1
|
Szymanska M, Basavaraja R, Meidan R. A tale of two endothelins: the rise and fall of the corpus luteum. Reprod Fertil Dev 2024; 37:RD24158. [PMID: 39680472 DOI: 10.1071/rd24158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Endothelins are small 21 amino acid peptides that interact with G-protein-coupled receptors. They are highly conserved across species and play important roles in vascular biology as well as in disease development and progression. Endothelins, mainly endothelin-1 and endothelin-2, are intricately involved in ovarian function and metabolism. These two peptides differ only in two amino acids but are encoded by different genes, which suggests an independent regulation and a cell-specific mode of expression. This review aims to comprehensively discuss the distinct regulation and roles of endothelin-1 and endothelin-2 regarding corpus luteum function throughout its life span.
Collapse
Affiliation(s)
- Magdalena Szymanska
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; and Present address: Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| | - Raghavendra Basavaraja
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; and Present address: Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
2
|
Kawahara N, Endo N, Tanaka T. Relationship between the effect of human chorionic gonadotropin treatment on the fifth day after artificial insemination and ovarian ultrasonographic findings and blood nutritional metabolic factors in dairy cows. Anim Reprod Sci 2024; 270:107616. [PMID: 39378694 DOI: 10.1016/j.anireprosci.2024.107616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/10/2024]
Abstract
The objective of the present study was to determine the ovarian ultrasonographic findings and metabolic factors that influence the effect of human chorionic gonadotropin (hCG) treatment on the fifth day after artificial insemination (AI) in dairy cows. Thirty-seven lactating Holstein cows were assigned to two groups: the hCG group (n = 25), which received 3000 IU of hCG intramuscularly on Day 5 after AI (day of AI = Day 0), and the control group (n = 12), which received no treatment. Ovarian ultrasonography measured luteal tissue area (LTA), luteal blood flow area (LBF), relative LBF (= LBF/LTA), and dominant follicle area on Day 5. Blood tests measured plasma insulin-like growth factor-I, insulin, and metabolite concentrations on Day 5 and plasma progesterone concentrations on Days 5 and 7. LBF was greater in pregnant cows than in non-pregnant cows, and plasma Glu concentration was lesser in pregnant cows than in non-pregnant cows, but in both cases there was no interaction between group and pregnancy outcome. For plasma insulin concentration, there was an interaction between group and pregnancy outcome, with pregnant cows in the hCG group having lesser concentrations than the other groups. Logistic regression analysis showed that group and the interaction between group and plasma insulin concentration were associated with pregnancy outcome. These results suggest that the effect of hCG treatment on Day 5 after AI is related to plasma insulin concentration and is more effective in cows with lesser plasma insulin concentrations.
Collapse
Affiliation(s)
- Naoya Kawahara
- Yamagata Prefectural Agricultural Mutual Aid Association, 1333 Koseki, Tendo, Yamagata 994-8511, Japan.
| | - Natsumi Endo
- Laboratory of Veterinary Reproduction, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| | - Tomomi Tanaka
- Laboratory of Veterinary Reproduction, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
3
|
Bishop CV, Selvaraj V, Townson DH, Pate JL, Wiltbank MC. History, insights, and future perspectives on studies into luteal function in cattle. J Anim Sci 2022; 100:skac143. [PMID: 35772753 PMCID: PMC9246667 DOI: 10.1093/jas/skac143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
The corpus luteum (CL) forms following ovulation from the remnant of the Graafian follicle. This transient tissue produces critical hormones to maintain pregnancy, including the steroid progesterone. In cattle and other ruminants, the presence of an embryo determines if the lifespan of the CL will be prolonged to ensure successful implantation and gestation, or if the tissue will undergo destruction in the process known as luteolysis. Infertility and subfertility in dairy and beef cattle results in substantial economic loss to producers each year. In addition, this has the potential to exacerbate climate change because more animals are needed to produce high-quality protein to feed the growing world population. Successful pregnancies require coordinated regulation of uterine and ovarian function by the developing embryo. These processes are often collectively termed "maternal recognition of pregnancy." Research into the formation, function, and destruction of the bovine CL by the Northeast Multistate Project, one of the oldest continuously funded Hatch projects by the USDA, has produced a large body of evidence increasing our knowledge of the contribution of ovarian processes to fertility in ruminants. This review presents some of the seminal research into the regulation of the ruminant CL, as well as identifying mechanisms that remain to be completely validated in the bovine CL. This review also contains a broad discussion of the roles of prostaglandins, immune cells, as well as mechanisms contributing to steroidogenesis in the ruminant CL. A triadic model of luteolysis is discussed wherein the interactions among immune cells, endothelial cells, and luteal cells dictate the ability of the ruminant CL to respond to a luteolytic stimulus, along with other novel hypotheses for future research.
Collapse
Affiliation(s)
- Cecily V Bishop
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - David H Townson
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT 05405, USA
| | - Joy L Pate
- Department of Animal Science, Center for Reproductive Biology and Health, Pennsylvania State University, State College, PA 16802, USA
| | - Milo C Wiltbank
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
4
|
Kfir S, Basavaraja R, Wigoda N, Ben-Dor S, Orr I, Meidan R. Genomic profiling of bovine corpus luteum maturation. PLoS One 2018; 13:e0194456. [PMID: 29590145 PMCID: PMC5874041 DOI: 10.1371/journal.pone.0194456] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 03/02/2018] [Indexed: 12/20/2022] Open
Abstract
To unveil novel global changes associated with corpus luteum (CL) maturation, we analyzed transcriptome data for the bovine CL on days 4 and 11, representing the developing vs. mature gland. Our analyses revealed 681 differentially expressed genes (363 and 318 on day 4 and 11, respectively), with ≥2 fold change and FDR of <5%. Different gene ontology (GO) categories were represented prominently in transcriptome data at these stages (e.g. days 4: cell cycle, chromosome, DNA metabolic process and replication and on day 11: immune response; lipid metabolic process and complement activation). Based on bioinformatic analyses, select genes expression in day 4 and 11 CL was validated with quantitative real-time PCR. Cell specific expression was also determined in enriched luteal endothelial and steroidogenic cells. Genes related to the angiogenic process such as NOS3, which maintains dilated vessels and MMP9, matrix degrading enzyme, were higher on day 4. Importantly, our data suggests day 11 CL acquire mechanisms to prevent blood vessel sprouting and promote their maturation by expressing NOTCH4 and JAG1, greatly enriched in luteal endothelial cells. Another endothelial specific gene, CD300LG, was identified here in the CL for the first time. CD300LG is an adhesion molecule enabling lymphocyte migration, its higher levels at mid cycle are expected to support the transmigration of immune cells into the CL at this stage. Together with steroidogenic genes, most of the genes regulating de-novo cholesterol biosynthetic pathway (e.g HMGCS, HMGCR) and cholesterol uptake from plasma (LDLR, APOD and APOE) were upregulated in the mature CL. These findings provide new insight of the processes involved in CL maturation including blood vessel growth and stabilization, leucocyte transmigration as well as progesterone synthesis as the CL matures.
