1
|
Lou X, Li P, Luo X, Lei Z, Liu X, Liu Y, Gao L, Xu W, Liu X. Dietary patterns interfere with gut microbiota to combat obesity. Front Nutr 2024; 11:1387394. [PMID: 38953044 PMCID: PMC11215203 DOI: 10.3389/fnut.2024.1387394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/07/2024] [Indexed: 07/03/2024] Open
Abstract
Obesity and obesity-related metabolic disorders are global epidemics that occur when there is chronic energy intake exceeding energy expenditure. Growing evidence suggests that healthy dietary patterns not only decrease the risk of obesity but also influence the composition and function of the gut microbiota. Numerous studies manifest that the development of obesity is associated with gut microbiota. One promising supplementation strategy is modulating gut microbiota composition by dietary patterns to combat obesity. In this review, we discuss the changes of gut microbiota in obesity and obesity-related metabolic disorders, with a particular emphasis on the impact of dietary components on gut microbiota and how common food patterns can intervene in gut microbiota to prevent obesity. While there is promise in intervening with the gut microbiota to combat obesity through the regulation of dietary patterns, numerous key questions remain unanswered. In this review, we critically review the associations between dietary patterns, gut microbes, and obesity, aiming to contribute to the further development and application of dietary patterns against obesity in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaomeng Liu
- Nutrition and Food Hygiene Laboratory, School of Public Health, Xinxiang Medical College, Xinxiang, China
| |
Collapse
|
2
|
Zhou M, Ma J, Kang M, Tang W, Xia S, Yin J, Yin Y. Flavonoids, gut microbiota, and host lipid metabolism. Eng Life Sci 2024; 24:2300065. [PMID: 38708419 PMCID: PMC11065335 DOI: 10.1002/elsc.202300065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/19/2023] [Accepted: 08/30/2023] [Indexed: 05/07/2024] Open
Abstract
Flavonoids are widely distributed in nature and have a variety of beneficial biological effects, including antioxidant, anti-inflammatory, and anti-obesity effects. All of these are related to gut microbiota, and flavonoids also serve as a bridge between the host and gut microbiota. Flavonoids are commonly used to modify the composition of the gut microbiota by promoting or inhibiting specific microbial species within the gut, as well as modifying their metabolites. In turn, the gut microbiota extensively metabolizes flavonoids. Hence, this reciprocal relationship between flavonoids and the gut microbiota may play a crucial role in maintaining the balance and functionality of the metabolism system. In this review, we mainly highlighted the biological effects of antioxidant, anti-inflammatory and antiobesity, and discussed the interaction between flavonoids, gut microbiota and lipid metabolism, and elaborated the potential mechanisms on host lipid metabolism.
Collapse
Affiliation(s)
- Miao Zhou
- College of Animal Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Jie Ma
- College of Animal Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Meng Kang
- College of Animal Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Wenjie Tang
- Sichuan Animal Science AcademyLivestock and Poultry Biological Products Key Laboratory of Sichuan ProvinceSichuan Animtech Feed Co., LtdChengduSichuanChina
| | - Siting Xia
- College of Animal Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Jie Yin
- College of Animal Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Yulong Yin
- College of Animal Science and TechnologyHunan Agricultural UniversityChangshaChina
| |
Collapse
|
3
|
Zhang S, Zhang Y, Li J, Wang X, Zhang M, Du M, Jiang W, Li C. Butyrate and Propionate are Negatively Correlated with Obesity and Glucose Levels in Patients with Type 2 Diabetes and Obesity. Diabetes Metab Syndr Obes 2024; 17:1533-1541. [PMID: 38586541 PMCID: PMC10998531 DOI: 10.2147/dmso.s434499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/28/2024] [Indexed: 04/09/2024] Open
Abstract
Background Growing evidence has demonstrated the important roles of gut microbiota and short chain fatty acids, especially acetate, propionate and butyrate, in the development of obesity and metabolic diseases. To date, the effects of acetate, propionate and butyrate on human adiposity and glucose metabolism remain controversial. This study aimed to explore the associations of systemically acetate, propionate and butyrate with obesity and glucose homeostasis in patients with type 2 diabetes (T2D) and obesity. Methods A total of 12 patients with T2D and obesity and 8 age- and sex-matched healthy individuals with BMI <24 kg/m2 were enrolled in this study. Height, weight, body composition, blood pressure, biochemical indices, a 75-g oral glucose tolerance test, and plasma acetate, propionate and butyrate were measured at baseline. Then, participants in T2D group were given a weight control therapy, in addition to conventional medication, and all the measurements were repeated 12 months from baseline. The direct segmental multi-frequency bioelectrical impedance analysis was used to assess body composition. Acetate, propionate and butyrate levels were determined by liquid chromatography coupled to tandem mass spectrometry. Results Butyrate concentration significantly increased from baseline after obvious weight loss (P<0.05). Correlation analysis showed that propionate was negatively correlated with percent of body fat (PBF) and 2-h plasma glucose (2-h PG) (P<0.05), and butyrate was negatively associated with body mass index, visceral fat area, PBF and 2-h PG (P<0.05). No association was found between acetate and obesity. Conclusion Butyrate and propionate are negatively correlated with obesity and glucose levels in patients with T2D and obesity.
Collapse
Affiliation(s)
- Shi Zhang
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, People’s Republic of China
| | - Yanju Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Jing Li
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, People’s Republic of China
| | - Xincheng Wang
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, People’s Republic of China
| | - Minying Zhang
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
| | - Meiyang Du
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, People’s Republic of China
| | - Weiran Jiang
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Chunjun Li
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
4
|
Brown WE, Holdorf HT, Kendall SJ, White HM. Dam Body Condition Score Alters Offspring Circulating Cortisol and Energy Metabolites in Holstein Calves but Did Not Affect Neonatal Leptin Surge. Metabolites 2023; 13:631. [PMID: 37233672 PMCID: PMC10221655 DOI: 10.3390/metabo13050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
The neonatal leptin surge is important for hypothalamic development, feed intake regulation, and long-term metabolic control. In sheep, the leptin surge is eliminated with maternal overnutrition and an elevated dam body condition score (BCS), but this has not been assessed in dairy cattle. The aim of this study was to characterize the neonatal profile of leptin, cortisol and other key metabolites in calves born to Holstein cows with a range of BCS. Dam BCS was determined 21 d before expected parturition. Blood was collected from calves within 4 h of birth (d 0), and on days 1, 3, 5, and 7. Serum was analyzed for concentrations of leptin, cortisol, blood urea nitrogen, β-hydroxybutyrate (BHB), free fatty acids (FFA), triglycerides, and total protein (TP). Statistical analysis was performed separately for calves sired by Holstein (HOL) or Angus (HOL-ANG) bulls. Leptin tended to decrease after birth in HOL calves, but there was no evidence of an association between leptin and BCS. For HOL calves, the cortisol level increased with an increasing dam BCS on day 0 only. Dam BCS was variably associated with the calf BHB and TP levels, depending on the sire breed and day of age. Further investigation is required to elucidate the impacts of maternal dietary and energy status during gestation on offspring metabolism and performance, in addition to the potential impact of the absence of a leptin surge on long-term feed intake regulation in dairy cattle.
Collapse
Affiliation(s)
- William E. Brown
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Animal Sciences & Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Henry T. Holdorf
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sophia J. Kendall
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Heather M. White
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
5
|
Modulation of Adipocyte Metabolism by Microbial Short-Chain Fatty Acids. Nutrients 2021; 13:nu13103666. [PMID: 34684670 PMCID: PMC8538331 DOI: 10.3390/nu13103666] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity and its complications—including type 2 diabetes, cardiovascular disease, and certain cancers—constitute a rising global epidemic that has imposed a substantial burden on health and healthcare systems over the years. It is becoming increasingly clear that there is a link between obesity and the gut microbiota. Gut dysbiosis, characterized as microbial imbalance, has been consistently associated with obesity in both humans and animal models, and can be reversed with weight loss. Emerging evidence has shown that microbial-derived metabolites such as short-chain fatty acids (SCFAs)—including acetate, propionate, and butyrate—provide benefits to the host by impacting organs beyond the gut, including adipose tissue. In this review, we summarize what is currently known regarding the specific mechanisms that link gut-microbial-derived SCFAs with adipose tissue metabolism, such as adipogenesis, lipolysis, and inflammation. In addition, we explore indirect mechanisms by which SCFAs can modulate adipose tissue metabolism, such as via perturbation of gut hormones, as well as signaling to the brain and the liver. Understanding how the modulation of gut microbial metabolites such as SCFAs can impact adipose tissue function could lead to novel therapeutic strategies for the prevention and treatment of obesity.
Collapse
|
6
|
Chen H, Meng L, Shen L. Multiple roles of short-chain fatty acids in Alzheimer disease. Nutrition 2021; 93:111499. [PMID: 34735921 DOI: 10.1016/j.nut.2021.111499] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/19/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022]
Abstract
Alzheimer disease (AD) is the most common form of neurodegenerative disease in older adults and has a complicated etiology. Recently, the roles of short-chain fatty acids (SCFAs), the main metabolites generated by fermentation of dietary fiber by gut microbiota, in the pathogenesis of AD have attracted considerable interest. This study analyzed the multiple roles of SCFAs in AD pathogenesis from five aspects, including: 1) epigenetic regulation; 2) modulation of neuroinflammation; 3) maintenance of the blood-brain barrier (BBB); 4) regulation of brain metabolism; and 5) interference in amyloid protein formation. According to the currently available evidence, SCFAs, particularly butyrate, cause important biological effects that interfere with the development of AD. However, the effect of other SCFAs, such as propionate, on AD might be either beneficial or harmful to different pathways, indicating that the role of SCFAs in the pathogenesis of AD is rather complicated and warrants further investigations.
