1
|
Smith DJ, Lunj S, Adamson AD, Nagarajan S, Smith TAD, Reeves KJ, Hoskin PJ, Choudhury A. CRISPR-Cas9 potential for identifying novel therapeutic targets in muscle-invasive bladder cancer. Nat Rev Urol 2025; 22:55-65. [PMID: 38951705 DOI: 10.1038/s41585-024-00901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 07/03/2024]
Abstract
Gene editing technologies help identify the genetic perturbations driving tumour initiation, growth, metastasis and resistance to therapeutics. This wealth of information highlights tumour complexity and is driving cancer research towards precision medicine approaches based on an individual's tumour genetics. Bladder cancer is the 11th most common cancer in the UK, with high rates of relapse and low survival rates in patients with muscle-invasive bladder cancer (MIBC). MIBC is highly heterogeneous and encompasses multiple molecular subtypes, each with different responses to therapeutics. This evidence highlights the need to identify innovative therapeutic targets to address the challenges posed by this heterogeneity. CRISPR-Cas9 technologies have been used to advance our understanding of MIBC and determine novel drug targets through the identification of drug resistance mechanisms, targetable cell-cycle regulators, and novel tumour suppressor and oncogenes. However, the use of these technologies in the clinic remains a substantial challenge and will require careful consideration of dosage, safety and ethics. CRISPR-Cas9 offers considerable potential for revolutionizing bladder cancer therapies, but substantial research is required for validation before these technologies can be used in the clinical setting.
Collapse
Affiliation(s)
- Danielle J Smith
- Division of Cancer Sciences, University of Manchester, Manchester, UK.
| | - Sapna Lunj
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Antony D Adamson
- Faculty of Biology, Medicine and Health Research and Innovation, University of Manchester, Manchester, UK
| | - Sankari Nagarajan
- Division of Molecular and Cellular Function, University of Manchester, Manchester, UK
| | - Tim A D Smith
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- Nuclear Futures Institute, Bangor University, Bangor, UK
| | | | - Peter J Hoskin
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Ananya Choudhury
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
2
|
Zhang S, Fu G, Sun G, Tang Y, Meng J, Wang Z, Su R, Liu W, Li X. Clinicopathological features of Lynch syndrome pedigrees with MSH2 c.351G>A gene variant. Mol Genet Genomic Med 2025; 13:e2506. [PMID: 39748562 PMCID: PMC11695460 DOI: 10.1002/mgg3.2506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Lynch syndrome (LS) is an autosomal-dominant disorder that increases the risk of many cancers. To identify novel or rare pathogenic variants of MMR genes associated with LS, especially in Chinese pedigrees. METHODS One four-generation Chinese Han family from northeast China with 29 members was enrolled. Clinical diagnosis of LS was established in this family, according to Amsterdam II. The proband and some relatives of the family were subjected to immunohistochemical analysis of MMR protein, microsatellite instability (MSI) testing, whole-exome sequencing, and Sanger sequencing. RESULTS Nine patients with 19 primary cancers were found in this family, with a wide spectrum of synchronous and metachronous cancers, including digestive, reproductive, respiratory, urinary, and other systems. In addition, one member of this family is found to have both thyroid and lung cancers, which have been reported only once in LS patients before but have not been considered extracolonic in the LS spectrum. The immunohistochemical analysis of the mother of the proband showed loss of MSH2 and MSH6 protein, and consistently, high microsatellite instability (MSI-H) was confirmed in LS patients. Furthermore, whole-exome sequencing identified a nonsense variant in MSH2, MSH2:NM_000251:c.351G > A(p.W117*), in all three tested LS patients (II-1, III-1, and III-4), but not in healthy relatives IV-1 in this family. This result is further verified by Sanger sequencing. CONCLUSION Uncover a rare nonsense variant in MSH2 gene, which contributes to LS of this family. The clinicopathological characteristics of LS in this family include common simultaneous or heterogeneous multiple primary cancers, a broad tumor spectrum, and a younger age with the continuation of genetic algebra.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of General SurgeryYan'an people's HospitalShaanxiChina
| | - Guanyu Fu
- Department of General SurgeryThe Fourth Affiliated Hospital, China Medical UniversityShenyangLiaoningChina
| | - Gongping Sun
- Department of General SurgeryThe Fourth Affiliated Hospital, China Medical UniversityShenyangLiaoningChina
| | - Yuanxin Tang
- Department of General SurgeryThe Fourth Affiliated Hospital, China Medical UniversityShenyangLiaoningChina
| | - Jin Meng
- Department of Fifth Treatment Areas of Anorectal DiseaseShenyang Coloproctology HospitalShenyangLiaoningChina
| | - Zhigang Wang
- Department of Fifth Treatment Areas of Anorectal DiseaseShenyang Coloproctology HospitalShenyangLiaoningChina
| | - Rongjun Su
- Department of General SurgeryYan'an people's HospitalShaanxiChina
| | - Wei Liu
- Department of General SurgeryYan'an people's HospitalShaanxiChina
| | - Xiaoxia Li
- Department of General SurgeryThe Fourth Affiliated Hospital, China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
3
|
Yao H, Wu Y, Zhong Y, Huang C, Guo Z, Jin Y, Wang X. Role of c-Fos in DNA damage repair. J Cell Physiol 2024; 239:e31216. [PMID: 38327128 DOI: 10.1002/jcp.31216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
c-Fos, a member of the immediate early gene, serves as a widely used marker of neuronal activation induced by various types of brain damage. In addition, c-Fos is believed to play a regulatory role in DNA damage repair. This paper reviews the literature on c-Fos' involvement in the regulation of DNA damage repair and indicates that genes of the Fos family can be induced by various forms of DNA damage. In addition, cells lacking c-Fos have difficulties in DNA repair. c-Fos is involved in tumorigenesis and progression as a proto-oncogene that maintains cancer cell survival, which may also be related to DNA repair. c-Fos may impact the repair of DNA damage by regulating the expression of downstream proteins, including ATR, ERCC1, XPF, and others. Nonetheless, the underlying mechanisms necessitate further exploration.
Collapse
Affiliation(s)
- Haiyang Yao
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilun Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiming Zhong
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenxuan Huang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zimo Guo
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinpeng Jin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xianli Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Shi R, Wang S, Jiang Y, Zhong G, Li M, Sun Y. ERCC4: a potential regulatory factor in inflammatory bowel disease and inflammation-associated colorectal cancer. Front Endocrinol (Lausanne) 2024; 15:1348216. [PMID: 38516408 PMCID: PMC10954797 DOI: 10.3389/fendo.2024.1348216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
The pathogenesis of inflammatory bowel disease (IBD) remains unclear and is associated with an increased risk of developing colitis-associated cancer (CAC). Under sustained inflammatory stimulation in the intestines, loss of early DNA damage response genes can lead to tumor formation. Many proteins are involved in the pathways of DNA damage response and play critical roles in protecting genes from various potential damages that DNA may undergo. ERCC4 is a structure-specific endonuclease that participates in the nucleotide excision repair (NER) pathway. The catalytic site of ERCC4 determines the activity of NER and is an indispensable gene in the NER pathway. ERCC4 may be involved in the imbalanced process of DNA damage and repair in IBD-related inflammation and CAC. This article primarily reviews the function of ERCC4 in the DNA repair pathway and discusses its potential role in the processes of IBD-related inflammation and carcinogenesis. Finally, we explore how this knowledge may open novel avenues for the treatment of IBD and IBD-related cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Sun
- *Correspondence: Yan Sun, ; Mingsong Li,
| |
Collapse
|
5
|
Young SJ, West SC. Coordinated roles of SLX4 and MutSβ in DNA repair and the maintenance of genome stability. Crit Rev Biochem Mol Biol 2021; 56:157-177. [PMID: 33596761 PMCID: PMC7610648 DOI: 10.1080/10409238.2021.1881433] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
SLX4 provides a molecular scaffold for the assembly of multiple protein complexes required for the maintenance of genome stability. It is involved in the repair of DNA crosslinks, the resolution of recombination intermediates, the response to replication stress and the maintenance of telomere length. To carry out these diverse functions, SLX4 interacts with three structure-selective endonucleases, MUS81-EME1, SLX1 and XPF-ERCC1, as well as the telomere binding proteins TRF2, RTEL1 and SLX4IP. Recently, SLX4 was shown to interact with MutSβ, a heterodimeric protein involved in DNA mismatch repair, trinucleotide repeat instability, crosslink repair and recombination. Importantly, MutSβ promotes the pathogenic expansion of CAG/CTG trinucleotide repeats, which is causative of myotonic dystrophy and Huntington's disease. The colocalization and specific interaction of MutSβ with SLX4, together with their apparently overlapping functions, are suggestive of a common role in reactions that promote DNA maintenance and genome stability. This review will focus on the role of SLX4 in DNA repair, the interplay between MutSβ and SLX4, and detail how they cooperate to promote recombinational repair and DNA crosslink repair. Furthermore, we speculate that MutSβ and SLX4 may provide an alternative cellular mechanism that modulates trinucleotide instability.
Collapse
Affiliation(s)
- Sarah J Young
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London, UK
| | - Stephen C West
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
6
|
McKinney JA, Wang G, Vasquez KM. Distinct mechanisms of mutagenic processing of alternative DNA structures by repair proteins. Mol Cell Oncol 2020; 7:1743807. [PMID: 32391433 PMCID: PMC7199757 DOI: 10.1080/23723556.2020.1743807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 11/28/2022]
Abstract
Repetitive sequences can form a variety of alternative DNA structures (non-B DNA) that can modulate transcription, replication, and repair. However, non-B DNA-forming sequences can also stimulate mutagenesis, and are enriched at mutation hotspots in human cancer genomes. Interestingly, different types of non-B DNA stimulate mutagenesis via distinct repair processing mechanisms.
Collapse
Affiliation(s)
- Jennifer A McKinney
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX, USA
| | - Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX, USA
| |
Collapse
|
7
|
Distinct DNA repair pathways cause genomic instability at alternative DNA structures. Nat Commun 2020; 11:236. [PMID: 31932649 PMCID: PMC6957503 DOI: 10.1038/s41467-019-13878-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 11/05/2019] [Indexed: 01/01/2023] Open
Abstract
Alternative DNA structure-forming sequences can stimulate mutagenesis and are enriched at mutation hotspots in human cancer genomes, implicating them in disease etiology. However, the mechanisms involved are not well characterized. Here, we discover that Z-DNA is mutagenic in yeast as well as human cells, and that the nucleotide excision repair complex, Rad10-Rad1(ERCC1-XPF), and the mismatch repair complex, Msh2-Msh3, are required for Z-DNA-induced genetic instability in yeast and human cells. Both ERCC1-XPF and MSH2-MSH3 bind to Z-DNA-forming sequences, though ERCC1-XPF recruitment to Z-DNA is dependent on MSH2-MSH3. Moreover, ERCC1-XPF-dependent DNA strand-breaks occur near the Z-DNA-forming region in human cell extracts, and we model these interactions at the sub-molecular level. We propose a relationship in which these complexes recognize and process Z-DNA in eukaryotes, representing a mechanism of Z-DNA-induced genomic instability.
