskeleton and tension during ventral furrow formation. We developed an in silico model of two-dimensional actomyosin meshwork contraction, demonstrating that actomyosin meshworks exhibit an inherent force orienting mechanism in response to mechanical constraints. Together, our in vivo and in silico data provide a framework for understanding how cells orient force generation, establishing a role for geometrical and mechanical patterning of force production in tissues. Large-scale tissue reorganization requires the generation of directional tension, which requires orientation of the cytoskeleton. Here Chanet et al. alter tissue shape and tension in the Drosophila embryo to show that geometric and mechanical constraints act as cues to orient the cytoskeleton and tension.
Collapse
Affiliation(s)
- Soline Chanet
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Callie J Miller
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Eeshit Dhaval Vaishnav
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Bard Ermentrout
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Lance A Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.,Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
23
|
Komarova YA, Kruse K, Mehta D, Malik AB. Protein Interactions at Endothelial Junctions and Signaling Mechanisms Regulating Endothelial Permeability. Circ Res 2017; 120:179-206. [PMID: 28057793 DOI: 10.1161/circresaha.116.306534] [Citation(s) in RCA: 345] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 12/31/2022]
Abstract
The monolayer of endothelial cells lining the vessel wall forms a semipermeable barrier (in all tissue except the relatively impermeable blood-brain and inner retinal barriers) that regulates tissue-fluid homeostasis, transport of nutrients, and migration of blood cells across the barrier. Permeability of the endothelial barrier is primarily regulated by a protein complex called adherens junctions. Adherens junctions are not static structures; they are continuously remodeled in response to mechanical and chemical cues in both physiological and pathological settings. Here, we discuss recent insights into the post-translational modifications of junctional proteins and signaling pathways regulating plasticity of adherens junctions and endothelial permeability. We also discuss in the context of what is already known and newly defined signaling pathways that mediate endothelial barrier leakiness (hyperpermeability) that are important in the pathogenesis of cardiovascular and lung diseases and vascular inflammation.
Collapse
Affiliation(s)
- Yulia A Komarova
- From the Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago
| | - Kevin Kruse
- From the Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago
| | - Dolly Mehta
- From the Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago
| | - Asrar B Malik
- From the Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago.
| |
Collapse
|
24
|
Arnold TR, Stephenson RE, Miller AL. Rho GTPases and actomyosin: Partners in regulating epithelial cell-cell junction structure and function. Exp Cell Res 2017; 358:20-30. [PMID: 28363828 DOI: 10.1016/j.yexcr.2017.03.053] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/11/2023]
Abstract
Epithelial tissues are defined by polarized epithelial cells that are integrated into tissues and exhibit barrier function in order to regulate what is allowed to pass between cells. Cell-cell junctions must be stable enough to promote barrier function and tissue integrity, yet plastic enough to remodel when necessary. This remarkable ability to dynamically sense and respond to changes in cell shape and tissue tension allows cell-cell junctions to remain functional during events that disrupt epithelial homeostasis including morphogenesis, wound healing, and cell division. In order to achieve this plasticity, both tight junctions and adherens junctions are coupled to the underlying actomyosin cytoskeleton. Here, we discuss the importance of the junctional linkage to actomyosin and how a localized zone of active RhoA along with other Rho GTPases work together to orchestrate junctional actomyosin dynamics. We focus on how scaffold proteins help coordinate Rho GTPases, their upstream regulators, and their downstream effectors for efficient, localized Rho GTPase signaling output. Additionally, we highlight important roles junctional actin-binding proteins play in addition to their traditional roles in organizing actin. Together, Rho GTPases, their regulators, and effectors form compartmentalized signaling modules that regulate actomyosin structure and contractility to achieve proper cell-cell adhesion and tissue barriers.
Collapse
Affiliation(s)
- Torey R Arnold
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Rachel E Stephenson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Ann L Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
25
|
Acharya BR, Wu SK, Lieu ZZ, Parton RG, Grill SW, Bershadsky AD, Gomez GA, Yap AS. Mammalian Diaphanous 1 Mediates a Pathway for E-cadherin to Stabilize Epithelial Barriers through Junctional Contractility. Cell Rep 2017; 18:2854-2867. [DOI: 10.1016/j.celrep.2017.02.078] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/19/2017] [Accepted: 02/27/2017] [Indexed: 01/08/2023] Open
|
26
|
Priya R, Liang X, Teo JL, Duszyc K, Yap AS, Gomez GA. ROCK1 but not ROCK2 contributes to RhoA signaling and NMIIA-mediated contractility at the epithelial zonula adherens. Mol Biol Cell 2016; 28:12-20. [PMID: 28035042 PMCID: PMC5221615 DOI: 10.1091/mbc.e16-04-0262] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/07/2016] [Accepted: 10/26/2016] [Indexed: 12/18/2022] Open
Abstract
ROCK1 is the prominent isoform responsible for molecular organization of epithelial zonula adherens (ZA) and its contractile properties. ROCK1 selectively localizes NMIIA to ZA and supports cortical tension and GTP-Rho at the ZA. NMIIA, in a feedback loop, promotes cortical localization of ROCK1. Rho kinases (ROCK1 and ROCK2) function downstream of the small GTPase RhoA to drive actomyosin cytoskeletal remodeling. It has often been believed that ROCK1 and ROCK2 may be functionally redundant, as they share a highly conserved kinase domain. However, in this study, we report differential functional effects for these ROCKs at the epithelial zonula adherens (ZA). Using specific siRNA, we found that ROCK1 depletion disrupted cadherin organization at the ZA, accompanied by loss of F-actin and NMIIA, whereas ROCK2 knockdown had no significant effect. Further, ROCK1, but not ROCK2, was necessary to stabilize GTP-RhoA at the ZA, thereby sustaining junctional tension and inhibiting intraepithelial cell movement. We also found that nonmuscle myosin IIA is a major determinant of ROCK1 cortical stability. Thus, despite sharing the catalytic domain with ROCK2, ROCK1 appears to be the dominant kinase essential for junctional integrity and contractile tension at epithelial ZA.