Collapse
Affiliation(s)
- Sigal Kfir
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Raghavendra Basavaraja
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Noa Wigoda
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Shifra Ben-Dor
- Bioinformatics unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Irit Orr
- Bioinformatics unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
- * E-mail:
| |
Collapse
|
5
|
Basavaraja R, Przygrodzka E, Pawlinski B, Gajewski Z, Kaczmarek MM, Meidan R. Interferon-tau promotes luteal endothelial cell survival and inhibits specific luteolytic genes in bovine corpus luteum. Reproduction 2017; 154:559-568. [PMID: 28808111 DOI: 10.1530/rep-17-0290] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/27/2017] [Accepted: 07/21/2017] [Indexed: 01/14/2023]
Abstract
Interferon-tau (IFNT), a maternal recognition of pregnancy (MRP) signals in domestic ruminants, suppresses the release of luteolytic pulses of uterine prostaglandin F2a (PGF2a), thus extending the corpus luteum (CL) life span. We hypothesized that IFNT also exerts anti-luteolytic actions in bovine CL. To examine the direct effects of IFNT on bovine CL, luteal slices and enriched luteal endothelial cells (LECs) were utilized. We found that recombinant ovine IFNT (roIFNT) markedly elevates interferon-associated genes (STAT1, STAT2 and IRF9) and interferon-stimulated genes (ISGs: MX2, ISG15 and OAS1Y) in both models. Furthermore, IFNT time-dependently induced STAT1 phosphorylation in LECs without affecting total STAT1. roIFNT-stimulated viable LECs numbers and the knockdown of protein inhibitor of activated STAT1 (PIAS1) abolished this effect, suggesting that PIAS1 may mediate the proliferative effect of IFNT. IFNT significantly downregulated luteolytic genes such as TGFB1, thrombospondin-1 (THBS1), endothelin-1 (EDN1) and serpin family E member-1 (SERPINE1) in LECs. However, less robust effects were observed in luteal slices. Moreover, PGF2a alone induced THBS1, SERPINE1 and EDN1 mRNA in CL slices whereas in the presence of IFNT, THBS1 and SERPINE1 stimulation was abolished. Collectively, these results indicate that IFNT acts via STAT1- IRF9-dependent and independent pathways and affects diverse luteal functions. Most interestingly, this study suggests the existence of an anti-luteolytic effect of IFNT in bovine CL, namely, inhibiting key PGF2a-induced luteolytic genes. The proliferative effect of IFNT may constitute an additional mechanism that promotes luteal cell survival, thus, extending the luteal life span during early pregnancy in cows.
Collapse
Affiliation(s)
- Raghavendra Basavaraja
- Department of Animal Sciences, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Emilia Przygrodzka
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Bartosz Pawlinski
- Department for Large Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Warsaw, Poland
| | - Zdzislaw Gajewski
- Department for Large Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Warsaw, Poland
| | - Monika M Kaczmarek
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.,Department for Large Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Warsaw, Poland
| | - Rina Meidan
- Department of Animal Sciences, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
6
|
Walusimbi SS, Wetzel LM, Townson DH, Pate JL. Isolation of luteal endothelial cells and functional interactions with T lymphocytes. Reproduction 2017; 153:519-533. [PMID: 28174320 DOI: 10.1530/rep-16-0578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/13/2017] [Accepted: 02/07/2017] [Indexed: 12/23/2022]
Abstract
The objectives of this study were to optimize the isolation of luteal endothelial cells (LEC) and examine their functional interactions with autologous T lymphocytes. Analysis by flow cytometry showed that the purity of LEC isolated by filtration was nearly 90% as indicated by Bandeiraea simplicifolia (BS)-1 lectin binding. LEC expressed mRNA for progesterone receptor (PGR), prostaglandin receptors (PTGFR, PTGER2 and 4, and PTGIR), tumor necrosis factor receptors (TNFRSF1A&B) and interleukin (IL) 1B receptors (IL1R1&2). LEC were pretreated with either vehicle, progesterone (P4; 0-20 µM), prostaglandin (PG) E2 or PGF2α (0-0.2 µM), and further treated with or without TNF and IL1B (50 ng/mL each). LEC were then incubated with autologous T lymphocytes in an adhesion assay. Fewer lymphocytes adhered to LEC after exposure to high compared to low P4 concentrations (cubic response; P < 0.05). In contrast, 0.2 µM PGE2 and PGF2α each increased T lymphocyte adhesion in the absence of cytokines (P < 0.05). LEC induced IL2 receptor alpha (CD25) expression and proliferation of T lymphocytes. In conclusion, filtration is an effective way of isolating large numbers of viable LEC. It is proposed that PGs and P4 modulate the ability of endothelial cells to bind T lymphocytes, potentially regulating extravasation, and that LEC activate T lymphocytes migrating into or resident in the CL.
Collapse
Affiliation(s)
- S S Walusimbi
- Department of Animal ScienceCenter for Reproductive Biology and Health, Pennsylvania State University, University Park, Pennsylvania, USA
| | - L M Wetzel
- Department of Animal ScienceCenter for Reproductive Biology and Health, Pennsylvania State University, University Park, Pennsylvania, USA
| | - D H Townson
- Department of Animal and Veterinary SciencesUniversity of Vermont, Burlington, Vermont, USA
| | - J L Pate
- Department of Animal ScienceCenter for Reproductive Biology and Health, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
7
|
Maia VN, Batista AM, Cunha Neto S, Silva DMF, Adrião M, Wischral A. Expression of angiogenic factors and luteinizing hormone receptors in the corpus luteum of mares induced to ovulate with deslorelin acetate. Theriogenology 2015; 85:461-5. [PMID: 26476595 DOI: 10.1016/j.theriogenology.2015.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/09/2015] [Accepted: 09/09/2015] [Indexed: 12/27/2022]
Abstract
The effects of deslorelin acetate use in inducing ovulation need to be clarified to improve the results of equine embryo transfer. The mRNA abundance for angiogenic factors and LH receptor (LHR) in corpus luteum (CL) was studied in mares with natural (control group [CG]) and induced ovulation with deslorelin acetate (treatment group [TG]; follicles: ≥ 35 mm). Transrectal ultrasonography was used to verify the ovulation day, and on Days 4, 8, and 12 after ovulation (Day 0), CL samples were obtained through ultrasound-guided biopsy. The messenger RNA expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and LHR genes were analyzed by real-time polymerase chain reaction. A positive correlation was observed between VEGF and LHR (P < 0.00001, r = 0.78), and it was possible to detect higher LHR expression in the TG than in the CG on Day 4 (P < 0.05). Moreover, this expression was higher on Days 4 and 8 than on Day 12 in the TG. Basic fibroblast growth factor was also expressed in luteal tissue on all days for both groups; however, these differences were not significant. In conclusion, deslorelin acetate was effective for the induction of ovulation in mares, resulting in higher expression of LHR, especially on the fourth day after ovulation. In addition, VEGF expression was influenced by induced ovulation, with a lower level on Day 12, which is expected in nonpregnant mares.