Collapse
Affiliation(s)
- Hui Chen
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China; Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
| | - Lei Meng
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China; Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
| | - Liang Shen
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China; Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
| |
Collapse
|
7
|
Coleman DN, Alharthi AS, Liang Y, Lopes MG, Lopreiato V, Vailati-Riboni M, Loor JJ. Multifaceted role of one-carbon metabolism on immunometabolic control and growth during pregnancy, lactation and the neonatal period in dairy cattle. J Anim Sci Biotechnol 2021; 12:27. [PMID: 33536062 PMCID: PMC7860211 DOI: 10.1186/s40104-021-00547-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Dairy cattle undergo dramatic metabolic, endocrine, physiologic and immune changes during the peripartal period largely due to combined increases in energy requirements for fetal growth and development, milk production, and decreased dry matter intake. The negative nutrient balance that develops results in body fat mobilization, subsequently leading to triacylglycerol (TAG) accumulation in the liver along with reductions in liver function, immune dysfunction and a state of inflammation and oxidative stress. Mobilization of muscle and gluconeogenesis are also enhanced, while intake of vitamins and minerals is decreased, contributing to metabolic and immune dysfunction and oxidative stress. Enhancing post-ruminal supply of methyl donors is one approach that may improve immunometabolism and production synergistically in peripartal cows. At the cellular level, methyl donors (e.g. methionine, choline, betaine and folic acid) interact through one-carbon metabolism to modulate metabolism, immune responses and epigenetic events. By modulating those pathways, methyl donors may help increase the export of very low-density lipoproteins to reduce liver TAG and contribute to antioxidant synthesis to alleviate oxidative stress. Thus, altering one-carbon metabolism through methyl donor supplementation is a viable option to modulate immunometabolism during the peripartal period. This review explores available data on the regulation of one-carbon metabolism pathways in dairy cows in the context of enzyme regulation, cellular sensors and signaling mechanisms that might respond to increased dietary supply of specific methyl donors. Effects of methyl donors beyond the one-carbon metabolism pathways, including production performance, immune cell function, mechanistic target or rapamycin signaling, and fatty acid oxidation will also be highlighted. Furthermore, the effects of body condition and feeding system (total mixed ration vs. pasture) on one-carbon metabolism pathways are explored. Potential effects of methyl donor supply during the pepartum period on dairy calf growth and development also are discussed. Lastly, practical nutritional recommendations related to methyl donor metabolism during the peripartal period are presented. Nutritional management during the peripartal period is a fertile area of research, hence, underscoring the importance for developing a systems understanding of the potential immunometabolic role that dietary methyl donors play during this period to promote health and performance.
Collapse
Affiliation(s)
- Danielle N. Coleman
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Abdulrahman S. Alharthi
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Yusheng Liang
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Matheus Gomes Lopes
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Vincenzo Lopreiato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Mario Vailati-Riboni
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Juan J. Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| |
Collapse
|
8
|
Nogal A, Valdes AM, Menni C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes 2021; 13:1-24. [PMID: 33764858 PMCID: PMC8007165 DOI: 10.1080/19490976.2021.1897212] [Citation(s) in RCA: 417] [Impact Index Per Article: 104.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/29/2021] [Accepted: 02/15/2021] [Indexed: 02/04/2023] Open
Abstract
The gut microbiota plays an important role in cardio-metabolic diseases with diet being among the strongest modulators of gut microbiota composition and function. Resistant dietary carbohydrates are fermented to short-chain fatty acids (SCFAs) by the gut bacteria. Fiber and omega-3 rich diets increase SCFAs production and abundance of SCFA-producing bacteria. Likewise, SCFAs can improve gut barrier integrity, glucose, and lipid metabolism, regulate the immune system, the inflammatory response, and blood pressure. Therefore, targeting the gut microbiota with dietary strategies leading to increased SCFA production may benefit cardio-metabolic health. In this review, we provide an overview of the association between diet, SCFAs produced by the gut microbiota and cardio-metabolic diseases. We first discuss the association between the human gut microbiota and cardio-metabolic diseases, then investigate the role of SCFAs and finally explore the beneficial effects of specific dietary interventions that can improve cardio-metabolic outcomes through boosting the SCFA production.
Collapse
Affiliation(s)
- Ana Nogal
- Department of Twin Research, King’s College London, St Thomas’ Hospital Campus, London, UK
| | - Ana M. Valdes
- Department of Twin Research, King’s College London, St Thomas’ Hospital Campus, London, UK
- School of Medicine, Nottingham City Hospital, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| | - Cristina Menni
- Department of Twin Research, King’s College London, St Thomas’ Hospital Campus, London, UK
| |
Collapse
|
9
|
Gabriel FC, Fantuzzi G. The association of short-chain fatty acids and leptin metabolism: a systematic review. Nutr Res 2019; 72:18-35. [DOI: 10.1016/j.nutres.2019.08.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/25/2022]
|
10
|
Ringseis R, Gessner DK, Eder K. The Gut-Liver Axis in the Control of Energy Metabolism and Food Intake in Animals. Annu Rev Anim Biosci 2019; 8:295-319. [PMID: 31689373 DOI: 10.1146/annurev-animal-021419-083852] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent research has convincingly demonstrated a bidirectional communication axis between the gut and liver that enables the gut microbiota to strongly affect animals' feeding behavior and energy metabolism. As such, the gut-liver axis enables the host to control and shape the gut microbiota and to protect the intestinal barrier. Gut microbiota-host communication is based on several gut-derived compounds, such as short-chain fatty acids, bile acids, methylamines, amino acid-derived metabolites, and microbial-associated molecular patterns, which act as communication signals, and multiple host receptors, which sense the signals, thereby stimulating signaling and metabolic pathways in all key tissues of energy metabolism and food intake regulation. Disturbance in the microbial ecosystem balance, or microbial dysbiosis, causes profound derangements in the regulation of appetite and satiety in the hypothalamic centers of the brain and in key metabolic pathways in peripheral tissues owing to intestinal barrier disruption and subsequent induction of hepatic and hypothalamic inflammation.
Collapse
Affiliation(s)
- Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany;
| | - Denise K Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany;
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany;
| |
Collapse
|
11
|
Yan S, Shi R, Li L, Ma S, Zhang H, Ye J, Wang J, Pan J, Wang Q, Jin X, Liu X, Liu Z. Mannan Oligosaccharide Suppresses Lipid Accumulation and Appetite in Western-Diet-Induced Obese Mice Via Reshaping Gut Microbiome and Enhancing Short-Chain Fatty Acids Production. Mol Nutr Food Res 2019; 63:e1900521. [PMID: 31487425 DOI: 10.1002/mnfr.201900521] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/29/2019] [Indexed: 12/15/2022]
Abstract
SCOPE Obesity is associated with gut microbiome dysbiosis. Mannose oligosaccharide (MOS) has been reported to be a potential prebiotic. The present study is aimed to determine the effects of MOS on western-diet-induced obesity and to uncover the mediating roles of the gut microbiota and microbial metabolites. METHODS AND RESULTS Three-month-old male ICR mice are fed with a high-fat and high-fructose diet for 8 weeks. The diet-induced obese mice are then orally administrated with MOS (100 and 200 mg kg-1 d-1 ) for 4 weeks. MOS significantly reduces bodyweight gain, insulin resistance, fatty liver, and inflammatory responses in obese mice. MOS also stimulates lipolysis and inhibits lipogenesis in the adipose tissues. Moreover, MOS restructures the gut microbiome by enhancing the abundance of Bifidobacterium and Lactobacillus in obese mice. The microbial metabolite SCFAs are also increased in the feces and serum. Correlation analysis indicates that the appetite suppression and lipid-lowering effects of MOS are highly correlated with the butyrate levels. CONCLUSION MOS suppresses the appetite, which results in less lipid deposition. The lower appetite is likely due to an altered gut microbiome and elevated SCFAs production. MOS may be a potential nutraceutical used in body weight management and gut health improvement.
Collapse
Affiliation(s)
- Shikai Yan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Renjie Shi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Ling Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Shaobo Ma
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Hongbo Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Jin Ye
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Jiamin Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Junru Pan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Qianxu Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Xiang Jin
- Xi'an Yuensun Biological Technology Co., Ltd. Pioneering R&D Park, Xi'an, 710075, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
12
|
The Short-Chain Fatty Acid Acetate in Body Weight Control and Insulin Sensitivity. Nutrients 2019; 11:nu11081943. [PMID: 31426593 PMCID: PMC6723943 DOI: 10.3390/nu11081943] [Citation(s) in RCA: 348] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
The interplay of gut microbiota, host metabolism, and metabolic health has gained increased attention. Gut microbiota may play a regulatory role in gastrointestinal health, substrate metabolism, and peripheral tissues including adipose tissue, skeletal muscle, liver, and pancreas via its metabolites short-chain fatty acids (SCFA). Animal and human data demonstrated that, in particular, acetate beneficially affects host energy and substrate metabolism via secretion of the gut hormones like glucagon-like peptide-1 and peptide YY, which, thereby, affects appetite, via a reduction in whole-body lipolysis, systemic pro-inflammatory cytokine levels, and via an increase in energy expenditure and fat oxidation. Thus, potential therapies to increase gut microbial fermentation and acetate production have been under vigorous scientific scrutiny. In this review, the relevance of the colonically and systemically most abundant SCFA acetate and its effects on the previously mentioned tissues will be discussed in relation to body weight control and glucose homeostasis. We discuss in detail the differential effects of oral acetate administration (vinegar intake), colonic acetate infusions, acetogenic fiber, and acetogenic probiotic administrations as approaches to combat obesity and comorbidities. Notably, human data are scarce, which highlights the necessity for further human research to investigate acetate’s role in host physiology, metabolic, and cardiovascular health.
