1
|
Vembuli H, Rajasingh S, Nabholz P, Guenther J, Morrow BR, Taylor MM, Aghazadeh M, Sigamani V, Rajasingh J. Induced mesenchymal stem cells generated from periodontal ligament fibroblast for regenerative therapy. Exp Biol Med (Maywood) 2025; 250:10342. [PMID: 39963344 PMCID: PMC11830513 DOI: 10.3389/ebm.2025.10342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
Bone fractures and bone loss represent significant global health challenges, with their incidence rising due to an aging population. Despite autologous bone grafts remain the gold standard for treatment, challenges such as limited bone availability, immune reactions, and the risk of infectious disease transmission have driven the search for alternative cell-based therapies for bone regeneration. Stem cells derived from oral tissues and umbilical cord mesenchymal stem cells (MSCs) have shown potential in both preclinical and clinical studies for bone tissue regeneration. However, their limited differentiation capacity and wound healing abilities necessitate the exploration of alternative cell sources. In this study, we generated induced pluripotent stem cells (iPSCs) using a safe, nonviral and mRNA-based approach from human periodontal ligament fibroblasts (PDLF), an easily accessible cell source. These iPSCs were subsequently differentiated into MSCs, referred to as induced MSCs (iMSCs). The resulting iMSCs were homogeneous, highly proliferative, and possessed anti-inflammatory properties, suggesting their potential as a superior alternative to traditional MSCs for regenerative therapy. These iMSCs demonstrated trilineage differentiation potential, giving rise to osteocytes, chondrocytes, and adipocytes. The iMSC-derived osteocytes (iOSTs) were homogeneous, patient-specific and showed excellent attachment and growth on commercial collagen-based membranes, highlighting their suitability for bone tissue regeneration applications. Given their promising characteristics compared to traditional MSCs, PDLF-derived iMSCs are strong candidates for future clinical studies in bone regeneration and other regenerative dental therapies.
Collapse
Affiliation(s)
- Hemanathan Vembuli
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Sheeja Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Patrick Nabholz
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jefferson Guenther
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Brian R. Morrow
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Margaret M. Taylor
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Marziyeh Aghazadeh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Vinoth Sigamani
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Johnson Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Medicine-Cardiology, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
2
|
Abdolahinia ED, Golestani S, Seif S, Afra N, Aflatoonian K, Jalalian A, Valizadeh N, Abdollahinia ED. A review of the therapeutic potential of dental stem cells as scaffold-free models for tissue engineering application. Tissue Cell 2024; 86:102281. [PMID: 38070384 DOI: 10.1016/j.tice.2023.102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 01/21/2024]
Abstract
In the realm of regenerative medicine, tissue engineering has introduced innovative approaches to facilitate tissue regeneration. Specifically, in pulp tissue engineering, both scaffold-based and scaffold-free techniques have been applied. Relevant articles were meticulously chosen from PubMed, Scopus, and Google Scholar databases through a comprehensive search spanning from October 2022 to December 2022. Despite the inherent limitations of scaffolding, including inadequate mechanical strength for hard tissues, insufficient vents for vessel penetration, immunogenicity, and suboptimal reproducibility-especially with natural polymeric scaffolds-scaffold-free tissue engineering has garnered significant attention. This methodology employs three-dimensional (3D) cell aggregates such as spheroids and cell sheets with extracellular matrix, facilitating precise regeneration of target tissues. The choice of technique aside, stem cells play a pivotal role in tissue engineering, with dental stem cells emerging as particularly promising resources. Their pluripotent nature, non-invasive extraction process, and unique properties render them highly suitable for scaffold-free tissue engineering. This study delves into the latest advancements in leveraging dental stem cells and scaffold-free techniques for the regeneration of various tissues. This paper offers a comprehensive summary of recent developments in the utilization of dental stem cells and scaffold-free methods for tissue generation. It explores the potential of these approaches to advance tissue engineering and their effectiveness in therapies aimed at tissue regeneration.
Collapse
Affiliation(s)
- Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States.
| | - Shayan Golestani
- Department of Oral and Maxillofacial Surgery, Dental School, Islamic Azad University, Isfahan ( Khorasgan) Branch, Isfahan, Iran
| | - Sepideh Seif
- Faculty of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Afra
- Faculty of Dentistry, Hormozgan University of Medical Sciences, Bandarabbas, Iran
| | - Khotan Aflatoonian
- Department of Restorative Dentistry, Dental School, Shahed University of Medical Sciences, Tehran, Iran
| | - Ali Jalalian
- Faculty of Dentistry, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Nasrin Valizadeh
- Chemistry Department, Sciences Faculty, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Elham Dalir Abdollahinia
- Fellowship of Endocrinology, Endocrinology Department, Tabriz University of Medical Sciences, Iran.
| |
Collapse
|
3
|
Xing WB, Wu ST, Wang XX, Li FY, Wang RX, He JH, Fu J, He Y. Potential of dental pulp stem cells and their products in promoting peripheral nerve regeneration and their future applications. World J Stem Cells 2023; 15:960-978. [PMID: 37970238 PMCID: PMC10631371 DOI: 10.4252/wjsc.v15.i10.960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/07/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023] Open
Abstract
Peripheral nerve injury (PNI) seriously affects people's quality of life. Stem cell therapy is considered a promising new option for the clinical treatment of PNI. Dental stem cells, particularly dental pulp stem cells (DPSCs), are adult pluripotent stem cells derived from the neuroectoderm. DPSCs have significant potential in the field of neural tissue engineering due to their numerous advantages, such as easy isolation, multidifferentiation potential, low immunogenicity, and low transplant rejection rate. DPSCs are extensively used in tissue engineering and regenerative medicine, including for the treatment of sciatic nerve injury, facial nerve injury, spinal cord injury, and other neurodegenerative diseases. This article reviews research related to DPSCs and their advantages in treating PNI, aiming to summarize the therapeutic potential of DPSCs for PNI and the underlying mechanisms and providing valuable guidance and a foundation for future research.
Collapse
Affiliation(s)
- Wen-Bo Xing
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Shu-Ting Wu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Xin-Xin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Fen-Yao Li
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Ruo-Xuan Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Ji-Hui He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Jiao Fu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- Department of Stomatology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, Hubei Province, China.
| |
Collapse
|
4
|
ANIL SUKUMARAN, RAMADOSS RAMYA, G. THOMAS NEBU, M. GEORGE JASMIN, K. SWEETY VISHNUPRIYA. Dental pulp stem cells and banking of teeth as a lifesaving therapeutic vista. BIOCELL 2023; 47:71-80. [DOI: 10.32604/biocell.2023.024334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Mu X, Liu H, Yang S, Li Y, Xiang L, Hu M, Wang X. Chitosan Tubes Inoculated with Dental Pulp Stem Cells and Stem Cell Factor Enhance Facial Nerve-Vascularized Regeneration in Rabbits. ACS OMEGA 2022; 7:18509-18520. [PMID: 35694480 PMCID: PMC9178771 DOI: 10.1021/acsomega.2c01176] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Facial nerve injury is a common clinical condition that leads to disfigurement and emotional distress in the affected individuals, and the recovery presents clinical challenges. Tissue engineering is the standard method to repair nerve defects. However, nerve regeneration is still not satisfactory because of poor neovascularization after implantation, especially for the long-segment nerve defects. In the current study, we aimed to investigate the potential of chitosan tubes inoculated with stem cell factor (SCF) and dental pulp stem cells (DPSCs) in facial nerve-vascularized regeneration. In the in vitro experiment, DPSCs were isolated, cultured, and then identified. The optimal concentration of SCF was screened by CCK8. Cytoskeleton and living-cell staining, migration, CCK8 test, and neural differentiation assays were performed, revealing that SCF promoted the biological activity of DPSCs. Surprisingly, SCF increased the neural differentiation of DPSCs. The migration and angiogenesis experiments were carried out to show that SCF promoted the angiogenesis and migration of human umbilical vein endothelial cells (HUVECs). In the facial nerve, 7 mm defects of New Zealand white rabbits, hematoxylin-eosin (HE), immunohistochemistry, toluidine blue staining, and transmission electron microscopy observation were performed at 12 weeks postsurgery to show more nerve fibers and better myelin sheath in the SCF + DPSC group. In addition, the whisker movements, Masson's staining, and western blot assays were performed, demonstrating functional repair and that the expression level of CD31 protein in the group SCF + DPSCs was relatively close to that in the group Autograft. In summary, chitosan tubes inoculated with SCF and DPSCs increased neurovascularization and provided an effective method for repairing facial nerve defects, indicating great promise for clinical application.
Collapse
Affiliation(s)
- Xiaodan Mu
- Department
of Stomotology, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Huawei Liu
- Department
of Stomotology, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Shuhui Yang
- Department
of Materials Science and Engineering, State Key Laboratory of New
Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Yongfeng Li
- Department
of Stomotology, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Lei Xiang
- Department
of Stomotology, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Min Hu
- Department
of Stomotology, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiumei Wang
- Department
of Materials Science and Engineering, State Key Laboratory of New
Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Bayarsaihan D, Enkhmandakh B, Vijaykumar A, Robson P, Mina M. Single-cell transcriptome analysis defines mesenchymal stromal cells in the mouse incisor dental pulp. Gene Expr Patterns 2021; 43:119228. [PMID: 34915194 DOI: 10.1016/j.gep.2021.119228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/22/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022]
Abstract
The dental pulp is known to be highly heterogenous, comprising distinct cell types including mesenchymal stromal cells (MSCs), which represent neural-crest-derived cells with the ability to differentiate into multiple cell lineages. However, the cellular heterogeneity and the transcriptome signature of different cell clusters within the dental pulp remain to be established. To better understand discrete cell types, we applied a single-cell RNA sequencing strategy to establish the RNA expression profiles of individual dental pulp cells from 5- to 6-day-old mouse incisors. Our study revealed distinct subclasses of cells representing osteoblast, odontoblast, endothelial, pancreatic, neuronal, immune, pericyte and ameloblast lineages. Collectively, our research demonstrates the complexity and diversity of cell subclasses within the incisor dental pulp, thus providing a foundation for uncovering the molecular processes that govern cell fate decisions and lineage commitment in dental pulp-derived MSCs.