Collapse
|
8
|
Kawara H, Akahori R, Wakasugi M, Sancar A, Matsunaga T. DCAF7 is required for maintaining the cellular levels of ERCC1-XPF and nucleotide excision repair. Biochem Biophys Res Commun 2019; 519:204-210. [PMID: 31493872 DOI: 10.1016/j.bbrc.2019.08.147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 02/03/2023]
Abstract
The ERCC1-XPF heterodimer is a structure-specific endonuclease and plays multiple roles in various DNA repair pathways including nucleotide excision repair and also telomere maintenance. The dimer formation, which is mediated by their C-terminal helix-hairpin-helix regions, is essential for their endonuclease activity as well as the stability of each protein. However, the detailed mechanism of how a cellular level of ERCC1-XPF is regulated still remains elusive. Here, we report the identification of DDB1- and CUL4-associated factor 7 (DCAF7, also known as WDR68/HAN11) as a novel interacting protein of ERCC1-XPF by mass spectrometry after tandem purification. Immunoprecipitation experiments confirmed their interaction and suggested dominant association of DCAF7 with XPF but not ERCC1. Interestingly, siRNA-mediated knockdown of DCAF7, but not DDB1, attenuated the cellular level of ERCC1-XPF, which is partly dependent on proteasome. The depletion of TCP1α, one of components of the molecular chaperon TRiC/CCT known to interact with DCAF7 and promote its folding, also reduced ERCC1-XPF level. Finally, we show that the depletion of DCAF7 causes inefficient repair of UV-induced (6-4) photoproducts, which can be rescued by ectopic overexpression of XPF or ERCC1-XPF. Altogether, our results strongly suggest that DCAF7 is a novel regulator of ERCC1-XPF protein level and cellular nucleotide excision repair activity.
Collapse
Affiliation(s)
- Hiroaki Kawara
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan; Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Ryo Akahori
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Mitsuo Wakasugi
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Tsukasa Matsunaga
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
9
|
Faridounnia M, Folkers GE, Boelens R. Function and Interactions of ERCC1-XPF in DNA Damage Response. Molecules 2018; 23:E3205. [PMID: 30563071 PMCID: PMC6320978 DOI: 10.3390/molecules23123205] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 12/28/2022] Open
Abstract
Numerous proteins are involved in the multiple pathways of the DNA damage response network and play a key role to protect the genome from the wide variety of damages that can occur to DNA. An example of this is the structure-specific endonuclease ERCC1-XPF. This heterodimeric complex is in particular involved in nucleotide excision repair (NER), but also in double strand break repair and interstrand cross-link repair pathways. Here we review the function of ERCC1-XPF in various DNA repair pathways and discuss human disorders associated with ERCC1-XPF deficiency. We also overview our molecular and structural understanding of XPF-ERCC1.
Collapse
Affiliation(s)
- Maryam Faridounnia
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Gert E Folkers
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Rolf Boelens
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
10
|
Welty S, Teng Y, Liang Z, Zhao W, Sanders LH, Greenamyre JT, Rubio ME, Thathiah A, Kodali R, Wetzel R, Levine AS, Lan L. RAD52 is required for RNA-templated recombination repair in post-mitotic neurons. J Biol Chem 2017; 293:1353-1362. [PMID: 29217771 DOI: 10.1074/jbc.m117.808402] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/27/2017] [Indexed: 01/14/2023] Open
Abstract
It has been long assumed that post-mitotic neurons only utilize the error-prone non-homologous end-joining pathway to repair double-strand breaks (DSBs) associated with oxidative damage to DNA, given the inability of non-replicating neuronal DNA to utilize a sister chromatid template in the less error-prone homologous recombination (HR) repair pathway. However, we and others have found recently that active transcription triggers a replication-independent recombinational repair mechanism in G0/G1 phase of the cell cycle. Here we observed that the HR repair protein RAD52 is recruited to sites of DNA DSBs in terminally differentiated, post-mitotic neurons. This recruitment is dependent on the presence of a nascent mRNA generated during active transcription, providing evidence that an RNA-templated HR repair mechanism exists in non-dividing, terminally differentiated neurons. This recruitment of RAD52 in neurons is decreased by transcription inhibition. Importantly, we found that high concentrations of amyloid β, a toxic protein associated with Alzheimer's disease, inhibits the expression and DNA damage response of RAD52, potentially leading to a defect in the error-free, RNA-templated HR repair mechanism. This study shows a novel RNA-dependent repair mechanism of DSBs in post-mitotic neurons and demonstrates that defects in this pathway may contribute to neuronal genomic instability and consequent neurodegenerative phenotypes such as those seen in Alzheimer's disease.
Collapse
Affiliation(s)
- Starr Welty
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219.,the UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15213
| | - Yaqun Teng
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219.,the UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15213.,the School of Medicine, Tsinghua University, No.1 Tsinghua Yuan, Haidian District, Beijing 100084, China
| | - Zhuobin Liang
- the Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, Connecticut 06520-8114
| | - Weixing Zhao
- the Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, Connecticut 06520-8114
| | - Laurie H Sanders
- the Department of Neurology, Duke University Medical Center, Durham, North Carolina 27710
| | | | - Maria Eulalia Rubio
- the Department of Neurobiology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, and
| | | | - Ravindra Kodali
- the Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - Ronald Wetzel
- Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Arthur S Levine
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219.,the UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15213
| | - Li Lan
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, .,the UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
11
|
Manandhar M, Boulware KS, Wood RD. The ERCC1 and ERCC4 (XPF) genes and gene products. Gene 2015; 569:153-61. [PMID: 26074087 DOI: 10.1016/j.gene.2015.06.026] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/01/2015] [Accepted: 06/09/2015] [Indexed: 12/22/2022]
Abstract
The ERCC1 and ERCC4 genes encode the two subunits of the ERCC1-XPF nuclease. This enzyme plays an important role in repair of DNA damage and in maintaining genomic stability. ERCC1-XPF nuclease nicks DNA specifically at junctions between double-stranded and single-stranded DNA, when the single-strand is oriented 5' to 3' away from a junction. ERCC1-XPF is a core component of nucleotide excision repair and also plays a role in interstrand crosslink repair, some pathways of double-strand break repair by homologous recombination and end-joining, as a backup enzyme in base excision repair, and in telomere length regulation. In many of these activities, ERCC1-XPF complex cleaves the 3' tails of DNA intermediates in preparation for further processing. ERCC1-XPF interacts with other proteins including XPA, RPA, SLX4 and TRF2 to perform its functions. Disruption of these interactions or direct targeting of ERCC1-XPF to decrease its DNA repair function might be a useful strategy to increase the sensitivity of cancer cells to some DNA damaging agents. Complete deletion of either ERCC1 or ERCC4 is not compatible with viability in mice or humans. However, mutations in the ERCC1 or ERCC4 genes cause a remarkable array of rare inherited human disorders. These include specific forms of xeroderma pigmentosum, Cockayne syndrome, Fanconi anemia, XFE progeria and cerebro-oculo-facio-skeletal syndrome.
Collapse
Affiliation(s)
- Mandira Manandhar
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Karen S Boulware
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Richard D Wood
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Abstract
Homologous recombination (HR) and mismatch repair (MMR) are inextricably linked. HR pairs homologous chromosomes before meiosis I and is ultimately responsible for generating genetic diversity during sexual reproduction. HR is initiated in meiosis by numerous programmed DNA double-strand breaks (DSBs; several hundred in mammals). A characteristic feature of HR is the exchange of DNA strands, which results in the formation of heteroduplex DNA. Mismatched nucleotides arise in heteroduplex DNA because the participating parental chromosomes contain nonidentical sequences. These mismatched nucleotides may be processed by MMR, resulting in nonreciprocal exchange of genetic information (gene conversion). MMR and HR also play prominent roles in mitotic cells during genome duplication; MMR rectifies polymerase misincorporation errors, whereas HR contributes to replication fork maintenance, as well as the repair of spontaneous DSBs and genotoxic lesions that affect both DNA strands. MMR suppresses HR when the heteroduplex DNA contains excessive mismatched nucleotides, termed homeologous recombination. The regulation of homeologous recombination by MMR ensures the accuracy of DSB repair and significantly contributes to species barriers during sexual reproduction. This review discusses the history, genetics, biochemistry, biophysics, and the current state of studies on the role of MMR in homologous and homeologous recombination from bacteria to humans.
Collapse
Affiliation(s)
- Maria Spies
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242
| | - Richard Fishel
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University Medical Center and Comprehensive Cancer Center, Columbus, Ohio 43210 Human Genetics Institute, The Ohio State University Medical Center, Columbus, Ohio 43210 Physics Department, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
13
|
Zou S, Shen Q, Hua Y, Jiang W, Zhang W, Zhu X. Proteomic identification of neoadjuvant chemotherapy-related proteins in bulky stage IB-IIA squamous cervical cancer. Reprod Sci 2013; 20:1356-1364. [PMID: 23599374 PMCID: PMC3795422 DOI: 10.1177/1933719113485291] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the effect of neoadjuvant chemotherapy (NAC) on the human squamous cervical cancer using proteomics profiling and to obtain related proteins to NAC exposure and response. METHODS Paired samples of early-stage bulky squamous cervical cancer before and after NAC treatment from patients who responded to NAC were obtained and submitted to 2-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MS). The expression and localization of the interesting proteins in additional paired samples were confirmed by Western blot analysis and immunohistochemistry. RESULTS The comparison of the proteins present before and after NAC revealed that 116 protein spots were significantly changed. In all, 31 proteins were analyzed by MS, and 15 proteins were upregulated in the cancer tissue after NAC relative to the level before NAC, whereas 16 proteins were downregulated after NAC. The significantly higher expression of peroxiredoxin 1 and significantly lower expression of galectin 1 after NAC treatment were confirmed by Western blot. CONCLUSIONS Proteomics can be used to identify the NAC-related proteins in squamous cervical cancer. The change in proteins may be associated with NAC exposure and response, but insight into their relevance requires further study.