Collapse
Affiliation(s)
- Victor N Maia
- Mauricio de Nassau University, Recife, Pernambuco, Brazil
| | - André M Batista
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | | | - Diogo M F Silva
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | - Manoel Adrião
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | - Aurea Wischral
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
8
|
Farberov S, Meidan R. Functions and transcriptional regulation of thrombospondins and their interrelationship with fibroblast growth factor-2 in bovine luteal cells. Biol Reprod 2014; 91:58. [PMID: 25061096 DOI: 10.1095/biolreprod.114.121020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Previously, we showed luteal stage-specific regulation of angiogenesis-modulating factors by prostaglandin F2 alpha (PGF2alpha). Fibroblast growth factor 2 (FGF2) and thrombospondins (THBSs) exhibited the most divergent profile of induction by PGF2alpha. We therefore examined the transcriptional regulation and roles of THBSs in luteal cells and studied their interaction with FGF2. THBSs and their receptors exhibited cell-specific expression: THBS1 was the predominant form in luteal endothelial cells (LEC), whereas luteinized granulosa cells (LGC) expressed mostly THBS2. CD36 was confined to LGC, but CD47 did not exhibit preferential expression between LEC and LGC. THBS1 and THBS2 were both stimulated in vitro by PGF2a and its analog in LGC. In contrast, luteinizing signals (LH and insulin) decreased the expression of THBS1, THBS2, and CD36. Importantly, LH increased FGF2 expression, suggesting that THBSs and FGF2 are conversely regulated. We found that FGF2 inhibited THBS1 and vice versa, and that THBS1 treatment decreased FGF2 expression, suggesting reciprocal inhibition. In agreement, ablation of THBS1 by specific small interference RNAs elevated FGF2 levels. THBS1 reduced LEC numbers and promoted apoptosis by activation of caspase-3. In contrast, FGF2 reduced basal and THBS1-induced caspase-3 levels. Consistent with these findings, small interference RNA silencing of THBS1 in luteal cells reduced the levels of active caspase-3 and improved the survival of cells when challenged with staurosporine. Taken together, these studies suggest that THBSs are suppressed during luteinization but are induced by PGF2alpha in luteolysis. THBS1 has antiangiogenic, proapoptotic properties; these, together with its ability to inhibit FGF2 expression and activity, can promote luteolysis.
Collapse
Affiliation(s)
- Svetlana Farberov
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
9
|
Fátima LA, Evangelista MC, Silva RS, Cardoso APM, Baruselli PS, Papa PC. FSH up-regulates angiogenic factors in luteal cells of buffaloes. Domest Anim Endocrinol 2013; 45:224-37. [PMID: 24209507 DOI: 10.1016/j.domaniend.2013.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 02/05/2023]
Abstract
Follicle-stimulating hormone has been widely used to induce superovulation in buffaloes and cows and usually triggers functional and morphologic alterations in the corpus luteum (CL). Several studies have shown that FSH is involved in regulating vascular development and that adequate angiogenesis is essential for normal luteal development. Angiogenesis is regulated by many growth factors, of which vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2) have an established central role. Therefore, we have used a combination of in vitro and in vivo studies to assess the effects of FSH on the expression of VEGF and FGF2 and their receptors in buffalo luteal cells. The in vivo model consisted of 12 buffalo cows, divided into control (n = 6) and superovulated (n = 6) groups, and CL samples were collected on day 6 after ovulation. In this model, we analyzed the gene and protein expression of FGF2 and its receptors and the protein expression of VEGFA systems with the use of real-time PCR, Western blot analysis, and immunohistochemistry. In the in vitro model, granulosa cells were collected from small follicles (diameter, 4-6 mm) of buffaloes and cultured for 4 d in serum-free medium with or without FSH (10 ng/mL). To induce in vitro luteinization, LH (250 ng/mL) and fetal bovine serum (10%) were added to the medium, and granulosa cells were maintained in culture for 4 d more. The progesterone concentration in the medium was measured at days 4, 5, and 8 after the beginning of cell culture. Cells were collected at day 8 and subjected to real-time PCR, Western blot analysis, and immunofluorescence for assessment of the expression of FGF2, VEGF, and their receptors. To address the percentage of steroidogenic and growth factor-expressing cells in the culture, flow cytometry was performed. We observed that in superovulated buffalo CL, the FGF2 system mRNA expression was decreased even as protein expression was increased and that the VEGF protein was increased (P < 0.05). In vitro experiments with granulosa cells showed an increase in the mRNA expression of VEGF and FGF2 and its receptors 1 and 2 and protein expression of VEGF, kinase insert domain receptor, FGF receptor 2, and FGF receptor 3 in cells treated with FSH (P < 0.05), in contrast to the in vivo experiments. Moreover, the progesterone production by FSH-treated cells was elevated compared with untreated cells (P < 0.05). Our findings indicate that VEGF, FGF2, and their receptors were differentially regulated by FSH in vitro and in vivo in buffalo luteal cells, which points toward a role of CL environment in modulating cellular answers to gonadotropins.
Collapse
MESH Headings
- Angiogenic Proteins/analysis
- Angiogenic Proteins/genetics
- Animals
- Buffaloes/metabolism
- Cells, Cultured
- Female
- Fibroblast Growth Factor 2/analysis
- Fibroblast Growth Factor 2/genetics
- Fluorescent Antibody Technique
- Follicle Stimulating Hormone/pharmacology
- Granulosa Cells/chemistry
- Granulosa Cells/drug effects
- Granulosa Cells/metabolism
- Luteal Cells/chemistry
- Luteal Cells/metabolism
- Luteinizing Hormone/pharmacology
- Male
- Progesterone/biosynthesis
- RNA, Messenger/analysis
- Real-Time Polymerase Chain Reaction/veterinary
- Receptor, Fibroblast Growth Factor, Type 2/analysis
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 3/analysis
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Superovulation/physiology
- Up-Regulation
- Vascular Endothelial Growth Factor A/analysis
- Vascular Endothelial Growth Factor A/genetics
Collapse
Affiliation(s)
- L A Fátima
- Department of Surgery, Sector of Anatomy, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Av. Prof. Dr Orlando Marques Paiva, 87, São Paulo, SP, 05508-270, Brazil.