Collapse
Affiliation(s)
- Dashzeveg Bayarsaihan
- Center for Regenerative Medicine & Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA; Institute for System Genomics, University of Connecticut, Engineering Science Building Rm. 305, 67 North Eagleville Road, Storrs, CT, 06269, USA.
| | - Badam Enkhmandakh
- Center for Regenerative Medicine & Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Anushree Vijaykumar
- Department of Craniofacial Sciences, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06030, USA
| | - Mina Mina
- Department of Craniofacial Sciences, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| |
Collapse
|
7
|
Kajiura K, Umemura N, Ohkoshi E, Ohta T, Kondoh N, Kawano S. Shikonin induces odontoblastic differentiation of dental pulp stem cells via AKT-mTOR signaling in the presence of CD44. Connect Tissue Res 2021; 62:689-697. [PMID: 33334200 DOI: 10.1080/03008207.2020.1865937] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: In our previous study, we demonstrated that hyaluronan induces odontoblastic differentiation of dental pulp stem cells via interactions with CD44. However, it remains unclear whether CD44 expression by dental pulp stem cells is required for odontoblastic differentiation.Methods: We searched for a compound other than hyaluronan that induces odontoblastic differentiation of dental pulp stem cells and used western blotting to determine whether CD44 is involved in the induction of odontoblastic differentiation by the compound. We further validated the cell signaling details of the compound-induced expression of dentin sialophosphoprotein (DSPP), which is known as a marker of odontoblastic differentiation.Results: We investigated shikonin, which is one of the derivatives of naphthoquinone, the skeleton of vitamin K. Shikonin-induced expression of DSPP was inhibited by PI3K, AKT, and mTOR inhibitors. Additionally, shikonin-induced expression of DSPP was inhibited in dental pulp stem cells transfected with siRNA against CD44.Conclusions: Shikonin can stimulate dental pulp stem cells to undergo odontoblastic differentiation through a mechanism involving the AKT-mTOR signaling pathway and CD44. Although expression of CD44 is important for inducing odontoblastic differentiation of dental pulp stem cells, the relationship between the AKT-mTOR signaling pathway and CD44 expression, in the context of shikonin stimulation, has not yet been elucidated. This study suggests that shikonin may be useful for inducing odontoblastic differentiation of dental pulp stem cells, and that it may have clinical applications, including protection of the dental pulp.
Collapse
Affiliation(s)
- Kunihiro Kajiura
- Department of Endodontics, Asahi University School of Dentistry, Gifu, Japan
| | - Naoki Umemura
- Department of Oral Biochemistry, Asahi University School of Dentistry, Gifu, Japan
| | - Emika Ohkoshi
- Department of Natural and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Aomori University, Aomori, Japan
| | - Takahisa Ohta
- Department of Oral and Maxillofacial Surgery, Asahi University School of Dentistry, Gifu, Japan
| | - Nobuo Kondoh
- Department of Oral Biochemistry, Asahi University School of Dentistry, Gifu, Japan
| | - Satoshi Kawano
- Department of Endodontics, Asahi University School of Dentistry, Gifu, Japan
| |
Collapse
|
8
|
Al Madhoun A, Sindhu S, Haddad D, Atari M, Ahmad R, Al-Mulla F. Dental Pulp Stem Cells Derived From Adult Human Third Molar Tooth: A Brief Review. Front Cell Dev Biol 2021; 9:717624. [PMID: 34712658 PMCID: PMC8545885 DOI: 10.3389/fcell.2021.717624] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
The fields of regenerative medicine and stem cell-based tissue engineering have the potential of treating numerous tissue and organ defects. The use of adult stem cells is of particular interest when it comes to dynamic applications in translational medicine. Recently, dental pulp stem cells (DPSCs) have been traced in third molars of adult humans. DPSCs have been isolated and characterized by several groups. DPSCs have promising characteristics including self-renewal capacity, rapid proliferation, colony formation, multi-lineage differentiation, and pluripotent gene expression profile. Nevertheless, genotypic, and phenotypic heterogeneities have been reported for DPSCs subpopulations which may influence their therapeutic potentials. The underlying causes of DPSCs' heterogeneity remain poorly understood; however, their heterogeneity emerges as a consequence of an interplay between intrinsic and extrinsic cellular factors. The main objective of the manuscript is to review the current literature related to the human DPSCs derived from the third molar, with a focus on their physiological properties, isolation procedures, culture conditions, self-renewal, proliferation, lineage differentiation capacities and their prospective advances use in pre-clinical and clinical applications.
Collapse
Affiliation(s)
- Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sardar Sindhu
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Maher Atari
- Biointelligence Technology Systems S.L., Barcelona, Spain
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
9
|
Ma Y, Wang L, Yang S, Liu D, Zeng Y, Lin L, Qiu L, Lu J, Chang J, Li Z. The tissue origin of human mesenchymal stem cells dictates their therapeutic efficacy on glucose and lipid metabolic disorders in type II diabetic mice. Stem Cell Res Ther 2021; 12:385. [PMID: 34233739 PMCID: PMC8261817 DOI: 10.1186/s13287-021-02463-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background The therapeutic efficacy of mesenchymal stem cells (MSCs) of different tissue origins on metabolic disorders can be varied in many ways but remains poorly defined. Here we report a comprehensive comparison of human MSCs derived from umbilical cord Wharton’s jelly (UC-MSCs), dental pulp (PU-MSCs), and adipose tissue (AD-MSCs) on the treatment of glucose and lipid metabolic disorders in type II diabetic mice. Methods Fourteen-to-fifteen-week-old male C57BL/6 db/db mice were intravenously administered with human UC-MSCs, PU-MSCs, and AD-MSCs at various doses or vehicle control once every 2 weeks for 6 weeks. Metformin (MET) was given orally to animals in a separate group once a day at weeks 4 to 6 as a positive control. Body weight, blood glucose, and insulin levels were measured every week. Glucose tolerance tests (GTT) and insulin tolerance tests (ITT) were performed every 2 weeks. All the animals were sacrificed at week 6 and the blood and liver tissues were collected for biochemical and histological examinations. Results UC-MSCs showed the strongest efficacy in reducing fasting glucose levels, increasing fasting insulin levels, and improving GTT and ITT in a dose-dependent manner, whereas PU-MSCs showed an intermediate efficacy and AD-MSCs showed the least efficacy on these parameters. Moreover, UC-MSCs also reduced the serum low-density lipoprotein cholesterol (LDL-C) levels with the most prominent potency and AD-MSCs had only very weak effect on LDL-C. In contrast, AD-MSCs substantially reduced the lipid content and histological lesion of liver and accompanying biomarkers of liver injury such as serum aspartate transaminase (AST) and alanine aminotransferase (ALT) levels, whereas UC-MSCs and PU-MSCs displayed no or modest effects on these parameters, respectively. Conclusions Taken together, our results demonstrated that MSCs of different tissue origins can confer substantially different therapeutic efficacy in ameliorating glucose and lipid metabolic disorders in type II diabetes. MSCs with different therapeutic characteristics could be selected according to the purpose of the treatment in the future clinical practice.
Collapse
Affiliation(s)
- Yinzhong Ma
- SIAT-GHMSCB Biomedical Laboratory for Major Diseases, Dongguan Enlife Stem Cell Biotechnology Institute, Dongguan Avenue 430, Dongguan, Guangdong, China.,Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Blvd 1068, Shenzhen, Guangdong, China
| | - Lisha Wang
- SIAT-GHMSCB Biomedical Laboratory for Major Diseases, Dongguan Enlife Stem Cell Biotechnology Institute, Dongguan Avenue 430, Dongguan, Guangdong, China
| | - Shilun Yang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Blvd 1068, Shenzhen, Guangdong, China
| | - Dongyu Liu
- SIAT-GHMSCB Biomedical Laboratory for Major Diseases, Dongguan Enlife Stem Cell Biotechnology Institute, Dongguan Avenue 430, Dongguan, Guangdong, China
| | - Yi Zeng
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Blvd 1068, Shenzhen, Guangdong, China
| | - Lilong Lin
- SIAT-GHMSCB Biomedical Laboratory for Major Diseases, Dongguan Enlife Stem Cell Biotechnology Institute, Dongguan Avenue 430, Dongguan, Guangdong, China
| | - Linhui Qiu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Blvd 1068, Shenzhen, Guangdong, China
| | - Jiahao Lu
- SIAT-GHMSCB Biomedical Laboratory for Major Diseases, Dongguan Enlife Stem Cell Biotechnology Institute, Dongguan Avenue 430, Dongguan, Guangdong, China
| | - Junlei Chang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Blvd 1068, Shenzhen, Guangdong, China.
| | - Zhihuan Li
- SIAT-GHMSCB Biomedical Laboratory for Major Diseases, Dongguan Enlife Stem Cell Biotechnology Institute, Dongguan Avenue 430, Dongguan, Guangdong, China.
| |
Collapse
|
10
|
Ebrahimi M, Yaghoobi MM. Effects of aqueous and methanolic extracts of Astragalus Longistylus on growth and proliferation of human dental pulp stem cells. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-020-00519-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Dental Mesenchymal Stem/Progenitor Cells: A New Prospect in Regenerative Medicine. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Amniotic fluid and breast milk: a rationale for breast milk stem cell therapy in neonatal diseases. Pediatr Surg Int 2020; 36:999-1007. [PMID: 32671487 DOI: 10.1007/s00383-020-04710-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Amniotic fluid and breast milk play important roles in structural development throughout fetal growth and infancy. Given their significance in physical maturation, many studies have investigated the therapeutic and protective roles of amniotic fluid and breast milk in neonatal diseases. Of particular interest to researchers are stem cells found in the two fluids. These stem cells have been investigated due to their ability to self-replicate, differentiate, reduce tissue damage, and their expression of pluripotent markers. While amniotic fluid stem cells have received some attention regarding their ability to treat neonatal diseases, breast milk stem cells have not been investigated to the same extent given the recency of their discovery. The purpose of this review is to compare the functions of amniotic fluid, breast milk, and their stem cells to provide a rationale for the use of breast milk stem cells as a therapy for neonatal diseases. Breast milk stem cells present as an important tool for treating neonatal diseases given their ability to reduce inflammation and tissue damage, as well as their multilineage differentiation potential, easy accessibility, and ability to be used in disease modelling.
Collapse
|
13
|
Pisciotta A, Bertani G, Bertoni L, Di Tinco R, De Biasi S, Vallarola A, Pignatti E, Tupler R, Salvarani C, de Pol A, Carnevale G. Modulation of Cell Death and Promotion of Chondrogenic Differentiation by Fas/FasL in Human Dental Pulp Stem Cells (hDPSCs). Front Cell Dev Biol 2020; 8:279. [PMID: 32500073 PMCID: PMC7242757 DOI: 10.3389/fcell.2020.00279] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/31/2020] [Indexed: 01/01/2023] Open
Abstract
Human dental pulp stem cells (hDPSCs) are characterized by high proliferation rate, the multi-differentiation ability and, notably, low immunogenicity and immunomodulatory properties exerted through different mechanisms including Fas/FasL pathway. Despite their multipotency, hDPSCs require particular conditions to achieve chondrogenic differentiation. This might be due to the perivascular localization and the expression of angiogenic marker under standard culture conditions. FasL stimulation was able to promote the early induction of chondrogenic commitment and to lead the differentiation at later times. Interestingly, the expression of angiogenic marker was reduced by FasL stimulation without activating the extrinsic apoptotic pathway in standard culture conditions. In conclusion, these findings highlight the peculiar embryological origin of hDPSCs and provide further insights on their biological properties. Therefore, Fas/FasL pathway not only is involved in determining the immunomodulatory properties, but also is implicated in supporting the chondrogenic commitment of hDPSCs.