Collapse
MESH Headings
- Adult
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Chemotherapy, Adjuvant
- Electrophoresis, Gel, Two-Dimensional
- Female
- Humans
- Immunohistochemistry
- Middle Aged
- Neoadjuvant Therapy
- Neoplasm Proteins/metabolism
- Neoplasm Staging
- Predictive Value of Tests
- Proteomics/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Treatment Outcome
- Tumor Burden
- Uterine Cervical Neoplasms/drug therapy
- Uterine Cervical Neoplasms/metabolism
- Uterine Cervical Neoplasms/pathology
Collapse
Affiliation(s)
- Shuangwei Zou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Qi Shen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Ying Hua
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Wenxiao Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Wenwen Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| |
Collapse
|
14
|
Edelbrock MA, Kaliyaperumal S, Williams KJ. Structural, molecular and cellular functions of MSH2 and MSH6 during DNA mismatch repair, damage signaling and other noncanonical activities. Mutat Res 2013; 743-744:53-66. [PMID: 23391514 DOI: 10.1016/j.mrfmmm.2012.12.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/28/2012] [Accepted: 12/31/2012] [Indexed: 11/18/2022]
Abstract
The field of DNA mismatch repair (MMR) has rapidly expanded after the discovery of the MutHLS repair system in bacteria. By the mid 1990s yeast and human homologues to bacterial MutL and MutS had been identified and their contribution to hereditary non-polyposis colorectal cancer (HNPCC; Lynch syndrome) was under intense investigation. The human MutS homologue 6 protein (hMSH6), was first reported in 1995 as a G:T binding partner (GTBP) of hMSH2, forming the hMutSα mismatch-binding complex. Signal transduction from each DNA-bound hMutSα complex is accomplished by the hMutLα heterodimer (hMLH1 and hPMS2). Molecular mechanisms and cellular regulation of individual MMR proteins are now areas of intensive research. This review will focus on molecular mechanisms associated with mismatch binding, as well as emerging evidence that MutSα, and in particular, MSH6, is a key protein in MMR-dependent DNA damage response and communication with other DNA repair pathways within the cell. MSH6 is unstable in the absence of MSH2, however it is the DNA lesion-binding partner of this heterodimer. MSH6, but not MSH2, has a conserved Phe-X-Glu motif that recognizes and binds several different DNA structural distortions, initiating different cellular responses. hMSH6 also contains the nuclear localization sequences required to shuttle hMutSα into the nucleus. For example, upon binding to O(6)meG:T, MSH6 triggers a DNA damage response that involves altered phosphorylation within the N-terminal disordered domain of this unique protein. While many investigations have focused on MMR as a post-replication DNA repair mechanism, MMR proteins are expressed and active in all phases of the cell cycle. There is much more to be discovered about regulatory cellular roles that require the presence of MutSα and, in particular, MSH6.
Collapse
Affiliation(s)
| | - Saravanan Kaliyaperumal
- Division of Comparative Medicine and Pathology, New England Primate Research Center, One Pine Hill Drive, Southborough, MA 01772, USA.
| | - Kandace J Williams
- University of Toledo College of Medicine and Life Sciences, Department of Biochemistry & Cancer Biology, 3000 Transverse Dr., Toledo, OH 43614, USA.
| |
Collapse
|
15
|
Gassman NR, Stefanick DF, Kedar PS, Horton JK, Wilson SH. Hyperactivation of PARP triggers nonhomologous end-joining in repair-deficient mouse fibroblasts. PLoS One 2012; 7:e49301. [PMID: 23145148 PMCID: PMC3492265 DOI: 10.1371/journal.pone.0049301] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/08/2012] [Indexed: 01/20/2023] Open
Abstract
Regulation of poly(ADP-ribose) (PAR) synthesis and turnover is critical to determining cell fate after genotoxic stress. Hyperactivation of PAR synthesis by poly(ADP-ribose) polymerase-1 (PARP-1) occurs when cells deficient in DNA repair are exposed to genotoxic agents; however, the function of this hyperactivation has not been adequately explained. Here, we examine PAR synthesis in mouse fibroblasts deficient in the base excision repair enzyme DNA polymerase β (pol β). The extent and duration of PARP-1 activation was measured after exposure to either the DNA alkylating agent, methyl methanesulfonate (MMS), or to low energy laser-induced DNA damage. There was strong DNA damage-induced hyperactivation of PARP-1 in pol β nullcells, but not in wild-type cells. In the case of MMS treatment, PAR synthesis did not lead to cell death in the pol β null cells, but instead resulted in increased PARylation of the nonhomologous end-joining (NHEJ) protein Ku70 and increased association of Ku70 with PARP-1. Inhibition of the NHEJ factor DNA-PK, under conditions of MMS-induced PARP-1 hyperactivation, enhanced necrotic cell death. These data suggest that PARP-1 hyperactivation is a protective mechanism triggering the classical-NHEJ DNA repair pathway when the primary alkylated base damage repair pathway is compromised.
Collapse
Affiliation(s)
- Natalie R. Gassman
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Donna F. Stefanick
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Padmini S. Kedar
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Julie K. Horton
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Samuel H. Wilson
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
16
|
Minegaki T, Takara K, Hamaguchi R, Tsujimoto M, Nishiguchi K. Factors affecting the sensitivity of human-derived esophageal carcinoma cell lines to 5-fluorouracil and cisplatin. Oncol Lett 2012; 5:427-434. [PMID: 23420099 PMCID: PMC3573136 DOI: 10.3892/ol.2012.1014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/26/2012] [Indexed: 02/04/2023] Open
Abstract
Effective chemotherapy against esophageal carcinoma is considered achievable with a combination of 5-fluorouracil (5-FU) and cisplatin (CDDP). However, chemo-therapy remains ineffective in certain patients. The aim of this study was to clarify the factors which affect sensitivity to 5-FU and CDDP. The effects of factors known to influence sensitivity to 5-FU and CDDP, namely transporters, DNA repair enzymes and metabolic enzymes, were examined. mRNA levels of four transporters, SLC22A2, SLC23A2, ABCB1 and ABCC2, two DNA repair-related enzymes, Rad51 and MSH2, and one metabolic enzyme, dihydropyrimidine dehydrogenase (DPYD), showed a strong correlation (|r|>0.7) with IC50 values for 5-FU. In addition, the mRNA levels of ABCC2, MSH2 and DPYD showed a strong correlation (|r|>0.7) with the IC50 values for CDDP. Gimeracil, a DPYD inhibitor, enhanced the sensitivity of some cells to 5-FU but decreased the sensitivity of all the cells to CDDP. The inhibitory effects of ABCC2 with MK571 did not correspond to those observed in the correlation analysis. In conclusion, mRNA levels of SLC22A2, SLC23A2, ABCB1, ABCC2, Rad51, MSH2 and DPYD were confirmed to be strongly correlated with IC50 values for 5-FU, and mRNA levels of ABCC2, MSH2 and DPYD were confirmed to be strongly correlated with IC50 values for CDDP. In addition, the inhibition of DPYD appeared to affect the cytotoxicity of CDDP.
Collapse
Affiliation(s)
- Tetsuya Minegaki
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414
| | | | | | | | | |
Collapse
|
17
|
McNeil EM, Melton DW. DNA repair endonuclease ERCC1-XPF as a novel therapeutic target to overcome chemoresistance in cancer therapy. Nucleic Acids Res 2012; 40:9990-10004. [PMID: 22941649 PMCID: PMC3488251 DOI: 10.1093/nar/gks818] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The ERCC1–XPF complex is a structure-specific endonuclease essential for the repair of DNA damage by the nucleotide excision repair pathway. It is also involved in other key cellular processes, including DNA interstrand crosslink (ICL) repair and DNA double-strand break (DSB) repair. New evidence has recently emerged, increasing our understanding of its requirement in these additional roles. In this review, we focus on the protein–protein and protein–DNA interactions made by the ERCC1 and XPF proteins and discuss how these coordinate ERCC1–XPF in its various roles. In a number of different cancers, high expression of ERCC1 has been linked to a poor response to platinum-based chemotherapy. We discuss prospects for the development of DNA repair inhibitors that target the activity, stability or protein interactions of the ERCC1–XPF complex as a novel therapeutic strategy to overcome chemoresistance.
Collapse
Affiliation(s)
- Ewan M McNeil
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | |
Collapse
|
18
|
Ward TA, Dudášová Z, Sarkar S, Bhide MR, Vlasáková D, Chovanec M, McHugh PJ. Components of a Fanconi-like pathway control Pso2-independent DNA interstrand crosslink repair in yeast. PLoS Genet 2012; 8:e1002884. [PMID: 22912599 PMCID: PMC3415447 DOI: 10.1371/journal.pgen.1002884] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 06/22/2012] [Indexed: 12/20/2022] Open
Abstract
Fanconi anemia (FA) is a devastating genetic disease, associated with genomic instability and defects in DNA interstrand cross-link (ICL) repair. The FA repair pathway is not thought to be conserved in budding yeast, and although the yeast Mph1 helicase is a putative homolog of human FANCM, yeast cells disrupted for MPH1 are not sensitive to ICLs. Here, we reveal a key role for Mph1 in ICL repair when the Pso2 exonuclease is inactivated. We find that the yeast FANCM ortholog Mph1 physically and functionally interacts with Mgm101, a protein previously implicated in mitochondrial DNA repair, and the MutSα mismatch repair factor (Msh2-Msh6). Co-disruption of MPH1, MGM101, MSH6, or MSH2 with PSO2 produces a lesion-specific increase in ICL sensitivity, the elevation of ICL-induced chromosomal rearrangements, and persistence of ICL-associated DNA double-strand breaks. We find that Mph1-Mgm101-MutSα directs the ICL-induced recruitment of Exo1 to chromatin, and we propose that Exo1 is an alternative 5′-3′ exonuclease utilised for ICL repair in the absence of Pso2. Moreover, ICL-induced Rad51 chromatin loading is delayed when both Pso2 and components of the Mph1-Mgm101-MutSα and Exo1 pathway are inactivated, demonstrating that the homologous recombination stages of ICL repair are inhibited. Finally, the FANCJ- and FANCP-related factors Chl1 and Slx4, respectively, are also components of the genetic pathway controlled by Mph1-Mgm101-MutSα. Together this suggests that a prototypical FA–related ICL repair pathway operates in budding yeast, which acts redundantly with the pathway controlled by Pso2, and is required for the targeting of Exo1 to chromatin to execute ICL repair. Individuals with Fanconi anemia (FA) suffer from bone marrow failure and from elevated rates of haematological and solid malignancy. Moreover, FA patients exhibit extreme sensitivity to DNA interstrand cross-links (ICLs), but not other forms of DNA damage. Despite recent progress in identifying and characterising FA factors, little is known about the mechanistic basis of the ICL repair defect in FA. The identification and characterisation of FA–like pathways in simple model eukaryotes, amenable to genetic dissection, would clearly accelerate progress. Here, we have identified an ICL repair pathway in budding yeast that has significant similarities to the FA pathway and that acts in parallel to an established pathway controlled by the Pso2 exonuclease. We have discovered that a key component of this pathway, the FANCM-like helicase, Mph1, interacts and collaborates with a mismatch repair factor (MutSα) and a novel nuclear DNA repair factor Mgm101 to control ICL repair. We also found that a central role of these factors is to recruit Exonuclease 1 (Exo1) to ICL-damaged chromatin, and propose that this factor acts redundantly with Pso2 to execute the exonucleolytic processing of ICLs. Our findings reveal new mechanistic insights into the control of ICL repair by FA–like proteins in an important model organism.