| | | | | | | | | | | |
Collapse
|
10
|
Skarzynski DJ, Piotrowska-Tomala KK, Lukasik K, Galvão A, Farberov S, Zalman Y, Meidan R. Growth and Regression in Bovine Corpora Lutea: Regulation by Local Survival and Death Pathways. Reprod Domest Anim 2013; 48 Suppl 1:25-37. [DOI: 10.1111/rda.12203] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 05/20/2013] [Indexed: 11/30/2022]
Affiliation(s)
- DJ Skarzynski
- Department of Reproductive Immunology and Pathology; Institute of Animal Reproduction and Food Research; Polish Academy of Sciences; Olsztyn; Poland
| | - KK Piotrowska-Tomala
- Department of Reproductive Immunology and Pathology; Institute of Animal Reproduction and Food Research; Polish Academy of Sciences; Olsztyn; Poland
| | - K Lukasik
- Department of Reproductive Immunology and Pathology; Institute of Animal Reproduction and Food Research; Polish Academy of Sciences; Olsztyn; Poland
| | - A Galvão
- Department of Reproductive Immunology and Pathology; Institute of Animal Reproduction and Food Research; Polish Academy of Sciences; Olsztyn; Poland
| | - S Farberov
- Department of Animal Sciences; The Robert H. Smith Faculty of Agriculture, Food and Environment; The Hebrew University of Jerusalem; Rehovot; Israel
| | - Y Zalman
- Department of Animal Sciences; The Robert H. Smith Faculty of Agriculture, Food and Environment; The Hebrew University of Jerusalem; Rehovot; Israel
| | - R Meidan
- Department of Animal Sciences; The Robert H. Smith Faculty of Agriculture, Food and Environment; The Hebrew University of Jerusalem; Rehovot; Israel
| |
Collapse
|
11
|
Vu HV, Acosta TJ, Yoshioka S, Abe H, Okuda K. Roles of prostaglandin F2alpha and hydrogen peroxide in the regulation of Copper/Zinc superoxide dismutase in bovine corpus luteum and luteal endothelial cells. Reprod Biol Endocrinol 2012; 10:87. [PMID: 23101731 PMCID: PMC3545964 DOI: 10.1186/1477-7827-10-87] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 10/22/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prostaglandin F2alpha (PGF) induces luteolysis in cow by inducing a rapid reduction in progesterone production (functional luteolysis) followed by tissue degeneration (structural luteolysis). However the mechanisms of action of PGF remain unclear. Reactive oxygen species (ROS) play important roles in regulating the luteolytic action of PGF. The local concentration of ROS is controlled by superoxide dismutase (SOD), the main enzyme involved in the control of intraluteal ROS. Thus SOD seems to be involved in luteolysis process induced by PGF in cow. METHODS To determine the dynamic relationship between PGF and ROS in bovine corpus luteum (CL) during luteolysis, we determined the time-dependent change of Copper/Zinc SOD (SOD1) in CL tissues after PGF treatment in vivo. We also investigated whether PGF and hydrogen peroxide (H2O2) modulates SOD1 expression and SOD activity in cultured bovine luteal endothelial cells (LECs) in vitro. RESULTS Following administration of a luteolytic dose of PGF analogue (0 h) to cows at the mid-luteal stage, the expression of SOD1 mRNA and protein, and total SOD activity in CL tissues increased between 0.5 and 2 h, but fell below the initial (0 h) level at 24 h post-treatment. In cultured LECs, the expression of SOD1 mRNA was stimulated by PGF (1-10 microM) and H2O2 (10-100 microM) at 2 h (P<0.05). PGF and H2O2 increased SOD1 protein expression and total SOD activity at 2 h (P<0.05), whereas PGF and H2O2 inhibited SOD1 protein expressions and total SOD activity at 24 h (P<0.05). In addition, H2O2 stimulated PGF biosynthesis at 2 and 24 h in bovine LECs. Overall results indicate that, SOD is regulated by PGF and ROS in bovine LECs. SOD may play a role in controlling intraluteal PGF and ROS action during functional and structural luteolysis in cows.
Collapse
Affiliation(s)
- Hai V Vu
- Laboratory of Reproductive Physiology, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Tomas J Acosta
- Laboratory of Reproductive Physiology, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Shin Yoshioka
- Laboratory of Reproductive Physiology, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Hironori Abe
- Laboratory of Reproductive Physiology, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Kiyoshi Okuda
- Laboratory of Reproductive Physiology, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| |
Collapse
|
12
|
Shirasuna K, Akabane Y, Beindorff N, Nagai K, Sasaki M, Shimizu T, Bollwein H, Meidan R, Miyamoto A. Expression of prostaglandin F2α (PGF2α) receptor and its isoforms in the bovine corpus luteum during the estrous cycle and PGF2α-induced luteolysis. Domest Anim Endocrinol 2012; 43:227-38. [PMID: 22560179 DOI: 10.1016/j.domaniend.2012.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 03/17/2012] [Accepted: 03/17/2012] [Indexed: 12/24/2022]
Abstract
Prostaglandin F2α (PGF2α) induces luteolysis via a specific receptor, PTGFR. Although PTGFR mRNA expression in the bovine corpus luteum (CL) has been studied previously, changes in PTGFR protein and its localization are not fully understood during the life span of the CL. In addition to full-length PTGFR, several types of PTGFR isoforms, such as PTGFRα (type I) and PTGFRζ (type II), were reported in the bovine CL, suggesting isoform-specific luteal action. Full-length PTGFR mRNA in the bovine CL increased from the early to the mid-luteal phase and decreased during luteolysis, whereas PTGFR protein remained stable. PTGFR protein was localized to both luteal and endothelial cells and was expressed similarly during the life span of the CL. Like full-length PTGFR mRNA, PTGFRα and PTGFRζ mRNA also increased from the early to mid-luteal phases, and mRNA of PTGFRζ, but not PTGFRα, decreased in the regressing CL. During PGF2α-induced luteolysis, the mRNAs of full-length PTGFR, PTGFR,α and PTGFRζ decreased rapidly (from 5 or 15 min after PGF2α injection), but PTGFR protein decreased only 12 h later. Silencing full-length PTGFR using small interfering RNA prevented PGF2α-stimulated cyclooxygenase-2 (PTGS2) mRNA induction. By contrast, PGF2α could stimulate vascular endothelial growth factor A (VEGFA) mRNA even when full-length PTGFR was knocked down, thus suggesting that PGF2α may stimulate PTGS2 via full-length PTGFR, whereas VEGFA is stimulated via other PTGFR isoforms. Collectively, PTGFR protein was expressed continually in the bovine CL during the estrous cycle, implying that PGF2α could function throughout this period. Additionally, the bovine CL expresses different PTGFR isoforms, and thus PGF2α may have different effects when acting via full-length PTGFR or via PTGFR isoforms.