Collapse
Affiliation(s)
- Alessandra Pisciotta
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Bertani
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Bertoni
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Rosanna Di Tinco
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonio Vallarola
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Pignatti
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Rossella Tupler
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Salvarani
- Rheumatology Unit, Azienda Unitá Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Anto de Pol
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
14
|
Pisciotta A, Bertoni L, Vallarola A, Bertani G, Mecugni D, Carnevale G. Neural crest derived stem cells from dental pulp and tooth-associated stem cells for peripheral nerve regeneration. Neural Regen Res 2020; 15:373-381. [PMID: 31571644 PMCID: PMC6921350 DOI: 10.4103/1673-5374.266043] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 05/11/2019] [Indexed: 12/15/2022] Open
Abstract
The peripheral nerve injuries, representing some of the most common types of traumatic lesions affecting the nervous system, are highly invalidating for the patients besides being a huge social burden. Although peripheral nervous system owns a higher regenerative capacity than does central nervous system, mostly depending on Schwann cells intervention in injury repair, several factors determine the extent of functional outcome after healing. Based on the injury type, different therapeutic approaches have been investigated so far. Nerve grafting and Schwann cell transplantation have represented the gold standard treatment for peripheral nerve injuries, however these approaches own limitations, such as scarce donor nerve availability and donor site morbidity. Cell based therapies might provide a suitable tool for peripheral nerve regeneration, in fact, the ability of different stem cell types to differentiate towards Schwann cells in combination with the use of different scaffolds have been widely investigated in animal models of peripheral nerve injuries in the last decade. Dental pulp is a promising cell source for regenerative medicine, because of the ease of isolation procedures, stem cell proliferation and multipotency abilities, which are due to the embryological origin from neural crest. In this article we review the literature concerning the application of tooth derived stem cell populations combined with different conduits to peripheral nerve injuries animal models, highlighting their regenerative contribution exerted through either glial differentiation and neuroprotective/neurotrophic effects on the host tissue.
Collapse
Affiliation(s)
- Alessandra Pisciotta
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Bertoni
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonio Vallarola
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Bertani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Mecugni
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Azienda USL - Institute and Health Care (IRCCS) di Reggio Emilia, Reggio Emilia, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
15
|
Jara C, Oyarzun-Ampuero F, Carrión F, González-Echeverría E, Cappelli C, Caviedes P. Microencapsulation of cellular aggregates composed of differentiated insulin and glucagon-producing cells from human mesenchymal stem cells derived from adipose tissue. Diabetol Metab Syndr 2020; 12:66. [PMID: 32774470 PMCID: PMC7409404 DOI: 10.1186/s13098-020-00573-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/21/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In type I diabetes mellitus (T1DM) pancreatic β cells are destroyed. Treatment entails exogenous insulin administration and strict diet control, yet optimal glycemic control is hardly attainable. Islet transplant could be an alternative in patients with poor glycemic control, but inefficient islet purification and autoimmune response of patients is still a challenge. For these reasons, it is necessary to explore new cellular sources and immunological isolation methods oriented to develop T1DM cell-based therapies. AIMS We postulate human adipose-derived stem cell (hASC) as an adequate source to generate pancreatic islet cells in vitro, and to produce islet-like structures. Furthermore, we propose microencapsulation of these aggregates as an immunological isolation strategy. METHODS hASC obtained from lipoaspirated fat tissue from human donors were differentiated in vitro to insulin (Ins) and glucagon (Gcg) producing cells. Then, insulin producing cells (IPC) and glucagon producing cells (GPC) were cocultured in low adhesion conditions to form cellular aggregates, and later encapsulated in a sodium alginate polymer. Expression of pancreatic lineage markers and secretion of insulin or glucagon in vitro were analyzed. RESULTS The results show that multipotent hASC efficiently differentiate to IPC and GPC, and express pancreatic markers, including insulin or glucagon hormones which they secrete upon stimulation (fivefold for insulin in IPC, and fourfold for glucagon, compared to undifferentiated cells). In turn, calculation of the Feret diameter and area of cellular aggregates revealed mean diameters of ~ 80 µm, and 65% of the aggregates reached 4000 µm2 at 72 h of formation. IPC/GPC aggregates were then microencapsulated in sodium-alginate polymer microgels, which were found to be more stable when stabilized with Ba2+, yielding average diameters of ~ 300 µm. Interestingly, Ba2+-microencapsulated aggregates respond to high external glucose with insulin secretion. CONCLUSIONS The IPC/GPC differentiation process from hASC, followed by the generation of cellular aggregates that are later microencapsulated, could represent a possible treatment for T1DM.
Collapse
Affiliation(s)
- Claudia Jara
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Independencia 1027., Casilla 7, Clasificador Nº 7, 8389100 Santiago, Chile
| | - Felipe Oyarzun-Ampuero
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
- Depto. de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Flavio Carrión
- Programa de Inmunología Traslacional, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Esteban González-Echeverría
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Independencia 1027., Casilla 7, Clasificador Nº 7, 8389100 Santiago, Chile
| | - Claudio Cappelli
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Caviedes
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Independencia 1027., Casilla 7, Clasificador Nº 7, 8389100 Santiago, Chile
- Centro de Biotecnología y Bioingeniería (CeBiB), Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
16
|
Naz S, Khan FR, Zohra RR, Lakhundi SS, Khan MS, Mohammed N, Ahmad T. Isolation and culture of dental pulp stem cells from permanent and deciduous teeth. Pak J Med Sci 2019; 35:997-1002. [PMID: 31372131 PMCID: PMC6659089 DOI: 10.12669/pjms.35.4.540] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective: To isolate dental pulp mesenchymal stem cells (MSCs) from non-infected human permanent and deciduous teeth. Methods: It was an in-vitro experimental study. Human teeth were collected from 13 apparently healthy subjects including nine adults and four children. After decoronation dental pulps were extirpated from teeth and cultured via explant method in a stem cell defined media. Data was analyzed by descriptive statistics. Results: As above MSCs emerged exhibiting fibroblast-like morphology. In vitro culture was positive for 100% (9/9) and 75% (3/4) of the permanent and deciduous teeth respectively. First cell appeared from deciduous teeth pulp in 10±6.2 days while permanent teeth pulp took 12.4±3.7 days. Together, 26.6±3.6 and 24.5±3.5 days were required for permanent and deciduous tooth pulp stem cells to be ready for further assays. Conclusions: The protocol we developed is easy and consistent and can be used to generate reliable source of MScs for engineering of calcified and non-calcified tissue for regenerative medicine approaches.
Collapse
Affiliation(s)
- Shagufta Naz
- Ms. Shagufta Naz, M.Sc., Department of Surgery, Department of Biotechnology, University of Karachi, Pakistan. Aga Khan University, Karachi, Pakistan
| | - Farhan Raza Khan
- Dr. Farhan Raza Khan, FCPS, Department of Surgery, Aga Khan University, Karachi, Pakistan
| | - Raheela Rahmat Zohra
- Dr. Raheela Rahmat Zohra, Ph.D. Department of Biotechnology, University of Karachi, Pakistan
| | | | - Mehwish Sagheer Khan
- Ms. Mehwish Sagheer Khan, M.Sc. M.Phil., Department of Surgery, Aga Khan University, Karachi, Pakistan
| | - Nuruddin Mohammed
- Dr. Nuruddin Mohammed, PhD, FMFM, Department of Obstetrics and Gynecology, Aga Khan University, Karachi, Pakistan
| | - Tashfeen Ahmad
- Dr. Tashfeen Ahmad, FCPS, Ph.D., Departments of Surgery and Biological & Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
17
|
Evaluation of Biological Response of STRO-1/c-Kit Enriched Human Dental Pulp Stem Cells to Titanium Surfaces Treated with Two Different Cleaning Systems. Int J Mol Sci 2019; 20:ijms20081868. [PMID: 31014017 PMCID: PMC6514594 DOI: 10.3390/ijms20081868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 11/16/2022] Open
Abstract
Peri-implantitis-an infection caused by bacterial deposition of biofilm-is a common complication in dentistry which may lead to implant loss. Several decontamination procedures have been investigated to identify the optimal approach being capable to remove the bacterial biofilm without modifying the implant surface properties. Our study evaluated whether two different systems-Ni-Ti Brushes (Brush) and Air-Polishing with 40 µm bicarbonate powder (Bic40)-might alter the physical/chemical features of two different titanium surfaces-machined (MCH) and Ca++ nanostructured (NCA)-and whether these decontamination systems may affect the biological properties of human STRO-1+/c-Kit+ dental pulp stem cells (hDPSCs) as well as the bacterial ability to produce biofilm. Cell morphology, proliferation and stemness markers were analysed in hDPSCs grown on both surfaces, before and after the decontamination treatments. Our findings highlighted that Bic40 treatment either maintained the surface characteristics of both implants and allowed hDPSCs to proliferate and preserve their stemness properties. Moreover, Bic40 treatment proved effective in removing bacterial biofilm from both titanium surfaces and consistently limited the biofilm re-growth. In conclusion, our data suggest that Bic40 treatment may operatively clean smooth and rough surfaces without altering their properties and, consequently, offer favourable conditions for reparative cells to hold their biological properties.
Collapse
|
18
|
Gaggi G, Izzicupo P, Di Credico A, Sancilio S, Di Baldassarre A, Ghinassi B. Spare Parts from Discarded Materials: Fetal Annexes in Regenerative Medicine. Int J Mol Sci 2019; 20:ijms20071573. [PMID: 30934825 PMCID: PMC6479500 DOI: 10.3390/ijms20071573] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022] Open
Abstract
One of the main aims in regenerative medicine is to find stem cells that are easy to obtain and are safe and efficient in either an autologous or allogenic host when transplanted. This review provides an overview of the potential use of the fetal annexes in regenerative medicine: we described the formation of the annexes, their immunological features, the new advances in the phenotypical characterization of fetal annexes-derived stem cells, the progressions obtained in the analysis of both their differentiative potential and their secretoma, and finally, the potential use of decellularized fetal membranes. Normally discarded as medical waste, the umbilical cord and perinatal tissue not only represent a rich source of stem cells but can also be used as a scaffold for regenerative medicine, providing a suitable environment for the growth and differentiation of stem cells.