Collapse
Affiliation(s)
- Rashmi Priya
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Xuan Liang
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jessica L Teo
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Kinga Duszyc
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Alpha S Yap
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Guillermo A Gomez
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
27
|
Priya R, Wee K, Budnar S, Gomez GA, Yap AS, Michael M. Coronin 1B supports RhoA signaling at cell-cell junctions through Myosin II. Cell Cycle 2016; 15:3033-3041. [PMID: 27650961 DOI: 10.1080/15384101.2016.1234549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Non-muscle myosin II (NMII) motor proteins are responsible for generating contractile forces inside eukaryotic cells. There is also a growing interest in the capacity for these motor proteins to influence cell signaling through scaffolding, especially in the context of RhoA GTPase signaling. We previously showed that NMIIA accumulation and stability within specific regions of the cell cortex, such as the zonula adherens (ZA), allows the formation of a stable RhoA signaling zone. Now we demonstrate a key role for Coronin 1B in maintaining this junctional pool of NMIIA, as depletion of Coronin 1B significantly compromised myosin accumulation and stability at junctions. The loss of junctional NMIIA, upon Coronin 1B knockdown, perturbed RhoA signaling due to enhanced junctional recruitment of the RhoA antagonist, p190B Rho GAP. This effect was blocked by the expression of phosphomimetic MRLC-DD, thus reinforcing the central role of NMII in regulating RhoA signaling.
Collapse
Affiliation(s)
- Rashmi Priya
- a Division of Cell Biology and Molecular Medicine, Program in Membrane Interface Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia , Brisbane , Queensland , Australia
| | - Kenneth Wee
- a Division of Cell Biology and Molecular Medicine, Program in Membrane Interface Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia , Brisbane , Queensland , Australia
| | - Srikanth Budnar
- a Division of Cell Biology and Molecular Medicine, Program in Membrane Interface Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia , Brisbane , Queensland , Australia
| | - Guillermo A Gomez
- a Division of Cell Biology and Molecular Medicine, Program in Membrane Interface Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia , Brisbane , Queensland , Australia
| | - Alpha S Yap
- a Division of Cell Biology and Molecular Medicine, Program in Membrane Interface Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia , Brisbane , Queensland , Australia
| | - Magdalene Michael
- a Division of Cell Biology and Molecular Medicine, Program in Membrane Interface Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia , Brisbane , Queensland , Australia.,b Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus , London , UK
| |
Collapse
|
28
|
Michael M, Meiring JCM, Acharya BR, Matthews DR, Verma S, Han SP, Hill MM, Parton RG, Gomez GA, Yap AS. Coronin 1B Reorganizes the Architecture of F-Actin Networks for Contractility at Steady-State and Apoptotic Adherens Junctions. Dev Cell 2016; 37:58-71. [PMID: 27046832 DOI: 10.1016/j.devcel.2016.03.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/19/2016] [Accepted: 03/08/2016] [Indexed: 01/21/2023]
Abstract
In this study we sought to identify how contractility at adherens junctions influences apoptotic cell extrusion. We first found that the generation of effective contractility at steady-state junctions entails a process of architectural reorganization whereby filaments that are initially generated as poorly organized networks of short bundles are then converted into co-aligned perijunctional bundles. Reorganization requires coronin 1B, which is recruited to junctions by E-cadherin adhesion and is necessary to establish contractile tension at the zonula adherens. When cells undergo apoptosis within an epithelial monolayer, coronin 1B is also recruited to the junctional cortex at the apoptotic/neighbor cell interface in an E-cadherin-dependent fashion to support actin architectural reorganization, contractility, and extrusion. We propose that contractile stress transmitted from the apoptotic cell through E-cadherin adhesions elicits a mechanosensitive response in neighbor cells that is necessary for the morphogenetic event of apoptotic extrusion to occur.
Collapse
Affiliation(s)
- Magdalene Michael
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Joyce C M Meiring
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Bipul R Acharya
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Daniel R Matthews
- Queensland Brain Institute, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Suzie Verma
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Siew Ping Han
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Michelle M Hill
- University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Woolloongabba, Brisbane, QLD 4102, Australia
| | - Robert G Parton
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; NHMRC Program in Membrane Interface Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Guillermo A Gomez
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Alpha S Yap
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; NHMRC Program in Membrane Interface Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
29
|
Maintenance of the Epithelial Barrier and Remodeling of Cell-Cell Junctions during Cytokinesis. Curr Biol 2016; 26:1829-42. [PMID: 27345163 DOI: 10.1016/j.cub.2016.05.036] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/12/2016] [Accepted: 05/12/2016] [Indexed: 01/08/2023]
Abstract
Epithelial integrity and barrier function must be maintained during the complex cell shape changes that occur during cytokinesis in vertebrate epithelial tissue. Here, we investigate how adherens junctions and bicellular and tricellular tight junctions are maintained and remodeled during cell division in the Xenopus laevis embryo. We find that epithelial barrier function is not disrupted during cytokinesis and is mediated by sustained tight junctions. Using fluorescence recovery after photobleaching (FRAP), we demonstrate that adherens junction proteins are stabilized at the cleavage furrow by increased tension. We find that Vinculin is recruited to the adherens junction at the cleavage furrow, and that inhibiting recruitment of Vinculin by expressing a dominant-negative mutant increases the rate of furrow ingression. Furthermore, we show that cells neighboring the cleavage plane are pulled between the daughter cells, making a new interface between neighbors, and two new tricellular tight junctions flank the midbody following cytokinesis. Our data provide new insight into how epithelial integrity and barrier function are maintained throughout cytokinesis in vertebrate epithelial tissue.