Collapse
Affiliation(s)
- K Shirasuna
- Graduate School of Animal and Food Hygiene, Department of Basic Veterinary Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Pate JL. It Takes Two to Tango but Four for the Finale. Biol Reprod 2012; 86:129. [DOI: 10.1095/biolreprod.112.099150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
14
|
Shirasuna K, Jiemtaweeboon S, Raddatz S, Nitta A, Schuberth HJ, Bollwein H, Shimizu T, Miyamoto A. Rapid accumulation of polymorphonuclear neutrophils in the Corpus luteum during prostaglandin F(2α)-induced luteolysis in the cow. PLoS One 2012; 7:e29054. [PMID: 22235260 PMCID: PMC3250407 DOI: 10.1371/journal.pone.0029054] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/19/2011] [Indexed: 12/29/2022] Open
Abstract
Prostaglandin F2α (PGF2α) induces luteolysis within a few days in cows, and immune cells increase in number in the regressing corpus luteum (CL), implying that luteolysis is an inflammatory-like immune response. We investigated the rapid change in polymorphonuclear neutrophil (PMN) numbers in response to PGF2α administration as the first cells recruited to inflammatory sites, together with mRNA of interleukin-8 (IL-8: neutrophil chemoattractant) and P-selectin (leukocyte adhesion molecule) in the bovine CL. CLs were collected by ovariectomy at various times after PGF2α injection. The number of PMNs was increased at 5 min after PGF2α administration, whereas IL-8 and P-selectin mRNA increased at 30 min and 2 h, respectively. PGF2α directly stimulated P-selectin protein expression at 5–30 min in luteal endothelial cells (LECs). Moreover, PGF2α enhanced PMN adhesion to LECs, and this enhancement by PGF2α was inhibited by anti-P-selectin antibody, suggesting that P-selectin expression by PGF2α is crucial in PMN migration. In conclusion, PGF2α rapidly induces the accumulation of PMNs into the bovine CL at 5 min and enhances PMN adhesion via P-selectin expression in LECs. It is suggested that luteolytic cascade by PGF2α may involve an acute inflammatory-like response due to rapidly infiltrated PMNs.
Collapse
Affiliation(s)
- Koumei Shirasuna
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Sineenard Jiemtaweeboon
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Sybille Raddatz
- Clinic for Cattle, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Akane Nitta
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | | | - Heinrich Bollwein
- Institute of Immunology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Takashi Shimizu
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Akio Miyamoto
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- * E-mail:
| |
Collapse
|
15
|
Zhang B, Tsang PCW, Pate JL, Moses MA. A role for cysteine-rich 61 in the angiogenic switch during the estrous cycle in cows: regulation by prostaglandin F2alpha. Biol Reprod 2011; 85:261-8. [PMID: 21490242 DOI: 10.1095/biolreprod.110.086645] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The development and demise of the corpus luteum (CL) are accompanied by angiogenic and angioregressive processes; however, the mediators of these processes have not been fully identified and characterized. Transcriptional profiling studies revealed the upregulation of cysteine-rich 61 (CYR61) in the CL, about which nothing was previously known. In the present study, we found that over a 12-h period following a single injection of prostaglandin F(2alpha) (PGF(2alpha)), RT-PCR revealed the upregulation of CYR61 at 0.5 and 1 h, after which it declined. We also determined that luteal-derived endothelial cells as well as luteal steroidogenic cells are sources of CYR61. Treatment with PGF(2alpha) in vitro had no effect on CYR61 expression in luteal-derived endothelial cells, but it increased CYR61 expression in luteal steroidogenic cells. During the estrous cycle, CYR61/CYR61 (transcript/protein) was increased in the Day 4 but not in the Day 10 and Day 16 CL, suggesting that it may be associated with the switch to the angiogenic phenotype. In addition, the specific but transient upregulation of CYR61 by PGF(2alpha) in vivo, and in luteal steroidogenic cells but not endothelial cells in vitro, may be part of the mechanism underlying the previously reported transient increase in blood flow during the early onset of luteolysis. This is supported by our preliminary finding that CYR61 transiently inhibited endothelial cell expression of endothelin-converting enzyme 1 mRNA but not endothelin 1. Collectively, the increased expression of CYR61 in the Day 4 CL and its transient increase by PGF(2alpha) in Day 6, Day 10, and Day 16 CL indicate that CYR61 may play a role in regulating angiogenesis over the life span of the CL.
Collapse
Affiliation(s)
- Bo Zhang
- Vascular Biology Program, Children's Hospital Boston, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
16
|
Korzekwa AJ, Bodek G, Bukowska J, Blitek A, Skarzynski DJ. Characterization of bovine immortalized luteal endothelial cells: action of cytokines on production and content of arachidonic acid metabolites. Reprod Biol Endocrinol 2011; 9:27. [PMID: 21349168 PMCID: PMC3056776 DOI: 10.1186/1477-7827-9-27] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 02/24/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The interactions between luteal, vascular endothelial, immune cells and its products: steroids, peptide hormones, prostaglandins (PGs), growth factors and cytokines play a pivotal role in the regulation of corpus luteum (CL) function. Luteal endothelial cells undergo many dynamic morphological changes and their action is regulated by cytokines. The aims are: (1) to establish in vitro model for bovine luteal endothelial cells examination; (2) to study the effect of cytokines: tumor necrosis factor alpha (TNFalpha) and interferon gamma (IFNgamma) on cell viability, leukotrienes (LTs) and PG synthases, and endothelin-1 (EDN-1) mRNA, protein expression and their secretion in bovine immortalized luteal endothelial (EnCL-1) cells. METHODS The primary cultures of bovine luteal endothelial cells were immortalized by transfection with vector carrying the Simian virus 40 T-antigen (SV40 T-ag) sequence. Expression of SV40 T-ag gene in EnCL-1 cells was confirmed by RT-PCR and immunofluorescence staining showed the presence of endothelial cell markers: VE-cadherin and von Willebrand factor. EnCL-1 cells were stimulated by TNFalpha with IFNgamma (50 ng/ml each) for 24 h. Cell viability, mRNA expression (real time RT-PCR), protein expression (western blotting) for LTC4 synthase (LTC4S), LTA4 hydrolase (LTA4H), PGE2 and PGF2alpha synthases and endothelin-1 (EDN-1), and levels of LTs (B4 and C4) and PGs (E2 and F2alpha) and EDN-1 in the medium (EIA) were evaluated. RESULTS We received immortalized luteal endothelial cell line (EnCL-1). Cytokines did not change EnCL-1 cell viability but increased mRNA expression of LTC4S, LTA4H, PGE2 and PGF2alpha synthases and EDN-1. EDN-1/2/3, LTC4 and PGF2alpha synthases protein expression were elevated in the presence of TNFalpha/IFNgamma, and accompanied by increased EDN-1, LTC4 and PGF2alpha secretion. Cytokines had no effect on PGES and LTA4H protein expression, and PGE2 and LTB4 release. CONCLUSIONS TNFalpha and IFNgamma modulate EnCL-1 cell function. Moreover, established EnCL-1 cell line appears to be a good model for investigating the molecular mechanisms related to cytokines action and aa metabolites production in cattle.