Collapse
Affiliation(s)
- Giulia Gaggi
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Pascal Izzicupo
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Andrea Di Credico
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Silvia Sancilio
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Angela Di Baldassarre
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Barbara Ghinassi
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| |
Collapse
|
19
|
Zhang Y, He Z, Liu X, Chen Z, Sun J, Wu Z, Yang X, Chen X, Tang Z, Wang K. Oral administration of Angelica sinensis polysaccharide protects against pancreatic islets failure in type 2 diabetic mice: Pancreatic β-cell apoptosis inhibition. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
20
|
Chen CA, Chen YL, Huang JS, Huang GTJ, Chuang SF. Effects of Restorative Materials on Dental Pulp Stem Cell Properties. J Endod 2019; 45:420-426. [PMID: 30819529 DOI: 10.1016/j.joen.2018.10.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/21/2018] [Accepted: 10/08/2018] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Dental pulp stem cells (DPSCs) are multipotent progenitors for biotechnological practices, but the influences of existing restorations on their viability and differentiation are not well-known. This study was aimed to investigate in vivo and in vitro responses of DPSCs to restorative materials. METHODS Class I cavities were prepared on molars scheduled to be extracted and then restored with a resin-based composite (RBC), a glass ionomer cement, or zinc oxide eugenol. Intact teeth were used as controls. Twelve molars in each group were extracted on day 7 or day 30 after restorations to assess the early or intermediate pulp responses and were then cut in half. One half was processed for histopathological analysis, and the other was used to isolate DPSCs for a colony-forming unit assay and real-time polymerase chain reaction for NANOG, OCT4, and CD44 expression. RESULTS All restored teeth showed pulp damage at various levels, whereas mild to moderate inflammation persisted in the RBC group until day 30. The existence of DPSCs in the pulp cores of all groups was revealed based on CD44 immunoreactivity. Glass ionomer cement and zinc oxide eugenol did not affect the relative percentages of DPSCs in either early or intermediate stages, whereas RBCs reduced the percentage. The colony-forming units in all restoration groups were comparable with those in the control. Nevertheless, the restorations significantly enhanced OCT4 expression, especially in RBC/day 30. CONCLUSIONS Dental restorations cause mild pulp damage but do not affect DPSC viability. RBC decreases DPSC densities but might increase the stemness of surviving DPSCs through an inflammation-stimulation process.
Collapse
Affiliation(s)
- Chao-An Chen
- Department of Endodontics, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Yuh-Ling Chen
- Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jehn-Shyun Huang
- Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Stomatology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - George T-J Huang
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Shu-Fen Chuang
- Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Stomatology, National Cheng Kung University Hospital, Tainan, Taiwan.
| |
Collapse
|
21
|
Titanium Surface Properties Influence the Biological Activity and FasL Expression of Craniofacial Stromal Cells. Stem Cells Int 2019; 2019:4670560. [PMID: 30733806 PMCID: PMC6348805 DOI: 10.1155/2019/4670560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/21/2018] [Indexed: 12/31/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) can be easily isolated form craniofacial bones during routine dentistry procedures. Due to their embryological origin from neural crest, they represent a suitable cell population to study cell-biomaterial interaction in the craniofacial field, including osteoinductive/osteointegrative processes. The biological and immunomodulatory properties of MSCs may be influenced by chemistry and topography of implant surfaces. We investigated if and how three different titanium surfaces, machined (MCH), sandblasted with resorbable blasting medium (RBM), and Ca++-nanostructured (NCA), may affect biological activity, osseointegration, and immunomodulatory properties of craniofacial MSCs. Cell proliferation, morphology, osteogenic markers, and FasL were evaluated on MSCs isolated from the mandibular bone after seeding on these three different surfaces. No statistically significant differences in cell proliferation were observed whereas different morphologies and growth patterns were detected for each type of surface. No difference in the expression of osteogenic markers was revealed. Interestingly, FasL expression, involved in the immunomodulatory activity of stem cells, was influenced by surface properties. Particularly, immunofluorescence analysis indicated that FasL expression increased on MCH surface compared to the others confirming the suggested role of FasL in promoting osteogenic differentiation. Titanium surface treatments and topography might reflect different biological behaviours of craniofacial MSCs and influence their osseointegration/immunomodulation properties.
Collapse
|
22
|
Pisciotta A, Bertoni L, Riccio M, Mapelli J, Bigiani A, La Noce M, Orciani M, de Pol A, Carnevale G. Use of a 3D Floating Sphere Culture System to Maintain the Neural Crest-Related Properties of Human Dental Pulp Stem Cells. Front Physiol 2018; 9:547. [PMID: 29892229 PMCID: PMC5985438 DOI: 10.3389/fphys.2018.00547] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Human dental pulp is considered an interesting source of adult stem cells, due to the low-invasive isolation procedures, high content of stem cells and its peculiar embryological origin from neural crest. Based on our previous findings, a dental pulp stem cells sub-population, enriched for the expression of STRO-1, c-Kit, and CD34, showed a higher neural commitment. However, their biological properties were compromised when cells were cultured in adherent standard conditions. The aim of this study was to evaluate the ability of three dimensional floating spheres to preserve embryological and biological properties of this sub-population. In addition, the expression of the inwardly rectifying potassium channel Kir4.1, Fas and FasL was investigated in 3D-sphere derived hDPSCs. Our data showed that 3D sphere-derived hDPSCs maintained their fibroblast-like morphology, preserved stemness markers expression and proliferative capability. The expression of neural crest markers and Kir4.1 was observed in undifferentiated hDPSCs, furthermore this culture system also preserved hDPSCs differentiation potential. The expression of Fas and FasL was observed in undifferentiated hDPSCs derived from sphere culture and, noteworthy, FasL was maintained even after the neurogenic commitment was reached, with a significantly higher expression compared to osteogenic and myogenic commitments. These data demonstrate that 3D sphere culture provides a favorable micro-environment for neural crest-derived hDPSCs to preserve their biological properties.
Collapse
Affiliation(s)
- Alessandra Pisciotta
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Bertoni
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Riccio
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Jonathan Mapelli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Albertino Bigiani
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Marcella La Noce
- Department of Experimental Medicine, Unit of Biotechnologies, Medical Histology and Molecular Biology, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Monia Orciani
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Anto de Pol
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
23
|
Anitua E, Troya M, Zalduendo M. Progress in the use of dental pulp stem cells in regenerative medicine. Cytotherapy 2018; 20:479-498. [PMID: 29449086 DOI: 10.1016/j.jcyt.2017.12.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/11/2017] [Accepted: 12/27/2017] [Indexed: 12/13/2022]
Abstract
The field of tissue engineering is emerging as a multidisciplinary area with promising potential for regenerating new tissues and organs. This approach requires the involvement of three essential components: stem cells, scaffolds and growth factors. To date, dental pulp stem cells have received special attention because they represent a readily accessible source of stem cells. Their high plasticity and multipotential capacity to differentiate into a large array of tissues can be explained by its neural crest origin, which supports applications beyond the scope of oral tissues. Many isolation, culture and cryopreservation protocols have been proposed that are known to affect cell phenotype, proliferation rate and differentiation capacity. The clinical applications of therapies based on dental pulp stem cells demand the development of new biomaterials suitable for regenerative purposes that can act as scaffolds to handle, carry and implant stem cells into patients. Currently, the development of xeno-free culture media is emerging as a means of standardization to improve safe and reproducibility. The present review aims to describe the current knowledge of dental pulp stem cells, considering in depth the key aspects related to the characterization, establishment, maintenance and cryopreservation of primary cultures and their involvement in the multilineage differentiation potential. The main clinical applications for these stem cells and their combination with several biomaterials is also covered.
Collapse
Affiliation(s)
- Eduardo Anitua
- BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine and Oral Implantology UIRMI, UPV/EHU-Fundación Eduardo Anitua, Vitoria, Spain.
| | - María Troya
- BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine and Oral Implantology UIRMI, UPV/EHU-Fundación Eduardo Anitua, Vitoria, Spain
| | - Mar Zalduendo
- BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine and Oral Implantology UIRMI, UPV/EHU-Fundación Eduardo Anitua, Vitoria, Spain
| |
Collapse
|
24
|
Botelho J, Cavacas MA, Machado V, Mendes JJ. Dental stem cells: recent progresses in tissue engineering and regenerative medicine. Ann Med 2017. [PMID: 28649865 DOI: 10.1080/07853890.2017.1347705] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Since the disclosure of adult mesenchymal stem cells (MSCs), there have been an intense investigation on the characteristics of these cells and their potentialities. Dental stem cells (DSCs) are MSC-like populations with self-renewal capacity and multidifferentiation potential. Currently, there are five main DSCs, dental pulp stem cells (DPSCs), stem cells from exfoliated deciduous teeth (SHED), stem cells from apical papilla (SCAP), periodontal ligament stem cells (PDLSCs) and dental follicle precursor cells (DFPCs). These cells are extremely accessible, prevail during all life and own an amazing multipotency. In the past decade, DPSCs and SHED have been thoroughly studied in regenerative medicine and tissue engineering as autologous stem cells therapies and have shown amazing therapeutic abilities in oro-facial, neurologic, corneal, cardiovascular, hepatic, diabetic, renal, muscular dystrophy and auto-immune conditions, in both animal and human models, and most recently some of them in human clinical trials. In this review, we focus the characteristics, the multiple roles of DSCs and its potential translation to clinical settings. These new insights of the apparently regenerative aptitude of these DSCs seems quite promising to investigate these cells abilities in a wide variety of pathologies. Key messages Dental stem cells (DSCs) have a remarkable self-renewal capacity and multidifferentiation potential; DSCs are extremely accessible and prevail during all life; DSCs, as stem cells therapies, have shown amazing therapeutic abilities in oro-facial, neurologic, corneal, cardiovascular, hepatic, diabetic, renal, muscular dystrophy and autoimmune conditions; DSCs are becoming extremely relevant in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- João Botelho
- a Egas Moniz Cooperativa de Ensino Superior CRL , Caparica , Portugal
| | | | - Vanessa Machado
- a Egas Moniz Cooperativa de Ensino Superior CRL , Caparica , Portugal
| | - José João Mendes
- a Egas Moniz Cooperativa de Ensino Superior CRL , Caparica , Portugal
| |
Collapse
|
25
|
Bianchi M, Pisciotta A, Bertoni L, Berni M, Gambardella A, Visani A, Russo A, de Pol A, Carnevale G. Osteogenic Differentiation of hDPSCs on Biogenic Bone Apatite Thin Films. Stem Cells Int 2017; 2017:3579283. [PMID: 29201060 PMCID: PMC5671751 DOI: 10.1155/2017/3579283] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/14/2017] [Indexed: 01/03/2023] Open
Abstract
A previous study reported the structural characterization of biogenic apatite (BAp) thin films realized by a pulsed electron deposition system by ablation of deproteinized bovine bone. Thin films annealed at 400°C exhibited composition and crystallinity degree very close to those of biogenic apatite; this affinity is crucial for obtaining faster osseointegration compared to conventional, thick hydroxyapatite (HA) coatings, for both orthopedics and dentistry. Here, we investigated the adhesion, proliferation, and osteogenic differentiation of human dental pulp stem cells (hDPCS) on as-deposited and heat-treated BAp and stoichiometric HA. First, we showed that heat-treated BAp films can significantly promote hDPSC adhesion and proliferation. Moreover, hDPSCs, while initially maintaining the typical fibroblast-like morphology and stemness surface markers, later started expressing osteogenic markers such as Runx-2 and OSX. Noteworthy, when cultured in an osteogenic medium on annealed BAp films, hDPSCs were also able to reach a more mature and terminal commitment, with respect to HA and as-deposited films. Our findings suggest that annealed BAp films not only preserve the typical biological properties of stemness of, hDPSCs but also improve their ability of osteogenic commitment.