Collapse
|
30
|
Schwayer C, Sikora M, Slováková J, Kardos R, Heisenberg CP. Actin Rings of Power. Dev Cell 2016; 37:493-506. [DOI: 10.1016/j.devcel.2016.05.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 12/21/2022]
|
31
|
Erami Z, Herrmann D, Warren SC, Nobis M, McGhee EJ, Lucas MC, Leung W, Reischmann N, Mrowinska A, Schwarz JP, Kadir S, Conway JRW, Vennin C, Karim SA, Campbell AD, Gallego-Ortega D, Magenau A, Murphy KJ, Ridgway RA, Law AM, Walters SN, Grey ST, Croucher DR, Zhang L, Herzog H, Hardeman EC, Gunning PW, Ormandy CJ, Evans TRJ, Strathdee D, Sansom OJ, Morton JP, Anderson KI, Timpson P. Intravital FRAP Imaging using an E-cadherin-GFP Mouse Reveals Disease- and Drug-Dependent Dynamic Regulation of Cell-Cell Junctions in Live Tissue. Cell Rep 2016; 14:152-167. [PMID: 26725115 PMCID: PMC4709331 DOI: 10.1016/j.celrep.2015.12.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/21/2015] [Accepted: 11/23/2015] [Indexed: 12/29/2022] Open
Abstract
E-cadherin-mediated cell-cell junctions play a prominent role in maintaining the epithelial architecture. The disruption or deregulation of these adhesions in cancer can lead to the collapse of tumor epithelia that precedes invasion and subsequent metastasis. Here we generated an E-cadherin-GFP mouse that enables intravital photobleaching and quantification of E-cadherin mobility in live tissue without affecting normal biology. We demonstrate the broad applications of this mouse by examining E-cadherin regulation in multiple tissues, including mammary, brain, liver, and kidney tissue, while specifically monitoring E-cadherin mobility during disease progression in the pancreas. We assess E-cadherin stability in native pancreatic tissue upon genetic manipulation involving Kras and p53 or in response to anti-invasive drug treatment and gain insights into the dynamic remodeling of E-cadherin during in situ cancer progression. FRAP in the E-cadherin-GFP mouse, therefore, promises to be a valuable tool to fundamentally expand our understanding of E-cadherin-mediated events in native microenvironments.
Collapse
Affiliation(s)
- Zahra Erami
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - David Herrmann
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Sean C Warren
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Max Nobis
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Ewan J McGhee
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Morghan C Lucas
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Wilfred Leung
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Nadine Reischmann
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Agata Mrowinska
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Juliane P Schwarz
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Shereen Kadir
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - James R W Conway
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Claire Vennin
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Saadia A Karim
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Andrew D Campbell
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - David Gallego-Ortega
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Astrid Magenau
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Kendelle J Murphy
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Rachel A Ridgway
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Andrew M Law
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Stacey N Walters
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Shane T Grey
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - David R Croucher
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Lei Zhang
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Herbert Herzog
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Edna C Hardeman
- Neuromuscular and Regenerative Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Peter W Gunning
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Christopher J Ormandy
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - T R Jeffry Evans
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Douglas Strathdee
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Kurt I Anderson
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK.
| | - Paul Timpson
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia.
| |
Collapse
|
32
|
|
33
|
Wu SK, Lagendijk AK, Hogan BM, Gomez GA, Yap AS. Active contractility at E-cadherin junctions and its implications for cell extrusion in cancer. Cell Cycle 2015; 14:315-22. [PMID: 25590779 DOI: 10.4161/15384101.2014.989127] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cellular contractility regulates tissue cohesion and morphogenesis. In epithelia, E-cadherin adhesion couples the contractile cortices of neighboring cells together to produce tension at junctions that can be transmitted across the epithelium in a planar fashion. We have recently demonstrated that contractility is also patterned in the apical-lateral axis within epithelial junctions. Our findings highlight the role that cytoskeletal regulation plays in controlling the levels of intra-junctional tension. Of note, dysregulation of this apicolateral pattern of tension can drive oncogenic cell extrusion. In this article, we provide a detailed description of the actomyosin cytoskeleton organization during oncogenic extrusion and discuss the implications of cell extrusion in cancer.