Collapse
Affiliation(s)
- Thomas A. Ward
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Zuzana Dudášová
- Laboratory of Molecular Genetics, Cancer Research Institute, Bratislava, Slovak Republic
| | - Sovan Sarkar
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Mangesh R. Bhide
- Department of Microbiology and Immunology, University of Veterinary Medicine, Košice, Slovak Republic
| | - Danuša Vlasáková
- Laboratory of Molecular Genetics, Cancer Research Institute, Bratislava, Slovak Republic
| | - Miroslav Chovanec
- Laboratory of Molecular Genetics, Cancer Research Institute, Bratislava, Slovak Republic
| | - Peter J. McHugh
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Facista A, Nguyen H, Lewis C, Prasad AR, Ramsey L, Zaitlin B, Nfonsam V, Krouse RS, Bernstein H, Payne CM, Stern S, Oatman N, Banerjee B, Bernstein C. Deficient expression of DNA repair enzymes in early progression to sporadic colon cancer. Genome Integr 2012; 3:3. [PMID: 22494821 PMCID: PMC3351028 DOI: 10.1186/2041-9414-3-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 04/11/2012] [Indexed: 12/11/2022] Open
Abstract
Background Cancers often arise within an area of cells (e.g. an epithelial patch) that is predisposed to the development of cancer, i.e. a "field of cancerization" or "field defect." Sporadic colon cancer is characterized by an elevated mutation rate and genomic instability. If a field defect were deficient in DNA repair, DNA damages would tend to escape repair and give rise to carcinogenic mutations. Purpose To determine whether reduced expression of DNA repair proteins Pms2, Ercc1 and Xpf (pairing partner of Ercc1) are early steps in progression to colon cancer. Results Tissue biopsies were taken during colonoscopies of 77 patients at 4 different risk levels for colon cancer, including 19 patients who had never had colonic neoplasia (who served as controls). In addition, 158 tissue samples were taken from tissues near or within colon cancers removed by resection and 16 tissue samples were taken near tubulovillous adenomas (TVAs) removed by resection. 568 triplicate tissue sections (a total of 1,704 tissue sections) from these tissue samples were evaluated by immunohistochemistry for 4 DNA repair proteins. Substantially reduced protein expression of Pms2, Ercc1 and Xpf occurred in field defects of up to 10 cm longitudinally distant from colon cancers or TVAs and within colon cancers. Expression of another DNA repair protein, Ku86, was infrequently reduced in these areas. When Pms2, Ercc1 or Xpf were reduced in protein expression, then either one or both of the other two proteins most often had reduced protein expression as well. The mean inner colon circumferences, from 32 resections, of the ascending, transverse and descending/sigmoid areas were measured as 6.6 cm, 5.8 cm and 6.3 cm, respectively. When combined with other measurements in the literature, this indicates the approximate mean number of colonic crypts in humans is 10 million. Conclusions The substantial deficiencies in protein expression of DNA repair proteins Pms2, Ercc1 and Xpf in about 1 million crypts near cancers and TVAs suggests that the tumors arose in field defects that were deficient in DNA repair and that deficiencies in Pms2, Ercc1 and Xpf are early steps, often occurring together, in progression to colon cancer.
Collapse
Affiliation(s)
- Alexander Facista
- Southern Arizona Veterans Affairs Heath Care System, Mail Stop 0-151, 3601 S, 6th Ave,, Tucson, Arizona 85723, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Williams SA, Wilson JB, Clark AP, Mitson-Salazar A, Tomashevski A, Ananth S, Glazer PM, Semmes OJ, Bale AE, Jones NJ, Kupfer GM. Functional and physical interaction between the mismatch repair and FA-BRCA pathways. Hum Mol Genet 2011; 20:4395-410. [PMID: 21865299 PMCID: PMC3196888 DOI: 10.1093/hmg/ddr366] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/14/2011] [Accepted: 08/15/2011] [Indexed: 12/27/2022] Open
Abstract
Fanconi anemia (FA) is a rare genetic disorder characterized by bone marrow failure and an increased risk for leukemia and cancer. Fifteen proteins thought to function in the repair of DNA interstrand crosslinks (ICLs) comprise what is known as the FA-BRCA pathway. Activation of this pathway leads to the monoubiquitylation and chromatin localization of FANCD2 and FANCI. It has previously been shown that FANCJ interacts with the mismatch repair (MMR) complex MutLα. Here we show that FANCD2 interacts with the MMR proteins MSH2 and MLH1. FANCD2 monoubiquitylation, foci formation and chromatin loading are greatly diminished in MSH2-deficient cells. Human or mouse cells lacking MSH2 or MLH1 display increased sensitivity and radial formation in response to treatment with DNA crosslinking agents. Studies in human cell lines and Drosophila mutants suggest an epistatic relationship between FANCD2, MSH2 and MLH1 with regard to ICL repair. Surprisingly, the interaction between MSH2 and MLH1 is compromised in multiple FA cell lines, and FA cell lines exhibit deficient MMR. These results suggest a significant role for MMR proteins in the activation of the FA pathway and repair of ICLs. In addition, we provide the first evidence for a defect in MMR in FA cell lines.
Collapse
Affiliation(s)
| | - James B. Wilson
- Department of Biochemistry and Cell Biology, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | | | | | - Andrei Tomashevski
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA and
| | - Sahana Ananth
- Department of Biochemistry and Cell Biology, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Peter M. Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - O. John Semmes
- Department of Microbiology and Molecular Cell Biology, Center for Biomedical Proteomics, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | | | - Nigel J. Jones
- Department of Biochemistry and Cell Biology, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Gary M. Kupfer
- Division of Pediatric Hematology-Oncology, Department of Pediatrics
- Department of Pathology
| |
Collapse
|
21
|
Tepeli E, Caner V, Büyükpınarbaşılı N, Çetin GO, Düzcan F, Elmas L, Bağcı G. Expression of ERCC1 and its clinicopathological correlations in non-small cell lung cancer. Mol Biol Rep 2011; 39:335-41. [PMID: 21553054 DOI: 10.1007/s11033-011-0743-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 04/27/2011] [Indexed: 11/26/2022]
Abstract
Excision Repair Cross-Complementing Group 1 (ERCC1) is an important DNA repair gene, playing critical role in nucleotide excision repair pathway and having a significant influence on genomic instability. Some studies support that ERCC1 might be a potential predictive and prognostic marker in non-small cell lung cancer (NSCLC). ERCC1 has also been shown to be a promising biomarker in NSCLC treated with a cisplatin-based regimen. Therefore, the determination of ERCC1 expression at DNA, mRNA and protein level in different stages of NSCLC is still an important topic in the cancer. Ninety-one formalin-fixed paraffin-embedded tumor samples histopathologically diagnosed as NSCLC were examined in this study. ERCC1 expression at protein level were scored by immunohistochemistry. The gene amplification and mRNA expression levels for ERCC1 were determined by real-time quantitative PCR. There was complete concordance among the three methods in 39 tumor samples (42.9%). A strong correlation was found between DNA amplification and mRNA expression (r=0.662) while there was no correlation between mRNA and protein assessment for ERCC1 expression (r=-0.013). ERCC1 expression at mRNA and DNA level (63.1 and 84.2%, respectively) in tumors at stage III was higher than at the other stages. In contrast, the protein expression at stage II and III (56.6 and 52.6%, respectively) of NSCLC was lower than that of tumors with stage I NSCLC. These results show that the mechanism by which ERCC1 expression might play a role in tumor behavior. This study was also confirmed that the appropriate validation and qualification in methods used for ERCC1 status were needed before its clinical application and implementation.
Collapse
Affiliation(s)
- Emre Tepeli
- School of Medicine, Department of Genetics, Pamukkale University, Doktorlar Cad. Kat:3, Bayramyeri, Denizli, Turkey.
| | | | | | | | | | | | | |
Collapse
|
22
|
Vasquez KM. Targeting and processing of site-specific DNA interstrand crosslinks. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:527-39. [PMID: 20196133 PMCID: PMC2895014 DOI: 10.1002/em.20557] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
DNA interstrand crosslinks (ICLs) are among the most cytotoxic types of DNA damage, and thus ICL-inducing agents such as cyclophosphamide, melphalan, cisplatin, psoralen, and mitomycin C have been used clinically as anticancer drugs for decades. ICLs can also be formed endogenously as a consequence of cellular metabolic processes. ICL-inducing agents continue to be among the most effective chemotherapeutic treatments for many cancers; however, treatment with these agents can lead to secondary malignancies, in part due to mutagenic processing of the DNA lesions. The mechanisms of ICL repair have been characterized more thoroughly in bacteria and yeast than in mammalian cells. Thus, a better understanding of the molecular mechanisms of ICL processing offers the potential to improve the efficacy of these drugs in cancer therapy. In mammalian cells, it is thought that ICLs are repaired by the coordination of proteins from several pathways, including nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), homologous recombination (HR), translesion synthesis (TLS), and proteins involved in Fanconi anemia (FA). In this review, we focus on the potential functions of NER, MMR, and HR proteins in the repair of and response to ICLs in human cells and in mice. We will also discuss a unique approach, using psoralen covalently linked to triplex-forming oligonucleotides to direct ICLs to specific sites in the mammalian genome.
Collapse
Affiliation(s)
- Karen M Vasquez
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA.
| |
Collapse
|
23
|
Legerski RJ. Repair of DNA interstrand cross-links during S phase of the mammalian cell cycle. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:540-551. [PMID: 20658646 PMCID: PMC2911997 DOI: 10.1002/em.20566] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
DNA interstrand cross-linking (ICL) agents are widely used in anticancer chemotherapy regimens, yet our understanding of the DNA repair mechanisms by which these lesions are removed from the genome remains incomplete. This is at least in part due to the enormously complicated nature and variety of the biochemical pathways that operate on these complex lesions. In this review, we have focused specifically on the S-phase pathway of ICL repair in mammalian cells, which appears to be the major mechanism by which these lesions are removed in cycling cells. The various stages and components of this pathway are discussed, and a putative molecular model is presented. In addition, we propose an explanation as to how this pathway can lead to the observed high levels of sister chromatid exchanges known to be induced by ICLs.