Collapse
Affiliation(s)
- Michele Bianchi
- Rizzoli Orthopaedic Institute, NanoBiotechnology Laboratory, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Alessandra Pisciotta
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Laura Bertoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Matteo Berni
- Rizzoli Orthopaedic Institute, NanoBiotechnology Laboratory, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Alessandro Gambardella
- Rizzoli Orthopaedic Institute, NanoBiotechnology Laboratory, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Andrea Visani
- Rizzoli Orthopaedic Institute, Laboratory of Biomechanics and Technology Innovation, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Alessandro Russo
- Rizzoli Orthopaedic Institute, NanoBiotechnology Laboratory, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Anto de Pol
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Gianluca Carnevale
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| |
Collapse
|
26
|
Doğan A, Demirci S, Apdik H, Apdik EA, Şahin F. Dental pulp stem cells (DPSCs) increase prostate cancer cell proliferation and migration under in vitro conditions. Tissue Cell 2017; 49:711-718. [PMID: 29054337 DOI: 10.1016/j.tice.2017.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 12/13/2022]
Abstract
Cancer as a multistep and complicated disease is regulated by several molecular and cellular events. Cancer treatment could be managed at the early stages when the tumor is confined in the tissue. However, disseminated cancer cells metastasize to other body parts and generate new tumors resulting in mortality. Mesenchymal stem cells (MSCs) are found in different body parts and helps adult tissue regeneration. The role of MSCs in cancer progression has emerged as one of the important aspects in cancer biology and is the aim of interest in recent years. In the current study, effects of Dental Pulp Stem Cells (DPSCs) on PC-3 prostate cancer cell proliferation and migration were conducted by cell proliferation, apoptosis, gene expression and cell migration analysis in vitro. Condition medium (CM) obtained from DPSCs increased cell proliferation of PC-3 cells and decreased apoptosis. Either administration of CM or trans well co-culture of DPSCs increased cell migration in scratch assay, confirmed by gene expression analysis of migratory genes including fibronectin, laminin and collagen type I (Col I). Furthermore, DPSCs participated in a self-organized structure with PC-3 cells in co-culture conditions. Overall, results indicated that DPSCs could promote PC-3 cancer cell proliferation and metastasis in co-culture conditions in vitro.
Collapse
Affiliation(s)
- Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Selami Demirci
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
| | - Hüseyin Apdik
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Ezgi Avşar Apdik
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
27
|
Alcohol Inhibits Odontogenic Differentiation of Human Dental Pulp Cells by Activating mTOR Signaling. Stem Cells Int 2017; 2017:8717454. [PMID: 29062364 PMCID: PMC5618757 DOI: 10.1155/2017/8717454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/05/2017] [Accepted: 07/16/2017] [Indexed: 12/19/2022] Open
Abstract
Long-term heavy alcohol consumption could result in a range of health, social, and behavioral problems. People who abuse alcohol are at high risks of seriously having osteopenia, periodontal disease, and compromised oral health. However, the role of ethanol (EtOH) in the biological functions of human dental pulp cells (DPCs) is unknown. Whether EtOH affects the odontoblastic differentiation of DPCs through the mechanistic target of rapamycin (mTOR) remains unexplored. The objective of this study was to investigate the effects of EtOH on DPC differentiation and mineralization. DPCs were isolated and purified from human dental pulps. The proliferation and odontoblastic differentiation of DPCs treated with EtOH were subsequently investigated. Different doses of EtOH were shown to be cytocompatible with DPCs. EtOH significantly activated the mTOR pathway in a dose-dependent manner. In addition, EtOH downregulated the alkaline phosphatase activity, attenuated the mineralized nodule formation, and suppressed the expression of odontoblastic markers including ALP, DSPP, DMP-1, Runx2, and OCN. Moreover, the pretreatment with rapamycin, a specific mTOR inhibitor, markedly reversed the EtOH-induced odontoblastic differentiation and cell mineralization. Our findings show for the first time that EtOH can suppress DPC differentiation and mineralization in a mTOR-dependent manner, indicating that EtOH may be involved in negatively regulating the dental pulp repair.
Collapse
|
28
|
Maraldi T, Guida M, Beretti F, Resca E, Carpino G, Cardinale V, Gentile R, Ardizzoni A, Murgia A, Alvaro D, Gaudio E, De Pol A. Human biliary tree stem/progenitor cells immunomodulation: Role of hepatocyte growth factor. Hepatol Res 2017; 47:465-479. [PMID: 27381820 DOI: 10.1111/hepr.12772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/17/2016] [Accepted: 06/30/2016] [Indexed: 12/30/2022]
Abstract
AIM Human biliary tree stem/progenitor cells (hBTSC) are multipotent epithelial stem cells with the potential for allogenic transplant in liver, biliary tree, and pancreatic diseases. Human mesenchymal stem cells, but also epithelial stem cells, are able to modulate immune responses with different types of secretion molecules. METHODS The initial aim of the present study was to develop for the first time a culture protocol in order to expand hBTSC in vitro through passages, allowing to maintain a similar stem cell and secretome profile. Furthermore, we investigated the secretome profile of the hBTSC to assess the production of molecules capable of affecting immune feedback. RESULTS We found that hepatocyte growth factor produced by hBTSC exerts its cytoprotective role inducing apoptosis in human immune cells, such as lymphocytes. CONCLUSIONS The present study, therefore, supports the hypothesis that hBTSC can be useful for the purpose of regenerative medicine, as they can be banked and expanded, and they can secrete immunoregulatory factors.
Collapse
Affiliation(s)
- Tullia Maraldi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marianna Guida
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy.,EURAC Research, Center for Biomedicine, Bolzano, Italy
| | - Francesca Beretti
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Resca
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Guido Carpino
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Rome, Italy
| | - Raffaele Gentile
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Rome, Italy
| | - Andrea Ardizzoni
- Department of Diagnostics, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alba Murgia
- Department of Medical and Surgical Sciences for Children & Adults University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Domenico Alvaro
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Rome, Italy.,Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Anto De Pol
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
29
|
Carnevale G, Pisciotta A, Riccio M, Bertoni L, De Biasi S, Gibellini L, Zordani A, Cavallini GM, La Sala GB, Bruzzesi G, Ferrari A, Cossarizza A, de Pol A. Human dental pulp stem cells expressing STRO-1, c-kit and CD34 markers in peripheral nerve regeneration. J Tissue Eng Regen Med 2017; 12:e774-e785. [PMID: 27943583 DOI: 10.1002/term.2378] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 10/10/2016] [Accepted: 12/06/2016] [Indexed: 12/16/2022]
Abstract
Peripheral nerve injuries are a commonly encountered clinical problem and often result in long-term functional defects. The application of stem cells able to differentiate in Schwann cell-like cells in vitro and in vivo, could represent an attractive therapeutic approach for the treatment of nerve injuries. Further, stem cells sources sharing the same embryological origin as Schwann cells might be considered a suitable tool. The aim of this study was to demonstrate the ability of a neuroectodermal subpopulation of human STRO-1+ /c-Kit+ /CD34+ DPSCs, expressing P75NTR , nestin and SOX-10, to differentiate into Schwann cell-like cells in vitro and to promote axonal regeneration in vivo, which led to functional recovery as measured by sustained gait improvement, in animal rat model of peripheral nerve injury. Transplanted human dental pulp stem cells (hDPSCs) engrafted into sciatic nerve defect, as revealed by the positive staining against human nuclei, showed the expression of typical Schwann cells markers, S100b and, noteworthy, a significant number of myelinated axons was detected. Moreover, hDPSCs promoted axonal regeneration from proximal to distal stumps 1 month after transplantation. This study demonstrates that STRO-1+ /c-Kit+ /CD34+ hDPSCs, associated with neural crest derivation, represent a promising source of stem cells for the treatment of demyelinating disorders and might provide a valid alternative tool for future clinical applications to achieve functional recovery after injury or peripheral neuropathies besides minimizing ethical issues. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Pisciotta
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Riccio
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Bertoni
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Sara De Biasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Lara Gibellini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessio Zordani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gian Maria Cavallini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Giacomo Bruzzesi
- Oro-Maxillo-Facial Department, AUSL Baggiovara, Baggiovara, Modena, Italy
| | - Adriano Ferrari
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy.,Children Rehabilitation Special Unit, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Andrea Cossarizza
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Anto de Pol
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
30
|
Chalisserry EP, Nam SY, Park SH, Anil S. Therapeutic potential of dental stem cells. J Tissue Eng 2017; 8:2041731417702531. [PMID: 28616151 PMCID: PMC5461911 DOI: 10.1177/2041731417702531] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/12/2017] [Indexed: 12/13/2022] Open
Abstract
Stem cell biology has become an important field in regenerative medicine and tissue engineering therapy since the discovery and characterization of mesenchymal stem cells. Stem cell populations have also been isolated from human dental tissues, including dental pulp stem cells, stem cells from human exfoliated deciduous teeth, stem cells from apical papilla, dental follicle progenitor cells, and periodontal ligament stem cells. Dental stem cells are relatively easily obtainable and exhibit high plasticity and multipotential capabilities. The dental stem cells represent a gold standard for neural-crest-derived bone reconstruction in humans and can be used for the repair of body defects in low-risk autologous therapeutic strategies. The bioengineering technologies developed for tooth regeneration will make substantial contributions to understand the developmental process and will encourage future organ replacement by regenerative therapies in a wide variety of organs such as the liver, kidney, and heart. The concept of developing tooth banking and preservation of dental stem cells is promising. Further research in the area has the potential to herald a new dawn in effective treatment of notoriously difficult diseases which could prove highly beneficial to mankind in the long run.