Collapse
Affiliation(s)
- Selwin K Wu
- a Divisions of Cell Biology and Molecular Medicine ; The University of Queensland ; St. Lucia , Brisbane , Australia
| | | | | | | | | |
Collapse
|
34
|
Adherens Junctions Revisualized: Organizing Cadherins as Nanoassemblies. Dev Cell 2015; 35:12-20. [DOI: 10.1016/j.devcel.2015.09.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/27/2015] [Accepted: 09/17/2015] [Indexed: 01/31/2023]
|
35
|
Priya R, Gomez GA, Budnar S, Verma S, Cox HL, Hamilton NA, Yap AS. Feedback regulation through myosin II confers robustness on RhoA signalling at E-cadherin junctions. Nat Cell Biol 2015; 17:1282-93. [PMID: 26368311 DOI: 10.1038/ncb3239] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 08/14/2015] [Indexed: 12/11/2022]
Abstract
Actomyosin at the epithelial zonula adherens (ZA) generates junctional tension for tissue integrity and morphogenesis. This requires the RhoA GTPase, which establishes a strikingly stable active zone at the ZA. Mechanisms must then exist to confer robustness on junctional RhoA signalling at the population level. We now identify a feedback network that generates a stable mesoscopic RhoA zone out of dynamic elements. The key is scaffolding of ROCK1 to the ZA by myosin II. ROCK1 protects junctional RhoA by phosphorylating Rnd3 to prevent the cortical recruitment of the Rho suppressor, p190B RhoGAP. Combining predictive modelling and experimentation, we show that this network constitutes a bistable dynamical system that is realized at the population level of the ZA. Thus, stability of the RhoA zone is an emergent consequence of the network of interactions that allow myosin II to feedback to RhoA.
Collapse
Affiliation(s)
- Rashmi Priya
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Guillermo A Gomez
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Srikanth Budnar
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Suzie Verma
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Hayley L Cox
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Nicholas A Hamilton
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Alpha S Yap
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
36
|
Abstract
The establishment and maintenance of epithelial cell-cell junctions is crucially important to regulate adhesion, apico-basal polarity and motility of epithelial cells, and ultimately controls the architecture and physiology of epithelial organs. Junctions are supported, shaped and regulated by cytoskeletal filaments, whose dynamic organization and contractility are finely tuned by GTPases of the Rho family, primarily RhoA, Rac1 and Cdc42. Recent research has identified new molecular mechanisms underlying the cross-talk between these GTPases and epithelial junctions. Here we briefly summarize the current knowledge about the organization, molecular evolution and cytoskeletal anchoring of cell-cell junctions, and we comment on the most recent advances in the characterization of the interactions between Rho GTPases and junctional proteins, and their consequences with regards to junction assembly and regulation of cell behavior in vertebrate model systems. The concept of “zonular signalosome” is proposed, which highlights the close functional relationship between proteins of zonular junctions (zonulae occludentes and adhaerentes) and the control of cytoskeletal organization and signaling through Rho GTPases, transcription factors, and their effectors.
Collapse
Key Words
- AJ, adherens junction
- AMOT, angiomotin
- AMPK, Adenosine Monophosphate-Activated Protein Kinase
- APC, adenomatous poliposis coli
- CD2AP, CD2-associated protein
- CGN, cingulin
- CGNL1, paracingulin
- Cdc42
- Cdc42, cell division cycle 42
- DLC, deleted in liver cancer
- Dbl, diffuse B-cell lymphoma
- EPLIN, epithelial protein lost in neoplasm
- ERK, extracellular regulated kinase
- FERM, four.point.one, ezrin, radixin, moesin
- FGD5, FYVE, RhoGEF and PH domain containing 5
- GAP, GTPase activating protein
- GEF, guanine nucleotide exchange factor
- GST, glutathione -S- transferase; JAM = junctional adhesion molecule
- MCF-7, Michigan Cancer Foundation - 7
- MDCK, Madin Darby Canine Kidney
- MKLP1, mitotic kinesin-like protein-1
- MRCK, myotonic dystrophy-related Cdc42-binding kinase
- MgcRacGAP, male germ cell racGAP
- PA, puncta adhaerentia
- PAK, p21-activated kinase; PATJ, Pals1 associated tight junction protein
- PCNA, proliferating cell nuclear antigen
- PDZ, Post synaptic density protein (PSD95), Drosophila, disc large tumour suppressor (DlgA), and zonula occludens-1
- PLEKHA7, pleckstrin homology domain containing, family A member 7
- RICH-1, RhoGAP interacting with CIP4 homologues
- ROCK, Rho-associated protein kinase
- Rac
- Rho
- SH3BP1, (SH3 domain 490 binding protein-1)
- TJ, tight junction
- Tbx-3, T-box-3
- Tiam, Tumor invasion and metastasis
- WASP, Wiskott-Aldrich Syndrome Protein
- WAVE, WASP family Verprolin-homologous protein
- ZA, zonula adhaerens
- ZO, zonula occludens
- ZONAB, (ZO-1)–associated nucleic acid binding protein.
- cytoseleton
- epithelium
- junctions
Collapse
Affiliation(s)
- Sandra Citi
- a Department of Cell Biology ; University of Geneva ; Geneva , Switzerland
| | | | | | | |
Collapse
|
37
|
Zasadkevich YM, Brilliant AA, Sazonov SV. [Role of cadherins in health and in developing breast cancer]. Arkh Patol 2015; 77:57-64. [PMID: 26226783 DOI: 10.17116/patol201577357-64] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The review gives data on the structure of cadherin cell adhesion molecules, their role in the body's development and malignant tumor progression. It describes cadherins that are considered to play the most important role in the development of a tumor process: E-, P-, and N-cadherins that belong to type I classical cadhedrins and VE-cadhedrin that does to type II cadherins. Particular emphasis is placed on the signal mechanisms with involvement of cadherins and cadherin-related molecules, which are realized in the body in health and in tumor transformation of cells.