Collapse
Affiliation(s)
- Randy J Legerski
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|
24
|
Kamal NS, Soria JC, Mendiboure J, Planchard D, Olaussen KA, Rousseau V, Popper H, Pirker R, Bertrand P, Dunant A, Le Chevalier T, Filipits M, Fouret P. MutS Homologue 2 and the Long-term Benefit of Adjuvant Chemotherapy in Lung Cancer. Clin Cancer Res 2010; 16:1206-15. [DOI: 10.1158/1078-0432.ccr-09-2204] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Bhagwat N, Olsen AL, Wang AT, Hanada K, Stuckert P, Kanaar R, D'Andrea A, Niedernhofer LJ, McHugh PJ. XPF-ERCC1 participates in the Fanconi anemia pathway of cross-link repair. Mol Cell Biol 2009; 29:6427-37. [PMID: 19805513 PMCID: PMC2786876 DOI: 10.1128/mcb.00086-09] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 02/28/2009] [Accepted: 09/26/2009] [Indexed: 11/20/2022] Open
Abstract
Interstrand cross-links (ICLs) prevent DNA strand separation and, therefore, transcription and replication, making them extremely cytotoxic. The precise mechanism by which ICLs are removed from mammalian genomes largely remains elusive. Genetic evidence implicates ATR, the Fanconi anemia proteins, proteins required for homologous recombination, translesion synthesis, and at least two endonucleases, MUS81-EME1 and XPF-ERCC1. ICLs cause replication-dependent DNA double-strand breaks (DSBs), and MUS81-EME1 facilitates DSB formation. The subsequent repair of these DSBs occurs via homologous recombination after the ICL is unhooked by XPF-ERCC1. Here, we examined the effect of the loss of either nuclease on FANCD2 monoubiquitination to determine if the nucleolytic processing of ICLs is required for the activation of the Fanconi anemia pathway. FANCD2 was monoubiquitinated in Mus81(-/-), Ercc1(-/-), and XPF-deficient human, mouse, and hamster cells exposed to cross-linking agents. However, the monoubiquitinated form of FANCD2 persisted longer in XPF-ERCC1-deficient cells than in wild-type cells. Moreover, the levels of chromatin-bound FANCD2 were dramatically reduced and the number of ICL-induced FANCD2 foci significantly lower in XPF-ERCC1-deficient cells. These data demonstrate that the unhooking of an ICL by XPF-ERCC1 is necessary for the stable localization of FANCD2 to the chromatin and subsequent homologous recombination-mediated DSB repair.
Collapse
Affiliation(s)
- Nikhil Bhagwat
- Department of Human Genetics, University of Pittsburgh School of Public Health, A300 Crabtree Hall, 130 Desoto St., Pittsburgh, Pennsylvania 15261, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion 2.6, 5117 Centre Ave., Pittsburgh, Pennsylvania 15213-1863, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom, Department of Cell Biology & Genetics, Cancer Genomics Center, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, Massachusetts 02115, Department of Radiation Oncology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, E1240 BSTWR, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| | - Anna L. Olsen
- Department of Human Genetics, University of Pittsburgh School of Public Health, A300 Crabtree Hall, 130 Desoto St., Pittsburgh, Pennsylvania 15261, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion 2.6, 5117 Centre Ave., Pittsburgh, Pennsylvania 15213-1863, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom, Department of Cell Biology & Genetics, Cancer Genomics Center, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, Massachusetts 02115, Department of Radiation Oncology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, E1240 BSTWR, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| | - Anderson T. Wang
- Department of Human Genetics, University of Pittsburgh School of Public Health, A300 Crabtree Hall, 130 Desoto St., Pittsburgh, Pennsylvania 15261, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion 2.6, 5117 Centre Ave., Pittsburgh, Pennsylvania 15213-1863, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom, Department of Cell Biology & Genetics, Cancer Genomics Center, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, Massachusetts 02115, Department of Radiation Oncology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, E1240 BSTWR, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| | - Katsuhiro Hanada
- Department of Human Genetics, University of Pittsburgh School of Public Health, A300 Crabtree Hall, 130 Desoto St., Pittsburgh, Pennsylvania 15261, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion 2.6, 5117 Centre Ave., Pittsburgh, Pennsylvania 15213-1863, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom, Department of Cell Biology & Genetics, Cancer Genomics Center, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, Massachusetts 02115, Department of Radiation Oncology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, E1240 BSTWR, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| | - Patricia Stuckert
- Department of Human Genetics, University of Pittsburgh School of Public Health, A300 Crabtree Hall, 130 Desoto St., Pittsburgh, Pennsylvania 15261, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion 2.6, 5117 Centre Ave., Pittsburgh, Pennsylvania 15213-1863, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom, Department of Cell Biology & Genetics, Cancer Genomics Center, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, Massachusetts 02115, Department of Radiation Oncology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, E1240 BSTWR, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| | - Roland Kanaar
- Department of Human Genetics, University of Pittsburgh School of Public Health, A300 Crabtree Hall, 130 Desoto St., Pittsburgh, Pennsylvania 15261, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion 2.6, 5117 Centre Ave., Pittsburgh, Pennsylvania 15213-1863, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom, Department of Cell Biology & Genetics, Cancer Genomics Center, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, Massachusetts 02115, Department of Radiation Oncology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, E1240 BSTWR, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| | - Alan D'Andrea
- Department of Human Genetics, University of Pittsburgh School of Public Health, A300 Crabtree Hall, 130 Desoto St., Pittsburgh, Pennsylvania 15261, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion 2.6, 5117 Centre Ave., Pittsburgh, Pennsylvania 15213-1863, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom, Department of Cell Biology & Genetics, Cancer Genomics Center, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, Massachusetts 02115, Department of Radiation Oncology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, E1240 BSTWR, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| | - Laura J. Niedernhofer
- Department of Human Genetics, University of Pittsburgh School of Public Health, A300 Crabtree Hall, 130 Desoto St., Pittsburgh, Pennsylvania 15261, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion 2.6, 5117 Centre Ave., Pittsburgh, Pennsylvania 15213-1863, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom, Department of Cell Biology & Genetics, Cancer Genomics Center, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, Massachusetts 02115, Department of Radiation Oncology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, E1240 BSTWR, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| | - Peter J. McHugh
- Department of Human Genetics, University of Pittsburgh School of Public Health, A300 Crabtree Hall, 130 Desoto St., Pittsburgh, Pennsylvania 15261, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion 2.6, 5117 Centre Ave., Pittsburgh, Pennsylvania 15213-1863, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom, Department of Cell Biology & Genetics, Cancer Genomics Center, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, Massachusetts 02115, Department of Radiation Oncology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, E1240 BSTWR, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| |
Collapse
|
26
|
Orelli B, McClendon TB, Tsodikov OV, Ellenberger T, Niedernhofer LJ, Schärer OD. The XPA-binding domain of ERCC1 is required for nucleotide excision repair but not other DNA repair pathways. J Biol Chem 2009; 285:3705-3712. [PMID: 19940136 DOI: 10.1074/jbc.m109.067538] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The endonuclease ERCC1-XPF incises the damaged strand of DNA 5' to a lesion during nucleotide excision repair (NER) and has additional, poorly characterized functions in interstrand cross-link repair, double-strand break repair, and homologous recombination. XPA, another key factor in NER, interacts with ERCC1 and recruits it to sites of damage. We identified ERCC1 residues that are critical for the interaction with XPA and assessed their importance for NER in vitro and in vivo. Mutation of two conserved residues (Asn-110 and Tyr-145) located in the XPA-binding site of ERCC1 dramatically affected NER but not nuclease activity on model DNA substrates. In ERCC1-deficient cells expressing ERCC1(N110A/Y145A), the nuclease was not recruited to sites of UV damage. The repair of UV-induced (6-4)photoproducts was severely impaired in these cells, and they were hypersensitive to UV irradiation. Remarkably, the ERCC1(N110A/Y145A) protein rescues the sensitivity of ERCC1-deficient cells to cross-linking agents. Our studies suggest that ERCC1-XPF engages in different repair pathways through specific protein-protein interactions and that these functions can be separated through the selective disruption of these interactions. We discuss the impact of these findings for understanding how ERCC1 contributes to resistance of tumor cells to therapeutic agents such as cisplatin.
Collapse
Affiliation(s)
- Barbara Orelli
- From the Department of Pharmacological Sciences and Chemistry, Stony Brook University, Stony Brook, New York 11794-3400
| | - T Brooke McClendon
- the Department of Microbiology and Molecular Genetics and Cancer Institute, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15213-1863
| | - Oleg V Tsodikov
- the Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-2676, and
| | - Tom Ellenberger
- the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Laura J Niedernhofer
- the Department of Microbiology and Molecular Genetics and Cancer Institute, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15213-1863
| | - Orlando D Schärer
- From the Department of Pharmacological Sciences and Chemistry, Stony Brook University, Stony Brook, New York 11794-3400.
| |
Collapse
|
27
|
Muniandy PA, Thapa D, Thazhathveetil AK, Liu ST, Seidman MM. Repair of laser-localized DNA interstrand cross-links in G1 phase mammalian cells. J Biol Chem 2009; 284:27908-27917. [PMID: 19684342 DOI: 10.1074/jbc.m109.029025] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interstrand cross-links (ICLs) are absolute blocks to transcription and replication and can provoke genomic instability and cell death. Studies in bacteria define a two-stage repair scheme, the first involving recognition and incision on either side of the cross-link on one strand (unhooking), followed by recombinational repair or lesion bypass synthesis. The resultant monoadduct is removed in a second stage by nucleotide excision repair. In mammalian cells, there are multiple, but poorly defined, pathways, with much current attention on repair in S phase. However, many questions remain, including the efficiency of repair in the absence of replication, the factors involved in cross-link recognition, and the timing and demarcation of the first and second repair cycles. We have followed the repair of laser-localized lesions formed by psoralen (cross-links/monoadducts) and angelicin (only monoadducts) in mammalian cells. Both were repaired in G(1) phase by nucleotide excision repair-dependent pathways. Removal of psoralen adducts was blocked in XPC-deficient cells but occurred with wild type kinetics in cells deficient in DDB2 protein (XPE). XPC protein was rapidly recruited to psoralen adducts. However, accumulation of DDB2 was slow and XPC-dependent. Inhibition of repair DNA synthesis did not interfere with DDB2 recruitment to angelicin but eliminated recruitment to psoralen. Our results demonstrate an efficient ICL repair pathway in G(1) phase cells dependent on XPC, with entry of DDB2 only after repair synthesis that completes the first repair cycle. DDB2 accumulation at sites of cross-link repair is a marker for the start of the second repair cycle.