Collapse
Affiliation(s)
- Elna Paul Chalisserry
- Interdisciplinary Program of Marine-Bio, Electrical & Mechanical Engineering, Pukyong National University, Busan, Korea
- Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Korea
| | - Seung Yun Nam
- Interdisciplinary Program of Marine-Bio, Electrical & Mechanical Engineering, Pukyong National University, Busan, Korea
- Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Korea
- Department of Biomedical Engineering, Pukyong National University, Busan, South Korea
| | - Sang Hyug Park
- Interdisciplinary Program of Marine-Bio, Electrical & Mechanical Engineering, Pukyong National University, Busan, Korea
- Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Korea
- Department of Biomedical Engineering, Pukyong National University, Busan, South Korea
| | - Sukumaran Anil
- Division of Periodontics, Department of Preventive Dental Sciences, College of Dentistry Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
31
|
Mu X, Ren L, Yan H, Zhang X, Xu T, Wei A, Jiang J. Enhanced differentiation of human amniotic fluid-derived stem cells into insulin-producing cells in vitro. J Diabetes Investig 2017; 8:34-43. [PMID: 27240324 PMCID: PMC5217909 DOI: 10.1111/jdi.12544] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/19/2016] [Accepted: 05/02/2016] [Indexed: 01/14/2023] Open
Abstract
AIMS/INTRODUCTION To investigate the ability of human amniotic fluid stem cells (hAFSCs) to differentiate into insulin-producing cells. MATERIALS AND METHODS hAFSCs were induced to differentiate into pancreatic cells by a multistep protocol. The expressions of pancreas-related genes and proteins, including pancreatic and duodenal homeobox-1, insulin, and glucose transporter 2, were detected by polymerase chain reaction and immunofluorescence. Insulin secreted from differentiated cells was tested by enzyme-linked immunosorbent assay. RESULTS hAFSCs were successfully isolated from amniotic fluid that expressed the pluripotent markers of embryonic stem cells, such as Oct3/4, and mesenchymal stem cells, such as integrin β-1 and ecto-5'-nucleotidase. Here, we first obtained the hAFSCs that expressed pluripotent marker stage-specific embryonic antigen 1. Real-time polymerase chain reaction analysis showed that pancreatic and duodenal homeobox-1, paired box gene 4 and paired box gene 6 were expressed in the early phase of induction, and then stably expressed in the differentiated cells. The pancreas-related genes, such as insulin, glucokinase, glucose transporter 2 and Nkx6.1, were expressed in the differentiated cells. Immunofluorescence showed that these differentiated cells co-expressed insulin, C-peptide, and pancreatic and duodenal homeobox-1. Insulin was released in response to glucose stimulation in a manner similar to that of adult human islets. CONCLUSIONS The present study showed that hAFSCs, under selective culture conditions, could differentiate into islet-like insulin-producing cells, which might be used as a potential source for transplantation in patients with type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Xu‐Peng Mu
- Department of Central LaboratoryChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Li‐Qun Ren
- College of PharmacyJilin UniversityChangchunChina
| | - Hao‐Wei Yan
- College of PharmacyJilin UniversityChangchunChina
| | | | - Tian‐Min Xu
- The Second Affiliated Hospital of Jilin UniversityChangchunChina
| | - An‐Hui Wei
- College of PharmacyJilin UniversityChangchunChina
| | - Jin‐Lan Jiang
- Department of Central LaboratoryChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
32
|
Zinc Up-Regulates Insulin Secretion from β Cell-Like Cells Derived from Stem Cells from Human Exfoliated Deciduous Tooth (SHED). Int J Mol Sci 2016; 17:ijms17122092. [PMID: 27983594 PMCID: PMC5187892 DOI: 10.3390/ijms17122092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/01/2016] [Accepted: 12/06/2016] [Indexed: 11/17/2022] Open
Abstract
Stem cells from human exfoliated deciduous tooth (SHED) offer several advantages over other stem cell sources. Using SHED, we examined the roles of zinc and the zinc uptake transporter ZIP8 (Zrt- and irt-like protein 8) while inducing SHED into insulin secreting β cell-like stem cells (i.e., SHED-β cells). We observed that ZIP8 expression increased as SHED differentiated into SHED-β cells, and that zinc supplementation at day 10 increased the levels of most pancreatic β cell markers-particularly Insulin and glucose transporter 2 (GLUT2). We confirmed that SHED-β cells produce insulin successfully. In addition, we note that zinc supplementation significantly increases insulin secretion with a significant elevation of ZIP8 transporters in SHED-β cells. We conclude that SHED can be converted into insulin-secreting β cell-like cells as zinc concentration in the cytosol is elevated. Insulin production by SHED-β cells can be regulated via modulation of zinc concentration in the media as ZIP8 expression in the SHED-β cells increases.
Collapse
|
33
|
Ahmed NEMB, Murakami M, Kaneko S, Nakashima M. The effects of hypoxia on the stemness properties of human dental pulp stem cells (DPSCs). Sci Rep 2016; 6:35476. [PMID: 27739509 PMCID: PMC5064411 DOI: 10.1038/srep35476] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/30/2016] [Indexed: 12/21/2022] Open
Abstract
Recent studies have demonstrated that culture under hypoxia has beneficial effects on mesenchymal stem cells (MSCs). However, there are limitations to achieving a stable condition in conventional hypoxic CO2 incubators. DPSCs are a unique type of MSCs which are promising in many regenerative therapies. In this study, we investigated the ideal hypoxic culture environment for DPSCs using a new system that can provide controlled O2 environment. The effects of hypoxia (3%, 5%) on the stemness properties of DPSCs. Their morphology, proliferation rate, expression of stem cell markers, migration ability, mRNA expression of angiogenic/neurotrophic factors and immunomodulatory genes were evaluated and compared. Additionally, the effect of the discrete secretome on proliferation, migration, and neurogenic induction was assessed. Hypoxic DPSCs were found to be smaller in size and exhibited larger nuclei. 5% O2 significantly increased the proliferation rate, migration ability, expression of stem cell markers (CXCR4 and G-CSFR), and expression of SOX2, VEGF, NGF, and BDNF genes of DPSCs. Moreover, secretome collected from 5%O2 cultures displayed higher stimulatory effects on proliferation and migration of NIH3T3 cells and on neuronal differentiation of SH-SY5Y cells. These results demonstrate that 5%O2 may be ideal for enhancing DPSCs growth, stem cell properties, and secretome trophic effect.
Collapse
Affiliation(s)
- Nermeen El-Moataz Bellah Ahmed
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, Obu, Aichi, Japan.,Department of Oro-dental genetics, Division of Human Genetics and Human Genome, National research center, Cairo, Egypt
| | - Masashi Murakami
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, Obu, Aichi, Japan
| | - Satoru Kaneko
- Reproduction Center, Gynecology, Ichikawa General Hospital, Tokyo Dental College, Sugano, Ichikawa, Chiba, Japan
| | - Misako Nakashima
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, Obu, Aichi, Japan
| |
Collapse
|
34
|
Carnevale G, Pisciotta A, Riccio M, De Biasi S, Gibellini L, Ferrari A, La Sala GB, Bruzzesi G, Cossarizza A, de Pol A. Optimized Cryopreservation and Banking of Human Bone-Marrow Fragments and Stem Cells. Biopreserv Biobank 2016; 14:138-48. [PMID: 26828565 DOI: 10.1089/bio.2015.0001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Adult mesenchymal stem cells are a promising source for cell therapies and tissue engineering applications. Current procedures for banking of human bone-marrow mesenchymal stem cells (hBM-MSCs) require cell isolation and expansion, and thus the use of large amounts of animal sera. However, animal-derived culture supplements have the potential to trigger infections and severe immune reactions. The aim of this study was to investigate an optimized method for cryopreservation of human bone-marrow fragments for application in cell banking procedures where stem-cell expansion and use are not immediately needed. Whole trabecular fragments enclosing the bone marrow were stored in liquid nitrogen for 1 year in a cryoprotective solution containing a low concentration of dimethyl sulfoxide and a high concentration of human serum (HuS). After thawing, the isolation, colony-forming-unit ability, proliferation, morphology, stemness-related marker expression, cell senescence, apoptosis, and multi-lineage differentiation potential of hBM-MSCs were tested in media containing HuS compared with hBM-MSCs isolated from fresh fragments. Human BM-MSCs isolated from cryopreserved fragments expressed MSC markers until later passages, had a good proliferation rate, and exhibited the capacity to differentiate toward osteogenic, adipogenic, and myogenic lineages similar to hBM-MSCs isolated from fresh fragments. Moreover, the cryopreservation method did not induce cell senescence or cell death. These results imply that minimal processing may be adequate for the banking of tissue samples with no requirement for the immediate isolation and use of hBM-MSCs, thus limiting cost and the risk of contamination, and facilitating banking for clinical use. Furthermore, the use of HuS for cryopreservation and expansion/differentiation has the potential for clinical application in compliance with good manufacturing practice standards.
Collapse
Affiliation(s)
- Gianluca Carnevale
- 1 Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia , Modena, Italy .,2 Dipartimento Sperimentale Interaziendale, University of Modena and Reggio Emilia , Modena, Italy
| | - Alessandra Pisciotta
- 1 Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia , Modena, Italy
| | - Massimo Riccio
- 1 Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia , Modena, Italy
| | - Sara De Biasi
- 1 Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia , Modena, Italy
| | - Lara Gibellini
- 1 Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia , Modena, Italy
| | - Adriano Ferrari
- 2 Dipartimento Sperimentale Interaziendale, University of Modena and Reggio Emilia , Modena, Italy .,3 Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia , Modena, Italy
| | - Giovanni B La Sala
- 2 Dipartimento Sperimentale Interaziendale, University of Modena and Reggio Emilia , Modena, Italy .,4 Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia , Modena, Italy
| | - Giacomo Bruzzesi
- 5 Oro-Maxillo-Facial Department, AUSL Baggiovara , Modena, Italy
| | - Andrea Cossarizza
- 1 Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia , Modena, Italy .,2 Dipartimento Sperimentale Interaziendale, University of Modena and Reggio Emilia , Modena, Italy
| | - Anto de Pol
- 1 Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia , Modena, Italy .,2 Dipartimento Sperimentale Interaziendale, University of Modena and Reggio Emilia , Modena, Italy
| |
Collapse
|
35
|
Cryopreservation and Banking of Dental Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 951:199-235. [DOI: 10.1007/978-3-319-45457-3_17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Regenerative Applications Using Tooth Derived Stem Cells in Other Than Tooth Regeneration: A Literature Review. Stem Cells Int 2015; 2016:9305986. [PMID: 26798366 PMCID: PMC4699044 DOI: 10.1155/2016/9305986] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 09/03/2015] [Accepted: 09/08/2015] [Indexed: 12/13/2022] Open
Abstract
Tooth derived stem cells or dental stem cells are categorized according to the location from which they are isolated and represent a promising source of cells for regenerative medicine. Originally, as one kind of mesenchymal stem cells, they are considered an alternative of bone marrow stromal cells. They share many commonalties but maintain differences. Considering their original function in development and the homeostasis of tooth structures, many applications of these cells in dentistry have aimed at tooth structure regeneration; however, the application in other than tooth structures has been attempted extensively. The availability from discarded or removed teeth can be an innate benefit as a source of autologous cells. Their origin from the neural crest results in exploitation of neurological and numerous other applications. This review briefly highlights current and future perspectives of the regenerative applications of tooth derived stem cells in areas beyond tooth regeneration.