Collapse
Affiliation(s)
- Yu M Zasadkevich
- Institute of Medical Cell Technologies; Ural State Medical University, Yekaterinburg
| | | | - S V Sazonov
- Institute of Medical Cell Technologies; Ural State Medical University, Yekaterinburg
| |
Collapse
|
38
|
Sternemalm J, Geimer S, Frikstad KAM, Schink KO, Stokke T, Patzke S. CSPP-L Associates with the Desmosome of Polarized Epithelial Cells and Is Required for Normal Spheroid Formation. PLoS One 2015; 10:e0134789. [PMID: 26241740 PMCID: PMC4524657 DOI: 10.1371/journal.pone.0134789] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/14/2015] [Indexed: 11/20/2022] Open
Abstract
Deleterious mutations of the Centrosome/Spindle Pole associated Protein 1 gene, CSPP1, are causative for Joubert-syndrome and Joubert-related developmental disorders. These disorders are defined by a characteristic mal-development of the brain, but frequently involve renal and hepatic cyst formation. CSPP-L, the large protein isoform of CSPP1 localizes to microtubule ends of the mitotic mid-spindle and the ciliary axoneme, and is required for ciliogenesis. We here report the microtubule independent but Desmoplakin dependent localization of CSPP-L to Desmosomes in apical-basal polarized epithelial cells. Importantly, siRNA conferred depletion of CSPP-L or Desmoplakin promoted multi-lumen spheroid formation in 3D-cultures of non-ciliated human colon carcinoma Caco-2 cells. Multi-lumen spheroids of CSPP1 siRNA transfectants showed disrupted apical cell junction localization of the cytoskeleton organizing RhoGEF ECT2. Our results hence identify a novel, non-ciliary role for CSPP-L in epithelial morphogenesis.
Collapse
Affiliation(s)
- Johan Sternemalm
- Department of Radiation Biology, Division of Cancer Medicine, Surgery and Transplantation, Institute for Cancer Research, Oslo University Hospitals-Norwegian Radium Hospital, Oslo, Norway
| | - Stefan Geimer
- Cell Biology/Electron Microscopy, University of Bayreuth, Bayreuth, Germany
| | - Kari-Anne M Frikstad
- Department of Radiation Biology, Division of Cancer Medicine, Surgery and Transplantation, Institute for Cancer Research, Oslo University Hospitals-Norwegian Radium Hospital, Oslo, Norway
| | - Kay O Schink
- Department of Molecular Cell Biology, Division of Cancer Medicine, Surgery and Transplantation, Institute for Cancer Research, Oslo University Hospitals-Norwegian Radium Hospital, Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Trond Stokke
- Department of Radiation Biology, Division of Cancer Medicine, Surgery and Transplantation, Institute for Cancer Research, Oslo University Hospitals-Norwegian Radium Hospital, Oslo, Norway
| | - Sebastian Patzke
- Department of Radiation Biology, Division of Cancer Medicine, Surgery and Transplantation, Institute for Cancer Research, Oslo University Hospitals-Norwegian Radium Hospital, Oslo, Norway
| |
Collapse
|
39
|
Collins C, Nelson WJ. Running with neighbors: coordinating cell migration and cell-cell adhesion. Curr Opin Cell Biol 2015. [PMID: 26201843 DOI: 10.1016/j.ceb.2015.07.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Coordinated movement of large groups of cells is required for many biological processes, such as gastrulation and wound healing. During collective cell migration, cell-cell and cell-extracellular matrix (ECM) adhesions must be integrated so that cells maintain strong interactions with neighboring cells and the underlying substratum. Initiation and maintenance of cadherin adhesions at cell-cell junctions and integrin-based cell-ECM adhesions require integration of mechanical cues, dynamic regulation of the actin cytoskeleton, and input from specific signaling cascades, including Rho family GTPases. Here, we summarize recent advances made in understanding the interplay between these pathways at cadherin-based and integrin-based adhesions during collective cell migration and highlight outstanding questions that remain in the field.
Collapse
Affiliation(s)
- Caitlin Collins
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - W James Nelson
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
40
|
E-cadherin junctions as active mechanical integrators in tissue dynamics. Nat Cell Biol 2015; 17:533-9. [PMID: 25925582 DOI: 10.1038/ncb3136] [Citation(s) in RCA: 385] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During epithelial morphogenesis, E-cadherin adhesive junctions play an important part in mechanically coupling the contractile cortices of cells together, thereby distributing the stresses that drive cell rearrangements at both local and tissue levels. Here we discuss the concept that cellular contractility and E-cadherin-based adhesion are functionally integrated by biomechanical feedback pathways that operate on molecular, cellular and tissue scales.