Collapse
|
13
|
Lopes DRG, La Reau AJ, Duarte MDS, Detmann E, Bento CBP, Mercadante MEZ, Bonilha SFM, Suen G, Mantovani HC. The Bacterial and Fungal Microbiota of Nelore Steers Is Dynamic Across the Gastrointestinal Tract and Its Fecal-Associated Microbiota Is Correlated to Feed Efficiency. Front Microbiol 2019; 10:1263. [PMID: 31293524 PMCID: PMC6603086 DOI: 10.3389/fmicb.2019.01263] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022] Open
Abstract
The ruminant gastrointestinal tract (GIT) microbiome plays a major role in the health, physiology and production traits of the host. In this work, we characterized the bacterial and fungal microbiota of the rumen, small intestine (SI), cecum and feces of 27 Nelore steers using next-generation sequencing and evaluated biochemical parameters within the GIT segments. We found that only the bacterial microbiota clustered according to each GIT segment. Bacterial diversity and richness as well as volatile fatty acid concentration was lowest in the SI. Taxonomic grouping of bacterial operational taxonomic units (OTUs) revealed that Lachnospiraceae (24.61 ± SD 6.58%) and Ruminococcaceae (20.87 ± SD 4.22%) were the two most abundant taxa across the GIT. For the fungi, the family Neocallismastigaceae dominated in all GIT segments, with the genus Orpinomyces being the most abundant. Twenty-eight bacterial and six fungal OTUs were shared across all GIT segments in at least 50% of the steers. We also evaluated if the fecal-associated microbiota of steers showing negative and positive residual feed intake (n-RFI and p-RFI, respectively) was associated with their feed efficiency phenotype. Diversity indices for both bacterial and fungal fecal microbiota did not vary between the two feed efficiency groups. Differences in the fecal bacterial composition between high and low feed efficiency steers were primarily assigned to OTUs belonging to the families Lachnospiraceae and Ruminococcaceae and to the genus Prevotella. The fungal OTUs shared across the GIT did not vary between feed efficiency groups, but 7 and 3 OTUs were found only in steers with positive and negative RFI, respectively. These results provide further insights into the composition of the Nelore GIT microbiota, which could have implications for improving animal health and productivity. Our findings also reveal differences in fecal-associated bacterial OTUs between steers from different feed efficiency groups, suggesting that fecal sampling may represent a non-invasive strategy to link the bovine microbiota with productivity phenotypes.
Collapse
Affiliation(s)
| | - Alex J. La Reau
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| | | | - Edenio Detmann
- Departamento de Zootecnia, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | | | | | - Garret Suen
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| | | |
Collapse
|
14
|
Abstract
Evidence is accumulating that the gut microbiome is involved in the aetiology of obesity and obesity-related complications such as nonalcoholic fatty liver disease (NAFLD), insulin resistance and type 2 diabetes mellitus (T2DM). The gut microbiota is able to ferment indigestible carbohydrates (for example, dietary fibre), thereby yielding important metabolites such as short-chain fatty acids and succinate. Numerous animal studies and a handful of human studies suggest a beneficial role of these metabolites in the prevention and treatment of obesity and its comorbidities. Interestingly, the more distal colonic microbiota primarily ferments peptides and proteins, as availability of fermentable fibre, the major energy source for the microbiota, is limited here. This proteolytic fermentation yields mainly harmful products such as ammonia, phenols and branched-chain fatty acids, which might be detrimental for host gut and metabolic health. Therefore, a switch from proteolytic to saccharolytic fermentation could be of major interest for the prevention and/or treatment of metabolic diseases. This Review focuses on the role of products derived from microbial carbohydrate and protein fermentation in relation to obesity and obesity-associated insulin resistance, T2DM and NAFLD, and discusses the mechanisms involved.
Collapse
Affiliation(s)
- Emanuel E Canfora
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Ruth C R Meex
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Koen Venema
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands.
| |
Collapse
|
15
|
Wu X, Sun H, Xue M, Wang D, Guan LL, Liu J. Serum metabolome profiling revealed potential biomarkers for milk protein yield in dairy cows. J Proteomics 2018; 184:54-61. [DOI: 10.1016/j.jprot.2018.06.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/16/2018] [Accepted: 06/11/2018] [Indexed: 01/23/2023]
|
16
|
Yamaji D, Soliman MM, Kamikawa A, Ito T, Ahmed MM, Okamatsu-Ogura Y, Saito M, Kimura K. Species-specific control of hepatocyte growth factor expression and production in adipocytes in a differentiation-dependent manner. Domest Anim Endocrinol 2018; 62:39-48. [PMID: 29040876 DOI: 10.1016/j.domaniend.2017.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/22/2017] [Accepted: 09/06/2017] [Indexed: 01/09/2023]
Abstract
Hepatocyte growth factor (HGF) is a mesenchymal cell-derived factor that regulates cell growth, cell motility, and morphogenesis. Since there are conflicting reports on HGF-producing cells, we herein examined HGF activity in conditioned medium (CM) of bovine and mouse preadipocytes before and after adipogenic differentiation. CM of bovine adipocytes and mouse preadipocytes induced the morphogenesis of mammary epithelial cells that was inhibited by an NK4 HGF antagonist, whereas CM of bovine preadipocytes and mouse adipocytes did not. HGF mRNA expression was increased by a treatment with dexamethasone and isobutylmethylxanthine in bovine as well as human cells, whereas it was decreased in rodent cells. It was unfortunate that HGF gene promoter activity failed to reflect HGF mRNA expression in these cells. After actinomycin D treatment, expression of HGF mRNA remained stable in pre- and differentiated bovine adipocytes and mouse preadipocytes, whereas rapidly decreased in mouse-differentiated adipocytes. These results indicate that expression and production of HGF are regulated in a species-specific adipogenic differentiation-dependent manner and suggest that the decrease in HGF mRNA in mouse differentiated adipocytes is, at least in part, mediated by differentiation-dependent loss of its stability.
Collapse
Affiliation(s)
- D Yamaji
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - M M Soliman
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - A Kamikawa
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - T Ito
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - M M Ahmed
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Y Okamatsu-Ogura
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - M Saito
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - K Kimura
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
| |
Collapse
|
17
|
Koltes DA, Spurlock ME, Spurlock DM. Adipose triglyceride lipase protein abundance and translocation to the lipid droplet increase during leptin-induced lipolysis in bovine adipocytes. Domest Anim Endocrinol 2017; 61:62-76. [PMID: 28715671 DOI: 10.1016/j.domaniend.2017.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 01/02/2023]
Abstract
Proper regulation of lipid metabolism is critical for preventing the development of metabolic diseases. It is clear that leptin plays a critical role in the regulation of energy homeostasis by regulating energy intake. However, leptin can also regulate energy homeostasis by inducing lipolysis in adipocytes, but it is unclear how the major lipases are involved in leptin-stimulated lipolysis. Therefore, the objectives of this study were to determine if (1) leptin acts directly to induce lipolysis in bovine adipocytes, (2) the potential lipases involved in leptin-induced lipolysis in bovine adipocytes, and (3) increases translocation of adipose triglyceride lipase (ATGL) and hormone sensitive lipase (HSL) during leptin-stimulated lipolysis in bovine stromal vascular cell-derived adipocytes. As hypothesized, leptin induced a lipolytic response (P = 0.02) in isolated adipocytes which was accompanied by an increase in phosphorylation of signal transducer and activator of transcription (STAT)3 (P = 0.03), a well-documented secondary messenger of leptin, and ATGL protein abundance (P < 0.01). Protein abundance of STAT3, perilipin, HSL, and phosphorylation of HSL by PKA and AMPK were not altered during leptin-stimulated lipolysis (P > 0.05). Immunostaining techniques were employed to determine the location of HSL and ATGL. Both lipases translocated to the lipid droplet after 2 h of exposure to isoproterenol (P < 0.02). However, only ATGL was translocated to the lipid droplet during leptin-stimulated lipolysis (P = 0.04), indicating ATGL may be the active lipase in leptin-stimulated lipolysis. In summary, leptin stimulates lipolysis in bovine adipocytes. The lack of phosphorylated HSL and translocation of HSL to the lipid droplet during leptin-stimulated lipolysis suggest minimal activity by PKA. Interestingly, leptin-stimulated lipolysis is accompanied by an increase in ATGL protein abundance and translocation to the lipid droplet, indicating its involvement in leptin-stimulated lipolysis either due to an increase in protein abundance or through a novel lipolytic cascade.
Collapse
Affiliation(s)
- D A Koltes
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA.