Collapse
Affiliation(s)
- Anna J Korzekwa
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | - Gabriel Bodek
- In vitro and Biotechnology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | - Joanna Bukowska
- In vitro and Biotechnology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | - Agnieszka Blitek
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | - Dariusz J Skarzynski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| |
Collapse
|
17
|
Sirotkin AV, Makarevich AV, Grosmann R. Protein kinases and ovarian functions. J Cell Physiol 2010; 226:37-45. [DOI: 10.1002/jcp.22364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
18
|
Sirotkin AV. Protein kinases: Signaling molecules controlling ovarian functions. Int J Biochem Cell Biol 2010; 42:1927-30. [PMID: 20833260 DOI: 10.1016/j.biocel.2010.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 08/16/2010] [Accepted: 08/30/2010] [Indexed: 11/16/2022]
Abstract
The present focus survey represents a review of current knowledge concerning involvement of protein kinases in control of basic ovarian functions in mammals. Ovarian cells produce a number of protein kinases, whose expression depends on type of cells, their state and action of hormones and other protein kinases. A number of protein kinases are involved in control of ovarian cell proliferation, apoptosis, oocyte maturation, hormone release, reception and response to hormones, as well as in mediating action of hormones on these ovarian functions. Protein kinases and their regulators could be used for characterization, prediction and control of ovarian folliculogenesis and atresia, corpus luteum functions, oocyte maturation, fertility, release of hormones, response of ovarian structures to hormonal regulators, as well as for treatment of some reproductive disorders.
Collapse
|
19
|
Zorrilla LM, Sriperumbudur R, Gadsby JE. Endothelin-1, endothelin converting enzyme-1 and endothelin receptors in the porcine corpus luteum. Domest Anim Endocrinol 2010; 38:75-85. [PMID: 19783117 DOI: 10.1016/j.domaniend.2009.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 08/25/2009] [Accepted: 08/26/2009] [Indexed: 12/31/2022]
Abstract
Porcine corpora lutea (CL) fail to show a luteolytic response to prostaglandin-F-2alpha (PGF-2alpha) (ie, luteolytic sensitivity [LS]) until about day 12-13 of the estrous cycle. Although little is known of the control of LS in any species, endothelin-1 (EDN1) is believed to play a role in LS control in ruminants. Therefore, we measured mRNA and protein expression and examined the cellular localization of EDN1 precursor (pre-pro EDN1, or ppEDN1), EDN-converting enzyme-1 (ECE1), and EDN receptors (A, EDNRA and B, EDNRB) in porcine CLs collected on days 4, 7, 10, 13, and 15 of the estrous cycle to look for differences between CLs displaying (days 13-15) versus those lacking (days 4-10) LS. Abundance of ppEDN1 mRNA was greatest (and significant vs all other days) on day 7 of the cycle, whereas EDN1 protein expression did not vary during the cycle and was localized exclusively to endothelial cells (EC). Abundance of ECE1 mRNA was also greatest on day 7 (vs all other days), but ECE1 protein was significantly elevated on day 10 (vs day 4) and was immunolocalized to ECs and large luteal cells (LLC). Abundance of EDNRA mRNA was also maximal on day 7 (vs all other days) of the cycle, whereas EDNRA protein expression was not significantly changed during the cycle and was observed in LLCs, ECs, and small luteal cells (SLC). On day 13, EDNRB mRNA was significantly decreased (versus day 7). Expression of EDNRB protein was decreased on day 10 (versus all other days), and on days 13-15 (vs day 4), and was primarily localized to ECs. In conclusion, the observed elevation in ECE1 protein concentrations on day 10 and the presence of EDNRA on LLC suggests a possible role for EDN1 (resulting from the actions of ECE1) acting via EDNRA in the control of LS in the pig.
Collapse
Affiliation(s)
- L M Zorrilla
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | | | | |
Collapse
|
20
|
Lee SH, Acosta TJ, Yoshioka S, Okuda K. Prostaglandin F(2alpha) regulates the nitric oxide generating system in bovine luteal endothelial cells. J Reprod Dev 2009; 55:418-24. [PMID: 19404000 DOI: 10.1262/jrd.20205] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objective of the present study was to elucidate whether luteolytic prostaglandin F(2alpha) (PGF) plays roles in regulating the nitric oxide (NO) generating system in luteal endothelial cells (LECs). Reverse transcriptase PCR, immunoblotting and immunostaining revealed the presence of PGF receptor mRNA (521 bp) and protein (64 kDa) in cultured LECs obtained from the mid-stage corpus luteum. When cultured LECs were exposed to 0.1 microM-10 microM PGF, NO production was significantly stimulated by PGF at 24 h. When LECs were exposed to 1 microM PGF for 2, 6 and 24 h, PGF did not affect the expressions of endothelial NO synthase (eNOS) mRNA and protein. On the other hand, PGF stimulated the expression of inducible NOS (iNOS) mRNA (P<0.05) and protein (P<0.05) at 2 h, but not at 6 and 24 h. By observing the conversion of [(3)C](L)-arginine to [(3)C](L)-citrulline, we found that PGF stimulated NOS activity in cultured LECs at 2 h (P<0.05). The overall findings indicate that bovine LECs are a target for PGF and that PGF stimulates iNOS expression and NOS activity in bovine LECs. Stimulation of the NO generating system and NOS activity by PGF may result in increasing local NO production followed by luteolysis.