Collapse
|
41
|
Breznau EB, Semack AC, Higashi T, Miller AL. MgcRacGAP restricts active RhoA at the cytokinetic furrow and both RhoA and Rac1 at cell-cell junctions in epithelial cells. Mol Biol Cell 2015; 26:2439-55. [PMID: 25947135 PMCID: PMC4571299 DOI: 10.1091/mbc.e14-11-1553] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/30/2015] [Indexed: 12/17/2022] Open
Abstract
MgcRacGAP's role in regulating the spatiotemporal dynamics of active RhoA and Rac1 in epithelial cells is investigated. MgcRacGAP's GAP activity down-regulates RhoA at the furrow and both RhoA and Rac1 at cell–cell junctions in dividing epithelial cells and is required for successful cytokinesis and cell–cell junction structure. MgcRacGAP's ability to regulate adherens junctions is dependent on GAP activity and signaling via the RhoA pathway. Localized activation of Rho GTPases is essential for multiple cellular functions, including cytokinesis and formation and maintenance of cell–cell junctions. Although MgcRacGAP (Mgc) is required for spatially confined RhoA-GTP at the equatorial cortex of dividing cells, both the target specificity of Mgc's GAP activity and the involvement of phosphorylation of Mgc at Ser-386 are controversial. In addition, Mgc's function at cell–cell junctions remains unclear. Here, using gastrula-stage Xenopus laevis embryos as a model system, we examine Mgc's role in regulating localized RhoA-GTP and Rac1-GTP in the intact vertebrate epithelium. We show that Mgc's GAP activity spatially restricts accumulation of both RhoA-GTP and Rac1-GTP in epithelial cells—RhoA at the cleavage furrow and RhoA and Rac1 at cell–cell junctions. Phosphorylation at Ser-386 does not switch the specificity of Mgc's GAP activity and is not required for successful cytokinesis. Furthermore, Mgc regulates adherens junction but not tight junction structure, and the ability to regulate adherens junctions is dependent on GAP activity and signaling via the RhoA pathway. Together these results indicate that Mgc's GAP activity down-regulates the active populations of RhoA and Rac1 at localized regions of epithelial cells and is necessary for successful cytokinesis and cell–cell junction structure.
Collapse
Affiliation(s)
- Elaina B Breznau
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ansley C Semack
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Tomohito Higashi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ann L Miller
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109 Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
42
|
F-actin binding protein, anillin, regulates integrity of intercellular junctions in human epithelial cells. Cell Mol Life Sci 2015; 72:3185-3200. [PMID: 25809162 DOI: 10.1007/s00018-015-1890-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/26/2015] [Accepted: 03/19/2015] [Indexed: 01/01/2023]
Abstract
Tight junctions (TJ) and adherens junctions (AJ) are key morphological features of differentiated epithelial cells that regulate the integrity and permeability of tissue barriers. Structure and remodeling of epithelial junctions depends on their association with the underlying actomyosin cytoskeleton. Anillin is a unique scaffolding protein interacting with different cytoskeletal components, including actin filaments and myosin motors. Its role in the regulation of mammalian epithelial junctions remains unexplored. Downregulation of anillin expression in human prostate, colonic, and lung epithelial cells triggered AJ and TJ disassembly without altering the expression of junctional proteins. This junctional disassembly was accompanied by dramatic disorganization of the perijunctional actomyosin belt; while the general architecture of the actin cytoskeleton, and activation status of non-muscle myosin II, remained unchanged. Furthermore, loss of anillin disrupted the adducin-spectrin membrane skeleton at the areas of cell-cell contact, selectively decreased γ-adducin expression, and induced cytoplasmic aggregation of αII-spectrin. Anillin knockdown activated c-Jun N-terminal kinase (JNK), and JNK inhibition restored AJ and TJ integrity and cytoskeletal organization in anillin-depleted cells. These findings suggest a novel role for anillin in regulating intercellular adhesion in model human epithelia by mechanisms involving the suppression of JNK activity and controlling the assembly of the perijunctional cytoskeleton.
Collapse
|
43
|
Jing J, Chen L, Fu HY, Fan K, Yao Q, Ge YF, Lu JC, Yao B. Annexin V-induced rat Leydig cell proliferation involves Ect2 via RhoA/ROCK signaling pathway. Sci Rep 2015; 5:9437. [PMID: 25807302 PMCID: PMC5380157 DOI: 10.1038/srep09437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/04/2015] [Indexed: 01/01/2023] Open
Abstract
This study investigated the effect of annexin V on the proliferation of primary rat Leydig cells and the potential mechanism. Our results showed that annexin V promoted rat Leydig cell proliferation and cell cycle progression in a dose- and time-dependent manner. Increased level of annexin V also enhanced Ect2 protein expression. However, siRNA knockdown of Ect2 attenuated annexin V-induced proliferation of rat Leydig cells. Taken together, these data suggest that increased level of annexin V induced rat Leydig cell proliferation and cell cycle progression via Ect2. Since RhoA activity was increased following Ect2 activation, we further investigated whether Ect2 was involved in annexin V-induced proliferation via the RhoA/ROCK pathway, and the results showed that annexin V increased RhoA activity too, and this effect was abolished by the knockdown of Ect2. Moreover, inhibition of the RhoA/ROCK pathway by a ROCK inhibitor, Y27632, also attenuated annexin V-induced proliferation and cell cycle progression. We thus conclude that Ect2 is involved in annexin V-induced rat Leydig cell proliferation through the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Jun Jing
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Li Chen
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Hai-Yan Fu
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Kai Fan
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Qi Yao
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Yi-Feng Ge
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Jin-Chun Lu
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Bing Yao
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| |