Collapse
|
37
|
Pisciotta A, Riccio M, Carnevale G, Lu A, De Biasi S, Gibellini L, La Sala GB, Bruzzesi G, Ferrari A, Huard J, De Pol A. Stem cells isolated from human dental pulp and amniotic fluid improve skeletal muscle histopathology in mdx/SCID mice. Stem Cell Res Ther 2015; 6:156. [PMID: 26316011 PMCID: PMC4552417 DOI: 10.1186/s13287-015-0141-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/07/2015] [Accepted: 07/30/2015] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD), caused by a lack of the functional structural protein dystrophin, leads to severe muscle degeneration where the patients are typically wheelchair-bound and die in their mid-twenties from cardiac or respiratory failure or both. The aim of this study was to investigate the potential of human dental pulp stem cells (hDPSCs) and human amniotic fluid stem cells (hAFSCs) to differentiate toward a skeletal myogenic lineage using several different protocols in order to determine the optimal conditions for achieving myogenic commitment and to subsequently evaluate their contribution in the improvement of the pathological features associated with dystrophic skeletal muscle when intramuscularly injected into mdx/SCID mice, an immune-compromised animal model of DMD. METHODS Human DPSCs and AFSCs were differentiated toward myogenic lineage in vitro through the direct co-culture with a myogenic cell line (C2C12 cells) and through a preliminary demethylation treatment with 5-Aza-2'-deoxycytidine (5-Aza), respectively. The commitment and differentiation of both hDPSCs and hAFSCs were evaluated by immunofluorescence and Western blot analysis. Subsequently, hDPSCs and hAFSCs, preliminarily demethylated and pre-differentiated toward a myogenic lineage for 2 weeks, were injected into the dystrophic gastrocnemius muscles of mdx/SCID mice. After 1, 2, and 4 weeks, the gastrocnemius muscles were taken for immunofluorescence and histological analyses. RESULTS Both populations of cells engrafted within the host muscle of mdx/SCID mice and through a paracrine effect promoted angiogenesis and reduced fibrosis, which eventually led to an improvement of the histopathology of the dystrophic muscle. CONCLUSION This study shows that hAFSCs and hDPSCs represent potential sources of stem cells for translational strategies to improve the histopathology and potentially alleviate the muscle weakness in patients with DMD.
Collapse
Affiliation(s)
- Alessandra Pisciotta
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.
| | - Massimo Riccio
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.
| | - Gianluca Carnevale
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.
| | - Aiping Lu
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, 450 Technology Drive, Bridgeside Point II, Suite 206, 15219, Pittsburgh, PA, USA.
| | - Sara De Biasi
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.
| | - Lara Gibellini
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.
| | - Giovanni B La Sala
- Department of Obstetrics and Gynecology, Arcispedale Santa Maria Nuova, viale Risorgimento 80, 42123, Reggio Emilia, Italy.
| | - Giacomo Bruzzesi
- Oro-Maxillo-Facial Department, AUSL Baggiovara, via Giardini 1355, 41126, Modena, Baggiovara, Italy.
| | - Adriano Ferrari
- Department of Biomedical, Metabolic and Neuroscience, University of Modena and Reggio Emilia, Children Rehabilitation Special Unit, IRCCS Arcispedale Santa Maria Nuova, viale Risorgimento 80, 42123, Reggio Emilia, Italy.
| | - Johnny Huard
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, 450 Technology Drive, Bridgeside Point II, Suite 206, 15219, Pittsburgh, PA, USA.
| | - Anto De Pol
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.
| |
Collapse
|
38
|
Different origin of adipogenic stem cells influences the response to antiretroviral drugs. Exp Cell Res 2015; 337:160-9. [PMID: 26238601 DOI: 10.1016/j.yexcr.2015.07.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 12/31/2022]
Abstract
Lipodystrophy (LD) is a main side effect of antiretroviral therapy for HIV infection, and can be provoked by nucleoside reverse transcriptase inhibitors (NRTIs) and protease inhibitors (PIs). LD exists in different forms, characterized by fat loss, accumulation, or both, but its pathogenesis is still unclear. In particular, few data exist concerning the effects of antiretroviral drugs on adipocyte differentiation. Adipose tissue can arise either from mesenchymal stem cells (MSCs), that include bone marrow-derived MSCs (hBM-MSCs), or from ectodermal stem cells, that include dental pulp stem cells (hDPSCs). To analyze whether the embryonal origin of adipocytes might impact the occurrence of different phenotypes in LD, we quantified the effects of several antiretroviral drugs on the adipogenic differentiation of hBM-MSCs and hDPSCs. hBM-MSCs and hDPSCs were isolated from healthy donors. Cells were treated with 10 and 50 μM stavudine (d4T), efavirenz (EFV), atazanavir (ATV), ritonavir (RTV), and ATV-boosted RTV. Viability and adipogenesis were evaluated by staining with propidium iodide, oil red, and adipoRed; mRNA levels of genes involved in adipocyte differentiation, i.e. CCAAT/enhancer-binding protein alpha (CEBPα) and peroxisome proliferator-activated receptor gamma (PPARγ), and in adipocyte functions, i.e. fatty acid synthase (FASN), fatty acid binding protein-4 (FABP4), perilipin-1 (PLIN1) and 1-acylglycerol-3-phosphate O-acyltransferase-2 (AGPAT2), were quantified by real time PCR. We found that ATV, RTV, EFV, and ATV-boosted RTV, but not d4T, caused massive cell death in both cell types. EFV and d4T affected the accumulation of lipid droplets and induced changes in mRNA levels of genes involved in adipocyte functions in hBM-MSCs, while RTV and ATV had little effects. All drugs stimulated the accumulation of lipid droplets in hDPSCs. Thus, the adipogenic differentiation of human stem cells can be influenced by antiretroviral drugs, and depends, at least in part, on their embryonal origin.
Collapse
|
39
|
Sun B, Liu R, Xiao ZD. Induction of insulin-producing cells from umbilical cord blood-derived stromal cells by activation of the c-Met/HGF axis. Dev Growth Differ 2015; 57:353-361. [DOI: 10.1111/dgd.12214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/18/2015] [Accepted: 03/22/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Bo Sun
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
- Institute of Microbiology; Seoul National University; 151-742 Seoul South Korea
| | - Rui Liu
- Laboratory of Biophysics; School of Biological Sciences; Seoul National University; 151-742 Seoul South Korea
| | - Zhong-Dang Xiao
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
| |
Collapse
|
40
|
In vitro evaluation of different protocols for the induction of mesenchymal stem cells to insulin-producing cells. In Vitro Cell Dev Biol Anim 2015; 51:866-78. [DOI: 10.1007/s11626-015-9890-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/09/2015] [Indexed: 01/08/2023]
|
41
|
Maraldi T, Beretti F, Guida M, Zavatti M, De Pol A. Role of hepatocyte growth factor in the immunomodulation potential of amniotic fluid stem cells. Stem Cells Transl Med 2015; 4:539-47. [PMID: 25873747 DOI: 10.5966/sctm.2014-0266] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/23/2015] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Human amniotic fluid stem cells (hAFSCs) may be useful for regenerative medicine because of their potential to differentiate into all three germ layers and to modulate immune response with different types of secretion molecules. This last issue has not been completely elucidated. The aim of this study was to investigate the secretome profile of the hAFSC, focusing on the role of hepatocyte growth factor (HGF) in immunoregulation through short and long cocultures with human peripheral blood mononuclear cells. We found that HGF produced by hAFSCs exerts a cytoprotective role, inducing an increase in caspase-dependent apoptosis in human immune cells. This study provides evidence supporting the hypothesis that amniotic fluid is an ideal source of stem cells for expansion and banking properties for therapeutic use. hAFSCs not only are less immunogenic but also can secrete immunoregulatory factors that may be useful in autoimmune diseases or allogenic implants. SIGNIFICANCE New information about the secretome pattern is reported in this paper. Human amniotic fluid stem cells (hAFSCs) possess immunomodulatory properties involving hepatocyte growth factor production. hAFSCs could be used in immunotherapies and might be able to avoid allogenic rejection.
Collapse
Affiliation(s)
- Tullia Maraldi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for Biomedicine, European Academy of Bozen/Bolzano (EURAC) Research, Bolzano, Italy
| | - Francesca Beretti
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for Biomedicine, European Academy of Bozen/Bolzano (EURAC) Research, Bolzano, Italy
| | - Marianna Guida
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for Biomedicine, European Academy of Bozen/Bolzano (EURAC) Research, Bolzano, Italy
| | - Manuela Zavatti
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for Biomedicine, European Academy of Bozen/Bolzano (EURAC) Research, Bolzano, Italy
| | - Anto De Pol
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for Biomedicine, European Academy of Bozen/Bolzano (EURAC) Research, Bolzano, Italy
| |
Collapse
|
42
|
Human dental pulp stem cells (hDPSCs): isolation, enrichment and comparative differentiation of two sub-populations. BMC DEVELOPMENTAL BIOLOGY 2015; 15:14. [PMID: 25879198 PMCID: PMC4377026 DOI: 10.1186/s12861-015-0065-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 02/27/2015] [Indexed: 02/07/2023]
Abstract
Background Human dental pulp represents a suitable alternative source of stem cells for the purpose of cell-based therapies in regenerative medicine, because it is relatively easy to obtain it, using low invasive procedures. This study characterized and compared two subpopulations of adult stem cells derived from human dental pulp (hDPSCs). Human DPSCs, formerly immune-selected for STRO-1 and c-Kit, were separated for negativity and positivity to CD34 expression respectively, and evaluated for cell proliferation, stemness maintenance, cell senescence and multipotency. Results The STRO-1+/c-Kit+/CD34+ hDPSCs showed a slower proliferation, gradual loss of stemness, early cell senescence and apoptosis, compared to STRO-1+/c-Kit+/CD34− hDPSCs. Both the subpopulations demonstrated similar abilities to differentiate towards mesoderm lineages, whereas a significant difference was observed after the neurogenic induction, with a greater commitment of STRO-1+/c-Kit+/CD34+ hDPSCs. Moreover, undifferentiated STRO-1+/c-Kit+/CD34− hDPSCs did not show any expression of CD271 and nestin, typical neural markers, while STRO-1+/c-Kit+/CD34+ hDPSCs expressed both. Conclusions These results suggest that STRO-1+/c-Kit+/CD34− hDPSCs and STRO-1+/c-Kit+/CD34+ hDPSCs might represent two distinct stem cell populations, with different properties. These results trigger further analyses to deeply investigate the hypothesis that more than a single stem cell population resides within the dental pulp, to better define the flexibility of application of hDPSCs in regenerative medicine.
Collapse
|
43
|
The Fas/Fas ligand apoptosis pathway underlies immunomodulatory properties of human biliary tree stem/progenitor cells. J Hepatol 2014; 61:1097-105. [PMID: 24953023 DOI: 10.1016/j.jhep.2014.06.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 05/14/2014] [Accepted: 06/11/2014] [Indexed: 12/28/2022]
Abstract
BACKGROUND & AIMS Human biliary tree stem/progenitor cells (hBTSCs) are multipotent epithelial stem cells, easily obtained from the biliary tree, with the potential for regenerative medicine in liver, biliary tree, and pancreas diseases. Recent reports indicate that human mesenchymal stem cells are able to modulate the T cell immune response. However, no information exists on the capabilities of hBTSCs to control the allogeneic response. The aims of this study were to evaluate FasL expression in hBTSCs, to study the in vitro interaction between hBTSCs and human lymphocytes, and the role of Fas/FasL modulation in inducing T cell apoptosis in hBTSCs/T cell co-cultures. METHODS Fas and FasL expression were evaluated in situ and in vitro by immunofluorescence and western blotting. Co-cultures of hBTSCs with human leukocytes were used to analyze the influence of hBTSCs on lymphocytes activation and apoptosis. RESULTS hBTSCs expressed HLA antigens and FasL in situ and in vitro. Western blot data demonstrated that hBTSCs constitutively expressed high levels of FasL that increased after co-culture with T cells. Confocal microscopy demonstrated that FasL expression was restricted to EpCAM(+)/LGR5(+) cells. FACS analysis of T cells co-cultured with hBTSCs indicated that hBTSCs were able to induce apoptosis in activated CD4(+) and CD8(+) T cell populations. Moreover, the Fas receptor appears to be more expressed in T cells co-cultured with hBTSCs than in resting T cells. CONCLUSIONS Our data suggest that hBTSCs could modulate the T cell response through the production of FasL, which influences the lymphocyte Fas/FasL pathway by inducing "premature" apoptosis in CD4(+) and CD8(+) T cells.