Collapse
Affiliation(s)
- Seung-Hyung Lee
- Laboratory of Reproductive Endocrinology, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | | | | | |
Collapse
|
21
|
HOJO T, AL-ZI'ABI MO, SKARZYNSKI DJ, ACOSTA TJ, OKUDA K. Changes in the Vasculature of Bovine Corpus Luteum During the Estrous Cycle and Prostaglandin F2α-induced Luteolysis. J Reprod Dev 2009; 55:512-7. [DOI: 10.1262/jrd.20257] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Takuo HOJO
- Laboratory of Reproductive Endocrinology, Graduate School of Natural Science and Technology, Okayama University
| | - Mohamad O. AL-ZI'ABI
- Laboratory of Reproductive Endocrinology, Graduate School of Natural Science and Technology, Okayama University
- Central Laboratory for Disease Diagnosis and Research, Faculty of Veterinary Medicine, Al-Baath University
| | - Dariusz J. SKARZYNSKI
- Department of Reproductive Immunology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences
| | - Tomas J. ACOSTA
- Laboratory of Reproductive Endocrinology, Graduate School of Natural Science and Technology, Okayama University
| | - Kiyoshi OKUDA
- Laboratory of Reproductive Endocrinology, Graduate School of Natural Science and Technology, Okayama University
| |
Collapse
|
22
|
Skarzynski DJ, Ferreira-Dias G, Okuda K. Regulation of luteal function and corpus luteum regression in cows: hormonal control, immune mechanisms and intercellular communication. Reprod Domest Anim 2008; 43 Suppl 2:57-65. [PMID: 18638105 DOI: 10.1111/j.1439-0531.2008.01143.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The main function of the corpus luteum (CL) is production of progesterone (P4). Adequate luteal function to secrete P4 is crucial for determining the physiological duration of the oestrous cycle and for achieving a successful pregnancy. The bovine CL grows very fast and regresses within a few days at luteolysis. Mechanisms controlling development and secretory function of the bovine CL may involve many factors that are produced both within and outside the CL. Some of these regulators seem to be prostaglandins (PGs), oxytocin, growth and adrenergic factors. Moreover, there is evidence that P4 acts within the CL as an autocrine or paracrine regulator. Each of these factors may act on the CL independently or may modify the actions of others. Although uterine PGF(2 alpha) is known to be a principal luteolytic factor, its direct action on the CL is mediated by local factors: cytokines, endothelin-1, nitric oxide. The changes in ovarian blood flow have also been suggested to have some role in regulation of CL development, maintenance and regression.
Collapse
Affiliation(s)
- D J Skarzynski
- Department of Reproductive Immunology, Institute of Animal Reproduction and Food Research of PAS, Olsztyn, Poland.
| | | | | |
Collapse
|
23
|
Shirasuna K, Watanabe S, Asahi T, Wijayagunawardane MPB, Sasahara K, Jiang C, Matsui M, Sasaki M, Shimizu T, Davis JS, Miyamoto A. Prostaglandin F2alpha increases endothelial nitric oxide synthase in the periphery of the bovine corpus luteum: the possible regulation of blood flow at an early stage of luteolysis. Reproduction 2008; 135:527-39. [PMID: 18296510 DOI: 10.1530/rep-07-0496] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prostaglandin F(2)(alpha) (PGF(2)(alpha)) released from the uterus causes alterations in luteal blood flow, reduces progesterone secretion, and induces luteolysis in the bovine corpus luteum (CL). We have recently discovered that luteal blood flow in the periphery of the mature CL acutely increases coincidently with pulsatile increases in a metabolite of PGF(2)(alpha) (PGFM). In this study, we characterized changes in regional luteal blood flow together with regional alterations in endothelial nitric oxide synthase (eNOS) expression during spontaneous luteolysis and in response to PGF(2)(alpha). Smooth muscle actin-positive blood vessels larger than 20 microm were observed mainly in the periphery of mature CL. PGF(2)(alpha) receptor was localized to luteal cells and large blood vessels in the periphery of mid-CL. PGF(2)(alpha) acutely stimulated eNOS expression in the periphery but not in the center of mature CL. Injection of the NO donor S-nitroso-N-acetylpenicillamine into CL induced an acute increase in luteal blood flow and shortened the estrous cycle. In contrast, injection of the NOS inhibitor l-NAME into CL completely suppressed the acute increase in luteal blood flow induced by PGF(2)(alpha) and delayed the onset of luteolysis. In conclusion, PGF(2)(alpha) has a site-restricted action depending on not only luteal phase but also the region in the CL. PGF(2)(alpha) stimulates eNOS expression, vasodilation of blood vessels, and increased luteal blood flow in periphery of mature CL. Furthermore, the increased blood flow is mediated by NO, suggesting that the acute increase in peripheral blood flow to CL is one of the first physiological indicators of NO action in response to PGF(2)(alpha).
Collapse
Affiliation(s)
- Koumei Shirasuna
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
SHIRASUNA K, MATSUI M, SHIMIZU T, MIYAMOTO A. Local mechanisms for luteolysis in the cow: Novel roles of vasoactive substances in the luteolytic cascade within the corpus luteum. Anim Sci J 2007. [DOI: 10.1111/j.1740-0929.2007.00463.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Boiti C, Maranesi M, Dall'aglio C, Pascucci L, Brecchia G, Gobbetti A, Zerani M. Vasoactive Peptides in the Luteolytic Process Activated by PGF2alpha in Pseudopregnant Rabbits at Different Luteal Stages1. Biol Reprod 2007; 77:156-64. [PMID: 17360961 DOI: 10.1095/biolreprod.106.055889] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To study the role of endothelial factors in luteal function, the dynamic profiles of genes for endothelin 1 (EDN1), its receptor subtypes, EDNRA and EDNRB, and angiotensin converting enzyme (ACE) were examined in corpora lutea (CL) obtained from rabbits on Days 4 and 9 of pseudopregnancy after prostaglandin (PG) F2alpha analogue (alfaprostol) treatment. The cell type distribution of EDN1 in the ovaries and its mechanisms of actions in vitro and in vivo were also studied. Positive immunostaining for EDN1 was localized in the luteal and endothelial cells, in granulosa cells of the follicles, and in the ovarian epithelium. The basal mRNA levels for EDNRA, EDNRB, and ACE were lower (P </= 0.01) in Day-4 CL than in Day-9 CL, whereas those for EDN1 did not differ between these two time-points. On Day 4, the luteal EDN1, EDNRA, EDNRB, and ACE mRNA levels were similarly increased two-fold (P </= 0.01) 1.5 h after alfaprostol injection, and did not show further changes in the subsequent 24 h. On Day 9, alfaprostol challenge transiently up-regulated (P </= 0.01) the luteal ACE transcripts at 1.5 h, and those of EDN1 at 1.5 h and 3 h, whereas the EDNRA and EDNRB transcript levels remained unchanged during the course of luteal regression. EDN1 decreased (P </= 0.01) progesterone release and increased (P </= 0.01) PGF2alpha secretion and NOS activity via the PLC/PKC pathway in Day-9 CL, but not in Day-4 CL, cultured in vitro. EDN1-induced, but not alfaprostol-induced luteolysis, was blocked by cotreatment in vivo with the ACE antagonist captopril. These findings support the hypothesis that PGF2alpha regulates luteolysis through intraluteal activation of the renin-angiotensin/EDN1 systems in CL that have acquired luteolytic competence.