| | - M E Spurlock
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011, USA
| | - D M Spurlock
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
18
|
Yuan H, Wang W, Chen D, Zhu X, Meng L. Effects of a treatment with Se-rich rice flour high in resistant starch on enteric dysbiosis and chronic inflammation in diabetic ICR mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:2068-2074. [PMID: 27562375 DOI: 10.1002/jsfa.8011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Enteric dysbiosis is associated with chronic inflammation and interacts with obesity and insulin resistance. Obesity and diabetes are induced in ICR (Institute of Cancer Research) mice fed a high-fat diet and administered a streptozocin injection. These mice were treated with normal rice (NR), normal rice with a high resistant starch content (NRRS) or Se-rich rice (selenium-enriched rice) with a high resistant starch content (SRRS). RESULTS Faecal cell counts of Bifidobacterium, Lactobacillus and Enterococcus were significantly higher in SRRS-treated mice than in diabetic controls, while Enterobacter cloacae were lower. Similar results were also found in NRRS-treated mice. In contrast, no significant difference was found between NR-treated and diabetic control groups. The treatments with SRRS and NRRS reduced the faecal pH values of the diabetic mice. Regarding the inflammatory factor levels, lower levels of serum C-reactive protein (CRP), tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), nuclear factor-k-gene binding (NF-κB) and leptin (LEP) and higher adiponutrin (ADPN) levels were found in the SRRS and NRRS-treated mice compared with the diabetic and NR-treated mice. In addition, the CRP, IL-6 and NF-κB levels in the SRRS-treated mice were significantly reduced compared with those observed in the NRRS-treated mice. The reverse transcription-PCR (RT-PCR) results showed that the SRRS and NRRS-treated mice presented higher expression levels of orphan G protein-coupled receptor 41 (GPR41) and orphan G protein-coupled receptor 43 (GPR43) proteins compared with diabetic mice and NR-treated mice. CONCLUSION These results indicate that treatments with rice high in RS exert beneficial effects by improving enteric dysbiosis and chronic inflammation. In addition, selenium and RS may exert synergistic effects on chronic inflammation. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huaibo Yuan
- College of Food Science and Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, P.R. China
| | - Wenjuan Wang
- College of Food Science and Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, P.R. China
| | - Deyi Chen
- College of Food Science and Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, P.R. China
| | - Xiping Zhu
- College of Food Science and Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, P.R. China
| | - Lina Meng
- College of Food Science and Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, P.R. China
| |
Collapse
|
19
|
Vailati-Riboni M, Osorio JS, Trevisi E, Luchini D, Loor JJ. Supplemental Smartamine M in higher-energy diets during the prepartal period improves hepatic biomarkers of health and oxidative status in Holstein cows. J Anim Sci Biotechnol 2017; 8:17. [PMID: 28191311 PMCID: PMC5295218 DOI: 10.1186/s40104-017-0147-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/18/2017] [Indexed: 12/16/2022] Open
Abstract
Background Feeding higher-energy prepartum is a common practice in the dairy industry. However, recent data underscore how it could reduce performance, deepen negative energy balance, and augment inflammation and oxidative stress in fresh cows. We tested the effectiveness of rumen-protected methionine in preventing the negative effect of feeding a higher-energy prepartum. Multiparous Holstein cows were fed a control lower-energy diet (CON, 1.24 Mcal/kg DM; high-straw) during the whole dry period (~50 d), or were switched to a higher-energy (OVE, 1.54 Mcal/kg DM), or OVE plus Smartamine M (OVE + SM; Adisseo NA) during the last 21 d before calving. Afterwards cows received the same lactation diet (1.75 Mcal/kg DM). Smartamine M was top-dressed on the OVE diet (0.07% of DM) from -21 through 30 d in milk (DIM). Liver samples were obtained via percutaneous biopsy at -10, 7 and 21 DIM. Expression of genes associated with energy and lipid metabolism, hepatokines, methionine cycle, antioxidant capacity and inflammation was measured. Results Postpartal dry matter intake, milk yield, and energy-corrected milk were higher in CON and OVE + SM compared with OVE. Furthermore, milk protein and fat percentages were greater in OVE + SM compared with CON and OVE. Expression of the gluconeogenic gene PCK1 and the lipid-metabolism transcription regulator PPARA was again greater with CON and OVE + SM compared with OVE. Expression of the lipoprotein synthesis enzyme MTTP was lower in OVE + SM than CON or OVE. Similarly, the hepatokine FGF21, which correlates with severity of negative energy balance, was increased postpartum only in OVE compared to the other two groups. These results indicate greater liver metabolism and functions to support a greater production in OVE + SM. At 7 DIM, the enzyme GSR involved in the synthesis of glutathione tended to be upregulated in OVE than CON-fed cows, suggesting a greater antioxidant demand in overfed cows. Feeding OVE + SM resulted in lower similar expression of GSR compared with CON. Expression of the methionine cycle enzymes SAHH and MTR, both of which help synthesize methionine endogenously, was greater prepartum in OVE + SM compared with both CON and OVE, and at 7 DIM for CON and OVE + SM compared with OVE, suggesting greater Met availability. It is noteworthy that DNMT3A, which utilizes S-adenosylmethionine generated in the methionine cycle, was greater in OVE and OVE + SM indicating higher-energy diets might enhance DNA methylation, thus, Met utilization. Conclusions Data indicate that supplemental Smartamine M was able to compensate for the negative effect of prepartal energy-overfeeding by alleviating the demand for intracellular antioxidants, thus, contributing to the increase in production. Moreover Smartamine M improved hepatic lipid and glucose metabolism, leading to greater liver function and better overall health. Electronic supplementary material The online version of this article (doi:10.1186/s40104-017-0147-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mario Vailati-Riboni
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Johan S Osorio
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA.,Dairy and Food Science Department, South Dakota State University, 1111 College Ave, 113H Alfred DairyScience Hall, Brookings, SD 57007 USA
| | - Erminio Trevisi
- Istituto di Zootecnica Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | | | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| |
Collapse
|
20
|
Vailati-Riboni M, Farina G, Batistel F, Heiser A, Mitchell MD, Crookenden MA, Walker CG, Kay JK, Meier S, Roche JR, Loor JJ. Far-off and close-up dry matter intake modulate indicators of immunometabolic adaptations to lactation in subcutaneous adipose tissue of pasture-based transition dairy cows. J Dairy Sci 2017; 100:2334-2350. [PMID: 28088407 DOI: 10.3168/jds.2016-11790] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/13/2016] [Indexed: 12/21/2022]
Abstract
The common practice of increasing dietary energy density during the close-up dry period (last ∼3 wk prepartum) has been recently associated with a higher incidence of metabolic disorders after calving. Despite these reports, over-feeding of metabolizable energy (ME) during the far-off, nonlactating period is a common management policy aimed at achieving optimum calving body condition score (BCS) in pasture-based systems, as cows are generally thinner than total mixed ration cows at the end of lactation. Our hypothesis was that both far-off and close-up overfeeding influence the peripartum adipose tissue changes associated with energy balance and inflammatory state. Sixty mid-lactation, grazing dairy cows of mixed age and breed were randomly allocated to 1 of 2 groups that were managed through late lactation to achieve a low and high BCS (approximately 4.25 and 5.0 on a 10-point scale) at dry-off. The low BCS cows were then overfed ME to ensure that they achieved the same BCS as the higher BCS group by calving. Within each rate of BCS gain treatment, cows were offered 65, 90, or 120% of their pre-calving ME requirements for 3 wk pre-calving in a 2 × 3 factorial arrangement of treatments (i.e., 10 cows/treatment). Subcutaneous adipose tissue was collected via biopsy at -1, 1, and 4 wk relative to parturition. Quantitative PCR was used to measure mRNA and microRNA expression of targets related to adipogenesis and inflammation. Cows overfed in the far-off period had increased expression of miR-143 and miR-378 prepartum (-1 wk) indicating greater adipogenesis, consistent with their rapid gain in BCS following dry-off. Furthermore, the lower postpartum expression of IL6, TNF, TLR4, TLR9, and miR-145, and a higher abundance of miR-99a indicated lower body fat mobilization in early lactation in the same group. In the close-up period, feeding either 65 or 120% of ME requirements caused changes in FASN, IL1B, IL6R, TLR9, and the microRNA miR-143, miR-155, and miR-378. Their respective expression patterns indicate a tentative negative-feedback mechanism in metabolically compromised, feed-restricted cows, and a possible immune-related stimulation of lipolysis in apparently static adipocytes in overfed cows. Data from cows fed 90% of ME requirements indicate the existence of a balance between lipolytic (inflammatory-related) and anti-lipolytic signals, to prime the mobilization machinery in light of imminent lactation. Overall, results indicate that far-off dry cow nutrition influences peripartum adipose tissue metabolism, with neither strategy negatively affecting the physiological adaptation to lactation. Furthermore, to ensure a favorable transition, cows should be subjected to a small feed restriction in the close-up period, irrespective of far-off nutritional management.
Collapse
Affiliation(s)
- M Vailati-Riboni
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - G Farina
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; Dipartimento di Scienze Veterinarie per la salute, la produzione animale e la sicurezza alimentare (VESPA), Università di Milano, Milan, Italy 20122
| | - F Batistel
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - A Heiser
- AgResearch, Hopkirk Research Institute, Grasslands Research Centre, Palmerston North, New Zealand 4442
| | - M D Mitchell
- University of Queensland, Centre for Clinical Research, Royal Brisbane and Women's Hospital Campus, Herston, Queensland, Australia 4029
| | - M A Crookenden
- DairyNZ Limited, c/o University of Auckland, 3A Symonds St., Auckland, New Zealand 1010
| | - C G Walker
- DairyNZ Limited, c/o University of Auckland, 3A Symonds St., Auckland, New Zealand 1010
| | - J K Kay
- DairyNZ Limited, Private Bag 3221, Hamilton, New Zealand 3240
| | - S Meier
- DairyNZ Limited, Private Bag 3221, Hamilton, New Zealand 3240
| | - J R Roche
- DairyNZ Limited, Private Bag 3221, Hamilton, New Zealand 3240
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
21
|
Myer PR, Wells JE, Smith TPL, Kuehn LA, Freetly HC. Microbial community profiles of the jejunum from steers differing in feed efficiency. J Anim Sci 2016; 94:327-38. [PMID: 26812338 DOI: 10.2527/jas.2015-9839] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Research regarding the association between the microbial community and host feed efficiency in cattle has primarily focused on the rumen. However, the various microbial populations within the gastrointestinal tract as a whole are critical to the overall well-being of the host and need to be examined when determining the interplay between host and nonhost factors affecting feed efficiency. The objective of this study was to characterize the microbial communities of the jejunum among steers differing in feed efficiency. Within 2 contemporary groups of steers, individual ADFI and ADG were determined from animals fed the same diet. At the end of each feeding period, steers were ranked based on their standardized distance from the bivariate mean (ADG and ADFI). Four steers with the greatest deviation within each Cartesian quadrant were sampled ( = 16/group; 2 groups). Bacterial 16S rRNA gene amplicons were sequenced from the jejunum content using next-generation sequencing technology. The phylum Firmicutes accounted for up to 90% of the populations within all samples and was dominated by the families Clostridiaceae and Ruminococcaceae. UniFrac principal coordinate analyses did not indicate any separation of microbial communities within the jejunum based on feed efficiency phenotype, and no significant changes were indicated by bacterial diversity or richness metrics. The relative abundances of microbial populations and operational taxonomic units did reveal significant differences between feed efficiency groups ( < 0.05), including the phylum Proteobacteria ( = 0.030); the families Lachnospiraceae ( = 0.035), Coriobacteriaceae ( = 0.012), and Sphingomonadaceae ( = 0.035); and the genera ( = 0.019), ( = 0.018), and ( = 0.022). The study identified jejunal microbial associations with feed efficiency, ADG, and ADFI. This study suggests the association of the jejunum microbial community as a factor influencing feed efficiency at the 16S level.
Collapse
|
22
|
Bolognini D, Tobin AB, Milligan G, Hodge D. The Pharmacology and Function of Receptors for Short-Chain Fatty Acids. Mol Pharmacol 2016; 89:388-98. [PMID: 26719580 DOI: 10.1124/mol.115.102301] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/29/2015] [Indexed: 02/14/2025] Open
Abstract
Despite some blockbuster G protein-coupled receptor (GPCR) drugs, only a small fraction (∼ 15%) of the more than 390 nonodorant GPCRs have been successfully targeted by the pharmaceutical industry. One way that this issue might be addressed is via translation of recent deorphanization programs that have opened the prospect of extending the reach of new medicine design to novel receptor types with potential therapeutic value. Prominent among these receptors are those that respond to short-chain free fatty acids of carbon chain length 2-6. These receptors, FFA2 (GPR43) and FFA3 (GPR41), are each predominantly activated by the short-chain fatty acids acetate, propionate, and butyrate, ligands that originate largely as fermentation by-products of anaerobic bacteria in the gut. However, the presence of FFA2 and FFA3 on pancreatic β-cells, FFA3 on neurons, and FFA2 on leukocytes and adipocytes means that the biologic role of these receptors likely extends beyond the widely accepted role of regulating peptide hormone release from enteroendocrine cells in the gut. Here, we review the physiologic roles of FFA2 and FFA3, the recent development and use of receptor-selective pharmacological tool compounds and genetic models available to study these receptors, and present evidence of the potential therapeutic value of targeting this emerging receptor pair.