Collapse
|
44
|
Lee JS, An SY, Kwon IK, Heo JS. Transdifferentiation of human periodontal ligament stem cells into pancreatic cell lineage. Cell Biochem Funct 2014; 32:605-11. [PMID: 25187163 DOI: 10.1002/cbf.3057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/17/2014] [Accepted: 07/31/2014] [Indexed: 12/18/2022]
Abstract
Human periodontal ligament-derived stem cells (PDLSCs) demonstrate self-renewal capacity and multilineage differentiation potential. In this study, we investigated the transdifferentiation potential of human PDLSCs into pancreatic islet cells. To form three-dimensional (3D) clusters, PDLSCs were cultured in Matrigel with media containing differentiation-inducing agents. We found that after 6 days in culture, PDLSCs underwent morphological changes resembling pancreatic islet-like cell clusters (ICCs). The morphological characteristics of PDLSC-derived ICCs were further assessed using scanning electron microscopy analysis. Using reverse transcription-polymerase chain reaction analysis, we found that pluripotency genes were downregulated, whereas early endoderm and pancreatic differentiation genes were upregulated, in PDLSC-derived ICCs compared with undifferentiated PDLSCs. Furthermore, we found that PDLSC-derived ICCs were capable of secreting insulin in response to high concentrations of glucose, validating their functional differentiation into islet cells. Finally, we also performed dithizone staining, as well as immunofluorescence assays and fluorescence-activated cell sorting analysis for pancreatic differentiation markers, to confirm the differentiation status of PDLSC-derived ICCs. These results demonstrate that PDLSCs can transdifferentiate into functional pancreatic islet-like cells and provide a novel, alternative cell population for pancreatic repair.
Collapse
Affiliation(s)
- Jeong Seok Lee
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul, 130-701, South Korea
| | | | | | | |
Collapse
|
45
|
Kabir R, Gupta M, Aggarwal A, Sharma D, Sarin A, Kola MZ. Imperative role of dental pulp stem cells in regenerative therapies: a systematic review. Niger J Surg 2014; 20:1-8. [PMID: 24665194 PMCID: PMC3953626 DOI: 10.4103/1117-6806.127092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Stem cells are primitive cells that can differentiate and regenerate organs in different parts of the body such as heart, bones, muscles and nervous system. This has been a field of great clinical interest with immense possibilities of using the stem cells in regeneration of human organ those are damaged due to disease, developmental defects and accident. The knowledge of stem cell technology is increasing quickly in all medical specialties and in dental field too. Stem cells of dental origin appears to hold the key to various cell-based therapies in regenerative medicine, but most avenues are in experimental stages and many procedures are undergoing standardization and validation. Long-term preservation of SHED cells or DPSC is becoming a popular consideration, similar to the banking of umbilical cord blood. Dental pulp stem cells (DPSCs) are the adult multipotent cells that reside in the cell rich zone of the dental pulp. The multipotent nature of these DPSCs may be utilized in both dental and medical applications. A systematic review of the literature was performed using various internet based search engines (PubMed, Medline Plus, Cochrane, Medknow, Ebsco, Science Direct, Hinari, WebMD, IndMed, Embase) using keywords like “dental pulp stem cells”, “regeneration”, “medical applications”, “tissue engineering”. DPSCs appears to be a promising innovation for the re-growth of tissues however, long term clinical studies need to be carried out that could establish some authentic guidelines in this perspective.
Collapse
Affiliation(s)
- Ramchandra Kabir
- Department of Conservative Dentistry and Endodontics, Seema Dental College and Hospital, Rishikesh, India
| | - Manish Gupta
- Department of Oral Medicine and Radiology, Shree Bankey Bihari Dental College and Research Centre, Ghaziabad, Uttar Pradesh, India
| | - Avanti Aggarwal
- Department of Oral Medicine and Radiology, Rajasthan Dental College, Jaipur, Rajasthan, India
| | - Deepak Sharma
- Department of Conservative Dentistry and Endodontics, College of Dental Science and Hospital, Rau, Indore, Madhya Pradesh, India
| | - Anurag Sarin
- Department of Conservative Dentistry, Shree Bankey Bihari Dental College and Research Centre, Ghaziabad, Uttar Pradesh, India
| | - Mohammed Zaheer Kola
- Department of Prosthodontics, College of Dentistry, Salman bin Abdulaziz University, Alkharj (KSA)
| |
Collapse
|
46
|
Tatullo M, Marrelli M, Shakesheff KM, White LJ. Dental pulp stem cells: function, isolation and applications in regenerative medicine. J Tissue Eng Regen Med 2014; 9:1205-16. [PMID: 24850632 DOI: 10.1002/term.1899] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/16/2013] [Accepted: 03/17/2014] [Indexed: 01/08/2023]
Abstract
Dental pulp stem cells (DPSCs) are a promising source of cells for numerous and varied regenerative medicine applications. Their natural function in the production of odontoblasts to create reparative dentin support applications in dentistry in the regeneration of tooth structures. However, they are also being investigated for the repair of tissues outside of the tooth. The ease of isolation of DPSCs from discarded or removed teeth offers a promising source of autologous cells, and their similarities with bone marrow stromal cells (BMSCs) suggest applications in musculoskeletal regenerative medicine. DPSCs are derived from the neural crest and, therefore, have a different developmental origin to BMSCs. These differences from BMSCs in origin and phenotype are being exploited in neurological and other applications. This review briefly highlights the source and functions of DPSCs and then focuses on in vivo applications across the breadth of regenerative medicine.
Collapse
Affiliation(s)
- Marco Tatullo
- Tecnologica Research Institute, Regenerative Medicine Section, St. E. Fermi, Crotone, Italy
| | | | - Kevin M Shakesheff
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Pharmacy, University of Nottingham, UK
| | - Lisa J White
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Pharmacy, University of Nottingham, UK
| |
Collapse
|
47
|
Human amniotic fluid stem cells: neural differentiation in vitro and in vivo. Cell Tissue Res 2014; 357:1-13. [DOI: 10.1007/s00441-014-1840-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 01/31/2014] [Indexed: 01/15/2023]
|
48
|
El Omar R, Beroud J, Stoltz JF, Menu P, Velot E, Decot V. Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell-based therapies? TISSUE ENGINEERING PART B-REVIEWS 2014; 20:523-44. [PMID: 24552279 DOI: 10.1089/ten.teb.2013.0664] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Due to their self-renewal capacity, multilineage differentiation potential, paracrine effects, and immunosuppressive properties, mesenchymal stromal cells (MSCs) are an attractive and promising tool for regenerative medicine. MSCs can be isolated from various tissues but despite their common immunophenotypic characteristics and functional properties, source-dependent differences in MSCs properties have recently emerged and lead to different clinical applications. Considered for a long time as a medical waste, umbilical cord appears these days as a promising source of MSCs. Several reports have shown that umbilical cord-derived MSCs are more primitive, proliferative, and immunosuppressive than their adult counterparts. In this review, we aim at synthesizing the differences between umbilical cord MSCs and MSCs from other sources (bone marrow, adipose tissue, periodontal ligament, dental pulp,…) with regard to their proliferation capacity, proteic and transcriptomic profiles, and their secretome involved in their regenerative, homing, and immunomodulatory capacities. Although umbilical cord MSCs are until now not particularly used as an MSC source in clinical practice, accumulating evidence shows that they may have a therapeutic advantage to treat several diseases, especially autoimmune and neurodegenerative diseases.
Collapse
Affiliation(s)
- Reine El Omar
- 1 CNRS UMR UL 7365 , Bâtiment Biopôle, Faculté de médecine, Vandœuvre-lès-Nancy, France
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Cell therapy has enormous potential for the treatment of conditions of unmet medical need. Cell therapy may be applied to diabetes mellitus in the context of beta cell replacement or for the treatment of diabetic complications. A large number of cell types including hematopoietic stem cells, mesenchymal stem cells, umbilical cord blood, conditioned lymphocytes, mononuclear cells, or a combination of these cells have been shown to be safe and feasible for the treatment of patients with diabetes mellitus. The first part of this review article will focus on the current perspective of the role of embryonic stem cells and inducible pluripotent stem cells for beta cell replacement and the current clinical data on cell-based therapy for the restoration of normoglycemia. The second part of this review will highlight the therapeutic role of MSCs in islet cells cotransplantation and the management of diabetes related vascular complications.
Collapse
Affiliation(s)
- Aaron Liew
- Regenerative Medicine Institute (REMEDI), National Centre for Biomedical Engineering Science (NCBES), National University Ireland Galway (NUIG), Galway, Ireland
| | | |
Collapse
|
50
|
Inhibition of nuclear Nox4 activity by plumbagin: effect on proliferative capacity in human amniotic stem cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:680816. [PMID: 24489986 PMCID: PMC3893878 DOI: 10.1155/2013/680816] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 01/03/2023]
Abstract
Human amniotic fluid stem cells (AFSC) with multilineage differentiation potential are novel source for cell therapy. However, in vitro expansion leads to senescence affecting differentiation and proliferative capacities. Reactive oxygen species (ROS) have been involved in the regulation of stem cell pluripotency, proliferation, and differentiation. Redox-regulated signal transduction is coordinated by spatially controlled production of ROS within subcellular compartments. NAD(P)H oxidase family, in particular Nox4, has been known to produce ROS in the nucleus; however, the mechanisms and the meaning of this function remain largely unknown. In the present study, we show that Nox4 nuclear expression (nNox4) increases during culture passages up to cell cycle arrest and the serum starvation causes the same effect. With the decrease of Nox4 activity, obtained with plumbagin, a decline of nuclear ROS production and of DNA damage occurs. Moreover, plumbagin exposure reduces the binding between nNox4 and nucleoskeleton components, as Matrin 3. The same effect was observed also for the binding with phospho-ERK, although nuclear ERK and P-ERK are unchanged. Taken together, we suggest that nNox4 regulation may have important pathophysiologic effects in stem cell proliferation through modulation of nuclear signaling and DNA damage.
Collapse
|