Collapse
Affiliation(s)
- Parameswary A Muniandy
- Laboratory of Molecular Gerontology, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Dennis Thapa
- Laboratory of Molecular Gerontology, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | | | | | - Michael M Seidman
- Laboratory of Molecular Gerontology, NIA, National Institutes of Health, Baltimore, Maryland 21224.
| |
Collapse
|
28
|
Thompson LH, Hinz JM. Cellular and molecular consequences of defective Fanconi anemia proteins in replication-coupled DNA repair: mechanistic insights. Mutat Res 2009; 668:54-72. [PMID: 19622404 PMCID: PMC2714807 DOI: 10.1016/j.mrfmmm.2009.02.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 01/20/2009] [Accepted: 02/10/2009] [Indexed: 12/13/2022]
Abstract
The Fanconi anemia (FA) molecular network consists of 15 "FANC" proteins, of which 13 are associated with mutations in patients with this cancer-prone chromosome instability disorder. Whereas historically the common phenotype associated with FA mutations is marked sensitivity to DNA interstrand crosslinking agents, the literature supports a more global role for FANC proteins in coping with diverse stresses encountered by replicative polymerases. We have attempted to reconcile and integrate numerous observations into a model in which FANC proteins coordinate the following physiological events during DNA crosslink repair: (a) activating a FANCM-ATR-dependent S-phase checkpoint, (b) mediating enzymatic replication-fork breakage and crosslink unhooking, (c) filling the resulting gap by translesion synthesis (TLS) by error-prone polymerase(s), and (d) restoring the resulting one-ended double-strand break by homologous recombination repair (HRR). The FANC core subcomplex (FANCA, B, C, E, F, G, L, FAAP100) promotes TLS for both crosslink and non-crosslink damage such as spontaneous oxidative base damage, UV-C photoproducts, and alkylated bases. TLS likely helps prevent stalled replication forks from breaking, thereby maintaining chromosome continuity. Diverse DNA damages and replication inhibitors result in monoubiquitination of the FANCD2-FANCI complex by the FANCL ubiquitin ligase activity of the core subcomplex upon its recruitment to chromatin by the FANCM-FAAP24 heterodimeric translocase. We speculate that this translocase activity acts as the primary damage sensor and helps remodel blocked replication forks to facilitate checkpoint activation and repair. Monoubiquitination of FANCD2-FANCI is needed for promoting HRR, in which the FANCD1/BRCA2 and FANCN/PALB2 proteins act at an early step. We conclude that the core subcomplex is required for both TLS and HRR occurring separately for non-crosslink damages and for both events during crosslink repair. The FANCJ/BRIP1/BACH1 helicase functions in association with BRCA1 and may remove structural barriers to replication, such as guanine quadruplex structures, and/or assist in crosslink unhooking.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology and Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, United States.
| | | |
Collapse
|
29
|
Okoshi K, Nagayama S, Furu M, Mori Y, Yoshizawa A, Toguchida J, Sakai Y. A Case Report of Pathologically Complete Response of a Huge Rectal Cancer after Systemic Chemotherapy with mFOLFOX6. Jpn J Clin Oncol 2009; 39:528-33. [DOI: 10.1093/jjco/hyp045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Knudsen NØ, Andersen SD, Lützen A, Nielsen FC, Rasmussen LJ. Nuclear translocation contributes to regulation of DNA excision repair activities. DNA Repair (Amst) 2009; 8:682-9. [PMID: 19376751 DOI: 10.1016/j.dnarep.2009.03.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 03/06/2009] [Accepted: 03/14/2009] [Indexed: 11/26/2022]
Abstract
DNA mutations are circumvented by dedicated specialized excision repair systems, such as the base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR) pathways. Although the individual repair pathways have distinct roles in suppressing changes in the nuclear DNA, it is evident that proteins from the different DNA repair pathways interact [Y. Wang, D. Cortez, P. Yazdi, N. Neff, S.J. Elledge, J. Qin, BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures, Genes Dev. 14 (2000) 927-939; M. Christmann, M.T. Tomicic, W.P. Roos, B. Kaina, Mechanisms of human DNA repair: an update, Toxicology 193 (2003) 3-34; N.B. Larsen, M. Rasmussen, L.J. Rasmussen, Nuclear and mitochondrial DNA repair: similar pathways? Mitochondrion 5 (2005) 89-108]. Protein interactions are not only important for function, but also for regulation of nuclear import that is necessary for proper localization of the repair proteins. This review summarizes the current knowledge on nuclear import mechanisms of DNA excision repair proteins and provides a model that categorizes the import by different mechanisms, including classical nuclear import, co-import of proteins, and alternative transport pathways. Most excision repair proteins appear to contain classical NLS sequences directing their nuclear import, however, additional import mechanisms add alternative regulatory levels to protein import, indirectly affecting protein function. Protein co-import appears to be a mechanism employed by the composite repair systems NER and MMR to enhance and regulate nuclear accumulation of repair proteins thereby ensuring faithful DNA repair.
Collapse
Affiliation(s)
- Nina Østergaard Knudsen
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | | | | | | | | |
Collapse
|
31
|
Shell SM, Zou Y. Other proteins interacting with XP proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 637:103-12. [PMID: 19181115 DOI: 10.1007/978-0-387-09599-8_11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Steven M Shell
- Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, USA
| | | |
Collapse
|
32
|
XPF/ERCC4 and ERCC1: their products and biological roles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009. [PMID: 19181112 DOI: 10.1007/978-0-387-09599-8_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
ERCC4 is the gene mutated in XPF cells and also in rodent cells representing the mutant complementation groups ERCC4 and ERCC 11. The protein functions principally as a complex with ERCC1 in a diversity of biological pathways that include NER, ICL repair, telomere maintenance and immunoglobulin switching. Sorting out these roles is an exciting and challenging problem and many important questions remain to be answered. The ERCC1/ERCC4 complex is conserved across most species presenting an opportunity to examine some functions in model organisms where mutants can be more readily generated and phenotypes more quickly assessed.
Collapse
|
33
|
Hong Z, Jiang J, Hashiguchi K, Hoshi M, Lan L, Yasui A. Recruitment of mismatch repair proteins to the site of DNA damage in human cells. J Cell Sci 2008; 121:3146-54. [DOI: 10.1242/jcs.026393] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mismatch repair (MMR) proteins contribute to genome stability by excising DNA mismatches introduced by DNA polymerase. Although MMR proteins are also known to influence cellular responses to DNA damage, how MMR proteins respond to DNA damage within the cell remains unknown. Here, we show that MMR proteins are recruited immediately to the sites of various types of DNA damage in human cells. MMR proteins are recruited to single-strand breaks in a poly(ADP-ribose)-dependent manner as well as to double-strand breaks. Using mutant cells, RNA interference and expression of fluorescence-tagged proteins, we show that accumulation of MutSβ at the DNA damage site is solely dependent on the PCNA-binding domain of MSH3, and that of MutSα depends on a region near the PCNA-binding domain of MSH6. MSH2 is recruited to the DNA damage site through interactions with either MSH3 or MSH6, and is required for recruitment of MLH1 to the damage site. We found, furthermore, that MutSβ is also recruited to UV-irradiated sites in nucleotide-excision-repair- and PCNA-dependent manners. Thus, MMR and its proteins function not only in replication but also in DNA repair.
Collapse
Affiliation(s)
- Zehui Hong
- Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, Seiryomachi 4-1, Aobaku, Sendai 980-8575, Japan
| | - Jie Jiang
- Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, Seiryomachi 4-1, Aobaku, Sendai 980-8575, Japan
| | - Kazunari Hashiguchi
- Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, Seiryomachi 4-1, Aobaku, Sendai 980-8575, Japan
| | - Mikiko Hoshi
- Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, Seiryomachi 4-1, Aobaku, Sendai 980-8575, Japan
| | - Li Lan
- Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, Seiryomachi 4-1, Aobaku, Sendai 980-8575, Japan
| | - Akira Yasui
- Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, Seiryomachi 4-1, Aobaku, Sendai 980-8575, Japan
| |
Collapse
|
34
|
|
35
|
Hafer K, Iwamoto KS, Iwamoto KK, Scuric Z, Schiestl RH. Adaptive Response to Gamma Radiation in Mammalian Cells Proficient and Deficient in Components of Nucleotide Excision Repair. Radiat Res 2007; 168:168-74. [PMID: 17638404 DOI: 10.1667/rr0717.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 03/23/2007] [Indexed: 11/03/2022]
Abstract
Cells preconditioned with low doses of low-linear energy transfer (LET) ionizing radiation become more resistant to later challenges of radiation. The mechanism(s) by which cells adaptively respond to radiation remains unclear, although it has been suggested that DNA repair induced by low doses of radiation increases cellular radioresistance. Recent gene expression profiles have consistently indicated that proteins involved in the nucleotide excision repair pathway are up-regulated after exposure to ionizing radiation. Here we test the role of the nucleotide excision repair pathway for adaptive response to gamma radiation in vitro. Wild-type CHO cells exhibited both greater survival and fewer HPRT mutations when preconditioned with a low dose of gamma rays before exposure to a later challenging dose. Cells mutated for ERCC1, ERCC3, ERCC4 or ERCC5 did not express either adaptive response to radiation; cells mutated for ERCC2 expressed a survival adaptive response but no mutation adaptive response. These results suggest that some components of the nucleotide excision repair pathway are required for phenotypic low-dose induction of resistance to gamma radiation in mammalian cells.
Collapse
Affiliation(s)
- Kurt Hafer
- Department of Radiation Oncology, UCLA School of Medicine and Public Health, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
36
|
Zhang N, Liu X, Li L, Legerski R. Double-strand breaks induce homologous recombinational repair of interstrand cross-links via cooperation of MSH2, ERCC1-XPF, REV3, and the Fanconi anemia pathway. DNA Repair (Amst) 2007; 6:1670-8. [PMID: 17669695 PMCID: PMC2586762 DOI: 10.1016/j.dnarep.2007.06.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 06/12/2007] [Accepted: 06/12/2007] [Indexed: 11/16/2022]
Abstract
DNA interstrand cross-linking agents have been widely used in chemotherapeutic treatment of cancer. The majority of interstrand cross-links (ICLs) in mammalian cells are removed via a complex process that involves the formation of double-strand breaks at replication forks, incision of the ICL, and subsequent error-free repair by homologous recombination. How double-strand breaks effect the removal of ICLs and the downstream homologous recombination process is not clear. Here, we describe a plasmid-based recombination assay in which one copy of the CFP gene is inactivated by a site-specific psoralen ICL and can be repaired by gene conversion with a mutated homologous donor sequence. We found that the homology-dependent recombination (HDR) is inhibited by the ICL. However, when we introduced a double-strand break adjacent to the site of the ICL, the removal of the ICL was enhanced and the substrate was funneled into a HDR repair pathway. This process was not dependent on the nucleotide excision repair pathway, but did require the ERCC1-XPF endonuclease and REV3. In addition, both the Fanconi anemia pathway and the mismatch repair protein MSH2 were required for the recombinational repair processing of the ICL. These results suggest that the juxtaposition of an ICL and a DSB stimulates repair of ICLs through a process requiring components of mismatch repair, ERCC1-XPF, REV3, Fanconi anemia proteins, and homologous recombination repair factors.