Collapse
Affiliation(s)
- Daniele Bolognini
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, Scotland, United Kingdom (D.B., G.M.); and Medical Research Council Toxicology Unit, University of Leicester, Leicester, United Kingdom (A.B.T., C.E.M.)
| | - Andrew B Tobin
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, Scotland, United Kingdom (D.B., G.M.); and Medical Research Council Toxicology Unit, University of Leicester, Leicester, United Kingdom (A.B.T., C.E.M.)
| | - Graeme Milligan
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, Scotland, United Kingdom (D.B., G.M.); and Medical Research Council Toxicology Unit, University of Leicester, Leicester, United Kingdom (A.B.T., C.E.M.)
| | - Daryl Hodge
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, Scotland, United Kingdom (D.B., G.M.); and Medical Research Council Toxicology Unit, University of Leicester, Leicester, United Kingdom (A.B.T., C.E.M.)
| |
Collapse
|
23
|
Roh SG, Suzuki Y, Gotoh T, Tatsumi R, Katoh K. Physiological Roles of Adipokines, Hepatokines, and Myokines in Ruminants. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:1-15. [PMID: 26732322 PMCID: PMC4698675 DOI: 10.5713/ajas.16.0001r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Since the discovery of leptin secreted from adipocytes, specialized tissues and cells have been found that secrete the several peptides (or cytokines) that are characterized to negatively and positively regulate the metabolic process. Different types of adipokines, hepatokines, and myokines, which act as cytokines, are secreted from adipose, liver, and muscle tissue, respectively, and have been identified and examined for their physiological roles in humans and disease in animal models. Recently, various studies of these cytokines have been conducted in ruminants, including dairy cattle, beef cattle, sheep, and goat. Interestingly, a few cytokines from these tissues in ruminants play an important role in the post-parturition, lactation, and fattening (marbling) periods. Thus, understanding these hormones is important for improving nutritional management in dairy cows and beef cattle. However, to our knowledge, there have been no reviews of the characteristics of these cytokines in beef and dairy products in ruminants. In particular, lipid and glucose metabolism in adipose tissue, liver tissue, and muscle tissue are very important for energy storage, production, and synthesis, which are regulated by these cytokines in ruminant production. In this review, we summarize the physiological roles of adipokines, hepatokines, and myokines in ruminants. This discussion provides a foundation for understanding the role of cytokines in animal production of ruminants.
Collapse
Affiliation(s)
- Sang-Gun Roh
- Kuju Agriculture Research Center, Kyushu University, Oita 878-020, Japan
| | - Yutaka Suzuki
- Kuju Agriculture Research Center, Kyushu University, Oita 878-020, Japan
| | - Takafumi Gotoh
- Kuju Agriculture Research Center, Kyushu University, Oita 878-020, Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Kazuo Katoh
- Kuju Agriculture Research Center, Kyushu University, Oita 878-020, Japan
| |
Collapse
|
24
|
Vailati-Riboni M, Kanwal M, Bulgari O, Meier S, Priest NV, Burke CR, Kay JK, McDougall S, Mitchell MD, Walker CG, Crookenden M, Heiser A, Roche JR, Loor JJ. Body condition score and plane of nutrition prepartum affect adipose tissue transcriptome regulators of metabolism and inflammation in grazing dairy cows during the transition period. J Dairy Sci 2015; 99:758-70. [PMID: 26601585 DOI: 10.3168/jds.2015-10046] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/08/2015] [Indexed: 01/11/2023]
Abstract
Recent studies demonstrating a higher incidence of metabolic disorders after calving have challenged the management practice of increasing dietary energy density during the last ~3 wk prepartum. Despite our knowledge at the whole-animal level, the tissue-level mechanisms that are altered in response to feeding management prepartum remain unclear. Our hypothesis was that prepartum body condition score (BCS), in combination with feeding management, plays a central role in the peripartum changes associated with energy balance and inflammatory state. Twenty-eight mid-lactation grazing dairy cows of mixed age and breed were randomly allocated to 1 of 4 treatment groups in a 2 × 2 factorial arrangement: 2 prepartum BCS categories (4.0 and 5.0, based on a 10-point scale; BCS4, BCS5) obtained via differential feeding management during late-lactation, and 2 levels of energy intake during the 3 wk preceding calving (75 and 125% of estimated requirements). Subcutaneous adipose tissue was harvested via biopsy at -1, 1, and 4 wk relative to parturition. Quantitative polymerase chain reaction was used to measure mRNA and microRNA (miRNA) expression of targets related to fatty acid metabolism (lipogenesis, lipolysis), adipokine synthesis, and inflammation. Both prepartum BCS and feeding management had a significant effect on mRNA and miRNA expression throughout the peripartum period. Overfed BCS5 cows had the greatest prepartum expression of fatty acid synthase (FASN) and an overall greater expression of leptin (LEP); BCS5 was also associated with greater overall adiponectin (ADIPOQ) and peroxisome proliferator-activated receptor gamma (PPARG), whereas overfeeding upregulated expression of proadipogenic miRNA. Higher postpartum expression of chemokine ligand 5 (CCL5) and the cytokines interleukin 6 (IL6) and tumor necrosis factor (TNF) was detected in overfed BCS5 cows. Feed-restricted BCS4 cows had the highest overall interleukin 1 (IL1B) expression. Prepartum feed restriction resulted in greater chemokine ligand 2 (CCL2) expression. Overall, changes in mRNA expression were consistent with the expression pattern of inflammation-related miRNA. These data shed light on molecular mechanisms underlying the effect of prepartum BCS and feeding management on metabolic and inflammatory status of adipose tissue during the peripartum period. Data support the use of a controlled feed restriction prepartum in optimally conditioned cows, as well as the use of a higher level of dietary energy in under-conditioned cows.
Collapse
Affiliation(s)
- M Vailati-Riboni
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - M Kanwal
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - O Bulgari
- Department of Animal Sciences, University of Illinois, Urbana 61801; Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - S Meier
- DairyNZ Limited, Private Bag 3221, Hamilton 3240, New Zealand
| | - N V Priest
- DairyNZ Limited, Private Bag 3221, Hamilton 3240, New Zealand
| | - C R Burke
- DairyNZ Limited, Private Bag 3221, Hamilton 3240, New Zealand
| | - J K Kay
- DairyNZ Limited, Private Bag 3221, Hamilton 3240, New Zealand
| | - S McDougall
- Cognosco, Anexa Animal Health, PO Box 21, Morrinsville 3300, New Zealand
| | - M D Mitchell
- University of Queensland, Centre for Clinical Research, Royal Brisbane & Women's Hospital Campus, Herston, Queensland 4029, Australia
| | - C G Walker
- DairyNZ Limited, Private Bag 3221, Hamilton 3240, New Zealand
| | - M Crookenden
- DairyNZ Limited, Private Bag 3221, Hamilton 3240, New Zealand
| | - A Heiser
- AgResearch, Hopkirk Research Institute, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - J R Roche
- DairyNZ Limited, Private Bag 3221, Hamilton 3240, New Zealand
| | - J J Loor
- Department of Animal Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
25
|
Li A, Zhao Z, Zhang Y, Fu C, Wang M, Zan L. Tissue expression analysis, cloning, and characterization of the 5′-regulatory region of the bovine fatty acid binding protein 4 gene1. J Anim Sci 2015; 93:5144-52. [DOI: 10.2527/jas.2015-9378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- A. Li
- College of Animal Science and Technology
| | - Z. Zhao
- College of Animal Science and Technology
| | - Y. Zhang
- College of Animal Science and Technology
| | - C. Fu
- College of Animal Science and Technology
| | - M. Wang
- College of Animal Science and Technology
| | - L. Zan
- College of Animal Science and Technology
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, People's Republic of China 712100
| |
Collapse
|
26
|
Abstract
The connection between the gut microbiota and the aetiology of obesity and cardiometabolic disorders is increasingly being recognized by clinicians. Our gut microbiota might affect the cardiometabolic phenotype by fermenting indigestible dietary components and thereby producing short-chain fatty acids (SCFA). These SCFA are not only of importance in gut health and as signalling molecules, but might also enter the systemic circulation and directly affect metabolism or the function of peripheral tissues. In this Review, we discuss the effects of three SCFA (acetate, propionate and butyrate) on energy homeostasis and metabolism, as well as how these SCFA can beneficially modulate adipose tissue, skeletal muscle and liver tissue function. As a result, these SCFA contribute to improved glucose homeostasis and insulin sensitivity. Furthermore, we also summarize the increasing evidence for a potential role of SCFA as metabolic targets to prevent and counteract obesity and its associated disorders in glucose metabolism and insulin resistance. However, most data are derived from animal and in vitro studies, and consequently the importance of SCFA and differential SCFA availability in human energy and substrate metabolism remains to be fully established. Well-controlled human intervention studies investigating the role of SCFA on cardiometabolic health are, therefore, eagerly awaited.