Collapse
|
44
|
Von Stetina SE, Mango SE. PAR-6, but not E-cadherin and β-integrin, is necessary for epithelial polarization in C. elegans. Dev Biol 2015; 403:5-14. [PMID: 25773364 DOI: 10.1016/j.ydbio.2015.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 01/29/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
Abstract
Cell polarity is a fundamental characteristic of epithelial cells. Classical cell biological studies have suggested that establishment and orientation of polarized epithelia depend on outside-in cues that derive from interactions with either neighboring cells or the substratum (Akhtar and Streuli, 2013; Chen and Zhang, 2013; Chung and Andrew, 2008; McNeill et al., 1990; Nejsum and Nelson, 2007; Nelson et al., 2013; Ojakian and Schwimmer, 1994; Wang et al., 1990; Yu et al., 2005). This paradigm has been challenged by examples of epithelia generated in the absence of molecules that mediate cell-cell or cell-matrix interactions, notably E-cadherin and integrins (Baas et al., 2004; Choi et al., 2013; Costa et al., 1998; Harris and Peifer, 2004; Raich et al., 1999; Roote and Zusman, 1995; Vestweber et al., 1985; Williams and Waterston, 1994; Wu et al., 2009). Here we explore an alternative hypothesis, that cadherins and integrins function redundantly to substitute for one another during epithelium formation (Martinez-Rico et al., 2010; Ojakian et al., 2001; Rudkouskaya et al., 2014; Weber et al., 2011). We use C. elegans, which possesses a single E-cadherin (Costa et al., 1998; Hardin et al., 2013; Tepass, 1999) and a single β-integrin (Gettner et al., 1995; Lee et al., 2001), and analyze the arcade cells, which generate an epithelium late in embryogenesis (Portereiko and Mango, 2001; Portereiko et al., 2004), after most maternal factors are depleted. Loss of E-cadherin(HMR-1) in combination with β-integrin(PAT-3) had no impact on the onset or formation of the arcade cell epithelium, nor the epidermis or digestive tract. Moreover, ß-integrin(PAT-3) was not enriched at the basal surface of the arcades, and the candidate PAT-3 binding partner β-laminin(LAM-1) was not detected until after arcade cell polarity was established and exhibited no obvious polarity defect when mutated. Instead, the polarity protein par-6 (Chen and Zhang, 2013; Watts et al., 1996) was required to polarize the arcade cells, and par-6 mutants exhibited mislocalized or absent apical and junctional proteins. We conclude that the arcade cell epithelium polarizes by a PAR-6-mediated pathway that is independent of E-cadherin, β-integrin and β-laminin.
Collapse
Affiliation(s)
- Stephen E Von Stetina
- Department of Molecular and Cellular Biology, Harvard University, Boston, MA 02138, USA.
| | - Susan E Mango
- Department of Molecular and Cellular Biology, Harvard University, Boston, MA 02138, USA.
| |
Collapse
|
45
|
Renart J, Carrasco-Ramírez P, Fernández-Muñoz B, Martín-Villar E, Montero L, Yurrita MM, Quintanilla M. New insights into the role of podoplanin in epithelial-mesenchymal transition. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:185-239. [PMID: 26008786 DOI: 10.1016/bs.ircmb.2015.01.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Podoplanin is a small mucin-like transmembrane protein expressed in several adult tissues and with an important role during embryogenesis. It is needed for the proper development of kidneys and lungs as well as accurate formation of the lymphatic vascular system. In addition, it is involved in the physiology of the immune system. A wide variety of tumors express podoplanin, both in the malignant cells and in the stroma. Although there are exceptions, the presence of podoplanin results in poor prognosis. The main consequence of forced podoplanin expression in established and tumor-derived cell lines is an increase in cell migration and, eventually, the triggering of an epithelial-mesenchymal transition, whereby cells acquire a fibroblastoid phenotype and increased motility. We will examine the current status of the role of podoplanin in the induction of epithelial-mesenchymal transition as well as the different interactions that lead to this program.
Collapse
Affiliation(s)
- Jaime Renart
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | | | | | - Ester Martín-Villar
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Lucía Montero
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - María M Yurrita
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Miguel Quintanilla
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| |
Collapse
|
46
|
Wang T, Wang R, Cleary RA, Gannon OJ, Tang DD. Recruitment of β-catenin to N-cadherin is necessary for smooth muscle contraction. J Biol Chem 2015; 290:8913-24. [PMID: 25713069 DOI: 10.1074/jbc.m114.621003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Indexed: 01/26/2023] Open
Abstract
β-Catenin is a key component that connects transmembrane cadherin with the actin cytoskeleton at the cell-cell interface. However, the role of the β-catenin/cadherin interaction in smooth muscle has not been well characterized. Here stimulation with acetylcholine promoted the recruitment of β-catenin to N-cadherin in smooth muscle cells/tissues. Knockdown of β-catenin by lentivirus-mediated shRNA attenuated smooth muscle contraction. Nevertheless, myosin light chain phosphorylation at Ser-19 and actin polymerization in response to contractile activation were not reduced by β-catenin knockdown. In addition, the expression of the β-catenin armadillo domain disrupted the recruitment of β-catenin to N-cadherin. Force development, but not myosin light chain phosphorylation and actin polymerization, was reduced by the expression of the β-catenin armadillo domain. Furthermore, actin polymerization and microtubules have been implicated in intracellular trafficking. In this study, the treatment with the inhibitor latrunculin A diminished the interaction of β-catenin with N-cadherin in smooth muscle. In contrast, the exposure of smooth muscle to the microtubule depolymerizer nocodazole did not affect the protein-protein interaction. Together, these findings suggest that smooth muscle contraction is mediated by the recruitment of β-catenin to N-cadherin, which may facilitate intercellular mechanotransduction. The association of β-catenin with N-cadherin is regulated by actin polymerization during contractile activation.