Collapse
Affiliation(s)
- Nianxiang Zhang
- Department of Cancer Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Xiuping Liu
- Department of Cancer Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Lei Li
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Randy Legerski
- Department of Cancer Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
- *Corresponding author. Fax. 713-792-1474; E-Mail:
| |
Collapse
|
37
|
Zheng H, Wang X, Legerski RJ, Glazer PM, Li L. Repair of DNA interstrand cross-links: interactions between homology-dependent and homology-independent pathways. DNA Repair (Amst) 2006; 5:566-74. [PMID: 16569514 DOI: 10.1016/j.dnarep.2006.01.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 12/29/2005] [Accepted: 01/16/2006] [Indexed: 10/24/2022]
Abstract
DNA interstrand cross-links (ICLs) are complex DNA lesions generated by bifunctional alkylating agents, a class of compounds extensively used in cancer chemotherapy. Formation of an ICL covalently links the opposing strands of the double helix and results in severe disruptions of normal DNA functions, such as replication, transcription, and recombination. Because of the structural complexity, ICLs are most likely recognized by a variety of repair recognition proteins and processed through multiple mechanisms. To study the involvement of different repair pathways in ICL processing, we examined a variety of mammalian mutants with distinct DNA repair deficiencies. We found that the presence of ICLs induces frequent recombination between direct repeat sequences, suggesting that the single-strand annealing pathway may be an important mechanism for the removal of ICLs situated within direct repeats. Unlike recombination-independent ICL repair, ICL-induced single-strand annealing does not require the nucleotide excision repair (NER) mechanism. In cells defective in the mismatch repair protein Msh2, the level of recombination-independent ICL repair was significantly increased, suggesting that processing by the mismatch repair mechanism may lead to recombinational repair of ICLs. Our results suggest that removal of ICLs may involve two error-prone mechanisms depending on the sequence context of the cross-linked site.
Collapse
Affiliation(s)
- Huyong Zheng
- Department of Experimental Radiation Oncology, Unit 66, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
38
|
Zienolddiny S, Ryberg D, Svendsrud DH, Eilertsen E, Skaug V, Hewer A, Phillips DH, te Riele H, Haugen A. Msh2 deficiency increases susceptibility to benzo[a]pyrene-induced lymphomagenesis. Int J Cancer 2006; 118:2899-902. [PMID: 16381012 DOI: 10.1002/ijc.21686] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
DNA mismatch repair (MMR) is essential for repair of single-base mismatches and insertion/deletion loops. MMR proteins also participate in cellular response to DNA damaging agents such as various alkylating agents. Mice deficient in the MMR gene Msh2 develop tumors earlier after exposure to alkylating agents when compared to unexposed mice. The interaction between the MMR system and polycyclic aromatic hydrocarbons such as benzo[a]pyrene (B[a]P) has not been investigated in vivo. Here, we show that treatment of Msh2-deficient mice with B[a]P enhances susceptibility to lymphomagenesis. Carrying at least one intact copy of the Msh2 gene had a protective effect. B[a]P treatment only induced lymphomas in 3 of the 40 (7.5%) mice with at least one intact copy of the Msh2 gene as compared to 13 of the 17 (76.5%) Msh2-deficient mice and occurs only after a much longer time period. The B[a]P-DNA adduct levels measured in lung, liver, spleen and forestomach of B[a]P-treated Msh2-/- mice were not significantly different from B[a]P-treated Msh2+/+ mice. In summary, the results suggest that B[a]P accelerates lymphomagenesis in Msh2-deficient mice. Furthermore, Msh2 deficiency does not have any significant effect on B[a]P-DNA adduct levels.
Collapse
Affiliation(s)
- Shanbeh Zienolddiny
- Department of Toxicology, National Institute of Occupational Health, Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lu X, Zhang N, Vasquez K, Barton M, Legerski R. Repair of psoralen interstrand cross-links in Xenopus laevis egg extracts is highly mutagenic. Biochem Biophys Res Commun 2005; 336:69-75. [PMID: 16125670 DOI: 10.1016/j.bbrc.2005.08.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 08/03/2005] [Indexed: 11/22/2022]
Abstract
The recognition and removal of interstrand cross-links is perhaps the least understood of all repair pathways in eukaryotic cells. We have shown previously that uncoupling of cross-links occurs in mammalian cell extracts and have identified a number of factors that mediate this process. However, we have not observed complete repair of the substrate in this system. Here, we show that uncoupling of interstrand cross-links also occurs in Xenopus laevis egg extracts, and that the initial products of this reaction are identical to the products observed in mammalian cell extracts suggesting a common mechanism. However in contrast to mammalian cell extracts, we observe repair of the cross-linked substrate in the Xenopus extracts presumably by a translesion bypass mechanism that allows replication past the uncoupled monoadduct, and its likely subsequent removal by nucleotide excision repair. This repair process is shown to be highly mutagenic consistent with bypass synthesis.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Department of Molecular Genetics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
40
|
Brabec V, Kasparkova J. Modifications of DNA by platinum complexes. Relation to resistance of tumors to platinum antitumor drugs. Drug Resist Updat 2005; 8:131-46. [PMID: 15894512 DOI: 10.1016/j.drup.2005.04.006] [Citation(s) in RCA: 306] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 04/11/2005] [Accepted: 04/11/2005] [Indexed: 11/26/2022]
Abstract
The importance of platinum drugs in cancer chemotherapy is underscored by the clinical success of cisplatin [cis-diamminedichloroplatinum(II)] and its analogues and by clinical trials of other, less toxic platinum complexes that are active against resistant tumors. The antitumor effect of platinum complexes is believed to result from their ability to form various types of adducts with DNA. Nevertheless, drug resistance can occur by several ways: increased drug efflux, drug inactivation, alterations in drug target, processing of drug-induced damage, and evasion of apoptosis. This review focuses on mechanisms of resistance and sensitivity of tumors to conventional cisplatin associated with DNA modifications. We also discuss molecular mechanisms underlying resistance and sensitivity of tumors to the new platinum compounds synthesized with the goal to overcome resistance of tumors to established platinum drugs. Importantly, a number of new platinum compounds were designed to test the hypothesis that there is a correlation between the extent of resistance of tumors to these agents and their ability to induce a certain kind of damage or conformational change in DNA. Hence, information on DNA-binding modes, as well as recognition and repair of DNA damage is discussed, since this information may be exploited for improved structure-activity relationships.
Collapse
Affiliation(s)
- Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, CZ-61265 Brno, Czech Republic.
| | | |
Collapse
|
41
|
Zhang N, Kaur R, Lu X, Shen X, Li L, Legerski RJ. The Pso4 mRNA splicing and DNA repair complex interacts with WRN for processing of DNA interstrand cross-links. J Biol Chem 2005; 280:40559-67. [PMID: 16223718 DOI: 10.1074/jbc.m508453200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA interstrand cross-links (ICLs) are perhaps the most formidable lesion encountered by the cellular DNA repair machinery, and the elucidation of the process by which they are removed in eukaryotic cells has proved a daunting task. In particular, the early stages of adduct recognition and uncoupling of the cross-link have remained elusive principally because genetic studies have not been highly revealing. We have developed a biochemical assay in which processing of a DNA substrate containing a site-specific psoralen ICL can be monitored in vitro. Using this assay we have shown previously that the mismatch repair factor MutSbeta, the nucleotide excision repair heterodimer Ercc1-Xpf, and the replication proteins RPA and PCNA are involved in an early stage of psoralen ICL processing. Here, we report the identification of two additional factors required in the ICL repair process, a previously characterized pre-mRNA splicing complex composed of Pso4/Prp19, Cdc5L, Plrg1, and Spf27 (Pso4 complex), and WRN the protein deficient in Werner syndrome. Analysis of the WRN protein indicates that its DNA helicase function, but not its exonuclease activity, is required for ICL processing in vitro. In addition, we show that WRN and the Pso4 complex interact through a direct physical association between WRN and Cdc5L. A putative model for uncoupling of ICLs in mammalian cells is presented.
Collapse
Affiliation(s)
- Nianxiang Zhang
- Department of Molecular Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
42
|
Kavli B, Andersen S, Otterlei M, Liabakk NB, Imai K, Fischer A, Durandy A, Krokan HE, Slupphaug G. B cells from hyper-IgM patients carrying UNG mutations lack ability to remove uracil from ssDNA and have elevated genomic uracil. ACTA ACUST UNITED AC 2005; 201:2011-21. [PMID: 15967827 PMCID: PMC2212036 DOI: 10.1084/jem.20050042] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The generation of high-affinity antibodies requires somatic hypermutation (SHM) and class switch recombination (CSR) at the immunoglobulin (Ig) locus. Both processes are triggered by activation-induced cytidine deaminase (AID) and require UNG-encoded uracil-DNA glycosylase. AID has been suggested to function as an mRNA editing deaminase or as a single-strand DNA deaminase. In the latter model, SHM may result from replicative incorporation of dAMP opposite U or from error-prone repair of U, whereas CSR may be triggered by strand breaks at abasic sites. Here, we demonstrate that extracts of UNG-proficient human B cell lines efficiently remove U from single-stranded DNA. In B cell lines from hyper-IgM patients carrying UNG mutations, the single-strand–specific uracil-DNA glycosylase, SMUG1, cannot complement this function. Moreover, the UNG mutations lead to increased accumulation of genomic uracil. One mutation results in an F251S substitution in the UNG catalytic domain. Although this UNG form was fully active and stable when expressed in Escherichia coli, it was mistargeted to mitochondria and degraded in mammalian cells. Our results may explain why SMUG1 cannot compensate the UNG2 deficiency in human B cells, and are fully consistent with the DNA deamination model that requires active nuclear UNG2. Based on our findings and recent information in the literature, we present an integrated model for the initiating steps in CSR.