Collapse
Affiliation(s)
- Emanuel E Canfora
- Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitssingel 50, 6229 ER, Maastricht, PO Box 616, 6200 MD, Maastricht, Netherlands
| | - Johan W Jocken
- Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitssingel 50, 6229 ER, Maastricht, PO Box 616, 6200 MD, Maastricht, Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitssingel 50, 6229 ER, Maastricht, PO Box 616, 6200 MD, Maastricht, Netherlands
| |
Collapse
|
27
|
Sun Y, Luo J, Zhu J, Shi H, Li J, Qiu S, Wang P, Loor JJ. Effect of short-chain fatty acids on triacylglycerol accumulation, lipid droplet formation and lipogenic gene expression in goat mammary epithelial cells. Anim Sci J 2015; 87:242-9. [PMID: 26304676 DOI: 10.1111/asj.12420] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/29/2015] [Accepted: 02/20/2015] [Indexed: 01/12/2023]
Abstract
Short-chain fatty acids (SCFAs) are the major energy sources for ruminants and are known to regulate various physiological functions in other species. However, their roles in ruminant milk fat metabolism are still unclear. In this study, goat mammary gland epithelial cells (GMECs) were treated with 3 mmol/L acetate, propionate or butyrate for 24 h to assess their effects on lipogenesis. Data revealed that the content of triacylglycerol (TAG) and lipid droplet formation were significantly stimulated by propionate and butyrate. The expression of FABP3, SCD1, PPARG, SREBP1, DGAT1, AGPAT6 and ADRP were upregulated by propionate and butyrate treatment. In contrast, the messenger RNA (mRNA) expression of FASN and LXRα was not affected by propionate, but reduced by butyrate. Acetate had no obvious effect on the content of TAG and lipid droplets but increased the mRNA expression of SCD1 and FABP3 in GMECs. Additionally, it was observed that propionate significantly increased the relative content of mono-unsaturated fatty acids (C18:1 and C16:1) at the expense of decreased saturated fatty acids (C16:0 and C18:0). Butyrate and acetate had no significant effect on fatty acid composition. Overall, the results from this work help enhance our understanding of the regulatory role of SCFAs on goat mammary cell lipid metabolism.
Collapse
Affiliation(s)
- Yuting Sun
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Jiangjiang Zhu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Hengbo Shi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Jun Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Siyuan Qiu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Ping Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
28
|
Hausman GJ, Basu U, Wei S, Hausman DB, Dodson MV. Preadipocyte and adipose tissue differentiation in meat animals: influence of species and anatomical location. Annu Rev Anim Biosci 2015; 2:323-51. [PMID: 25384146 DOI: 10.1146/annurev-animal-022513-114211] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Early in porcine adipose tissue development, the stromal-vascular (SV) elements control and dictate the extent of adipogenesis in a depot-dependent manner. The vasculature and collagen matrix differentiate before overt adipocyte differentiation. In the fetal pig, subcutaneous (SQ) layer development is predictive of adipocyte development, as the outer, middle, and inner layers of dorsal SQ adipose tissue develop and maintain layered morphology throughout postnatal growth of SQ adipose tissue. Bovine and ovine fetuses contain brown adipose tissue but SQ white adipose tissue is poorly developed structurally. Fetal adipose tissue differentiation is associated with the precocious expression of several genes encoding secreted factors and key transcription factors like peroxisome proliferator activated receptor (PPAR)γ and CCAAT/-enhancer-binding protein. Identification of adipocyte-associated genes differentially expressed by age, depot, and species in vivo and in vitro has been achieved using single-gene analysis, microarrays, suppressive subtraction hybridization, and next-generation sequencing applications. Gene polymorphisms in PPARγ, cathepsins, and uncoupling protein 3 have been associated with back fat accumulation. Genome scans have mapped several quantitative trait loci (QTL) predictive of adipose tissue-deposition phenotypes in cattle and pigs.
Collapse
|
29
|
Effect of the ratios of unsaturated fatty acids on the expressions of genes related to fat and protein in the bovine mammary epithelial cells. In Vitro Cell Dev Biol Anim 2015; 51:381-9. [DOI: 10.1007/s11626-014-9847-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 11/06/2014] [Indexed: 11/27/2022]
|
30
|
Nicotinic acid increases adiponectin secretion from differentiated bovine preadipocytes through G-protein coupled receptor signaling. Int J Mol Sci 2014; 15:21401-18. [PMID: 25411802 PMCID: PMC4264232 DOI: 10.3390/ijms151121401] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/20/2014] [Accepted: 11/06/2014] [Indexed: 12/17/2022] Open
Abstract
The transition period in dairy cows (3 weeks prepartum until 3 weeks postpartum) is associated with substantial mobilization of energy stores, which is often associated with metabolic diseases. Nicotinic acid (NA) is an antilipolytic and lipid-lowering compound used to treat dyslipidaemia in humans, and it also reduces non-esterified fatty acids in cattle. In mice the G-protein coupled receptor 109A (GPR109A) ligand NA positively affects the secretion of adiponectin, an important modulator of glucose and fat metabolism. In cattle, the corresponding data linking NA to adiponectin are missing. Our objective was to examine the effects of NA on adiponectin and AMPK protein abundance and the expression of mRNAs of related genes such as chemerin, an adipokine that enhances adiponectin secretion in vitro. Differentiated bovine adipocytes were incubated with pertussis toxin (PTX) to verify the involvement of GPR signaling, and treated with 10 or 15 µM NA for 12 or 24 h. NA increased adiponectin concentrations (p ≤ 0.001) and the mRNA abundances of GPR109A (p ≤ 0.05) and chemerin (p ≤ 0.01). Pre-incubation with PTX reduced the adiponectin response to NA (p ≤ 0.001). The NA-stimulated secretion of adiponectin and the mRNA expression of chemerin in the bovine adipocytes were suggestive of GPR signaling-dependent improved insulin sensitivity and/or adipocyte metabolism in dairy cows.
Collapse
|
31
|
Yonekura S, Hirota S, Tokutake Y, Rose MT, Katoh K, Aso H. Dexamethasone and acetate modulate cytoplasmic leptin in bovine preadipocytes. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:567-73. [PMID: 25049989 PMCID: PMC4093523 DOI: 10.5713/ajas.2013.13559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/26/2013] [Accepted: 12/10/2013] [Indexed: 11/27/2022]
Abstract
Hormonal and nutrient signals regulate leptin synthesis and secretion. In rodents, leptin is stored in cytosolic pools of adipocytes. However, not much information is available regarding the regulation of intracellular leptin in ruminants. Recently, we demonstrated that leptin mRNA was expressed in bovine intramuscular preadipocyte cells (BIP cells) and that a cytoplasmic leptin pool may be present in preadipocytes. In the present study, we investigated the expression of cytoplasmic leptin protein in BIP cells during differentiation as well as the effects of various factors added to the differentiation medium on its expression in BIP cells. Leptin mRNA expression was observed only at 6 and 8 days after adipogenic induction, whereas the cytoplasmic leptin concentration was the highest on day 0 and decreased gradually thereafter. Cytoplasmic leptin was detected at 6 and 8 days after adipogenic induction, but not at 4 days after adipogenic induction. The cytoplasmic leptin concentration was reduced in BIP cells at 4 days after treatment with dexamethasone, whereas cytoplasmic leptin was not observed at 8 days after treatment. In contrast, acetate significantly enhanced the cytoplasmic leptin concentration in BIP cells at 8 days after treatment, although acetate alone did not induce adipocyte differentiation in BIP cells. These results suggest that dexamethasone and acetate modulate the cytoplasmic leptin concentration in bovine preadipocytes.
Collapse
Affiliation(s)
- Shinichi Yonekura
- Institute of Rural Studies, University of Wales, Aberystwyth, Ceredigion SY23 3AL, UK
| | - Shohei Hirota
- Institute of Rural Studies, University of Wales, Aberystwyth, Ceredigion SY23 3AL, UK
| | - Yukako Tokutake
- Institute of Rural Studies, University of Wales, Aberystwyth, Ceredigion SY23 3AL, UK
| | - Michael T Rose
- Institute of Rural Studies, University of Wales, Aberystwyth, Ceredigion SY23 3AL, UK
| | - Kazuo Katoh
- Department of Animal Physiology, Graduate School of Agriculture, Tohoku University, Amamiyamachi, Sendai 981-8555, Japan
| | - Hisashi Aso
- Department of Cellular Biology, Graduate School of Agriculture, Tohoku University, Amamiyamachi, Sendai 981-8555, Japan
| |
Collapse
|
32
|
Hamill RM, Aslan O, Mullen AM, O'Doherty JV, McBryan J, Morris DG, Sweeney T. Transcriptome analysis of porcine M. semimembranosus divergent in intramuscular fat as a consequence of dietary protein restriction. BMC Genomics 2013; 14:453. [PMID: 23829541 PMCID: PMC3710489 DOI: 10.1186/1471-2164-14-453] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/26/2013] [Indexed: 12/23/2022] Open
Abstract
Background Intramuscular fat (IMF) content is positively correlated with aspects of pork palatability, including flavour, juiciness and overall acceptability. The ratio of energy to protein in the finishing diet of growing pigs can impact on IMF content with consequences for pork quality. The objective of this study was to compare gene expression profiles of Musculus semimembranosus (SM) of animals divergent for IMF as a consequence of protein dietary restriction in an isocaloric diet. The animal model was derived through the imposition of low or high protein diets during the finisher stage in Duroc gilts. RNA was extracted from post mortem SM tissue, processed and hybridised to Affymetrix porcine GeneChip® arrays. Results IMF content of SM muscle was increased on the low protein diet (3.60 ± 0.38% versus 1.92 ± 0.35%). Backfat depth was also greater in animals on the low protein diet, and average daily gain and feed conversion ratio were lower, but muscle depth, protein content and moisture content were not affected. A total of 542 annotated genes were differentially expressed (DE) between animals on low and high protein diets, with 351 down-regulated and 191 up-regulated on the low protein diet. Transcript differences were validated for a subset of DE genes by qPCR. Alterations in functions related to cell cycle, muscle growth, extracellular matrix organisation, collagen development, lipogenesis and lipolysis, were observed. Expression of adipokines including LEP, TNFα and HIF1α were increased and the hypoxic stress response was induced. Many of the identified transcriptomic responses have also been observed in genetic and fetal programming models of differential IMF accumulation, indicating they may be robust biological indicators of IMF content. Conclusion An extensive perturbation of overall energy metabolism in muscle occurs in response to protein restriction. A low protein diet can modulate IMF content of the SM by altering gene pathways involved in lipid biosynthesis and degradation; however this nutritional challenge negatively impacts protein synthesis pathways, with potential consequences for growth.