Collapse
Affiliation(s)
- Tao Wang
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Ruping Wang
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Rachel A Cleary
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Olivia J Gannon
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Dale D Tang
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| |
Collapse
|
47
|
Caldwell BJ, Lucas C, Kee AJ, Gaus K, Gunning PW, Hardeman EC, Yap AS, Gomez GA. Tropomyosin isoforms support actomyosin biogenesis to generate contractile tension at the epithelial zonula adherens. Cytoskeleton (Hoboken) 2015; 71:663-76. [PMID: 25545457 DOI: 10.1002/cm.21202] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 12/04/2014] [Accepted: 12/15/2014] [Indexed: 01/13/2023]
Abstract
Epithelial cells generate contractile forces at their cell-cell contacts. These are concentrated at the specialized apical junction of the zonula adherens (ZA), where a ring of stabilized E-cadherin lies adjacent to prominent actomyosin bundles. Coupling of adhesion and actomyosin contractility yields tension in the junction. The biogenesis of junctional contractility requires actin assembly at the ZA as well as the recruitment of nonmuscle myosin II, but the molecular regulators of these processes are not yet fully understood. We now report a role for tropomyosins 5NM1 (Tm5NM1) and 5NM2 (Tm5NM2) in their generation. Both these tropomyosin isoforms were found at the ZA and their depletion by RNAi or pharmacological inhibition reduced both F-actin and myosin II content at the junction. Photoactivation analysis revealed that the loss of F-actin was attributable to a decrease in filament stability. These changes were accompanied by a decrease in E-cadherin content at junctions. Ultimately, both long-term depletion of Tm5NM1/2 and acute inhibition with drugs caused junctional tension to be reduced. Thus these tropomyosin isoforms are novel contributors to junctional contractility and integrity.
Collapse
Affiliation(s)
- Benjamin J Caldwell
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Gomez GA, McLachlan RW, Wu SK, Caldwell BJ, Moussa E, Verma S, Bastiani M, Priya R, Parton RG, Gaus K, Sap J, Yap AS. An RPTPα/Src family kinase/Rap1 signaling module recruits myosin IIB to support contractile tension at apical E-cadherin junctions. Mol Biol Cell 2015; 26:1249-62. [PMID: 25631816 PMCID: PMC4454173 DOI: 10.1091/mbc.e14-07-1223] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cell-cell adhesion couples the contractile cortices of epithelial cells together, generating tension to support a range of morphogenetic processes. E-cadherin adhesion plays an active role in generating junctional tension by promoting actin assembly and cortical signaling pathways that regulate myosin II. Multiple myosin II paralogues accumulate at mammalian epithelial cell-cell junctions. Earlier, we found that myosin IIA responds to Rho-ROCK signaling to support junctional tension in MCF-7 cells. Although myosin IIB is also found at the zonula adherens (ZA) in these cells, its role in junctional contractility and its mode of regulation are less well understood. We now demonstrate that myosin IIB contributes to tension at the epithelial ZA. Further, we identify a receptor type-protein tyrosine phosphatase alpha-Src family kinase-Rap1 pathway as responsible for recruiting myosin IIB to the ZA and supporting contractile tension. Overall these findings reinforce the concept that orthogonal E-cadherin-based signaling pathways recruit distinct myosin II paralogues to generate the contractile apparatus at apical epithelial junctions.
Collapse
Affiliation(s)
- Guillermo A Gomez
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Robert W McLachlan
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Selwin K Wu
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Benjamin J Caldwell
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Elliott Moussa
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Suzie Verma
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Michele Bastiani
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Rashmi Priya
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Robert G Parton
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Katharina Gaus
- UNSW Australia, ARC Centre of Excellence in Advanced Molecular Imaging and Australian Centre for Nanomedicine, Sydney 2052, Australia
| | - Jan Sap
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS Bâtiment Lamarck, F-75205 Paris Cedex 13, France
| | - Alpha S Yap
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
49
|
|
50
|
Wu SK, Budnar S, Yap AS, Gomez GA. Pulsatile contractility of actomyosin networks organizes the cellular cortex at lateral cadherin junctions. Eur J Cell Biol 2014; 93:396-404. [PMID: 25269995 DOI: 10.1016/j.ejcb.2014.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 01/29/2023] Open
Abstract
The physical properties of cells reflect how the structure and dynamics of the actomyosin cortex are coupled to the plasma membrane. In epithelia, adhesive E-cadherin clusters associate with the cell cortex to assemble the junctional actomyosin that participates in epithelial morphogenesis. E-cadherin is present not only at the apical zonula adherens (ZA), but also distributed throughout the lateral adherens junction (LAJ) below the ZA. However, the organizational dynamics of the actomyosin network at the LAJs remains elusive. To address this, we used quantitative real-time imaging to characterize the dynamics of actomyosin contractility at lateral cadherin contacts. Here, we report that contractility is coordinated into smaller actomyosin rings that link cadherin clusters together within the larger cortical network at the lateral junctions. We conclude that Myosin II activity determines the contractility of actomyosin cables between cadherin clusters to propagate pulsatility across lateral cell-cell contacts.
Collapse
Affiliation(s)
- Selwin K Wu
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, 306 Carmody Rd, Brisbane 4072, QLD, Australia.
| | - Srikanth Budnar
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, 306 Carmody Rd, Brisbane 4072, QLD, Australia
| | - Alpha S Yap
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, 306 Carmody Rd, Brisbane 4072, QLD, Australia.
| | - Guillermo A Gomez
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, 306 Carmody Rd, Brisbane 4072, QLD, Australia
| |
Collapse
|