Collapse
Affiliation(s)
- Bodil Kavli
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wu Q, Christensen LA, Legerski RJ, Vasquez KM. Mismatch repair participates in error-free processing of DNA interstrand crosslinks in human cells. EMBO Rep 2005; 6:551-7. [PMID: 15891767 PMCID: PMC1369090 DOI: 10.1038/sj.embor.7400418] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 03/16/2005] [Accepted: 04/06/2005] [Indexed: 11/09/2022] Open
Abstract
DNA interstrand crosslinks (ICLs) present formidable blocks to DNA metabolic processes and must be repaired for cell survival. ICLs are induced in DNA by intercalating compounds such as the widely used therapeutic agent psoralen. In bacteria, both nucleotide excision repair (NER) and homologous recombination are required for the repair of ICLs. The processing of ICLs in mammalian cells is not clearly understood. However, it is known that processing can occur by NER, which for psoralen ICLs can be an error-generating process conducive to mutagenesis. We show here that another repair pathway, mismatch repair (MMR), is also involved in eliminating psoralen ICLs in human cells. MMR deficiency renders cells hypersensitive to psoralen ICLs without diminishing their mutagenic potential, suggesting that MMR does not contribute to error-generating repair, and that MMR may represent a relatively error-free mechanism for processing these lesions in human cells. Thus, enhancement of MMR relative to NER may reduce the mutagenesis caused by DNA ICLs in humans.
Collapse
Affiliation(s)
- Qi Wu
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, Texas 78957, USA
| | - Laura A. Christensen
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, Texas 78957, USA
| | - Randy J. Legerski
- Department of Molecular Genetics, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Karen M. Vasquez
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, Texas 78957, USA
| |
Collapse
|
44
|
Barber LJ, Ward TA, Hartley JA, McHugh PJ. DNA interstrand cross-link repair in the Saccharomyces cerevisiae cell cycle: overlapping roles for PSO2 (SNM1) with MutS factors and EXO1 during S phase. Mol Cell Biol 2005; 25:2297-309. [PMID: 15743825 PMCID: PMC1061624 DOI: 10.1128/mcb.25.6.2297-2309.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pso2/Snm1 is a member of the beta-CASP metallo-beta-lactamase family of proteins that include the V(D)J recombination factor Artemis. Saccharomyces cerevisiae pso2 mutants are specifically sensitive to agents that induce DNA interstrand cross-links (ICLs). Here we establish a novel overlapping function for PSO2 with MutS mismatch repair factors and the 5'-3' exonuclease Exo1 in the repair of DNA ICLs, which is confined to S phase. Our data demonstrate a requirement for NER and Pso2, or Exo1 and MutS factors, in the processing of ICLs, and this is required prior to the repair of ICL-induced DNA double-strand breaks (DSBs) that form during replication. Using a chromosomally integrated inverted-repeat substrate, we also show that loss of both pso2 and exo1/msh2 reduces spontaneous homologous recombination rates. Therefore, PSO2, EXO1, and MSH2 also appear to have overlapping roles in the processing of some forms of endogenous DNA damage that occur at an irreversibly collapsed replication fork. Significantly, our analysis of ICL repair in cells synchronized for each cell cycle phase has revealed that homologous recombination does not play a major role in the direct repair of ICLs, even in G2, when a suitable template is readily available. Rather, we propose that recombination is primarily involved in the repair of DSBs that arise from the collapse of replication forks at ICLs. These findings have led to considerable clarification of the complex genetic relationship between various ICL repair pathways.
Collapse
Affiliation(s)
- Louise J Barber
- Cancer Research UK Drug-DNA Interactions Research Group, Department of Oncology, Royal Free and University College Medical School, University College London, London
| | | | | | | |
Collapse
|
45
|
Hamimes S, Arakawa H, Stasiak AZ, Kierzek AM, Hirano S, Yang YG, Takata M, Stasiak A, Buerstedde JM, Van Dyck E. RDM1, a Novel RNA Recognition Motif (RRM)-containing Protein Involved in the Cell Response to Cisplatin in Vertebrates. J Biol Chem 2005; 280:9225-35. [PMID: 15611051 DOI: 10.1074/jbc.m412874200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A variety of cellular proteins has the ability to recognize DNA lesions induced by the anti-cancer drug cisplatin, with diverse consequences on their repair and on the therapeutic effectiveness of this drug. We report a novel gene involved in the cell response to cisplatin in vertebrates. The RDM1 gene (for RAD52 Motif 1) was identified while searching databases for sequences showing similarities to RAD52, a protein involved in homologous recombination and DNA double-strand break repair. Ablation of RDM1 in the chicken B cell line DT40 led to a more than 3-fold increase in sensitivity to cisplatin. However, RDM1-/- cells were not hypersensitive to DNA damages caused by ionizing radiation, UV irradiation, or the alkylating agent methylmethane sulfonate. The RDM1 protein displays a nucleic acid binding domain of the RNA recognition motif (RRM) type. By using gel-shift assays and electron microscopy, we show that purified, recombinant chicken RDM1 protein interacts with single-stranded DNA as well as double-stranded DNA, on which it assembles filament-like structures. Notably, RDM1 recognizes DNA distortions induced by cisplatin-DNA adducts in vitro. Finally, human RDM1 transcripts are abundant in the testis, suggesting a possible role during spermatogenesis.
Collapse
Affiliation(s)
- Samia Hamimes
- International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wilson TM, Vaisman A, Martomo SA, Sullivan P, Lan L, Hanaoka F, Yasui A, Woodgate R, Gearhart PJ. MSH2-MSH6 stimulates DNA polymerase eta, suggesting a role for A:T mutations in antibody genes. ACTA ACUST UNITED AC 2005; 201:637-45. [PMID: 15710654 PMCID: PMC2213055 DOI: 10.1084/jem.20042066] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Activation-induced cytidine deaminase deaminates cytosine to uracil (dU) in DNA, which leads to mutations at C:G basepairs in immunoglobulin genes during somatic hypermutation. The mechanism that generates mutations at A:T basepairs, however, remains unclear. It appears to require the MSH2–MSH6 mismatch repair heterodimer and DNA polymerase (pol) η, as mutations of A:T are decreased in mice and humans lacking these proteins. Here, we demonstrate that these proteins interact physically and functionally. First, we show that MSH2–MSH6 binds to a U:G mismatch but not to other DNA intermediates produced during base excision repair of dUs, including an abasic site and a deoxyribose phosphate group. Second, MSH2 binds to pol η in solution, and endogenous MSH2 associates with the pol in cell extracts. Third, MSH2–MSH6 stimulates the catalytic activity of pol η in vitro. These observations suggest that the interaction between MSH2–MSH6 and DNA pol η stimulates synthesis of mutations at bases located downstream of the initial dU lesion, including A:T pairs.
Collapse
Affiliation(s)
- Teresa M Wilson
- Radiation Oncology Research Laboratory, Department of Radiation Oncology, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sawicka M, Kalinowska M, Skierski J, Lewandowski W. A review of selected anti-tumour therapeutic agents and reasons for multidrug resistance occurrence. J Pharm Pharmacol 2004; 56:1067-81. [PMID: 15324475 DOI: 10.1211/0022357044265] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
It is assumed that proteins from the ABC family (i.e., glycoprotein P (Pgp)) and a multidrug resistance associated protein (MRP) play a main role in the occurrence of multidrug resistance (MDR) in tumour cells. Other factors that influence the rise of MDR are mechanisms connected with change in the effectiveness of the glutathione cycle and with decrease in expression of topoisomerases I and II. The aim of this review is to characterize drugs applied in anti-tumour therapy and to describe the present state of knowledge concerning the mechanisms of MDR occurrence, as well as the pharmacological agents applied in reducing this phenomenon.
Collapse
Affiliation(s)
- M Sawicka
- Department of Chemistry, Biatystok Technical University, Zamenhofa 29, 15-435 Biatystok, Poland
| | | | | | | |
Collapse
|
48
|
Lan L, Nakajima S, Oohata Y, Takao M, Okano S, Masutani M, Wilson SH, Yasui A. In situ analysis of repair processes for oxidative DNA damage in mammalian cells. Proc Natl Acad Sci U S A 2004; 101:13738-43. [PMID: 15365186 PMCID: PMC518826 DOI: 10.1073/pnas.0406048101] [Citation(s) in RCA: 239] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Oxidative DNA damage causes blocks and errors in transcription and replication, leading to cell death and genomic instability. Although repair mechanisms of the damage have been extensively analyzed in vitro, the actual in vivo repair processes remain largely unknown. Here, by irradiation with an UVA laser through a microscope lens, we have conditionally produced single-strand breaks and oxidative base damage at restricted nuclear regions of mammalian cells. We showed, in real time after irradiation by using antibodies and GFP-tagged proteins, rapid and ordered DNA repair processes of oxidative DNA damage in human cells. Furthermore, we characterized repair pathways by using repair-defective mammalian cells and found that DNA polymerase beta accumulated at single-strand breaks and oxidative base damage by means of its 31- and 8-kDa domains, respectively, and that XRCC1 is essential for both polymerase beta-dependent and proliferating cell nuclear antigen-dependent repair pathways of single-strand breaks. Thus, the repair of oxidative DNA damage is based on temporal and functional interactions among various proteins operating at the site of DNA damage in living cells.
Collapse
Affiliation(s)
- Li Lan
- Department of Molecular Genetics, Institute of Development, Aging, and Cancer, Tohoku University, Seiryomachi 4-1, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Schrader CE, Vardo J, Linehan E, Twarog MZ, Niedernhofer LJ, Hoeijmakers JHJ, Stavnezer J. Deletion of the nucleotide excision repair gene Ercc1 reduces immunoglobulin class switching and alters mutations near switch recombination junctions. ACTA ACUST UNITED AC 2004; 200:321-30. [PMID: 15280420 PMCID: PMC2211985 DOI: 10.1084/jem.20040052] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure-specific endonuclease ERCC1-XPF is an essential component of the nucleotide excision DNA repair pathway. ERCC1-XPF nicks double-stranded DNA immediately adjacent to 3′ single-strand regions. Substrates include DNA bubbles and flaps. Furthermore, ERCC1 interacts with Msh2, a mismatch repair (MMR) protein involved in class switch recombination (CSR). Therefore, ERCC1-XPF has abilities that might be useful for antibody CSR. We tested whether ERCC1 is involved in CSR and found that Ercc1−/− splenic B cells show moderately reduced CSR in vitro, demonstrating that ERCC1-XPF participates in, but is not required for, CSR. To investigate the role of ERCC1 in CSR, the nucleotide sequences of switch (S) regions were determined. The mutation frequency in germline Sμ segments and recombined Sμ-Sγ3 segments cloned from Ercc1−/− splenic B cells induced to switch in culture was identical to that of wild-type (WT) littermates. However, Ercc1−/− cells show increased targeting of the mutations to G:C bp in RGYW/WRCY hotspots and mutations occur at sites more distant from the S–S junctions compared with WT mice. The results indicate that ERCC1 is not epistatic with MMR and suggest that ERCC1 might be involved in processing or repair of DNA lesions in S regions during CSR.
Collapse
Affiliation(s)
- Carol E Schrader
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA 01655, USA
| | | | | | | | | | | | | |
Collapse
|