Collapse
Affiliation(s)
- Ruth M Hamill
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| | | | | | | | | | | | | |
Collapse
|
33
|
Mily A, Rekha RS, Kamal SMM, Akhtar E, Sarker P, Rahim Z, Gudmundsson GH, Agerberth B, Raqib R. Oral intake of phenylbutyrate with or without vitamin D3 upregulates the cathelicidin LL-37 in human macrophages: a dose finding study for treatment of tuberculosis. BMC Pulm Med 2013; 13:23. [PMID: 23590701 PMCID: PMC3637063 DOI: 10.1186/1471-2466-13-23] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 03/28/2013] [Indexed: 12/28/2022] Open
Abstract
Background We earlier showed that 4-phenylbutyrate (PB) can induce cathelicidin LL-37 expression synergistically with 1,25-dihydroxyvitamin D3 in a lung epithelial cell line. We aimed to evaluate a therapeutic dose of PB alone or in combination with vitamin D3 for induction of LL-37 expression in immune cells and enhancement of antimycobacterial activity in monocyte-derived macrophages (MDM). Methods Healthy volunteers were enrolled in an 8-days open trial with three doses of PB [250 mg (Group-I), 500 mg (Group-II) or 1000 mg (Group-III)] twice daily (b.d.) together with vitamin D3 {5000 IU once daily (o.d.)}, PB (500 mg b.d.) (Group-IV) or vitamin D3 (5000 IU o.d.) (Group-V), given orally for 4 days. Blood was collected on day-0, day-4 and day-8; plasma was separated, peripheral blood mononuclear cells (PBMC), non-adherent lymphocytes (NAL) and MDM were cultured. LL-37 transcript in cells and peptide concentrations in supernatant were determined by qPCR and ELISA, respectively. In plasma, 25-hydorxyvitamin D3 levels were determined by ELISA. MDM-mediated killing of Mycobacterium tuberculosis (Mtb) (H37Rv) was performed by conventional culture method. Results MDM from Group-II had increased concentration of LL-37 peptide and transcript at day-4, while Group-I showed increased transcript at day-4 and day-8 compared to day-0 (p < 0.05). Both Group-I and -II exhibited higher levels of transcript on day-4 compared to Group-III and Group-V (p < 0.035). Increased induction of peptide was observed in lymphocytes from Group-II on day-4 compared to Group-I and Group-IV (p < 0.05), while Group-IV showed increased levels on day-8 compared to Group-I and Group-III (p < 0.04). Intracellular killing of Mtb on day-4 was significantly increased compared to day-0 in Group-I, -II and -V (p < 0.05). Conclusion The results demonstrate that 500 mg b.d. PB with 5000 IU o.d. vitamin D3 is the optimal dose for the induction of LL-37 in macrophages and lymphocytes and intracellular killing of Mtb by macrophages. Hence, this dose has potential application in the treatment of TB and is now being used in a clinical trial of adults with active pulmonary TB (NCT01580007).
Collapse
Affiliation(s)
- Akhirunnesa Mily
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka 1212, Bangladesh
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ohtani Y, Takahashi T, Sato K, Ardiyanti A, Song SH, Sato R, Onda K, Wada Y, Obara Y, Suzuki K, Hagino A, Roh SG, Katoh K. Changes in circulating adiponectin and metabolic hormone concentrations during periparturient and lactation periods in Holstein dairy cows. Anim Sci J 2012; 83:788-95. [PMID: 23216544 DOI: 10.1111/j.1740-0929.2012.01029.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Although our previous report demonstrated that adiponectin and AdipoR1 gene expressions changed among different lactation stages in the bovine mammary gland, its in vivo kinetics remain unclear in ruminant animals. In this study, we investigated the changes in circulating concentrations of adiponectin, as well as other metabolic hormones and metabolites, (i) during the periparturient period and (ii) among different lactation stages, in Holstein dairy cows. In experiment 1, serum adiponectin concentrations increased after parturition. Serum insulin concentrations were lower in the postpartum than prepartum period, whereas serum growth hormone (GH) concentrations increased in the postpartum period. Serum nonesterified fatty acids (NEFA) levels were increased during the postpartum period and were dependent on the parity. In experiment 2, there was no significant difference in plasma adiponectin concentrations among lactational stages. Plasma insulin concentrations tended to be lower in early lactation while plasma GH levels tended to be higher. Plasma NEFA concentrations were significantly lower in mid- and late-lactation stages than non-lactation stages. These findings indicate that elevation of serum adiponectin might be involved in energy metabolism just around parturition, and might exert its action through regulation of receptor expression levels in target tissues in each lactational stage in Holstein dairy cows.
Collapse
Affiliation(s)
- Yoshihisa Ohtani
- Laboratory of Animal Physiology, Graduate School of Agricultural Science, Tohoku University, Aoba, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Soliman MM, Ahmed MM, Salah-Eldin AE, Abdel-Aal AAA. Butyrate regulates leptin expression through different signaling pathways in adipocytes. J Vet Sci 2011; 12:319-323. [PMID: 22122897 PMCID: PMC3232390 DOI: 10.4142/jvs.2011.12.4.319] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 05/23/2011] [Accepted: 05/23/2011] [Indexed: 11/20/2022] Open
Abstract
Leptin is an adipocytokine that regulates body weight, and maintains energy homeostasis by promoting reduced food intake and increasing energy expenditure. Leptin expression and secretion is regulated by various factors including hormones and fatty acids. Butyrate is a short-chain fatty acid that acts as source of energy in humans. We determined whether this fatty acid can play a role in leptin expression in fully differentiated human adipocytes. Mature differentiated adipocytes were incubated with or without increasing concentrations of butyrate. RNA was extracted and leptin mRNA expression was examined by Northern blot analysis. Moreover, the cells were incubated with regulators that may affect signals which may alter leptin expression and analyzed with Northern blotting. Butyrate stimulated leptin expression, and stimulated mitogen activated protein kinase (MAPK) and phospho-CREB signaling in a time-dependent manner. Prior treatment of the cells with signal transduction inhibitors as pertusis toxin, G(i) protein antagonist, PD98059 (a MAPK inhibitor), and wortmannin (a PI3K inhibitor) abolished leptin mRNA expression. These results suggest that butyrate can regulate leptin expression in humans at the transcriptional level. This is accomplished by: 1) G(i) protein-coupled receptors specific for short-chain fatty acids, and 2) MAPK and phosphatidylinositol-3-kinase (PI3K) signaling pathways.
Collapse
Affiliation(s)
- Mohamed Mohamed Soliman
- Department of Biochemistry, Faculty of Veterinary Medicine, Benha Universities, P.O 13736, Egypt.
| | | | | | | |
Collapse
|
36
|
Roelofsen H, Priebe MG, Vonk RJ. The interaction of short-chain fatty acids with adipose tissue: relevance for prevention of type 2 diabetes. Benef Microbes 2011; 1:433-7. [PMID: 21831781 DOI: 10.3920/bm2010.0028] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Short chain fatty acids (SCFA) are the main bacterial metabolites of colonic fermentation processes. The physiological relevance of the SCFA for the host outside the gastrointestinal tract is getting increased attention. In this review we will focus on the effect of SCFA on inflammation processes in the host in relation to insulin resistance. Obesity has been associated with a pro-inflammatory state of the adipose tissue that is associated with whole body insulin resistance leading to type 2 diabetes. Recently, two G protein-coupled receptors (GPCR) for SCFA, GPCR 41 and GPCR43, were described that are mainly expressed by immune cells but also by adipose tissue. Propionate can induce the satiety hormone leptin and reduce expression of inflammatory cytokines and chemokines indicating that SCFA have anti-inflammatory effects in human adipose tissue. In addition, in human nutritional experiments we observed that whole grain products could counteract a glucose-induced tumour necrosis factor α and interleukin-6 increase which was associated with increased plasma butyrate concentrations. This suggests that dietary fibre can produce a SCFA profile that could have anti-inflammatory effects in the body. The physiological relevance of these observations especially in relation to obesity-associated inflammation and insulin resistance is discussed.
Collapse
Affiliation(s)
- H Roelofsen
- Centre for Medical Biomics, University Medical Centre of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | |
Collapse
|
37
|
Hosseini A, Behrendt C, Regenhard P, Sauerwein H, Mielenz M. Differential effects of propionate or β-hydroxybutyrate on genes related to energy balance and insulin sensitivity in bovine white adipose tissue explants from a subcutaneous and a visceral depot. J Anim Physiol Anim Nutr (Berl) 2011; 96:570-80. [PMID: 21635577 DOI: 10.1111/j.1439-0396.2011.01180.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ruminants rely on short-chain fatty acids (SCFA) as principal energy source. Herein, we compared the effects of propionate, β-hydroxybutyrate (BHB) and insulin on mRNA abundance of energy balance-related genes by short-term incubation (4 h) in bovine subcutaneous (SC) and retroperitoneal (RP) adipose tissue (AT) explants in vitro. Propionate either significantly (p < 0.05), or as a trend (p ≤ 0.1) affected mRNA abundance of genes such as adiponectin system in both depots in treated samples versus controls. Propionate increased adiponectin receptor 1 (AdipoR1) and AdipoR2 mRNA only in SC AT. β-hydroxybutyrate decreased mRNA abundance of adiponectin and AdipoR1 in SC AT as a trend. The mRNA abundance of free fatty acid receptor 2/3 (FFAR2/3) and other genes of interest (GOI) was increased during differentiation in bovine preadipocyte culture. The mRNA abundance of all the GOI remained unchanged after short-term insulin stimulation. In total, propionate, BHB or insulin during short-term treatment exert divergent effects on the mRNA abundance of GOI in both depots in vitro. Our results indicate that the bovine adiponectin system might be more sensitive to propionate than to BHB. We demonstrated the presence of FFAR2/3 mRNA not only in both AT depots but also in differentiating preadipocytes isolated from bovine SC AT. Therefore, we established that SCFA are able to exert insulin-independent effects on bovine adipose tissue, which might be independent from propionate uptake-related events.