Collapse
Affiliation(s)
- Cristiano Boiti
- Dipartimento di Scienze Biopatologiche ed Igiene delle Produzioni Animali e Alimentari, Sezione di Fisiologia veterinaria, Laboratorio di Biotecnologie Fisiologiche, Università degli Studi di Perugia, I-06100 Perugia, Italy.
| | | | | | | | | | | | | |
Collapse
|
26
|
KORZEKWA A, WOCLAWEK-POTOCKA I, OKUDA K, ACOSTA TJ, SKARZYNSKI DJ. Nitric oxide in bovine corpus luteum: Possible mechanisms of action in luteolysis. Anim Sci J 2007. [DOI: 10.1111/j.1740-0929.2007.00430.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Skarzynski DJ, Woclawek-Potocka I, Korzekwa A, Bah MM, Piotrowska K, Barszczewska B, Okuda K. Infusion of exogenous tumor necrosis factor dose dependently alters the length of the luteal phase in cattle: differential responses to treatment with indomethacin and L-NAME, a nitric oxide synthase inhibitor. Biol Reprod 2006; 76:619-27. [PMID: 17192516 DOI: 10.1095/biolreprod.106.053280] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We examined whether prostaglandins (PGs) and nitric oxide (NO) mediate tumor necrosis factor (TNF) actions in the estrus cycle. On Day 14 of the cycle, the following solutions were infused into the aorta abdominalis of a total of 51 heifers (Experiments 1 and 2): saline; 1 or 10 microg of TNF; 480 mg indomethacin (INDO), an inhibitor of prostaglandin H synthase; 800 mg L-NAME, an inhibitor of NO synthase; and TNF (1 or 10 microg) in combination with INDO or L-NAME. TNF at 1 microg infused directly into aorta abdominalis increased the level of PGF(2alpha) and decreased the level of progesterone (P4) in the peripheral blood and shortened the estrus cycle. The high TNF dose stimulated P4 and PGE(2) and prolonged the corpus luteum (CL) lifespan. INDO blocked the effects of both TNF doses on the CL lifespan and hormone output. L-NAME completely blocked the effects of the luteolytic TNF dose, whereas the effects of the luteotropic TNF dose were not inhibited. In Experiment 3 (Day 14), saline or different TNF doses were infused into the jugular vein (n = 9) or into the uterine lumen (n = 18). The CL lifespans of the different groups were not different when TNF was infused into the jugular vein. Although high TNF doses (1 and 10 microg) infused into the uterine lumen prolonged the CL lifespan, low doses (0.01 and 0.1 microg) induced premature luteolysis. We suggest that the actions of exogenous TNF on the CL lifespan depend on PG synthesis stimulated by TNF in the uterus. TNF at low concentrations initiates a positive cascade between uterine PGF(2alpha) and various luteolytic factors, including NO, to complete premature luteolysis. PGE(2) is a good candidate mediator of the luteotropic actions of exogenous TNF action.
Collapse
Affiliation(s)
- Dariusz J Skarzynski
- Department of Reproductive Immunology, Institute of Animal Reproduction and Food Research, PAS, Olsztyn 10-747, Poland.
| | | | | | | | | | | | | |
Collapse
|
28
|
Rosiansky-Sultan M, Klipper E, Spanel-Borowski K, Meidan R. Inverse relationship between nitric oxide synthases and endothelin-1 synthesis in bovine corpus luteum: interactions at the level of luteal endothelial cell. Endocrinology 2006; 147:5228-35. [PMID: 16887911 DOI: 10.1210/en.2006-0795] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Endothelin-1 (ET-1) and nitric oxide (NO) play pivotal roles in corpus luteum (CL) function. The present study examined the interplay between NO and ET-1 synthesis in the bovine CL. We found similar inducible and endothelial NO synthase (iNOS and eNOS, respectively) activities in the young CL (d 1-5) expressing the highest levels of both eNOS and iNOS mRNA. These values later declined at mid-cycle (d 8-15) and remained low at later stages (d 16-18). Luteolysis, initiated by prostaglandin F2alpha analog administration, further reduced NOS mRNA and by 24 h, NOS values dropped to approximately 15% of those at mid-cycle. eNOS protein levels followed a similar pattern to its mRNA. Because endothelial cells (ECs) are the main site for ET-1 and NO production in the CL, we examined the direct effects of the NO donor, NONOate on luteal ECs (LECs). Elevated NO levels markedly decreased ET-1 mRNA, and peptide concentrations in cultured and freshly isolated LECs in a dose-dependent manner. In agreement, NOS inhibitor, NG-nitro-l-arginine methyl ester, stimulated ET-1 mRNA expression in these cells. Interestingly, NO also up-regulated prostaglandin F2alpha receptors in LECs. These data show that there is an inverse relationship between NOS and ET-1 throughout the CL life span, and imply that this pattern may be the result of their interaction within the resident LECs. NOS are expressed in a physiologically relevant manner: elevated NO at an early luteal stage is likely to play an important role in angiogenesis, whereas reduced levels of NO during luteal regression may facilitate the sustained up-regulation of ET-1 levels during luteolysis.
Collapse
Affiliation(s)
- Maya Rosiansky-Sultan
- Department of Animal Sciences, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
29
|
Bah MM, Acosta TJ, Pilawski W, Deptula K, Okuda K, Skarzynski DJ. Role of intraluteal prostaglandin F2α, progesterone and oxytocin in basal and pulsatile progesterone release from developing bovine corpus luteum. Prostaglandins Other Lipid Mediat 2006; 79:218-29. [PMID: 16647636 DOI: 10.1016/j.prostaglandins.2006.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 01/16/2006] [Accepted: 01/23/2006] [Indexed: 01/06/2023]
Abstract
The present study examined the role of intra-luteal prostaglandin (PG) F(2alpha), progesterone (P4) and oxytocin (OT) on the corpus luteum function by using specific hormone antagonists. Luteal cells from the developing CL (days 5-7 of the estrous cycle) were exposed to P4 antagonist (onapristone, OP, 10(-4)M), OT antagonist (atosiban, AT; 10(-6)M) or indomethacin (INDO; 10(-4)M), for 12h and then stimulated with PGF(2alpha) (10(-8)M) for 4h. Pre-treatment of the cells with OP, AT or INDO resulted in an increase in P4 secretion in response to PGF(2alpha). To examine the temporal effects of P4, OT and PGs on P4 secretion, dispersed luteal cells were pre-exposed to OP, AT or INDO for 1, 2, 4, 6 or 12h. Prostaglandin F(2alpha) stimulated P4 secretion (P<0.05) after 2h of pre-exposition. In the microdyalisis study, the spontaneous release of P4 from developing CL tissue was of pulsatile nature with irregular peaks at 1-2h intervals. Treatment with OP increased the number of P4 peaks (P<0.05), whereas AT and INDO significantly reduced the number of P4 peaks detected (P<0.05). Interestingly, INDO completely blocked the pulsatile nature in the release of P4, but it secretion remained stable throughout the experimental period. These results demonstrate that luteal PGF(2alpha), OT, and P4 are components of an autocrine/paracrine intra-ovarian regulatory system responsible for the episodic (pulsatile) release of P4 from the bovine CL during the early luteal phase.
Collapse
Affiliation(s)
- Mamadou M Bah
- Department of Reproductive Immunology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | | | | | | | | | | |
Collapse
|