Collapse
Affiliation(s)
- A Hosseini
- Physiology and Hygiene Unit, Institute for Animal Science, University of Bonn, Bonn, Germany
| | | | | | | | | |
Collapse
|
38
|
Arora T, Sharma R, Frost G. Propionate. Anti-obesity and satiety enhancing factor? Appetite 2011; 56:511-5. [PMID: 21255628 DOI: 10.1016/j.appet.2011.01.016] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 01/07/2011] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
Propionate is produced along with acetate and butyrate as a result of fermentative activity of gut microflora on dietary fiber. It has long been known to exhibit hypophagic effects in ruminants, however, its potential physiological roles in non-ruminants as well as humans remained unnoticed over the years. In view of various studies pointing towards the hypophagic as well as hypocholesterolemic effects of propionate in humans, it may act as an important factor in amelioration of obesity, a lifestyle disease arising due to energy imbalance and growing at a startling rate globally. Short chain fatty acids have recently been ascribed as ligands to G-protein coupled receptors (GPRs) 41 and 43. Thus, propionate along with acetate may also be involved in the regulation of adipogenesis and adipokine release mediated via GPRs. The present review summarizes the evidence which collectively raise the possibility of propionate as a dietary factor to depress appetite and combat the obesity epidemic.
Collapse
Affiliation(s)
- Tulika Arora
- Animal Biochemistry Division, National Dairy Research Institute, Karnal 135001, Haryana, India.
| | | | | |
Collapse
|
39
|
BAN-TOKUDA T, DELAVAUD C, CHILLIARD Y, FUJIHARA T. Comparative study of plasma leptin concentration between solid ruminal and liquid abomasal feeding in weaned adult sheep. Anim Sci J 2010; 81:648-56. [DOI: 10.1111/j.1740-0929.2010.00792.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
OHTANI Y, YONEZAWA T, SONG SH, TAKAHASHI T, ARDIYANTI A, SATO K, HAGINO A, ROH SG, KATOH K. Gene expression and hormonal regulation of adiponectin and its receptors in bovine mammary gland and mammary epithelial cells. Anim Sci J 2010; 82:99-106. [DOI: 10.1111/j.1740-0929.2010.00805.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Hosseini A, Sauerwein H, Mielenz M. Putative reference genes for gene expression studies in propionate and β-hydroxybutyrate treated bovine adipose tissue explants. J Anim Physiol Anim Nutr (Berl) 2010; 94:e178-84. [PMID: 20579188 DOI: 10.1111/j.1439-0396.2010.01002.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Accurate gene expression normalization using a stable reference gene (RG) improves the reliability of quantitative real-time PCR (qPCR) results. Therefore, a validation of RGs should be done before their use. Only few studies on RGs have been done in cattle, and none in bovine adipose tissue (AT) explants, therefore, we characterize the effects of an in vitro treatment with propionate and β-hydroxybutyric acid (BHB) on the mRNA content of these RGs comparing the output data from the geNorm™ and the Normfinder(©) program. geNorm™ and Normfinder(©) estimated the most stable RGs in the following sequence for subcutaneous and for retroperitoneal AT explants treated with propionate: low density lipoprotein receptor-related protein 10 (LRP10) > hippocalcin-like 1 (HPCAL1) > glyceraldehyde-phosphate-dehydrogenase (GAPDH) > ribosomal protein S9 (RPS9) > RNA polymerase II (Pol II) > beta2 actin (ACTB) > 18S ribosomal RNA (18S rRNA). BHB treated AT explants yielded a different stability ranking for RGs using geNorm™: HPCAL1, GAPDH > Pol II > LRP10 > ACTB > RPS9 > 18S rRNA. Normfinder(©) estimated a different stability ranking for the RGs as shown in the following sequence for subcutaneous and retroperitoneal AT explants treated with BHB: HPCAL1 > Pol II > GAPDH > ACTB > LRP10 > RPS9 > 18S rRNA. Subsequent pairwise analysis of variation of RGs using geNorm™ suggested that LRP10, HPCAL1 and GAPDH should be used for accurate normalization of subcutaneous and retroperitoneal AT explants treated with propionate, while HPCAL1, GAPDH and Pol II should be used for BHB treatment.
Collapse
Affiliation(s)
- A Hosseini
- Physiology & Hygiene Unit, Institute for Animal Science, University of Bonn, Bonn, Germany
| | | | | |
Collapse
|
42
|
Al-Lahham SH, Roelofsen H, Priebe M, Weening D, Dijkstra M, Hoek A, Rezaee F, Venema K, Vonk RJ. Regulation of adipokine production in human adipose tissue by propionic acid. Eur J Clin Invest 2010; 40:401-7. [PMID: 20353437 DOI: 10.1111/j.1365-2362.2010.02278.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Dietary fibre (DF) has been shown to be protective for the development of obesity, insulin resistance and type 2 diabetes. Short-chain fatty acids, produced by colonic fermentation of DF might mediate this beneficial effect. Adipose tissue plays a key role in the regulation of energy homeostasis, therefore, we investigated the influence of the short-chain fatty acid propionic acid (PA) on leptin, adiponectin and resistin production by human omental (OAT) and subcutaneous adipose tissue (SAT). As PA has been shown to be a ligand for G-protein coupled receptor (GPCR) 41 and 43, we investigated the role of GPCR's in PA signalling. MATERIALS AND METHODS Human OAT and SAT explants were obtained from gynaecological patients who underwent surgery. Explants were incubated for 24 h with PA. Adipokine secretion and mRNA expression were determined using ELISA and RT-PCR respectively. RESULTS We found that PA significantly stimulated leptin mRNA expression and secretion by OAT and SAT, whereas it had no effect on adiponectin. Furthermore, PA reduced resistin mRNA expression. Leptin induction, but not resistin reduction, was abolished by inhibition of Gi/o-coupled GPCR signalling. Moreover, GPCR41 and GPCR43 mRNA levels were considerably higher in SAT than in OAT. CONCLUSIONS We demonstrate that PA stimulates expression of the anorexigenic hormone leptin and reduces the pro-inflammatory factor resistin in human adipose tissue depots. This suggests that PA is involved in regulation of human energy metabolism and inflammation and in this way may influence the development of obesity and type 2 diabetes.
Collapse
|
43
|
Shin J, Li B, Davis ME, Suh Y, Lee K. Comparative analysis of fatty acid-binding protein 4 promoters: Conservation of peroxisome proliferator-activated receptor binding sites1. J Anim Sci 2009; 87:3923-34. [DOI: 10.2527/jas.2009-2124] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
44
|
Bonnet M, Delavaud C, Bernard L, Rouel J, Chilliard Y. Sunflower-seed oil, rapidly-degradable starch, and adiposity up-regulate leptin gene expression in lactating goats. Domest Anim Endocrinol 2009; 37:93-103. [PMID: 19446425 DOI: 10.1016/j.domaniend.2009.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 03/13/2009] [Accepted: 03/17/2009] [Indexed: 10/20/2022]
Abstract
We conducted experiments to evaluate the effects of lipid supplementation and the nature of starchy concentrate on the regulation of leptin synthesis in lactating goats. Multiparous goats in mid- to late lactation received diets based on different forages and containing plant oil or seeds rich in either 18:1c9, 18:2n-6 or 18:3n-3 corresponding to 3%-7% dry matter (DM) as lipid supplements, or diets based on concentrate as either rapidly or slowly degradable starch. The isoenergetic replacement of a part of the concentrate by either oleic sunflower-seed oil, formaldehyde-treated linseeds, or linseed oil did not modify leptinemia and the leptin mRNA concentration in adipose tissues, suggesting a lack of effect of 18:1c9, 18:3n-3, or their biohydrogenation products. Conversely, leptinemia and the leptin mRNA abundance were increased (by 20% and 140%, respectively, P<0.05) in goats fed sunflower-seed oil under a grassland hay-based diet but not a maize silage-based diet, at similar energy intakes and adiposity. Thus, 18:2n-6 per se may up-regulate leptin gene expression, but the effect could be blunted by other fatty acids formed during the ruminal digestion of sunflower-seed oil when combined with maize silage. Consumption of rapidly but not slowly degradable starch increased (by 17%, P<0.05) leptinemia. Moreover, during lactation, plasma leptin was positively correlated (P<0.05) to adiposity parameters and negatively correlated to fiber intake. The results suggest that leptinemia responds poorly to nutritional factors in lactating goats, thus highlighting the physiological need to sustain hypoleptinemia during lactation.
Collapse
Affiliation(s)
- M Bonnet
- INRA, UR1213 Unité de Recherche sur les Herbivores, St Genès Champanelle, France
| | | | | | | | | |
Collapse
|
45
|
Abd El-Maksoud AM, El Hefnawy MH, Abdel-Ghaffar ARB, Eskander EF, Ahmed HH, Seoudi DM, Yahya SM, Kamal IH. Adiponectin, leptin, and lipid profile in type 1 diabetic children and adolescents. J Clin Lipidol 2009; 3:269-74. [DOI: 10.1016/j.jacl.2009.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 07/05/2009] [Accepted: 07/08/2009] [Indexed: 01/14/2023]
|
46
|
Effects of short-term infusion with propionate on the mRNA expression of a putative G-protein coupled receptor 41 (GPR41) in adipose tissue of goats. Livest Sci 2008. [DOI: 10.1016/j.livsci.2008.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
47
|
Fernyhough ME, Okine E, Hausman G, Vierck JL, Dodson MV. PPARgamma and GLUT-4 expression as developmental regulators/markers for preadipocyte differentiation into an adipocyte. Domest Anim Endocrinol 2007; 33:367-78. [PMID: 17560753 DOI: 10.1016/j.domaniend.2007.05.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 05/07/2007] [Accepted: 05/08/2007] [Indexed: 12/25/2022]
Abstract
In this document, we have integrated knowledge about two major cellular markers found in cells of the adipocyte lineage (an adipogenic marker and a metabolic marker). This review provides information as to how differentiation of a cell (such as an adipofibroblast, fibroblast or preadipocyte) to become a viable (and new) adipocyte is under different regulation than that experienced by an immature adipocyte that is just beginning to accumulate lipid. The differentiation, prior to lipid-filling, involves PPARgamma. Subsequently, lipid-filling of the adipocyte relies on a late subset of genes and, depending on depot specificity, involves GLUT-4 or any number of other metabolic markers.
Collapse
Affiliation(s)
- M E Fernyhough
- Department of Animal Sciences, Washington State University, PO Box 646310, Pullman, WA 99164, United States
| | | | | | | | | |
Collapse
|